[go: up one dir, main page]

CN102964195B - Method for preparing second-level and third-level substituted amide - Google Patents

Method for preparing second-level and third-level substituted amide Download PDF

Info

Publication number
CN102964195B
CN102964195B CN201210499023.2A CN201210499023A CN102964195B CN 102964195 B CN102964195 B CN 102964195B CN 201210499023 A CN201210499023 A CN 201210499023A CN 102964195 B CN102964195 B CN 102964195B
Authority
CN
China
Prior art keywords
reaction
solvent
water
nmr
2mmol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201210499023.2A
Other languages
Chinese (zh)
Other versions
CN102964195A (en
Inventor
徐清
陈浩楠
万旭军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wenzhou University
Original Assignee
Wenzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wenzhou University filed Critical Wenzhou University
Priority to CN201210499023.2A priority Critical patent/CN102964195B/en
Publication of CN102964195A publication Critical patent/CN102964195A/en
Application granted granted Critical
Publication of CN102964195B publication Critical patent/CN102964195B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Pyridine Compounds (AREA)

Abstract

本发明提供了一种制备二级和三级取代酰胺的方法,在空气或者惰性气体条件下利用碱催化剂催化腈类与胺类的反应,反应温度为100~200°C,反应时间为24~72小时,原料腈和原料胺的摩尔比为3~1:1~3;原料胺是伯胺或仲胺;反应的溶剂为水或氨水;所述碱催化剂为LiOH、NaOH、KOH、CsOH、t-BuOK、t-BuONa、Mg(OH)2或者Ca(OH)2。本发明中所使用的碱催化剂可以直接购买得到,催化剂价格便宜易得、稳定,不怕水不怕氧、毒性小、水溶性好,且用量不高,反应后可方便地溶于水而除去,此外反应条件与金属催化方法相当、易于操作,反应无需有机溶剂、使用最绿色的水为溶剂,因此本方法还可以大大降低有机溶剂对环境可能造成的污染等问题。The invention provides a method for preparing secondary and tertiary substituted amides, using a base catalyst to catalyze the reaction of nitriles and amines under air or inert gas conditions, the reaction temperature is 100-200°C, and the reaction time is 24-24°C. 72 hours, the mol ratio of raw material nitrile and raw material amine is 3~1:1~3; The raw material amine is primary amine or secondary amine; The solvent of reaction is water or ammoniacal liquor; Described alkali catalyst is LiOH, NaOH, KOH, CsOH, t-BuOK, t-BuONa, Mg(OH) 2 or Ca(OH) 2 . The alkali catalyst used in the present invention can be purchased directly, the catalyst is cheap, easy to get, stable, not afraid of water or oxygen, low toxicity, good water solubility, and low consumption, can be easily dissolved in water and removed after the reaction, in addition The reaction conditions are equivalent to the metal catalyzed method, easy to operate, no organic solvent is needed for the reaction, and the greenest water is used as the solvent, so this method can also greatly reduce the possible pollution of the environment caused by the organic solvent.

Description

一种制备二级和三级取代酰胺的方法A method for preparing secondary and tertiary substituted amides

技术领域technical field

本发明属于化学合成领域,具体涉及一种制备二级和三级取代酰胺的方法。The invention belongs to the field of chemical synthesis, in particular to a method for preparing secondary and tertiary substituted amides.

背景技术Background technique

酰胺键或酰胺官能团是生命化学和合成化学中最重要的官能团之一。酰胺类化合物是重要的有机合成试剂,也是在药物合成和材料研发等多领域中普遍应用的合成中间体。由于酰胺键在生物活性化合物中普遍存在,改进酰胺合成方法或酰胺成键方法、以克服传统方法的缺点已经成为药物合成工业中最热门的研究领域和最重要的研究目标。因此,取代酰胺的合成方法研究近年来受到了人们的特别关注,人们也报道了一系列催化方法使用各种原料来合成酰胺类化合物,以取代过去使用偶联试剂、脱水试剂、或者活化的反应物如酰氯的方法。同时,不少国际顶级期刊如Nature、Chem.Soc.Rev.等最近也综述了酰胺类化合物的合成方法,对酰胺的合成也作了一定的展望。The amide bond or amide functional group is one of the most important functional groups in life chemistry and synthetic chemistry. Amide compounds are important organic synthesis reagents and synthetic intermediates widely used in many fields such as drug synthesis and material research and development. Since amide bonds are ubiquitous in bioactive compounds, improving amide synthesis methods or amide bond formation methods to overcome the shortcomings of traditional methods has become the hottest research field and the most important research goal in the pharmaceutical synthesis industry. Therefore, the research on the synthesis method of substituted amides has received special attention in recent years, and a series of catalytic methods have been reported using various raw materials to synthesize amides to replace the past reactions using coupling reagents, dehydrating reagents, or activation. substances such as acid chlorides. At the same time, many top international journals such as Nature, Chem.Soc.Rev., etc. have recently reviewed the synthesis methods of amides, and have also made certain prospects for the synthesis of amides.

虽然腈类化合物的水解是制备无取代酰胺的一种直接、经济和简便的方法,文献上也有非常多的报道,但是使用腈为稳定易得的原料用于合成含取代基的二级和三级酰胺的方法还非常之少。与腈的水解反应类似,已知的腈与胺反应合成取代酰胺的方法多采用贵重金属如铂(Pt)、钌(Ru)或铈(Ce)等的催化剂,但这些反应仍需要很高的温度(160°C以上),有的还需要其中一种反应物大大过量(大于2当量)。贵金属催化的方法虽然比传统方法有了改进,但是使用贵重不易得、难合成、不稳定、毒性大、有重金属残留的贵金属催化剂以及过量的反应物的方法显然还存在很多的缺点,特别不适用于药物和生物活性化合物的合成。最近一例廉价金属铁(Fe)催化方法的报道,但是该方法需使用10mol%的九水合硝酸铁[Fe(NO3)3·9H2O],8当量的腈或者6-8当量的胺才能有效地反应,因此实际上催化剂用量大、原料利用率很低。此外还有一例锌(Zn)催化的报道对Fe催化方法进行了改进,但是该方法需使用10mol%的路易斯酸Zn(OTf)2为催化剂、10mol%的盐酸羟胺(NH2OH·HCl)为共催化剂、以及2当量的原料腈。显然,不易得、易水解的Zn(OTf)2价格较高、催化剂体系也较为复杂,加上需使用过量的腈,也导致该方法的应用潜力非常有限。Although the hydrolysis of nitrile compounds is a direct, economical and convenient method for preparing unsubstituted amides, and there are many reports in the literature, the use of nitriles as stable and easily available raw materials is used to synthesize secondary and tertiary compounds containing substituents. There are still very few methods for grade amides. Similar to the hydrolysis reaction of nitriles, the known methods of reacting nitriles with amines to synthesize substituted amides mostly use catalysts of noble metals such as platinum (Pt), ruthenium (Ru) or cerium (Ce), but these reactions still require high temperature (above 160°C), some also require a large excess of one of the reactants (greater than 2 equivalents). Although the method of noble metal catalysis has been improved compared with the traditional method, the method of using precious metal catalysts that are not easy to obtain, difficult to synthesize, unstable, highly toxic, have heavy metal residues, and excessive reactants obviously still has many shortcomings, especially not applicable for the synthesis of pharmaceuticals and bioactive compounds. A recent report of a cheap metal iron (Fe) catalyzed method, but the method needs to use 10mol% ferric nitrate nonahydrate [Fe(NO 3 ) 3 9H 2 O], 8 equivalents of nitrile or 6-8 equivalents of amine Effective reaction, so in fact the amount of catalyst used is large and the utilization rate of raw materials is very low. In addition, there is a case of zinc (Zn) catalysis reported to improve the Fe-catalyzed method, but this method needs to use 10 mol% Lewis acid Zn(OTf) 2 as catalyst, 10 mol% hydroxylamine hydrochloride (NH 2 OH·HCl) as cocatalyst, and 2 equivalents of starting nitrile. Obviously, Zn(OTf) 2 , which is difficult to obtain and easily hydrolyzed, is relatively expensive, and the catalyst system is also relatively complicated. In addition, excessive nitrile needs to be used, which also leads to very limited application potential of this method.

因此,使用低毒性、无毒性催化剂甚至无需过渡金属参与的催化腈与胺反应合成二级和三级取代酰胺的方法非常值得研究。Therefore, the synthesis of secondary and tertiary substituted amides by catalyzing the reaction of nitriles with amines using low-toxicity, non-toxic catalysts or even without the participation of transition metals is worth studying.

发明内容Contents of the invention

本发明针对上述现有技术的不足,提供了一种环境污染小、高效的制备二级和三级取代酰胺的方法。The present invention aims at the deficiencies of the above-mentioned prior art, and provides a method for preparing secondary and tertiary substituted amides with little environmental pollution and high efficiency.

本发明是通过如下技术方案实现的:The present invention is achieved through the following technical solutions:

一种制备二级和三级取代酰胺的方法,在空气或者惰性气体条件下利用碱催化剂催化腈类与胺类的反应,反应温度为100~200°C,反应时间为24~72小时,反应式为:A method for preparing secondary and tertiary substituted amides, using a base catalyst to catalyze the reaction of nitriles and amines under air or inert gas conditions, the reaction temperature is 100-200 ° C, the reaction time is 24-72 hours, the reaction The formula is:

其中:in:

原料腈和原料胺的摩尔比为3~1:1~3;原料胺是伯胺或仲胺;The molar ratio of the raw material nitrile to the raw material amine is 3~1:1~3; the raw material amine is primary or secondary amine;

R1是各种官能团取代在2-,3-,或4-的苯基或者各类取代芳基、取代呋喃、取代噻吩、取代吡啶等各类取代杂芳基,或者是各种碳链长度和支链取代的烷基;R 1 is various functional groups substituted in 2-, 3-, or 4-phenyl or various substituted aryl groups, substituted furan, substituted thiophene, substituted pyridine and other substituted heteroaryl groups, or various carbon chain lengths and branched chain substituted alkyl groups;

R2和R3是氢或各种官能团取代的苄基、杂苄基,或者是各种取代的、各种碳链长度和支链取代的烷基、环烷基;R 2 and R 3 are benzyl, heterobenzyl substituted by hydrogen or various functional groups, or various substituted, various carbon chain lengths and branched chain substituted alkyl, cycloalkyl;

反应的溶剂为水或氨水;The solvent of reaction is water or ammoniacal liquor;

所述碱催化剂为LiOH、NaOH、KOH、CsOH、t-BuOK、t-BuONa、Mg(OH)2或者Ca(OH)2The base catalyst is LiOH, NaOH, KOH, CsOH, t-BuOK, t-BuONa, Mg(OH) 2 or Ca(OH) 2 .

优选的,所述碱催化剂为CsOH。Preferably, the base catalyst is CsOH.

优选的,所述碱催化剂的用量为1~200mol%。Preferably, the amount of the base catalyst is 1-200mol%.

优选的,所述碱催化剂的用量为10~20mol%。Preferably, the amount of the base catalyst is 10-20mol%.

优选的,所述惰性气体为氮气。Preferably, the inert gas is nitrogen.

优选的,所述反应温度为160°C。Preferably, the reaction temperature is 160°C.

优选的,所述反应时间为48小时。Preferably, the reaction time is 48 hours.

优选的,所述反应的溶剂为水。Preferably, the solvent for the reaction is water.

本发明从廉价、稳定、易得的腈类和胺类化合物出发,使用合适的催化剂,在无过渡金属催化剂参与的条件下进行的腈与胺的反应,实现了环境污染小、高效的二级和三级取代酰胺类化合物的合成新方法。The present invention starts from cheap, stable and easy-to-obtain nitriles and amines, and uses a suitable catalyst to carry out the reaction of nitriles and amines without the participation of a transition metal catalyst, thereby realizing a low-environmental pollution and high-efficiency secondary And a new method for the synthesis of tertiary substituted amides.

本发明中所使用的碱催化剂可以直接购买得到。本方法与文献中报导的其它方法相比,催化剂价格便宜易得、稳定,不怕水不怕氧、毒性小、水溶性好,且用量不高,反应后可方便地溶于水而除去,此外反应条件与金属催化方法相当、易于操作,反应无需有机溶剂、使用最绿色的水为溶剂,因此本方法还可以大大降低有机溶剂对环境可能造成的污染等问题。总而言之,本方法对反应条件的要求不高,具有很好的应用前景。The base catalyst used in the present invention can be purchased directly. Compared with other methods reported in the literature, this method has a catalyst that is cheap, easy to get, stable, not afraid of water or oxygen, low toxicity, good water solubility, and low dosage, and can be easily dissolved in water and removed after the reaction. The conditions are equivalent to those of the metal-catalyzed method, and it is easy to operate. The reaction does not require an organic solvent, and the greenest water is used as a solvent. Therefore, this method can also greatly reduce the possible pollution of the environment caused by the organic solvent. All in all, this method does not require high reaction conditions and has a good application prospect.

具体实施方式Detailed ways

通过下述实施方式将有助于理解本发明,但并不限制于本发明的内容。The following embodiments will help to understand the present invention, but are not limited to the content of the present invention.

实施例1:Example 1:

苯腈和苄胺反应制备N-苄基苯甲酰胺Preparation of N-Benzylbenzamide by Reaction of Benzonitrile and Benzylamine

反应管中依次加入CsOH·H2O(0.0336g,10mol%),PhCN(2mmol),苄胺(2mmol,1equiv.),再加入水(0.5mL)为溶剂,抽真空充氮气保护后密封加热到160°C反应48h。GC-MS测得反应转化率99%。产物用柱色谱分离提纯,分离收率58%。1H NMR(500MHz,d6-DMSO):δ9.05(t,J=6.0Hz,1H),7.91(d,J=7.5Hz,2H),7.56-7.53(m,1H),7.50-7.47(m,2H),7.34-33(m,4H),7.27-7.24(m,1H),4.50(d,J=6.0Hz,2H).13C NMR(125.4MHz,d6-DMSO):δ166.2,139.7,134.3,131.2,128.28,128.24,127.20,127.17,126.7,42.6.MS(EI):m/z(%)212(13),211(82),210(25),107(3),106(9),105(100),104(4),91(9),79(4),78(5),77(42),76(2),65(4),51(11),50(3).Add CsOH·H 2 O (0.0336g, 10mol%), PhCN (2mmol), benzylamine (2mmol, 1equiv.) to the reaction tube in sequence, then add water (0.5mL) as solvent, vacuumize and fill with nitrogen protection, seal and heat Reaction at 160°C for 48h. The conversion rate of the reaction was determined to be 99% by GC-MS. The product was separated and purified by column chromatography, and the separation yield was 58%. 1 H NMR (500MHz, d 6 -DMSO): δ9.05(t, J=6.0Hz, 1H), 7.91(d, J=7.5Hz, 2H), 7.56-7.53(m, 1H), 7.50-7.47 (m, 2H), 7.34-33 (m, 4H), 7.27-7.24 (m, 1H), 4.50 (d, J=6.0Hz, 2H). 13 C NMR (125.4MHz, d 6 -DMSO): δ166 .2, 139.7, 134.3, 131.2, 128.28, 128.24, 127.20, 127.17, 126.7, 42.6. MS(EI): m/z(%) 212(13), 211(82), 210(25), 107(3 ), 106(9), 105(100), 104(4), 91(9), 79(4), 78(5), 77(42), 76(2), 65(4), 51(11 ), 50(3).

实施例2:Example 2:

对甲基苯腈和苄胺反应制备N-苄基对甲基苯甲酰胺Preparation of N-benzyl p-methylbenzamide by the reaction of p-methylbenzonitrile and benzylamine

反应管中依次加入CsOH·H2O(0.0336g,10mol%),对甲基苯腈(2mmol),苄胺(2mmol,1equiv.),再加入水(0.5mL)为溶剂,抽真空充氮气保护后密封加热到160°C反应48h。GC-MS测得反应转化率83%。产物用柱色谱分离提纯,分离收率50%。1H NMR(500MHz,d6-DMSO):δ7.68(d,J=8.0Hz,2H),7.36-7.34(m,4H),7.31-7.28(m,1H),7.22(d,J=8.0Hz,2H),6.40(b,1H),4.64(d,J=6.0Hz,2H),2.39(s,3H).13C NMR(125.4MHz,d6-DMSO):δ167.3,141.9,138.3,131.6,129.3,128.8,127.9,127.6,127.0,44.1,21.4.MS(EI):m/z(%)226(6),225(41),120(7),119(100),107(2),92(2),91(28),89(2),77(2),65(6).Add CsOH·H 2 O (0.0336g, 10mol%), p-toluonitrile (2mmol), benzylamine (2mmol, 1equiv.) to the reaction tube in sequence, then add water (0.5mL) as solvent, vacuumize and fill with nitrogen After protection, seal and heat to 160°C for 48h. The conversion rate of the reaction was 83% as measured by GC-MS. The product was separated and purified by column chromatography, and the separation yield was 50%. 1 H NMR (500MHz, d 6 -DMSO): δ7.68(d, J=8.0Hz, 2H), 7.36-7.34(m, 4H), 7.31-7.28(m, 1H), 7.22(d, J= 8.0Hz, 2H), 6.40(b, 1H), 4.64(d, J=6.0Hz, 2H), 2.39(s, 3H). 13 C NMR (125.4MHz, d 6 -DMSO): δ167.3, 141.9 , 138.3, 131.6, 129.3, 128.8, 127.9, 127.6, 127.0, 44.1, 21.4. MS(EI): m/z(%) 226(6), 225(41), 120(7), 119(100), 107(2), 92(2), 91(28), 89(2), 77(2), 65(6).

实施例3:Example 3:

间甲基苯腈和苄胺反应制备N-苄基间甲基苯甲酰胺Preparation of N-benzyl m-methylbenzamide by the reaction of m-methylbenzonitrile and benzylamine

反应管中依次加入CsOH·H2O(0.0336g,10mol%),间甲基苯腈(2mmol),苄胺(2mmol,1equiv.),再加入水(0.5mL)为溶剂,抽真空充氮气保护后密封加热到160°C反应48h。GC-MS测得反应转化率75%。产物用柱色谱分离提纯,分离收率60%。1H NMR(500MHz,CDCl3):δ7.61(s,1H),7.56-7.54(m,1H),7.35-7.33(m,4H),7.29-7.27(m,3H),6.47(b,1H),4.62(d,J=5.5Hz,2H),2.37(s,3H).13C NMR(125.4MHz,CDCl3):δ167.5,138.4,138.3,134.4,132.2,128.7,128.4,127.9,127.7,127.6,123.9,44.1,21.3.MS(EI):m/z(%)226(8),225(50),107(2),106(3),104(2),92(20),91(100),89(3),77(4),65(15),63(3),51(5),50(3),43(2),41(2).Add CsOH·H 2 O (0.0336g, 10mol%), m-toluonitrile (2mmol), benzylamine (2mmol, 1equiv.) to the reaction tube in turn, then add water (0.5mL) as solvent, vacuumize and fill with nitrogen After protection, seal and heat to 160°C for 48h. GC-MS showed that the reaction conversion rate was 75%. The product was separated and purified by column chromatography, and the separation yield was 60%. 1 H NMR (500MHz, CDCl 3 ): δ7.61(s, 1H), 7.56-7.54(m, 1H), 7.35-7.33(m, 4H), 7.29-7.27(m, 3H), 6.47(b, 1H), 4.62(d, J=5.5Hz, 2H), 2.37(s, 3H). 13 C NMR (125.4MHz, CDCl 3 ): δ167.5, 138.4, 138.3, 134.4, 132.2, 128.7, 128.4, 127.9 , 127.7, 127.6, 123.9, 44.1, 21.3. MS (EI): m/z (%) 226 (8), 225 (50), 107 (2), 106 (3), 104 (2), 92 (20 ), 91(100), 89(3), 77(4), 65(15), 63(3), 51(5), 50(3), 43(2), 41(2).

实施例4:Example 4:

间氯苯腈和苄胺反应制备N-苄基-3-氯苯甲酰胺Preparation of N-benzyl-3-chlorobenzamide by the reaction of m-chlorobenzonitrile and benzylamine

反应管中依次加入CsOH·H2O(0.0336g,10mol%),间氯苯腈(2mmol),苄胺(2mmol,1equiv.),再加入水(0.5mL)为溶剂,抽真空充氮气保护后密封加热到160°C反应48h。GC-MS测得反应转化率80%。产物用柱色谱分离提纯,分离收率70%。1H NMR(500MHz,CDCl3):δ7.77(t,J=2.0Hz,1H),7.65(d,J=7.5Hz,1H),7.47-7.45(m,1H),7.37-7.33(m,5H),7.32-7.29(m,1H),6.42(b,1H),4.63(d,J=6.0Hz,2H).13C NMR(125.4MHz,CDCl3):δ166.0,137.9,136.2,134.8,131.6,129.9,128.9,128.0,127.8,127.4,125.0,44.3.MS(EI):m/z(%)248(2),247(12),246(6),245(37),210(4),142(2),141(34),140(7),139(100),113(6),111(17),107(2),77(3),75(4).Add CsOH·H 2 O (0.0336g, 10mol%), m-chlorobenzonitrile (2mmol), benzylamine (2mmol, 1equiv.) to the reaction tube in sequence, then add water (0.5mL) as solvent, vacuumize and fill with nitrogen gas protection Back sealing is heated to 160 DEG C and reacts 48h. GC-MS showed that the reaction conversion rate was 80%. The product was separated and purified by column chromatography, and the separation yield was 70%. 1 H NMR (500MHz, CDCl 3 ): δ7.77(t, J=2.0Hz, 1H), 7.65(d, J=7.5Hz, 1H), 7.47-7.45(m, 1H), 7.37-7.33(m , 5H), 7.32-7.29 (m, 1H), 6.42 (b, 1H), 4.63 (d, J=6.0Hz, 2H). 13 C NMR (125.4MHz, CDCl 3 ): δ166.0, 137.9, 136.2 , 134.8, 131.6, 129.9, 128.9, 128.0, 127.8, 127.4, 125.0, 44.3. MS(EI): m/z(%) 248(2), 247(12), 246(6), 245(37), 210(4), 142(2), 141(34), 140(7), 139(100), 113(6), 111(17), 107(2), 77(3), 75(4).

实施例5:Example 5:

对溴苯腈和苄胺反应制备N-苄基对溴苯甲酰胺Preparation of N-benzyl p-bromobenzamide by reaction of p-bromoxynil and benzylamine

反应管中依次加入CsOH·H2O(0.0336g,10mol%),对溴苯腈(2mmol),苄胺(2mmol,1equiv.),再加入水(0.5mL)为溶剂,抽真空充氮气保护后密封加热到160°C反应48h。GC-MS测得反应转化率98%。产物用柱色谱分离提纯,分离收率65%。1H NMR(500MHz,CDCl3):δ7.65(d,J=8.5Hz,2H),7.56(d,J=8.5Hz,2H),7.37-7.29(m,5H),6.37(b,1H),4.62(d,J=5.5Hz,2H).13C NMR(125.4MHz,CDCl3):δ166.4,137.9,133.2,131.9,128.9,128.6,128.0,127.8,126.3,44.3.MS(EI):m/z(%)292(8),291(51),290(9),289(53),186(8),185(99),184(8),183(100),157(25),155(25),108(3),107(4),106(4),104(5),77(8),76(13),75(7),50(3)Add CsOH·H 2 O (0.0336g, 10mol%), p-bromoxynil (2mmol), benzylamine (2mmol, 1equiv.) to the reaction tube in sequence, then add water (0.5mL) as solvent, vacuumize and fill with nitrogen gas protection Back sealing is heated to 160 DEG C and reacts 48h. The conversion rate of the reaction was 98% as measured by GC-MS. The product was separated and purified by column chromatography, and the separation yield was 65%. 1 H NMR (500MHz, CDCl 3 ): δ7.65(d, J=8.5Hz, 2H), 7.56(d, J=8.5Hz, 2H), 7.37-7.29(m, 5H), 6.37(b, 1H ), 4.62 (d, J=5.5Hz, 2H). 13 C NMR (125.4MHz, CDCl 3 ): δ166.4, 137.9, 133.2, 131.9, 128.9, 128.6, 128.0, 127.8, 126.3, 44.3.MS (EI ): m/z(%) 292(8), 291(51), 290(9), 289(53), 186(8), 185(99), 184(8), 183(100), 157( 25), 155(25), 108(3), 107(4), 106(4), 104(5), 77(8), 76(13), 75(7), 50(3)

实施例6:Embodiment 6:

4-氰基吡啶和苄胺反应制备N-苄基-4-吡啶甲酰胺Preparation of N-benzyl-4-pyridinecarboxamide by reaction of 4-cyanopyridine and benzylamine

反应管中依次加入CsOH·H2O(0.0336g,10mol%),4-氰基吡啶(2mmol),苄胺(2mmol,1equiv.),再加入水(0.5mL)为溶剂,抽真空充氮气保护后密封加热到160°C反应48h。GC-MS测得反应转化率91%。产物用柱色谱分离提纯,分离收率83%。1H NMR(500MHz,CDCl3):δ8.68(d,J=5.0Hz,2H),7.62-7.61(m,2H),7.37-7.31(m,5H),6.81(b,1H),4.63(d,J=6.0Hz,2H).13C NMR(125.4MHz,CDCl3):δ165.5,150.5,141.5,137.5,128.9,128.0,127.9,121.0,44.3.MS(EI):m/z(%)213(15),212(100),211(23),183(2),168(2),155(3),107(6),106(54),104(7),91(10),79(10),78(22),77(6),65(3),51(8),50(2),28(3).Add CsOH·H 2 O (0.0336g, 10mol%), 4-cyanopyridine (2mmol), benzylamine (2mmol, 1equiv.) to the reaction tube in sequence, then add water (0.5mL) as solvent, vacuumize and fill with nitrogen After protection, seal and heat to 160°C for 48h. The conversion rate of the reaction was 91% as measured by GC-MS. The product was separated and purified by column chromatography, and the separation yield was 83%. 1 H NMR (500MHz, CDCl 3 ): δ8.68(d, J=5.0Hz, 2H), 7.62-7.61(m, 2H), 7.37-7.31(m, 5H), 6.81(b, 1H), 4.63 (d, J=6.0Hz, 2H). 13 C NMR (125.4MHz, CDCl 3 ): δ165.5, 150.5, 141.5, 137.5, 128.9, 128.0, 127.9, 121.0, 44.3. MS(EI): m/z (%) 213(15), 212(100), 211(23), 183(2), 168(2), 155(3), 107(6), 106(54), 104(7), 91( 10), 79(10), 78(22), 77(6), 65(3), 51(8), 50(2), 28(3).

实施例7:Embodiment 7:

2-氯-4-氰基吡啶和苄胺反应制备N-苄基-2-氯-4-吡啶甲酰胺Preparation of N-benzyl-2-chloro-4-pyridinecarboxamide by the reaction of 2-chloro-4-cyanopyridine and benzylamine

反应管中依次加入CsOH·H2O(0.0336g,10mol%),2-氯-4-氰基吡啶(2mmol),苄胺(2mmol,1equiv.),再加入水(0.5mL)为溶剂,抽真空充氮气保护后密封加热到160°C反应48h。GC-MS测得反应转化率75%。产物用柱色谱分离提纯,分离收率60%。1H NMR(500MHz,CDCl3):δ8.46(d,J=5.0Hz,1H),7.65(s,1H),7.53(dd,J=5.0Hz,J=1.0Hz,1H),7.38-7.31(m,5H),6.66(b,1H),4.61(d,J=5.5Hz,2H).13C NMR(125.4MHz,CDCl3):δ164.1,152.5,150.5,144.5,137.2,128.9,128.04,128.00,122.0,119.8,44.4.MS(EI):m/z(%)249(5),248(28),247(21),246(100),245(27),211(42),210(12),182(7),169(7),139(10),135(11),111(11),107(27),106(8),85(9),80(12),79(7),69(19),53(9),52(9).CsOH·H 2 O (0.0336g, 10mol%), 2-chloro-4-cyanopyridine (2mmol), benzylamine (2mmol, 1equiv.), and water (0.5mL) were added successively into the reaction tube as a solvent, Sealed and heated to 160° C. for reaction 48h after evacuating and nitrogen protection. GC-MS showed that the reaction conversion rate was 75%. The product was separated and purified by column chromatography, and the separation yield was 60%. 1 H NMR (500MHz, CDCl 3 ): δ8.46(d, J=5.0Hz, 1H), 7.65(s, 1H), 7.53(dd, J=5.0Hz, J=1.0Hz, 1H), 7.38- 7.31 (m, 5H), 6.66 (b, 1H), 4.61 (d, J=5.5Hz, 2H). 13 C NMR (125.4MHz, CDCl 3 ): δ164.1, 152.5, 150.5, 144.5, 137.2, 128.9 , 128.04, 128.00, 122.0, 119.8, 44.4. MS (EI): m/z (%) 249 (5), 248 (28), 247 (21), 246 (100), 245 (27), 211 (42 ), 210(12), 182(7), 169(7), 139(10), 135(11), 111(11), 107(27), 106(8), 85(9), 80(12 ), 79(7), 69(19), 53(9), 52(9).

实施例8:Embodiment 8:

2-氰基噻吩和苄胺反应制备N-苄基噻吩-2-甲酰胺Preparation of N-Benzylthiophene-2-Carboxamide by Reaction of 2-cyanothiophene and Benzylamine

反应管中依次加入CsOH·H2O(0.0336g,10mol%),2-氰基噻吩(2mmol),苄胺(2mmol,1equiv.),再加入水(0.5mL)为溶剂,抽真空充氮气保护后密封加热到160°C反应48h。GC-MS测得反应转化率99%。产物用柱色谱分离提纯,分离收率50%。1H NMR(500MHz,CDCl3):δ7.51(dd,J=3.5Hz,J=1.0Hz,1H),7.47(dd,J=5.0Hz,J=1.0Hz,1H),7.36-7.34(m,4H),7.32-7.27(m,1H),7.06(dd,J=4.0Hz,J=5.0Hz,1H),6.31(b,1H),4.61(d,J=5.5Hz,2H).13C NMR(125.4MHz,CDCl3):δ161.8,138.8,138.1,130.0,128.8,128.2,128.0,127.7,127.6,44.0.MS(EI):m/z(%)219(4),218(11),217(72),216(4),113(8),112(13),111(100),106(42),105(12),104(7),91(20),84(10),83(11),79(8),77(11),65(10),51(8),39(24).Add CsOH·H 2 O (0.0336g, 10mol%), 2-cyanothiophene (2mmol), benzylamine (2mmol, 1equiv.) to the reaction tube in sequence, then add water (0.5mL) as solvent, vacuumize and fill with nitrogen After protection, seal and heat to 160°C for 48h. The conversion rate of the reaction was determined to be 99% by GC-MS. The product was separated and purified by column chromatography, and the separation yield was 50%. 1 H NMR (500MHz, CDCl 3 ): δ7.51(dd, J=3.5Hz, J=1.0Hz, 1H), 7.47(dd, J=5.0Hz, J=1.0Hz, 1H), 7.36-7.34( m, 4H), 7.32-7.27(m, 1H), 7.06(dd, J=4.0Hz, J=5.0Hz, 1H), 6.31(b, 1H), 4.61(d, J=5.5Hz, 2H). 13 C NMR (125.4MHz, CDCl 3 ): δ161.8, 138.8, 138.1, 130.0, 128.8, 128.2, 128.0, 127.7, 127.6, 44.0. MS (EI): m/z (%) 219 (4), 218 (11), 217(72), 216(4), 113(8), 112(13), 111(100), 106(42), 105(12), 104(7), 91(20), 84 (10), 83(11), 79(8), 77(11), 65(10), 51(8), 39(24).

实施例9:Embodiment 9:

环丙基甲腈和苄胺反应制备N-苄基环丙基甲酰胺Preparation of N-Benzylcyclopropylformamide by Reaction of Cyclopropylcarbonitrile and Benzylamine

反应管中依次加入CsOH·H2O(0.0336g,10mol%),环丙基甲腈(2mmol),苄胺(2mmol,1equiv.),再加入水(0.5mL)为溶剂,抽真空充氮气保护后密封加热到160°C反应48h。GC-MS测得反应转化率98%。产物用柱色谱分离提纯,分离收率53%。1H NMR(500MHz,CDCl3):δ7.35-7.27(m,5H),5.96(b,1H),4.45(d,J=6.0Hz,2H),1.38-1.33(m,1H),1.02-0.99(m,2H),0.76-0.72(m,2H).13C NMR(125.4MHz,CDCl3):δ173.4,138.5,128.7,127.8,127.5,43.9,14.8,7.2.MS(EI):m/z(%)176(8),175(56),174(13),160(6),146(9),132(10),131(26),130(8),117(12),116(7),107(8),106(48),105(12),104(100),92(8),91(94),79(12),77(18),69(45),65(22),59(12),55(9),51(15),50(6),41(57),39(34),28(12),27(5).Add CsOH·H 2 O (0.0336g, 10mol%), cyclopropylcarbonitrile (2mmol), benzylamine (2mmol, 1equiv.) to the reaction tube in sequence, then add water (0.5mL) as solvent, vacuumize and fill with nitrogen After protection, seal and heat to 160°C for 48h. The conversion rate of the reaction was 98% as measured by GC-MS. The product was separated and purified by column chromatography, and the separation yield was 53%. 1 H NMR (500MHz, CDCl 3 ): δ7.35-7.27(m, 5H), 5.96(b, 1H), 4.45(d, J=6.0Hz, 2H), 1.38-1.33(m, 1H), 1.02 -0.99 (m, 2H), 0.76-0.72 (m, 2H). 13 C NMR (125.4MHz, CDCl 3 ): δ173.4, 138.5, 128.7, 127.8, 127.5, 43.9, 14.8, 7.2. MS (EI) : m/z(%) 176(8), 175(56), 174(13), 160(6), 146(9), 132(10), 131(26), 130(8), 117(12 ), 116(7), 107(8), 106(48), 105(12), 104(100), 92(8), 91(94), 79(12), 77(18), 69(45 ), 65(22), 59(12), 55(9), 51(15), 50(6), 41(57), 39(34), 28(12), 27(5).

实施例10:Example 10:

戊腈和苄胺反应制备N-苄基戊酰胺Preparation of N-Benzylvaleramide by Reaction of Valeronitrile and Benzylamine

反应管中依次加入CsOH·H2O(0.0336g,10mol%),戊腈(2mmol),苄胺(2mmol,1equiv.),再加入水(0.5mL)为溶剂,抽真空充氮气保护后密封加热到160°C反应48h。GC-MS测得反应转化率80%。产物用柱色谱分离提纯,分离收率60%。1H NMR(500MHz,CDCl3):δ7.35-7.26(m,5H),5.82(b,1H),4.42(d,J=6.0Hz,2H),2.21(t,J=7.5Hz,2H),1.66-1.60(m,2H),1.39-1.31(m,2H),0.92(t,J=7.5Hz,2H).13C NMR(125.4MHz,CDCl3):δ173.0,138.5,128.7,127.8,127.5,43.6,36.5,27.9,22.4,13.8.MS(EI):m/z(%)192(6),191(42),148(18),130(3),107(33),106(100),105(13),104(4),103(3),92(3),91(29),85(2),79(10),77(4),65(4),58(5),43(10),42(3),28(2).Add CsOH·H 2 O (0.0336g, 10mol%), valeronitrile (2mmol), benzylamine (2mmol, 1equiv.) to the reaction tube in sequence, then add water (0.5mL) as solvent, vacuumize and fill with nitrogen to protect and seal Heated to 160°C for 48h. GC-MS showed that the reaction conversion rate was 80%. The product was separated and purified by column chromatography, and the separation yield was 60%. 1 H NMR (500MHz, CDCl 3 ): δ7.35-7.26(m, 5H), 5.82(b, 1H), 4.42(d, J=6.0Hz, 2H), 2.21(t, J=7.5Hz, 2H ), 1.66-1.60 (m, 2H), 1.39-1.31 (m, 2H), 0.92 (t, J=7.5Hz, 2H). 13 C NMR (125.4MHz, CDCl 3 ): δ173.0, 138.5, 128.7 , 127.8, 127.5, 43.6, 36.5, 27.9, 22.4, 13.8. MS (EI): m/z (%) 192 (6), 191 (42), 148 (18), 130 (3), 107 (33) , 106(100), 105(13), 104(4), 103(3), 92(3), 91(29), 85(2), 79(10), 77(4), 65(4) , 58(5), 43(10), 42(3), 28(2).

实施例11:Example 11:

苯乙腈和苄胺反应制备N-苄基苯乙酰胺Preparation of N-benzylphenylacetamide by the reaction of phenylacetonitrile and benzylamine

反应管中依次加入CsOH·H2O(0.0336g,10mol%),苯乙腈(2mmol),苄胺(2mmol,1equiv.),再加入水(0.5mL)为溶剂,抽真空充氮气保护后密封加热到160°C反应48h。GC-MS测得反应转化率70%。产物用柱色谱分离提纯,分离收率45%。1H NMR(500MHz,d6-DMSO):δ7.36-7.24(m,8H),7.17(d,J=7.0Hz,2H),5.73(b,1H),4.41(d,J=6.0Hz,2H),3.62(s,2H).13C NMR(125.4MHz,d6-DMSO):δ170.8,138.1,134.8,129.5,129.1,128.7,127.5,127.44,127.42,43.9,43.6.MS(EI):m/z(%)226(8),225(50),107(2),106(3),104(2),92(20),91(100),89(3),77(4),65(15),63(3),51(5),50(2),43(2),41(2).Add CsOH·H 2 O (0.0336g, 10mol%), phenylacetonitrile (2mmol), benzylamine (2mmol, 1equiv.) to the reaction tube in sequence, then add water (0.5mL) as solvent, vacuumize and fill with nitrogen to protect and seal Heated to 160°C for 48h. GC-MS showed that the reaction conversion rate was 70%. The product was separated and purified by column chromatography, and the separation yield was 45%. 1 H NMR (500MHz, d 6 -DMSO): δ7.36-7.24(m, 8H), 7.17(d, J=7.0Hz, 2H), 5.73(b, 1H), 4.41(d, J=6.0Hz , 2H), 3.62(s, 2H). 13 C NMR (125.4MHz, d 6 -DMSO): δ170.8, 138.1, 134.8, 129.5, 129.1, 128.7, 127.5, 127.44, 127.42, 43.9, 43.6.MS ( EI): m/z(%)226(8), 225(50), 107(2), 106(3), 104(2), 92(20), 91(100), 89(3), 77 (4), 65(15), 63(3), 51(5), 50(2), 43(2), 41(2).

实施例12:Example 12:

苯腈和对甲基苄胺反应制备N-对甲基苄基苯甲酰胺Preparation of N-p-methylbenzylbenzamide by reaction of benzonitrile and p-methylbenzylamine

反应管中依次加入CsOH·H2O(0.0336g,10mol%),PhCN(2mmol),对甲基苄胺(2mmol,1equiv.),再加入水(0.5mL)为溶剂,抽真空充氮气保护后密封加热到160°C反应48h。GC-MS测得反应转化率78%。产物用柱色谱分离提纯,分离收率50%。1H NMR(500MHz,CDCl3):δ7.78(d,J=8.5Hz,2H),7.51-7.48(m,1H),7.4-7.40(m,2H),7.26-7.24(m,2H),7.16(d,J=8.0Hz,2H),6.41(b,1H),4.60(d,J=5.5Hz,2H),2.34(s,3H).13C NMR(125.4MHz,CDCl3):δ167.3,137.4,135.1,134.5,131.5,129.5,128.6,128.0,126.9,43.9,21.1.MS(EI):m/z(%)226(8),225(44),210(10),156(22),120(8),113(6),106(10),105(100),104(28),79(6),78(10),77(58),56(8),51(17),50(5),42(7).Add CsOH·H 2 O (0.0336g, 10mol%), PhCN (2mmol), p-methylbenzylamine (2mmol, 1equiv.) to the reaction tube in turn, then add water (0.5mL) as solvent, vacuumize and fill with nitrogen gas protection Back sealing is heated to 160 DEG C and reacts 48h. GC-MS measured the conversion rate of the reaction to be 78%. The product was separated and purified by column chromatography, and the separation yield was 50%. 1 H NMR (500MHz, CDCl 3 ): δ7.78(d, J=8.5Hz, 2H), 7.51-7.48(m, 1H), 7.4-7.40(m, 2H), 7.26-7.24(m, 2H) , 7.16(d, J=8.0Hz, 2H), 6.41(b, 1H), 4.60(d, J=5.5Hz, 2H), 2.34(s, 3H). 13 C NMR(125.4MHz, CDCl 3 ): δ167.3, 137.4, 135.1, 134.5, 131.5, 129.5, 128.6, 128.0, 126.9, 43.9, 21.1. MS (EI): m/z (%) 226 (8), 225 (44), 210 (10), 156(22), 120(8), 113(6), 106(10), 105(100), 104(28), 79(6), 78(10), 77(58), 56(8), 51(17), 50(5), 42(7).

实施例13:Example 13:

苯腈和邻甲基苄胺反应制备N-邻甲基苄基苯甲酰胺Preparation of N-o-methylbenzylbenzamide by reaction of benzonitrile and o-methylbenzylamine

反应管中依次加入CsOH·H2O(0.0336g,10mol%),PhCN(2mmol),邻甲基苄胺(2mmol,1equiv.),再加入水(0.5mL)为溶剂,抽真空充氮气保护后密封加热到160°C反应48h。GC-MS测得反应转化80%。产物用柱色谱分离提纯,分离收率70%。1H NMR(500MHz,CDCl3):δ7.77(d,J=7.0Hz,2H),7.48-7.46(m,1H),7.42-7.38(m,2H),7.28(d,J=7.0Hz,1H),7.22-7.18(m,3H),6.35(b,1H),4.61(d,J=5.5Hz,2H),2.36(s,3H).13CNMR(125.4MHz,CDCl3):δ167.3,136.6,135.8,134.4,131.5,130.6,128.7,128.6,127.9,127.0,126.3,42.3,19.1.MS(EI):m/z(%)226(8),225(44),210(10),156(22),120(8),113(6),106(10),105(100),104(28),103(6),79(6),78(10),77(58),56(8),51(17),50(5),42(7),39(4).Add CsOH·H 2 O (0.0336g, 10mol%), PhCN (2mmol), o-methylbenzylamine (2mmol, 1equiv.) to the reaction tube in turn, then add water (0.5mL) as solvent, vacuumize and fill with nitrogen gas protection Back sealing is heated to 160 DEG C and reacts 48h. GC-MS showed that the reaction conversion was 80%. The product was separated and purified by column chromatography, and the separation yield was 70%. 1 H NMR (500MHz, CDCl 3 ): δ7.77(d, J=7.0Hz, 2H), 7.48-7.46(m, 1H), 7.42-7.38(m, 2H), 7.28(d, J=7.0Hz , 1H), 7.22-7.18(m, 3H), 6.35(b, 1H), 4.61(d, J=5.5Hz, 2H), 2.36(s, 3H). 13 CNMR (125.4MHz, CDCl 3 ): δ167 .3, 136.6, 135.8, 134.4, 131.5, 130.6, 128.7, 128.6, 127.9, 127.0, 126.3, 42.3, 19.1. MS(EI): m/z(%) 226(8), 225(44), 210( 10), 156(22), 120(8), 113(6), 106(10), 105(100), 104(28), 103(6), 79(6), 78(10), 77( 58), 56(8), 51(17), 50(5), 42(7), 39(4).

实施例14:Example 14:

苯腈和对氟苄胺反应制备N-对氟苄基苯甲酰胺Preparation of N-p-Fluorobenzylbenzamide by Reaction of Benzonitrile and p-Fluorobenzylamine

反应管中依次加入CsOH·H2O(0.0336g,10mol%),PhCN(2mmol),对氟苄胺(2mmol,1equiv.),再加入水(0.5mL)为溶剂,抽真空充氮气保护后密封加热到160°C反应48h。GC-MS测得反应转化率99%。产物用柱色谱分离提纯,分离收率70%。1H NMR(500MHz,CDCl3):δ7.78(d,J=7.0Hz,2H),7.52-7.49(m,1H),7.45-7.42(m,2H),7.34-7.31(m,2H),7.05-7.01(m,2H),6.44(b,1H),4.61(d,J=6.0Hz,2H).13C NMR(125.4MHz,CDCl3):δ167.4,162.3(d,Jc-F=245.3Hz),134.3,134.1(d,Jc-F=3.3Hz),131.7,129.6(d,Jc-F=8.2Hz),128.6,126.9,115.6(d,Jc-F=21.4Hz),43.4.MS(EI):m/z(%)230(3),229(20),228(7),200(6),108(7),106(7),105(100),104(8),103(7),77(47),76(5),70(7),67(8),57(7),55(11),54(6),51(10),43(12),41(14),39(8).Add CsOH·H 2 O (0.0336g, 10mol%), PhCN (2mmol), p-fluorobenzylamine (2mmol, 1equiv.) to the reaction tube in sequence, then add water (0.5mL) as solvent, vacuumize and fill with nitrogen to protect Sealed and heated to 160 ° C for 48h. The conversion rate of the reaction was determined to be 99% by GC-MS. The product was separated and purified by column chromatography, and the separation yield was 70%. 1 H NMR (500MHz, CDCl 3 ): δ7.78(d, J=7.0Hz, 2H), 7.52-7.49(m, 1H), 7.45-7.42(m, 2H), 7.34-7.31(m, 2H) , 7.05-7.01 (m, 2H), 6.44 (b, 1H), 4.61 (d, J=6.0Hz, 2H). 13 C NMR (125.4MHz, CDCl 3 ): δ167.4, 162.3 (d, J cF =245.3Hz), 134.3, 134.1 (d, J cF =3.3Hz), 131.7, 129.6 (d, J cF =8.2Hz), 128.6, 126.9, 115.6 (d, J cF =21.4Hz), 43.4.MS ( EI): m/z (%) 230(3), 229(20), 228(7), 200(6), 108(7), 106(7), 105(100), 104(8), 103 (7), 77(47), 76(5), 70(7), 67(8), 57(7), 55(11), 54(6), 51(10), 43(12), 41 (14), 39(8).

实施例15:Example 15:

苯腈和间氯苄胺反应制备N-间氯苄基苯甲酰胺Preparation of N-m-chlorobenzylbenzamide by reaction of benzonitrile and m-chlorobenzylamine

反应管中依次加入CsOH·H2O(0.0336g,10mol%),PhCN(2mmol),间氯苄胺(2mmol,1equiv.),再加入水(0.5mL)为溶剂,抽真空充氮气保护后密封加热到160°C反应48h。GC-MS测得反应转化率99%。产物用柱色谱分离提纯,分离收率58%。1H NMR(500MHz,CDCl3):1H NMR(500MHz,CDCl3):δ7.79(d,J=7.5Hz,2H),7.53-7.49(m,1H),7.45-7.41(m,2H),7.33(s,1H),7.27-7.22(m,3H),6.58(b,1H),4.61(d,J=5.5Hz,2H).13C NMR(125.4MHz,CDCl3):δ167.4,140.3,134.6,134.1,131.7,130.0,128.6,127.8,127.7,126.9,125.9,43.4.13C NMR (125.4MHz,CDCl3):δ167.4,140.3,134.6,134.1,131.7,130.0,128.6,127.8,127.7,126.9,125.9,43.4.MS(EI):m/z(%)247(5),246(2),245(14),211(10),210(63),106(8),105(100),78(4),77(46),76(2),51(8).Add CsOH·H 2 O (0.0336g, 10mol%), PhCN (2mmol), m-chlorobenzylamine (2mmol, 1equiv.) to the reaction tube in turn, then add water (0.5mL) as solvent, vacuumize and fill with nitrogen to protect Sealed and heated to 160 ° C for 48h. The conversion rate of the reaction was determined to be 99% by GC-MS. The product was separated and purified by column chromatography, and the separation yield was 58%. 1 H NMR (500MHz, CDCl 3 ): 1 H NMR (500MHz, CDCl 3 ): δ7.79(d, J=7.5Hz, 2H), 7.53-7.49(m, 1H), 7.45-7.41(m, 2H ), 7.33(s, 1H), 7.27-7.22(m, 3H), 6.58(b, 1H), 4.61(d, J=5.5Hz, 2H). 13 C NMR (125.4MHz, CDCl 3 ): δ167. 4, 140.3, 134.6, 134.1, 131.7, 130.0, 128.6, 127.8, 127.7, 126.9, 125.9, 43.4. 13 C NMR (125.4MHz, CDCl 3 ): δ167.4, 140.3, 134.6, 134.1, 131.7, 130.0, 1 , 127.8, 127.7, 126.9, 125.9, 43.4. MS (EI): m/z (%) 247 (5), 246 (2), 245 (14), 211 (10), 210 (63), 106 (8 ), 105(100), 78(4), 77(46), 76(2), 51(8).

实施例16:Example 16:

苯腈和邻氯苄胺反应制备N-邻氯苄基苯甲酰胺Preparation of N-o-chlorobenzylbenzamide by the reaction of benzonitrile and o-chlorobenzylamine

反应管中依次加入CsOH·H2O(0.0336g,10mol%),PhCN(2mmol),邻氯苄胺(2mmol,1equiv.),再加入水(0.5mL)为溶剂,抽真空充氮气保护后密封加热到160°C反应48h。GC-MS测得反应转化率99%。产物用柱色谱分离提纯,分离收率65%。1H NMR(500MHz,CDCl3):δ7.78(d,J=7.0Hz,2H),7.51-7.37(m,5H),7.25-7.23(m,2H),6.67(b,1H),4.74-4.72(m,2H).13C NMR(125.4MHz,CDCl3):δ167.4,135.7,134.4,133.8,131.7,130.6,129.7,129.2,128.7,127.3,127.1,42.2.MS(EI):m/z(%)247(5),246(2),245(14),211(10),210(63),106(8),105(100),78(4),77(46),76(2),51(8).Add CsOH·H 2 O (0.0336g, 10mol%), PhCN (2mmol), o-chlorobenzylamine (2mmol, 1equiv.) to the reaction tube in sequence, then add water (0.5mL) as solvent, vacuumize and fill with nitrogen to protect Sealed and heated to 160 ° C for 48h. The conversion rate of the reaction was determined to be 99% by GC-MS. The product was separated and purified by column chromatography, and the separation yield was 65%. 1 H NMR (500MHz, CDCl 3 ): δ7.78(d, J=7.0Hz, 2H), 7.51-7.37(m, 5H), 7.25-7.23(m, 2H), 6.67(b, 1H), 4.74 -4.72(m, 2H). 13 C NMR (125.4MHz, CDCl 3 ): δ167.4, 135.7, 134.4, 133.8, 131.7, 130.6, 129.7, 129.2, 128.7, 127.3, 127.1, 42.2. MS(EI): m/z(%)247(5), 246(2), 245(14), 211(10), 210(63), 106(8), 105(100), 78(4), 77(46) , 76(2), 51(8).

实施例17:Example 17:

苯腈和正丁胺反应制备N-正丁基苯甲酰胺Preparation of N-n-Butylbenzamide by Reaction of Benzonitrile and n-Butylamine

反应管中依次加入CsOH·H2O(0.0336g,10mol%),PhCN(2mmol),正丁基胺(2mmol,1equiv.),再加入水(0.5mL)为溶剂,抽真空充氮气保护后密封加热到160°C反应48h。GC-MS测得反应转化率93%。产物用柱色谱分离提纯,分离收率60%。1H NMR(500MHz,d6-DMSO):δ8.44(b,1H),7.85-7.83(m,2H),7.53-7.49(m,1H),7.47-7.44(m,2H),3.29-3.25(m,2H),1.54-1.48(m,2H),1.37-1.29(m,2H),0.91(t,J=7.5Hz,3H).13C NMR(125.4MHz,d6-DMSO):δ166.1,134.7,130.9,128.2,127.1,38.8,31.2,19.6,13.7.MS(EI):m/z(%)178(2),177(13),176(2),148(4),136(3),135(15),134(11),106(8),105(100),78(3),77(32),76(2),51(9),50(3).Add CsOH·H 2 O (0.0336g, 10mol%), PhCN (2mmol), n-butylamine (2mmol, 1equiv.) to the reaction tube in sequence, then add water (0.5mL) as solvent, vacuumize and fill with nitrogen to protect Sealed and heated to 160 ° C for 48h. The conversion rate of the reaction was 93% as measured by GC-MS. The product was separated and purified by column chromatography, and the separation yield was 60%. 1 H NMR (500MHz, d 6 -DMSO): δ8.44(b, 1H), 7.85-7.83(m, 2H), 7.53-7.49(m, 1H), 7.47-7.44(m, 2H), 3.29- 3.25(m, 2H), 1.54-1.48(m, 2H), 1.37-1.29(m, 2H), 0.91(t, J=7.5Hz, 3H). 13 C NMR (125.4MHz, d 6 -DMSO): δ166.1, 134.7, 130.9, 128.2, 127.1, 38.8, 31.2, 19.6, 13.7. MS(EI): m/z(%) 178(2), 177(13), 176(2), 148(4) , 136(3), 135(15), 134(11), 106(8), 105(100), 78(3), 77(32), 76(2), 51(9), 50(3) .

实施例18:Example 18:

苯腈和异丁基胺反应制备N-异丁基苯甲酰胺Preparation of N-isobutylbenzamide by Reaction of Benzonitrile and Isobutylamine

反应管中依次加入CsOH·H2O(0.0336g,10mol%),PhCN(2mmol),异丁基胺(2mmol,1equiv.),再加入水(0.5mL)为溶剂,抽真空充氮气保护后密封加热到160°C反应48h。GC-MS测得反应转化率87%。产物用柱色谱分离提纯,分离收率68%。1H NMR(500MHz,CDCl3):δ7.77(d,J=7.5Hz,2H),7.48-7.45(m,1H),7.41-7.37(m,2H),6.61(b,1H),3.25(t,J=6.5Hz,2H),1.92-1.87(m,1H),0.95(d,J=7.0Hz,6H).13C NMR(125.4MHz,CDCl3):δ167.8,134.9,131.3,128.5,126.9,47.4,28.6,20.2.MS(EI):m/z(%)225(9),134(8),121(2),106(4),105(53),104(23),92(4),91(11),77(21),65(5),51(6),39(3),38(4),36(11),30(100),28(2).Add CsOH·H2O (0.0336g, 10mol%), PhCN (2mmol), isobutylamine (2mmol, 1equiv.) to the reaction tube in sequence, then add water (0.5mL) as solvent, vacuumize and fill with nitrogen protection, seal and heat Reaction at 160°C for 48h. GC-MS showed that the reaction conversion rate was 87%. The product was separated and purified by column chromatography, and the separation yield was 68%. 1 H NMR (500MHz, CDCl 3 ): δ7.77(d, J=7.5Hz, 2H), 7.48-7.45(m, 1H), 7.41-7.37(m, 2H), 6.61(b, 1H), 3.25 (t, J=6.5Hz, 2H), 1.92-1.87(m, 1H), 0.95(d, J=7.0Hz, 6H). 13 C NMR (125.4MHz, CDCl 3 ): δ167.8, 134.9, 131.3 , 128.5, 126.9, 47.4, 28.6, 20.2. MS (EI): m/z (%) 225 (9), 134 (8), 121 (2), 106 (4), 105 (53), 104 (23 ), 92(4), 91(11), 77(21), 65(5), 51(6), 39(3), 38(4), 36(11), 30(100), 28(2 ).

实施例19:Example 19:

苯腈和环己胺反应制备N-环己基苯甲酰胺Preparation of N-cyclohexylbenzamide by Reaction of Benzonitrile and Cyclohexylamine

反应管中依次加入CsOH·H2O(0.0336g,10mol%),PhCN(2mmol),环己胺(2mmol,1equiv.),再加入水(0.5mL)为溶剂,抽真空充氮气保护后密封加热到160°C反应48h。GC-MS测得反应转化率75%。产物用柱色谱分离提纯,分离收率30%。1H NMR(500MHz,CDCl3):δ7.75(d,J=7.5Hz,2H),7.50-7.40(m,3H),5.99(b,1H),4.01-3.95(m,1H),2.05-2.02(m,2H),1.78-1.74(m,2H),1.67-1.64(m,1H),1.48-1.39(m,2H),1.28-1.20(m,3H).13C NMR(125.4MHz,CDCl3):δ166.6,135.2,131.2,128.5,126.8,48.7,33.2,25.6,24.9.MS(EI):m/z(%)176(4),175(36),174(28),146(8),106(7),105(100),78(4),77(49),70(9),68(4),55(4),51(16),50(6),44(4),43(6),41(16).Add CsOH·H 2 O (0.0336g, 10mol%), PhCN (2mmol), cyclohexylamine (2mmol, 1equiv.) to the reaction tube in sequence, then add water (0.5mL) as solvent, vacuumize and fill with nitrogen to protect and seal Heated to 160°C for 48h. GC-MS showed that the reaction conversion rate was 75%. The product was separated and purified by column chromatography, and the separation yield was 30%. 1 H NMR (500MHz, CDCl 3 ): δ7.75(d, J=7.5Hz, 2H), 7.50-7.40(m, 3H), 5.99(b, 1H), 4.01-3.95(m, 1H), 2.05 -2.02(m, 2H), 1.78-1.74(m, 2H), 1.67-1.64(m, 1H), 1.48-1.39(m, 2H), 1.28-1.20(m, 3H). 13 C NMR (125.4MHz , CDCl 3 ): δ166.6, 135.2, 131.2, 128.5, 126.8, 48.7, 33.2, 25.6, 24.9. MS (EI): m/z (%) 176 (4), 175 (36), 174 (28) , 146(8), 106(7), 105(100), 78(4), 77(49), 70(9), 68(4), 55(4), 51(16), 50(6) , 44(4), 43(6), 41(16).

实施例20:Example 20:

苯腈和正辛基胺反应制备N-正辛基苯甲酰胺Preparation of N-octylbenzamide by reaction of benzonitrile and n-octylamine

反应管中依次加入CsOH·H2O(0.0336g,10mol%),PhCN(2mmol),正辛基胺(2mmol,1equiv.),再加入水(0.5mL)为溶剂,抽真空充氮气保护后密封加热到160°C反应48h。GC-MS测得反应转化率85%。产物用柱色谱分离提纯,分离收率70%。1H NMR(500MHz,CDCl3):δ7.75(d,J=7.0Hz,2H),7.50-7.46(m,1H),7.43-7.40(m,2H),6.25(b,1H),3.46-3.42(m,2H),1.64-1.58(m,2H),1.31-1.27(m,10H),0.89-0.86(t,J=7.0Hz,3H).13C NMR(125.4MHz,CDCl3):δ167.5,134.9,131.3,128.5,126.8,40.1,31.8,29.7,29.3,29.2,27.0,22.6,14.1.MS(EI):m/z(%)190(2),176(7),162(8),149(3),148(10),135(26),134(22),122(7),106(8),105(100),79(2),78(2),77(31),55(7),51(5),43(12),41(12).Add CsOH·H 2 O (0.0336g, 10mol%), PhCN (2mmol), n-octylamine (2mmol, 1equiv.) to the reaction tube in sequence, then add water (0.5mL) as solvent, vacuumize and fill with nitrogen to protect Sealed and heated to 160 ° C for 48h. GC-MS showed that the reaction conversion rate was 85%. The product was separated and purified by column chromatography, and the separation yield was 70%. 1 H NMR (500MHz, CDCl 3 ): δ7.75(d, J=7.0Hz, 2H), 7.50-7.46(m, 1H), 7.43-7.40(m, 2H), 6.25(b, 1H), 3.46 -3.42(m, 2H), 1.64-1.58(m, 2H), 1.31-1.27(m, 10H), 0.89-0.86(t, J=7.0Hz, 3H). 13 C NMR (125.4MHz, CDCl 3 ) : δ167.5, 134.9, 131.3, 128.5, 126.8, 40.1, 31.8, 29.7, 29.3, 29.2, 27.0, 22.6, 14.1. MS (EI): m/z (%) 190 (2), 176 (7), 162(8), 149(3), 148(10), 135(26), 134(22), 122(7), 106(8), 105(100), 79(2), 78(2), 77(31), 55(7), 51(5), 43(12), 41(12).

实施例21:Example 21:

苯腈和2-苯基乙胺反应制备N-2-苯乙基苯甲酰胺Preparation of N-2-Phenylethylbenzamide by Reaction of Benzonitrile and 2-Phenylethylamine

反应管中依次加入CsOH·H2O(0.0336g,10mol%),PhCN(2mmol),2-苯基乙胺(2mmol,1equiv.),再加入水(0.5mL)为溶剂,抽真空充氮气保护后密封加热到160°C反应48h。GC-MS测得反应转化率56%。产物用柱色谱分离提纯,分离收率51%。1H NMR(500MHz,d6-DMSO):δ8.55(t,J=5.5Hz,1H),7.81(d,J=7.0Hz,2H),7.53-7.50(m,1H),7.47-7.44(m,2H),7.31-7.28(m,2H),7.24(d,J=7.0Hz,2H),7.22-7.19(m,1H),3.51-3.47(m,2H),2.85(t,J=7.5Hz,2H).13C NMR(125.4MHz,d6-DMSO):δ166.2,139.5,134.6,131.0,128.6,128.3,128.2,127.1,126.0,40.8,35.1.MS(EI):m/z(%)225(9),134(8),121(2),106(4),105(53),104(23),92(4),91(11),77(21),65(5),51(6),39(3),38(4),36(11),30(100),28(2).Add CsOH·H 2 O (0.0336g, 10mol%), PhCN (2mmol), 2-phenylethylamine (2mmol, 1equiv.) to the reaction tube in sequence, then add water (0.5mL) as solvent, vacuumize and fill with nitrogen After protection, seal and heat to 160°C for 48h. GC-MS showed that the reaction conversion rate was 56%. The product was separated and purified by column chromatography, and the separation yield was 51%. 1 H NMR (500MHz, d 6 -DMSO): δ8.55(t, J=5.5Hz, 1H), 7.81(d, J=7.0Hz, 2H), 7.53-7.50(m, 1H), 7.47-7.44 (m, 2H), 7.31-7.28(m, 2H), 7.24(d, J=7.0Hz, 2H), 7.22-7.19(m, 1H), 3.51-3.47(m, 2H), 2.85(t, J =7.5Hz, 2H). 13 C NMR (125.4MHz, d 6 -DMSO): δ166.2, 139.5, 134.6, 131.0, 128.6, 128.3, 128.2, 127.1, 126.0, 40.8, 35.1. MS (EI): m /z(%)225(9), 134(8), 121(2), 106(4), 105(53), 104(23), 92(4), 91(11), 77(21), 65(5), 51(6), 39(3), 38(4), 36(11), 30(100), 28(2).

实施例22:Example 22:

苯腈和1-苯基乙胺反应制备N-1-苯乙基苯甲酰胺Preparation of N-1-Phenylethylbenzamide by Reaction of Benzonitrile and 1-Phenylethylamine

反应管中依次加入CsOH·H2O(0.0336g,10mol%),PhCN(2mmol),1-苯基乙胺(2mmol,1equiv.),再加入水(0.5mL)为溶剂,抽真空充氮气保护后密封加热到160°C反应48h。GC-MS测得反应转化率45%。产物用柱色谱分离提纯,分离收率25%。1H NMR(500MHz,CDCl3):δ7.77(d,J=7.0Hz,2H),7.51-7.48(m,1H),7.44-7.35(m,6H),7.30-7.27(m,1H),6.31(b,1H),5.37-5.31(m,1H),1.61(d,J=7.0Hz,3H).13C NMR(125.4MHz,CDCl3):δ166.6,143.1,134.6,131.5,128.8,128.6,127.5,126.9,126.3,49.2,21.7.MS(EI):m/z(%)225(9),134(8),121(2),106(4),105(53),104(23),92(4),91(11),77(21),65(5),51(6),39(3),38(4),36(11),30(100),28(2).Add CsOH·H 2 O (0.0336g, 10mol%), PhCN (2mmol), 1-phenylethylamine (2mmol, 1equiv.) to the reaction tube in sequence, then add water (0.5mL) as solvent, vacuumize and fill with nitrogen After protection, seal and heat to 160°C for 48h. GC-MS showed that the conversion rate of the reaction was 45%. The product was separated and purified by column chromatography, and the separation yield was 25%. 1 H NMR (500MHz, CDCl 3 ): δ7.77(d, J=7.0Hz, 2H), 7.51-7.48(m, 1H), 7.44-7.35(m, 6H), 7.30-7.27(m, 1H) , 6.31 (b, 1H), 5.37-5.31 (m, 1H), 1.61 (d, J=7.0Hz, 3H). 13 C NMR (125.4MHz, CDCl 3 ): δ166.6, 143.1, 134.6, 131.5, 128.8, 128.6, 127.5, 126.9, 126.3, 49.2, 21.7. MS (EI): m/z (%) 225 (9), 134 (8), 121 (2), 106 (4), 105 (53), 104(23), 92(4), 91(11), 77(21), 65(5), 51(6), 39(3), 38(4), 36(11), 30(100), 28(2).

实施例23:Example 23:

苯腈和乙醇胺反应制备N-2-羟乙基苯甲酰胺Preparation of N-2-Hydroxyethylbenzamide by Reaction of Benzonitrile and Ethanolamine

反应管中依次加入CsOH·H2O(0.0336g,10mol%),PhCN(2mmol),乙醇胺(2mmol,1equiv.),再加入水(0.5mL)为溶剂,抽真空充氮气保护后密封加热到160°C反应48h。GC-MS测得反应转化率80%。产物用柱色谱分离提纯,分离收率65%。1H NMR(500MHz,CDCl3):δ7.74(d,J=7.5Hz,2H),7.45-7.42(m,1H),7.34-7.31(m,2H),4.38(b,1H),3.72(t,J=5.0Hz,2H),3.53-3.50(m,2H),3.15(b,1H).13C NMR(125.4MHz,CDCl3):δ168.9,134.0,131.6,128.5,127.0,61.5,42.7.MS(EI):m/z(%)165(2),147(14),135(4),134(9),122(20),117(8),106(9),105(100),104(3),78(6),77(67),76(5),51(28),50(10),40(4),33(9),32(4),31(3).Add CsOH·H 2 O (0.0336g, 10mol%), PhCN (2mmol), ethanolamine (2mmol, 1equiv.) to the reaction tube in sequence, then add water (0.5mL) as a solvent, vacuumize and fill with nitrogen protection, seal and heat to React at 160°C for 48h. GC-MS showed that the reaction conversion rate was 80%. The product was separated and purified by column chromatography, and the separation yield was 65%. 1 H NMR (500MHz, CDCl 3 ): δ7.74(d, J=7.5Hz, 2H), 7.45-7.42(m, 1H), 7.34-7.31(m, 2H), 4.38(b, 1H), 3.72 (t, J=5.0Hz, 2H), 3.53-3.50 (m, 2H), 3.15 (b, 1H). 13 C NMR (125.4MHz, CDCl 3 ): δ168.9, 134.0, 131.6, 128.5, 127.0, 61.5, 42.7. MS(EI): m/z(%) 165(2), 147(14), 135(4), 134(9), 122(20), 117(8), 106(9), 105(100), 104(3), 78(6), 77(67), 76(5), 51(28), 50(10), 40(4), 33(9), 32(4), 31(3).

实施例24:Example 24:

苯腈和四氢吡咯反应制备N-苯甲酰基四氢吡咯Preparation of N-Benzoyltetrahydropyrrole by Reaction of Benzonitrile and Tetrahydropyrrole

反应管中依次加入CsOH·H2O(0.0336g,10mol%),PhCN(2mmol),四氢吡咯(2mmol,1equiv.),再加入水(0.5mL)为溶剂,抽真空充氮气保护后密封加热到160°C反应48h。GC-MS测得反应转化率77%。产物用柱色谱分离提纯,分离收率65%。1H NMR(500MHz,CDCl3):δ7.48-7.46(m,2H),7.36-7.34(m,3H),3.60(t,J=7.0Hz,2H),3.37(t,J=6.5Hz,2H),1.94-1.88(m,2H),1.85-1.79(m,2H).13C NMR(125.4MHz,CDCl3):δ169.7,137.2,129.7,128.2,127.0,49.6,46.1,26.3,24.4.MS(EI):m/z(%)176(5),175(34),174(23),147(3),146(17),106(9),105(100),104(13),78(5),77(55),76(2),70(4),56(2),51(12),50(3)。Add CsOH·H 2 O (0.0336g, 10mol%), PhCN (2mmol), tetrahydropyrrole (2mmol, 1equiv.) to the reaction tube in sequence, then add water (0.5mL) as solvent, vacuumize and fill with nitrogen to protect and seal Heated to 160°C for 48h. GC-MS showed that the reaction conversion rate was 77%. The product was separated and purified by column chromatography, and the separation yield was 65%. 1 H NMR (500MHz, CDCl 3 ): δ7.48-7.46(m, 2H), 7.36-7.34(m, 3H), 3.60(t, J=7.0Hz, 2H), 3.37(t, J=6.5Hz , 2H), 1.94-1.88 (m, 2H), 1.85-1.79 (m, 2H). 13 C NMR (125.4MHz, CDCl 3 ): δ169.7, 137.2, 129.7, 128.2, 127.0, 49.6, 46.1, 26.3 , 24.4.MS(EI): m/z(%) 176(5), 175(34), 174(23), 147(3), 146(17), 106(9), 105(100), 104 (13), 78(5), 77(55), 76(2), 70(4), 56(2), 51(12), 50(3).

Claims (7)

1.一种制备二级和三级取代酰胺的方法,其特征在于,在空气或者惰性气体条件下利用碱催化剂催化腈类与胺类的反应,反应温度为100~200℃,反应时间为24~72小时,反应式为:1. A method for preparing secondary and tertiary substituted amides, characterized in that, under air or inert gas conditions, a base catalyst is used to catalyze the reaction of nitriles and amines, the reaction temperature is 100~200°C, and the reaction time is 24 ~72 hours, the reaction formula is: 其中:in: 原料腈和原料胺的摩尔比为3~1:1~3;原料胺是伯胺或仲胺;The molar ratio of the raw material nitrile to the raw material amine is 3-1:1-3; the raw material amine is a primary amine or a secondary amine; R1是取代芳基、取代杂芳基,或者烷基;R 1 is substituted aryl, substituted heteroaryl, or alkyl; R2和R3是氢或各种官能团取代的苄基,或者是各种取代的、各种碳链长度和支链取代的烷基、环烷基;R 2 and R 3 are hydrogen or benzyl substituted by various functional groups, or various substituted, various carbon chain lengths and branched chain substituted alkyl, cycloalkyl; 反应的溶剂为水或氨水;The solvent of reaction is water or ammoniacal liquor; 所述碱催化剂为CsOH。The base catalyst is CsOH. 2.根据权利要求1所述的制备二级和三级取代酰胺的方法,其特征在于,所述碱催化剂的用量为1~200mol%。2. The method for preparing secondary and tertiary substituted amides according to claim 1, characterized in that the amount of the base catalyst is 1-200 mol%. 3.根据权利要求1所述的制备二级和三级取代酰胺的方法,其特征在于,所述碱催化剂的用量为10~20mol%。3. The method for preparing secondary and tertiary substituted amides according to claim 1, characterized in that the amount of the base catalyst is 10-20 mol%. 4.根据权利要求1所述的制备二级和三级取代酰胺的方法,其特征在于,所述惰性气体为氮气。4. The method for preparing secondary and tertiary substituted amides according to claim 1, wherein the inert gas is nitrogen. 5.根据权利要求1所述的制备二级和三级取代酰胺的方法,其特征在于,所述反应温度为160℃。5. The method for preparing secondary and tertiary substituted amides according to claim 1, characterized in that the reaction temperature is 160°C. 6.根据权利要求1所述的制备二级和三级取代酰胺的方法,其特征在于,所述反应时间为48小时。6. The method for preparing secondary and tertiary substituted amides according to claim 1, characterized in that, the reaction time is 48 hours. 7.根据权利要求1所述的制备二级和三级取代酰胺的方法,其特征在于,所述反应的溶剂为水。7. The method for preparing secondary and tertiary substituted amides according to claim 1, characterized in that the solvent of the reaction is water.
CN201210499023.2A 2012-11-28 2012-11-28 Method for preparing second-level and third-level substituted amide Expired - Fee Related CN102964195B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210499023.2A CN102964195B (en) 2012-11-28 2012-11-28 Method for preparing second-level and third-level substituted amide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210499023.2A CN102964195B (en) 2012-11-28 2012-11-28 Method for preparing second-level and third-level substituted amide

Publications (2)

Publication Number Publication Date
CN102964195A CN102964195A (en) 2013-03-13
CN102964195B true CN102964195B (en) 2015-06-24

Family

ID=47794665

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210499023.2A Expired - Fee Related CN102964195B (en) 2012-11-28 2012-11-28 Method for preparing second-level and third-level substituted amide

Country Status (1)

Country Link
CN (1) CN102964195B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110773144A (en) * 2019-10-28 2020-02-11 湖南科技学院 A kind of catalytic system for preparing amide by hydrolysis of cyano group and its application
CN117328066B (en) * 2023-10-07 2024-03-22 江苏贺鸿电子有限公司 Coarsening microetching agent for circuit board and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4942220A (en) * 1985-03-08 1990-07-17 Osaka University Process for preparing poly-amide from nitrile and amine with catalytic complex
CN101507917A (en) * 2009-04-02 2009-08-19 北京化工大学 Solid base catalyst for synthesizing alkanolamide type compound and preparation method thereof
CN101928229A (en) * 2010-07-01 2010-12-29 黄冈华阳药业有限公司 Process method for producing L-2-aminobutanamide hydrochloride serving as intermediate of levetiracetam

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5674059B2 (en) * 2011-01-24 2015-02-25 国立大学法人名古屋大学 Catalyst for hydrogen transfer reaction containing ruthenium complex and method for producing hydrogen transfer reactant

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4942220A (en) * 1985-03-08 1990-07-17 Osaka University Process for preparing poly-amide from nitrile and amine with catalytic complex
CN101507917A (en) * 2009-04-02 2009-08-19 北京化工大学 Solid base catalyst for synthesizing alkanolamide type compound and preparation method thereof
CN101928229A (en) * 2010-07-01 2010-12-29 黄冈华阳药业有限公司 Process method for producing L-2-aminobutanamide hydrochloride serving as intermediate of levetiracetam

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
An efficient conversion of nitriles to amides: application in the synthesis of N,N-diethyl-m-toluamide;Apurba Bhattacharya等;《Tetrahedron Letters》;20051129;第47卷;第505-506页 *
徐秀军.二氟代苯甲酰胺的合成.《河北化工》.1998,(第4期),第33-35页. *

Also Published As

Publication number Publication date
CN102964195A (en) 2013-03-13

Similar Documents

Publication Publication Date Title
CN103232359A (en) Environmental-friendly nitrile hydrolysis method
CN102863305A (en) Preparation method of amide from nitrile
CN102964195B (en) Method for preparing second-level and third-level substituted amide
CN104447379B (en) Preparation method of methanamide
CN104098486B (en) A kind of preparation method of 2-nitro-4-trifluoromethylbenzonitrile
CN109761836B (en) Preparation method of amide compounds
CN102816076B (en) Synthetic method of p-hydroxyphenylglycine
CN103408450B (en) Method for catalytically synthesizing tamibarotene through acenaphthene imidazole n-heterocyclic carbine allyl palladium chloride compound
CN115121184B (en) Device, process and application of Wilmimaer reaction continuous reaction
CN102285957A (en) Method for preparing glycerol carbonate
CN112028793B (en) Bismuth complex catalyzed dehydration method of amide to prepare nitrile
CN104744288B (en) A kind of method of nitrile hydrolysis amide
CN108276356A (en) 3,5- disubstituted thiazole alkane -2- thioketone preparation methods
CN109748818B (en) Method for synthesizing terephthalonitrile by oximation and dehydration of terephthalaldehyde
CN109748817B (en) Method for synthesizing aliphatic nitrile from aliphatic aldehyde
CN102093228A (en) Method for synthesizing 1, 3-adamantane diamine
CN110773144A (en) A kind of catalytic system for preparing amide by hydrolysis of cyano group and its application
CN102093258B (en) Aromatic diamidine compound and synthesis method thereof
CN102050721B (en) Method for synthesizing phenylacetic acid from benzyl chloride carbonyl
CN103130593B (en) Synthesis method of symmetric and asymmetric aliphatic ethers
CN103172482B (en) Method for preparing first-grade amide from aldoxime or formaldehyde and hydroxylamine
CN115073318B (en) A kind of carbon dioxide promotes the method for synthesizing polycondensation monomer precursors such as glutaronitrile with acetonitrile
CN108727179A (en) A kind of alpha, beta-unsaturated ketone of α-allyl substitution, the synthetic method of ester or nitrile compound
CN115368258B (en) A kind of preparation technology of amide compound
CN104710258B (en) The preparation method of Methanamide

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20150624

Termination date: 20191128

CF01 Termination of patent right due to non-payment of annual fee