CN102957319B - Power converter pulse width modulation control circuit and its control method - Google Patents
Power converter pulse width modulation control circuit and its control method Download PDFInfo
- Publication number
- CN102957319B CN102957319B CN201110250707.4A CN201110250707A CN102957319B CN 102957319 B CN102957319 B CN 102957319B CN 201110250707 A CN201110250707 A CN 201110250707A CN 102957319 B CN102957319 B CN 102957319B
- Authority
- CN
- China
- Prior art keywords
- pulse width
- width modulation
- signal
- output
- reference voltage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000034 method Methods 0.000 title claims abstract description 9
- 230000010354 integration Effects 0.000 claims abstract description 52
- 230000002194 synthesizing effect Effects 0.000 claims abstract 3
- 238000006243 chemical reaction Methods 0.000 claims abstract 2
- 230000008030 elimination Effects 0.000 claims description 38
- 238000003379 elimination reaction Methods 0.000 claims description 38
- 230000015572 biosynthetic process Effects 0.000 claims description 23
- 238000003786 synthesis reaction Methods 0.000 claims description 23
- 239000003990 capacitor Substances 0.000 claims description 20
- 238000001514 detection method Methods 0.000 claims description 3
- 241000143437 Aciculosporium take Species 0.000 claims description 2
- 230000000630 rising effect Effects 0.000 claims description 2
- 238000004519 manufacturing process Methods 0.000 abstract description 2
- 238000010586 diagram Methods 0.000 description 14
- 230000033228 biological regulation Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 230000007423 decrease Effects 0.000 description 2
- 230000000087 stabilizing effect Effects 0.000 description 2
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Landscapes
- Dc-Dc Converters (AREA)
- Amplifiers (AREA)
Abstract
Description
技术领域 technical field
本发明涉及一种电源转换器脉宽调变控制电路及其控制方法,尤指一种免闭回路稳定补偿调整的脉宽调变控制电路及其控制方法。 The invention relates to a pulse width modulation control circuit of a power converter and a control method thereof, in particular to a pulse width modulation control circuit and a control method thereof free from closed loop stability compensation adjustment.
背景技术 Background technique
电源转换器对于一般电子设备而言,占有举足轻重的地位,其转换电源以提供电子设备作动时所需电压。而对于使用者而言,电子设备工作时间的持续力,往往成为购买电子设备时,主要考虑因素之一,因此如何让电子设备可以长时间处于工作状态,已成为目前电源转换器的主要设计目标。 For general electronic equipment, the power converter plays a pivotal role. It converts the power supply to provide the voltage required for the operation of the electronic equipment. For users, the continuity of the working time of electronic equipment is often one of the main considerations when purchasing electronic equipment. Therefore, how to make electronic equipment work for a long time has become the main design goal of power converters. .
目前电源转换器的设计主要是以交换式电源转换器(Switching Power Supplies)为主,交换式电源转换器通过判断负载所需输出功率、输出电压或输出电流,利用脉冲宽度调制(PWM Pulse-width modulation)的手段,使得电源转换器在输出电能时,能较精准控制输出至负载的电能并供负载使用。因此交换式电源转换器使用时较不易产生多余的电能浪费,而得以节省电能的损耗。 At present, the design of power converters is mainly based on switching power supplies. Switching power converters determine the output power, output voltage or output current required by the load, and use PWM Pulse-width Modulation) means that when the power converter outputs electric energy, it can more accurately control the electric energy output to the load and use it for the load. Therefore, when the switching power converter is used, it is less likely to generate redundant electric energy waste, thereby saving electric energy loss.
请参阅美国专利公告号US6433525的专利案,其为Intersil公司所提出一种交换式电源转换器,主要是利用侦测电感电流的电路来侦测电流的极性是否转变,并搭配利用计数器来测量负载的电流状态开始改变的时间,而选择电能的输出模式,因此当该交换式电源转换器处于高电流负载状态时,会选择脉宽调变调节控制电路来控制输出的电能;而在低电流负载状态时,会选择迟滞(涟漪)控制电路来控制输出的电能;从而来达成节省电能输出的目的,以延长电子设备持续工作的时间。 Please refer to the patent case of US Patent Publication No. US6433525, which is a switching power converter proposed by Intersil Corporation, which mainly uses a circuit to detect the inductor current to detect whether the polarity of the current changes, and uses a counter to measure The time when the current state of the load starts to change, and the output mode of electric energy is selected, so when the switching power converter is in a high current load state, the pulse width modulation regulation control circuit will be selected to control the output electric energy; while at low current In the load state, a hysteresis (ripple) control circuit will be selected to control the output power; thereby achieving the purpose of saving power output and prolonging the continuous working time of electronic equipment.
但是,此种交换式电源转换器的计数器在侦测负载的电流状态变化,到选择适合的电能输出模式之间,会有一个时间落差,而造成交换式电源转换器无法准确配合负载的电流状态,来提供适合的电能,例如:当负载由高电流状态转变成低电流状态时,会因为计数器工作时的时间误差,导致该交流式电源转换器仍旧使用迟滞(涟漪)调节控制电路来控制输出的电能,造成输出的电能无法配合负载所需,进而造成电能的损失。因此,此种利用计数器的交换式电源转换器,对于输出电能的调节效果较差,并且会产生多余的电能损耗。 However, there will be a time gap between the counter of this switching power converter detecting the change of the current state of the load and selecting a suitable power output mode, which makes the switching power converter unable to accurately match the current state of the load , to provide suitable power, for example: when the load changes from a high current state to a low current state, the AC power converter still uses the hysteresis (ripple) regulation control circuit to control the output due to the time error when the counter is working The electric energy, resulting in the output of electric energy can not meet the needs of the load, resulting in the loss of electric energy. Therefore, such a switching power converter using a counter has poor regulation effect on output power and will generate redundant power loss.
再加上此种交换式电源转换器的设计,脉宽调变控制电路为了得以稳定输出电源至负载,必须对输入负载的电源进行补偿调整,而需搭配迟滞(涟漪)调节控制电路、或其它电路,无法仅使用单一控制电路来达成稳定控制输出电压的效果,而造成此种交换式电源转换器的设计成本较高、体积较大,对于现在电子产品体积不断缩小的趋势下,此种电源转换器的设计实有必须改善的必要。 In addition to the design of this switching power converter, in order to stabilize the output power to the load, the pulse width modulation control circuit must compensate and adjust the power input to the load, and it needs to be equipped with a hysteresis (ripple) regulation control circuit, or other circuit, it is impossible to use only a single control circuit to achieve the effect of stabilizing the output voltage, and the design cost of this switching power converter is relatively high, and the volume is relatively large. It is necessary to improve the design of the converter.
发明内容 Contents of the invention
本发明的目的在提供一种可减小转换器输出侧电感、电容特性影响脉宽调变控制信号,并可具精确控制、成本降低功效。 The purpose of the present invention is to provide a converter that can reduce the influence of the inductance and capacitance characteristics of the output side of the converter on the pulse width modulation control signal, and has the effect of precise control and cost reduction.
本发明涉及的转换器包含至少一上桥组件、一下桥组件,并该上、下桥组件电性连接输入电源,并该上、下桥组件经相节点连接,并相节点受由脉宽调变信号控制的驱动器动作以使上、下桥组件作开关切换动作,又该相节点连接输出电感、输出电容,并控制输出电感电流对输出电容充电产生输出电压,其中本发明的脉宽调变控制电路包括虚拟电流涟波脉宽调变电路,该虚拟电流涟波脉宽调变电路具有积分及直流偏压消除单元、相位合成单元以及双轨参考电压位准产生单元,该积分及直流偏压消除单元输入前述相节点电压信号及反应输出电压的信号,并产生位于直流参考电压位准的虚拟电流涟波参数信号,该相位合成单元使该虚拟电流涟波参数信号与输出电压信号斜率向量合成脉宽调变参数信号,该双轨参考电压位准产生单元产生上、下直流参考电压位准,并该脉宽调变参数信号与上、下直流参考电压位准比较产生脉宽调变信号输入前述驱动器。 The converter involved in the present invention includes at least one upper bridge component and one lower bridge component, and the upper and lower bridge components are electrically connected to the input power supply, and the upper and lower bridge components are connected through phase nodes, and the phase nodes are controlled by pulse width modulation The driver action controlled by the variable signal makes the upper and lower bridge components perform switching actions, and the phase node is connected to the output inductor and the output capacitor, and controls the output inductor current to charge the output capacitor to generate an output voltage, wherein the pulse width modulation of the present invention The control circuit includes a virtual current ripple pulse width modulation circuit. The virtual current ripple pulse width modulation circuit has an integration and DC bias elimination unit, a phase synthesis unit, and a dual-rail reference voltage level generation unit. The integration and DC bias The elimination unit inputs the aforementioned phase node voltage signal and the signal reflecting the output voltage, and generates a virtual current ripple parameter signal at the DC reference voltage level, and the phase synthesis unit synthesizes the virtual current ripple parameter signal and the slope vector of the output voltage signal Pulse width modulation parameter signal, the dual-rail reference voltage level generating unit generates upper and lower DC reference voltage levels, and compares the pulse width modulation parameter signal with the upper and lower DC reference voltage levels to generate a pulse width modulation signal input the aforementioned drive.
本发明的虚拟涟波电流脉宽调变电路包括一直流参考电压位准单元、一积分及直流偏压消除单元、一相位合成单元、一双轨参考电压位准产生单元、一脉宽调变产生单元,其中直流参考电压位准单元提供一参考直流电压位准;该积分及直流偏压消除单元输入端连接前述相节点电压信号,并连接参考电压位准单元,并使相节点电压信号的方波经积分及直流偏压消除以形成位于直流参考位准的三角波,并该三角波斜率可反应相节点电压信号变化;该相位合成单元接收积分及直流偏压消除单元输出的积分波形电压与转换器输出电压作比例叠加产生合成的近似三角波电压,并该电压作为脉宽调变参数信号;又该双轨参考电压位准产生单元的输入侧连接直流参考电压位准单元,并输出至脉宽调变产生单元,又该双轨参考电压位准产生单元产生对应参考电压位准电压正、负相同差值的双轨上、下直流参考电压,又该脉宽调变产生单元输入侧连接相位合成单元输出端及双轨参考电压位准产生单元输出端,并使由相位合成单元输入的脉宽调变参数信号与双轨参考电压位准产生单元的上直流参考位准、下直流参考位准比较,并产生脉宽调变信号,并该脉宽调变信号输入驱动器以控制上、下桥组件动作。 The virtual ripple current pulse width modulation circuit of the present invention includes a DC reference voltage level unit, an integration and DC bias elimination unit, a phase synthesis unit, a dual-rail reference voltage level generation unit, and a PWM generation unit. unit, wherein the DC reference voltage level unit provides a reference DC voltage level; the input terminal of the integration and DC bias elimination unit is connected to the aforementioned phase node voltage signal, and connected to the reference voltage level unit, and makes the phase node voltage signal square The wave is integrated and DC bias eliminated to form a triangular wave at the DC reference level, and the slope of the triangular wave can reflect the change of the phase node voltage signal; the phase synthesis unit receives the integrated waveform voltage output by the integration and DC bias elimination unit and the converter The output voltage is proportionally superimposed to generate a synthetic approximate triangular wave voltage, and the voltage is used as a pulse width modulation parameter signal; and the input side of the dual-rail reference voltage level generating unit is connected to a DC reference voltage level unit, and output to the pulse width modulation A generation unit, and the dual-rail reference voltage level generation unit generates dual-rail upper and lower DC reference voltages corresponding to the positive and negative differences of the reference voltage level voltage, and the input side of the pulse width modulation generation unit is connected to the output terminal of the phase synthesis unit and the output terminal of the dual-rail reference voltage level generation unit, and compare the pulse width modulation parameter signal input by the phase synthesis unit with the upper DC reference level and the lower DC reference level of the dual-rail reference voltage level generation unit, and generate a pulse The pulse width modulation signal is input to the driver to control the action of the upper and lower bridge components.
这样,本发明通过该虚拟涟波电流脉宽调变电路来设计电源转换器,完全不需要精密的控制输出电感及滤波电容的组件特性阻抗与外加线路调整误差放大器的频率响应特性来达成高稳定度且容易使用的电源转换器设计,即可使该电源转换器不论处于高负载状态,或者低负载状态时,该虚拟涟波电流脉宽调变电路均可达到稳定电源输出的目的,不仅得以降低电源转换器的制作成本,亦可缩小电源供应器的体积,而解决先前技术的不足之处。 In this way, the present invention uses the virtual ripple current pulse width modulation circuit to design the power converter, and does not need to precisely control the component characteristic impedance of the output inductance and filter capacitor and the frequency response characteristics of the external line adjustment error amplifier to achieve high stability. The design of the high-precision and easy-to-use power converter enables the virtual ripple current pulse width modulation circuit to achieve the purpose of stabilizing the power output regardless of whether the power converter is in a high-load state or a low-load state. Reducing the production cost of the power converter can also reduce the size of the power supply, and solve the shortcomings of the prior art.
本发明还提供一种免闭回路稳定补偿调整的脉宽调变控制方法,包括以下步骤: The present invention also provides a pulse width modulation control method free from closed loop stabilization compensation adjustment, comprising the following steps:
a.取相节点的方波电压信号,并设直流参考电压位准,又该信号经积分及直流偏压消除处理产生位于直流参考电压位准的虚拟电流涟波参数信号; a. Take the square wave voltage signal of the phase node, and set the DC reference voltage level, and the signal is processed by integration and DC bias elimination to generate a virtual current ripple parameter signal located at the DC reference voltage level;
b.将反应输出电压信号与虚拟电流涟波参数信号叠加合成具有近似三角波的脉宽调变参数信号; b. superimposing the response output voltage signal and the virtual current ripple parameter signal to synthesize a pulse width modulation parameter signal with an approximate triangular wave;
c.检测脉宽调变参数信号并产生脉宽调变信号以控制上、下桥组件动作。 c. Detecting the pulse width modulation parameter signal and generating a pulse width modulation signal to control the action of the upper and lower bridge components.
其中前述c步骤的检测方式设对应直流参考电压位准相同正、负电压差值的上、下直流参考电压位准,并该脉宽调变参数信号的上升、下降波分别位于上、下直流参考位准信号的位准时可产生脉宽调变信号。 The detection method of the aforementioned step c is set to correspond to the upper and lower DC reference voltage levels with the same positive and negative voltage difference, and the rising and falling waves of the pulse width modulation parameter signal are located at the upper and lower DC voltage levels respectively. The pulse width modulation signal can be generated when the level of the reference level signal is reached.
附图说明 Description of drawings
图1为本发明的电路架构示意图。 FIG. 1 is a schematic diagram of the circuit structure of the present invention.
图2为本发明的虚拟电流涟波脉宽调变电路方块示意图。 FIG. 2 is a schematic block diagram of a virtual current ripple PWM circuit of the present invention.
图3为本发明的虚拟电流涟波脉宽调变电路及动作波形状态示意图。 FIG. 3 is a schematic diagram of the virtual current ripple pulse width modulation circuit and the operating waveform state of the present invention.
图4为本发明的动作波形示意图。 Fig. 4 is a schematic diagram of the action waveform of the present invention.
图5为本发明的实施例积分及直流偏压消除单元电路示意图。 FIG. 5 is a schematic circuit diagram of an integration and DC bias elimination unit according to an embodiment of the present invention.
图5A为本发明对应图5的波形示意图。 FIG. 5A is a schematic diagram of waveforms corresponding to FIG. 5 in the present invention.
图6为本发明的另一实施例直流偏压消除部分电路示意图。 FIG. 6 is a schematic diagram of a partial circuit for eliminating DC bias voltage according to another embodiment of the present invention.
图6A为本发明对应图6的波形示意图。 FIG. 6A is a schematic diagram of waveforms corresponding to FIG. 6 in the present invention.
图6B为本发明对应图6的波形示意图。 FIG. 6B is a schematic diagram of waveforms corresponding to FIG. 6 in the present invention.
图7为本发明的实施例相位合成单元电路示意图。 FIG. 7 is a schematic circuit diagram of a phase synthesis unit according to an embodiment of the present invention.
图8为本发明的实施例双轨参考电压位准产生单元电路示意图。 FIG. 8 is a schematic circuit diagram of a dual-rail reference voltage level generation unit according to an embodiment of the present invention.
图9为本发明的实施例脉宽调变单元电路示意图。 FIG. 9 is a schematic circuit diagram of a pulse width modulation unit according to an embodiment of the present invention.
图10为本发明多相应用示意图。 Fig. 10 is a schematic diagram of multi-phase application of the present invention.
图中: In the picture:
Q1上桥组件 Q2下桥组件 Q1 upper bridge assembly Q2 lower bridge assembly
A相节点 91驱动器 Phase A node 91 drivers
92输出电感 93输出电容 92 output inductance 93 output capacitor
94电阻 95电阻 94 resistors 95 resistors
1虚拟电流涟波脉宽调变电路 1 Virtual current ripple pulse width modulation circuit
2直流参考电压位准单元 2 DC reference voltage level unit
3积分及直流偏压消除单元 3 integration and DC bias elimination unit
4相位合成单元 4 phase synthesis unit
5双轨参考电压位准产生单元 5 dual-rail reference voltage level generation unit
6脉宽调变产生单元 6 PWM generating units
61软启动电路 31积分部分 61 soft start circuit 31 integral part
32直流偏压消除部分 33直流偏压消除部分。 32 DC bias elimination part 33 DC bias elimination part.
具体实施方式 detailed description
为了进一步解释本发明的技术方案,下面通过具体实施例来对本发明进行详细阐述。 In order to further explain the technical solution of the present invention, the present invention will be described in detail below through specific examples.
请参照图1所示,其为本发明涉及的转换器电路架构图,本发明涉及的转换器包括一上桥组件Q1、一下桥组件Q2,并上、下桥组件Q1、Q2电性连接输入电源VIN,并该上、下桥组件Q1、Q2经相节点A连接,相节点A受驱动器91动作以使上、下桥组件Q1、Q2作开关切换动作,而前述下桥组件Q2亦可为二极管(图中未标示),又该相节点A连接输出电感92、输出电容93,并控制输出电感92电流对输出电容93充电产生输出电压VOUT,而本实施例中,取分压电阻94、95的分压电压以侦测输出电压VOUT变化,又本发明具有一虚拟电流涟波脉宽调变电路1,并该虚拟电流涟波脉宽调变电路1输入前述相节点A电压信号及反应输出电压VOUT信号,并输出至驱动器91以控制上、下桥组件Q1、Q2作开关动作。 Please refer to FIG. 1, which is a circuit diagram of the converter circuit of the present invention. The converter of the present invention includes an upper bridge component Q1 and a lower bridge component Q2, and the upper and lower bridge components Q1 and Q2 are electrically connected to the input The power supply VIN, and the upper and lower bridge components Q1, Q2 are connected through the phase node A, and the phase node A is operated by the driver 91 to make the upper and lower bridge components Q1, Q2 perform switching operations, and the aforementioned lower bridge component Q2 can also be Diode (not marked in the figure), and the phase node A is connected to the output inductor 92, the output capacitor 93, and the current of the output inductor 92 is controlled to charge the output capacitor 93 to generate the output voltage VOUT, and in this embodiment, the voltage dividing resistor 94, The divided voltage of 95 is used to detect the change of the output voltage VOUT, and the present invention has a virtual current ripple pulse width modulation circuit 1, and the virtual current ripple pulse width modulation circuit 1 inputs the aforementioned phase node A voltage signal and responds The output voltage VOUT signal is output to the driver 91 to control the switching action of the upper and lower bridge components Q1 and Q2.
请一并参照图1至图4所示,本发明的虚拟电流涟波脉宽调变电路1包括一直流参考电压位准单元2、一积分及直流偏压消除单元3、一相位合成单元4、一双轨参考电压位准产生单元5、一脉宽调变产生单元6,其中直流参考电压位准单元2提供一参考直流电压位准VREF(参照图4),又积分及直流偏压消除单元3输入端连接相节点A电压VSW信号,并连接直流参考电压位准单元2,并具积分部分31、直流偏压消除部分32。 Please refer to FIG. 1 to FIG. 4 together, the virtual current ripple pulse width modulation circuit 1 of the present invention includes a DC reference voltage level unit 2, an integration and DC bias elimination unit 3, and a phase synthesis unit 4 , a dual-rail reference voltage level generation unit 5, a pulse width modulation generation unit 6, wherein the DC reference voltage level unit 2 provides a reference DC voltage level VREF (referring to FIG. 4 ), and an integration and DC bias elimination unit 3. The input end is connected to the phase node A voltage VSW signal, and connected to the DC reference voltage level unit 2, and has an integrating part 31 and a DC bias canceling part 32.
如图3和图4所示,该相节点A电压信号的方波经积分及直流偏压消除单元3形成位于直流参考位准的三角波Vint,其波形如图4所示,并该三角波斜率可反应相节点A电压信号变化,而本实施例图4所示Vint波形为反相型态,亦可为同相型态。 As shown in Figures 3 and 4, the square wave of the phase node A voltage signal is integrated and the DC bias elimination unit 3 forms a triangular wave Vint at the DC reference level, its waveform is as shown in Figure 4, and the slope of the triangular wave can be It reflects the change of the voltage signal of the phase node A, and the Vint waveform shown in FIG. 4 of this embodiment is an anti-phase type, and can also be an in-phase type.
相位合成单元4接收积分及直流偏压消除单元3输出的积分波形电压与转换器回授侦测输出电压VFB作比例叠加合成三角波电压,其波形如图4中的VEA,并该VEA电压作为脉宽调变参数信号,而图中VEA为Vint反相后形成对应VSW同相波形。 The phase synthesis unit 4 receives the integral waveform voltage output by the integration and DC bias elimination unit 3 and the feedback detection output voltage VFB of the converter to superimpose and synthesize the triangular wave voltage in proportion. Its waveform is VEA in Figure 4, and the VEA voltage is used as the pulse Wide modulation parameter signal, and VEA in the figure is the inversion of Vint to form the corresponding VSW in-phase waveform.
双轨参考电压位准产生单元5输入侧连接直流参考电压位准单元2,并输出至脉宽调变产生单元6,又该双轨参考电压位准产生单元6产生如图4对应参考电压位准VREF电压正、负相同差值的双轨上、下直流参考位准VREF+、VREF-。 The input side of the dual-rail reference voltage level generation unit 5 is connected to the DC reference voltage level unit 2, and is output to the pulse width modulation generation unit 6, and the dual-rail reference voltage level generation unit 6 generates the corresponding reference voltage level VREF as shown in Figure 4 Dual-rail upper and lower DC reference levels VREF+ and VREF- with the same positive and negative voltage difference.
脉宽调变产生单元6输入侧连接相位合成单元4输出端及双轨参考电压位准产生单元5输出端,并由相位合成单元4输入的脉宽调变参数信号VEA与双轨参考电压位准产生单元5输入的上直流参考位准VREF+、下直流参考位准VREF-比较,并产生脉宽调变信号,并该脉宽调变信号输入驱动器91以控制上、下桥组件Q1、Q2动作。 The input side of the pulse width modulation generation unit 6 is connected to the output end of the phase synthesis unit 4 and the output end of the dual-rail reference voltage level generation unit 5, and is generated by the pulse width modulation parameter signal VEA input by the phase synthesis unit 4 and the dual-rail reference voltage level The upper DC reference level VREF+ input by the unit 5 is compared with the lower DC reference level VREF- to generate a pulse width modulation signal, and the pulse width modulation signal is input to the driver 91 to control the action of the upper and lower bridge components Q1 and Q2.
请参阅图4,本发明转换器输出回授电压为VFB,并该VFB电压在T1时间降低时上桥组件Q1导通,并VSW的电压升高,并使上、下桥组件Q1、Q2相节点A的VSW电压为VIN电压,又T2时间输出电压VOUT升高时下桥组件Q2导通,并VSW电压即降低,并相节点A电压为地电位,而由于输出电容93特性的内部电阻(图中未标示)由输出电感92电流充电,该回授VFB的涟波对应该输出电容93特性具不同峰值,又该Vint为积分及直流偏压消除单元3输出电压,并可对应VSW电压产生具参考电压VREF位准的三角波电压,而本实施例的三角波电压为VSW电压的反相,亦可为同相设计,又VEA为相位合成单元4输入转换器输出回授电压VFB与Vint电压叠加并反向的脉宽调变参数电压,并因该VEA为将前述Vint波形再反相,因而可产生对应VSW电压同相波形,又该VREF+、VREF-为位于参考电压VREF正、负直流参考位准电压,而本发明的VEA电压波形斜率可更反应VFB的电压变化,并可产生近似三角波,因而当VEA电压下降至T1时间与VREF-交接的B位置或VEA电压上升至T2时间与VREF+交接的C位置时可使脉宽调变单元产生脉宽调变信号以控制驱动器91及上、下桥组件Q1、Q2动作,并使本发明可精确反应输出压变化以提升输出电压稳定性。 Please refer to Fig. 4, the output feedback voltage of the converter of the present invention is VFB, and when the VFB voltage decreases at time T1, the upper bridge component Q1 is turned on, and the voltage of VSW rises, and the upper and lower bridge components Q1 and Q2 are phased. The VSW voltage of node A is the VIN voltage, and when the output voltage VOUT rises at time T2, the lower bridge component Q2 is turned on, and the VSW voltage is reduced, and the voltage of the parallel phase node A is the ground potential, and due to the internal resistance of the output capacitor 93 (Fig. not marked in ) is charged by the current of the output inductor 92, the ripple of the feedback VFB corresponds to the different peak values of the characteristics of the output capacitor 93, and the Vint is the output voltage of the integration and DC bias elimination unit 3, and can generate a corresponding VSW voltage The triangular wave voltage of the reference voltage VREF level, and the triangular wave voltage of this embodiment is the reverse phase of the VSW voltage, and can also be designed as the same phase, and VEA is the phase synthesis unit 4 input converter output feedback voltage VFB and Vint voltage superimposed and reversed The pulse width modulation parameter voltage of the direction, and because the VEA is to invert the aforementioned Vint waveform, it can generate the corresponding VSW voltage in-phase waveform, and the VREF+ and VREF- are the positive and negative DC reference level voltages located at the reference voltage VREF , and the slope of the VEA voltage waveform of the present invention can be more responsive to the voltage change of VFB, and can generate an approximate triangular wave. Therefore, when the VEA voltage drops to T1 time and VREF- handover position or VEA voltage rises to T2 time and VREF+ handover position C When in position, the pulse width modulation unit can generate pulse width modulation signals to control the actions of the driver 91 and the upper and lower bridge components Q1 and Q2, and the present invention can accurately respond to output voltage changes to improve output voltage stability.
本发明涉及的积分及直流偏压消除单元3、相位合成单元4、双轨参考电压位准产生单元5、脉宽调变产生单元6可为各式可达成前述功能设计,如图1至图5所示,本发明涉及的积分及直流偏压消除单元3具有积分部分31及直流偏压消除部分32,并积分部分31具第一运算放大器OP1,并其反相输入端连接第一电阻R1与相节点A信号SW电性连接,又反相输入端连接第二电阻R2与直流偏压消除部分32的输出bias连接,又第一运算放大器OP1的输出端与反相输入端间连接第一电容C1,并积分时间常数由R1、C1决定,并其同相输入端连接直流参考电压位准单元2输出接点REF,并可将方波的相节点A电压VSW积分形成三角波信号,又bias产生电压可调整输出直流位准,又直流偏压消除部分32具积分电路、误差放大电路,并该积分电路输入端连接积分部分31的输出端,又误差放大电路连接积分电路的输出端及直流参考电压位准单元输出接点REF,使得积分部分31对应相节点A信号VSW的方波占空比形成不同直流位准三角波(参阅图3),并可经积分电路形成对应直流位准波形,并再由误差放大电路使该直流位准波形与直流参考电压位准单元2的直流参考电压位准VREF比较,并其直流误差量经放大再输入积分部分31,使得积分部分31输出不同直流位准三角波电压可调整为位于直流参考电压位准VREF的三角波Vint,而该直流偏压消除部分32具有第二运算放大器OP2、第三运算放大器OP3、第三电阻R3、第四电阻R4,第五电阻R5、第六电阻R6、第二电容C2,并该第二运算放大器OP2的反相输入端连接第三电阻R3与第一运算放大器OP1的输出端连接,并其反相输入端与输出端间并联第四电阻R4及第二电容C2,又其同相输入端连接直流参考电压位准单元2的输出接点REF,并使第二运算放大器OP2形成积分电路;又第三运算放大器OP3的反相输入端连接第五电阻R5与第二运算放大器OP2的输出端连接,并其反相输入端与输出端间连接第六电阻R6,又其同相输入端连接直流参考电压位准单元2的输出接点REF。 The integration and DC bias elimination unit 3, the phase synthesis unit 4, the dual-rail reference voltage level generation unit 5, and the pulse width modulation generation unit 6 involved in the present invention can be designed in various ways to achieve the aforementioned functional design, as shown in Figures 1 to 5 As shown, the integration and DC bias elimination unit 3 involved in the present invention has an integration part 31 and a DC bias elimination part 32, and the integration part 31 has a first operational amplifier OP1, and its inverting input terminal is connected to the first resistor R1 and The phase node A signal SW is electrically connected, the inverting input terminal is connected to the second resistor R2 and the output bias of the DC bias canceling part 32 is connected, and the output terminal of the first operational amplifier OP1 is connected to the inverting input terminal with the first capacitor C1, and the integral time constant is determined by R1 and C1, and its non-inverting input terminal is connected to the output contact REF of the DC reference voltage level unit 2, and the phase node A voltage VSW of the square wave can be integrated to form a triangular wave signal, and the voltage generated by bias can be Adjust the output DC level, and the DC bias elimination part 32 has an integrating circuit and an error amplifier circuit, and the input terminal of the integrating circuit is connected to the output terminal of the integrating part 31, and the error amplifier circuit is connected to the output terminal of the integrating circuit and the DC reference voltage level The quasi-unit output contact REF makes the integral part 31 form different DC level triangular waves (refer to FIG. 3 ) corresponding to the square wave duty ratio of the phase node A signal VSW, and can form the corresponding DC level waveform through the integration circuit, and then by the error The amplifying circuit compares the DC level waveform with the DC reference voltage level VREF of the DC reference voltage level unit 2, and the DC error amount is amplified and then input into the integral part 31, so that the integral part 31 outputs triangular wave voltages of different DC levels. It is adjusted to the triangular wave Vint located at the DC reference voltage level VREF, and the DC bias elimination part 32 has a second operational amplifier OP2, a third operational amplifier OP3, a third resistor R3, a fourth resistor R4, a fifth resistor R5, and a fifth resistor R5. Six resistors R6, the second capacitor C2, and the inverting input terminal of the second operational amplifier OP2 is connected to the third resistor R3 and the output terminal of the first operational amplifier OP1, and the fourth resistor R3 is connected in parallel between the inverting input terminal and the output terminal. Resistor R4 and second capacitor C2, and its non-inverting input terminal is connected to the output contact REF of the DC reference voltage level unit 2, and makes the second operational amplifier OP2 form an integrating circuit; and the inverting input terminal of the third operational amplifier OP3 is connected to the first The fifth resistor R5 is connected to the output terminal of the second operational amplifier OP2, and the sixth resistor R6 is connected between its inverting input terminal and output terminal, and its non-inverting input terminal is connected to the output contact REF of the DC reference voltage level unit 2 .
请一并参阅图5及图5A,本发明Vint输出无直流误差时,Vint输出为VSW积分后的VCR(输出电容93内电阻电压)三角波加上VREF位准;又当前述电路使积分部分31输入第二运算放大器OP2的三角波信号有直流误差时可经由第二运算放大器OP2反相积分消除VCR形成对应直流波形信号Vdet输出,又该第二运算放大器OP2输出的直流波形电压输入第三运算放大器OP3并与参考位准电压比较,并经误差放大后成为Vbias电压再馈入积分部分31的第一运算放大器OP1反相输入端,因而使积分及直流偏压消除单元3输出VSW积分后的VCR三角波加上VREF的位准形成对应直流参考电压位准的虚拟涟波电流三角波信号Vint。 Please refer to Fig. 5 and Fig. 5A together, when the Vint output of the present invention has no DC error, the Vint output is VCR (output capacitor 93 internal resistance voltage) triangular wave plus VREF level after VSW integration; and when the aforementioned circuit makes the integral part 31 When the triangular wave signal input to the second operational amplifier OP2 has a DC error, the VCR can be eliminated through the second operational amplifier OP2 inverting and integrating to form a corresponding DC waveform signal Vdet output, and the DC waveform voltage output by the second operational amplifier OP2 is input to the third operational amplifier. OP3 is compared with the reference level voltage, and after being amplified by the error, it becomes the Vbias voltage and then fed into the inverting input terminal of the first operational amplifier OP1 of the integration part 31, so that the integration and DC bias elimination unit 3 outputs the VCR after VSW integration The triangular wave is added to the level of VREF to form a virtual ripple current triangular wave signal Vint corresponding to the level of the DC reference voltage.
请参阅图1至图6,本发明另一实施例的积分部分31同图5,并直流偏压消除部分33由比较电路、反相积分电路组成,并本实施例的比较电路具有第四运算放大器OP4,并其反相输入端连接积分部分31的输出,又其同相输入端连接直流参考电压位准单元2输出接点REF,又积分电路具有第七电阻R7、第三电容C3、第五运算效大器OP5,并该第五运算放大器OP5的反相输入端连接第七电阻R7与比较电路的第四运算放大器OP4输出连接,又该反相输入端连接第三电容C3与第五运算放大器OP5的输出端连接,又该第五运算放大器OP5的同相输入端连接直流参考电压位准单元2输出接点REF,使得当Vint输出无直流误差时,Vint输出为VSW积分后的VCR三角波加上VREF的位准,又如图6、图6A和图6B所示,当Vint输出有直流误差时积分部分31接收的积分波形以直流参考电压位准为直流参考位准VREF,经比较电路与直流参考位准VREF比较,产生的方波如图6A虚线内所示,若为直流均方根值与参考位准电压相同则该方波的占空比为50%,该比较电路输出Vcomp为2x参考位准电压,其中K=2,又经积分电路积分后产生相对应Vint直流误差量的Vbias电压,并如图5及图6B所示,该Vbias电压可输入前述积分部分31的bias端点,其相位可抵销Vint的直流误差以调整积分部分31输出直流位准,并形成位于对应直流参考电压位准的三角波Vint信号。 Please refer to Fig. 1 to Fig. 6, the integration part 31 of another embodiment of the present invention is the same as Fig. 5, and the DC bias elimination part 33 is made up of comparison circuit, inverting integration circuit, and the comparison circuit of the present embodiment has the fourth operation Amplifier OP4, and its inverting input terminal is connected to the output of the integral part 31, and its non-inverting input terminal is connected to the output contact REF of the DC reference voltage level unit 2, and the integrating circuit has a seventh resistor R7, a third capacitor C3, and a fifth operation Effect amplifier OP5, and the inverting input terminal of the fifth operational amplifier OP5 is connected to the seventh resistor R7 and the output of the fourth operational amplifier OP4 of the comparison circuit, and the inverting input terminal is connected to the third capacitor C3 and the fifth operational amplifier. The output terminal of OP5 is connected, and the non-inverting input terminal of the fifth operational amplifier OP5 is connected to the output contact REF of the DC reference voltage level unit 2, so that when the Vint output has no DC error, the Vint output is the VCR triangular wave after VSW integration plus VREF As shown in Fig. 6, Fig. 6A and Fig. 6B, when the Vint output has a DC error, the integral waveform received by the integral part 31 takes the DC reference voltage level as the DC reference level VREF, and the comparison circuit and the DC reference The level VREF is compared, and the generated square wave is shown in the dotted line in Figure 6A. If the DC root mean square value is the same as the reference level voltage, the duty cycle of the square wave is 50%, and the output Vcomp of the comparison circuit is 2x reference The level voltage, where K=2, is integrated by the integrating circuit to generate a Vbias voltage corresponding to the Vint DC error amount, and as shown in Figure 5 and Figure 6B, the Vbias voltage can be input to the bias terminal of the aforementioned integrating part 31, which The phase can offset the DC error of Vint to adjust the output DC level of the integrating part 31 and form a triangular wave Vint signal corresponding to the DC reference voltage level.
请参照图1至图4及图7,相位合成单元4具有误差放大器,并输入侧输入积分及直流偏压消除单元3输出电压Vint及转换器输出回授电压VFB,并经叠加合成输出脉宽调变参数信号,而本实施例具第六运算放大器OP6,并该第六运算放大器OP6的反相输入端连接第八电阻R8及积分直流偏压消除单元3输出接点Vint,又该反相输入端连接第九电阻R9与第六运算放大器OP6的输出端连接,并该反相输入端与第八电阻R8、第九电阻R9间具相节点,又该第六运算放大器OP6的同相输入端连接转换器输出回授电压接点FB,并可调整该第八电阻R8、第九电阻R9的阻值取对应积分及直流偏压消除单元3的输出电压适当比例及转换器输出回授电压VFB,较佳者可取Vint 1/20对应VFB电压,并使该前述电压与转换器输出回授电压VFB叠加合成,并使积分及直流偏压消除单元3的输出电压三角波信号斜率与转换器输出回授电压VFB的变化斜率向量合成形成输出脉宽参数信号VEA。 Please refer to FIG. 1 to FIG. 4 and FIG. 7, the phase synthesis unit 4 has an error amplifier, and the input side inputs the integration and DC bias elimination unit 3 output voltage Vint and the converter output feedback voltage VFB, and the output pulse width is synthesized by superimposition modulation parameter signal, and the present embodiment has a sixth operational amplifier OP6, and the inverting input terminal of the sixth operational amplifier OP6 is connected to the eighth resistor R8 and the output contact Vint of the integral DC bias elimination unit 3, and the inverting input The ninth resistor R9 is connected to the output terminal of the sixth operational amplifier OP6, and the inverting input terminal is connected to the phase node between the eighth resistor R8 and the ninth resistor R9, and the non-inverting input terminal of the sixth operational amplifier OP6 is connected The converter outputs the feedback voltage contact FB, and the resistance values of the eighth resistor R8 and the ninth resistor R9 can be adjusted to obtain the corresponding integral and the appropriate ratio of the output voltage of the DC bias canceling unit 3 and the converter output feedback voltage VFB, which is relatively Preferably, Vint 1/20 corresponds to the VFB voltage, and the aforementioned voltage is superimposed and synthesized with the converter output feedback voltage VFB, and the slope of the triangular wave signal of the output voltage of the integration and DC bias elimination unit 3 is related to the converter output feedback voltage The slope vector of VFB is synthesized to form the output pulse width parameter signal VEA.
请参阅图1至图4及图8,该双轨参考电压位准产生单元5具有二比较电路,并该二比较电路的一输入端连接直流参考位准信号,并该二比较电路连接电阻,并通过电阻的阻值设定分别输出对应直流参考电压位准相同正负差值的上、下直流参考位准。在本实施例中,其具有第七运算放大器OP7、第八运算放大器OP8,并该第七运算放大器OP7、第八运算放大器OP8的同相输入端连接直流参考电压位准单元2输出接点REF,并第七运算放大器OP7的反相输入端连接第十电阻R10接地,并反相输入端连接第十一电阻R11与输出端连接,并该第七运算放大器OP7输出端产生上直流参考位准VREF+,又第八运算放大器OP8的反相输入端连接第十二电阻R12与第七运算放大器OP7的输出端连接,并该反相输入端连接第十三电阻R13与第八运算放大器OP8输出端连接,并该第十二电阻R12及第十三电阻R13及第八运算放大器OP8的反相输入端具有相节点,并使第八运算放大器OP8的输出端产生下直流参考位准VREF-,而该上直流参考电压位准VREF+为VREF+ (VREF * R11/R10),又下直流参考电压位准VREF-为 [(VREF+-VREF)*-1]+VREF,若设参考位准VREF电压为1V,第十电阻R10为99K,第十一电阻R11阻值为1K,则VREF+=1+(1 * 1K/99K)=1.01V,又VREF-=[(1.01V-1V)*-1]+1V=0.99V。 Please refer to FIG. 1 to FIG. 4 and FIG. 8, the dual-rail reference voltage level generation unit 5 has two comparison circuits, and one input end of the two comparison circuits is connected to a DC reference level signal, and the two comparison circuits are connected to a resistor, and The upper and lower DC reference levels corresponding to the same positive and negative difference of the DC reference voltage level are respectively outputted by setting the resistance value of the resistor. In this embodiment, it has a seventh operational amplifier OP7 and an eighth operational amplifier OP8, and the non-inverting input terminals of the seventh operational amplifier OP7 and the eighth operational amplifier OP8 are connected to the output contact REF of the DC reference voltage level unit 2, and The inverting input terminal of the seventh operational amplifier OP7 is connected to the tenth resistor R10 to be grounded, and the inverting input terminal is connected to the eleventh resistor R11 to be connected to the output terminal, and the output terminal of the seventh operational amplifier OP7 generates an upper DC reference level VREF+, And the inverting input end of the eighth operational amplifier OP8 is connected to the output end of the twelfth operational amplifier OP7 connected to the twelfth resistor R12, and the inverting input end is connected to the thirteenth resistor R13 to be connected to the output end of the eighth operational amplifier OP8, And the twelfth resistor R12 and the thirteenth resistor R13 and the inverting input terminal of the eighth operational amplifier OP8 have a phase node, and the output terminal of the eighth operational amplifier OP8 generates a lower DC reference level VREF-, and the upper The DC reference voltage level VREF+ is VREF+ (VREF * R11/R10), and the DC reference voltage level VREF- is [(VREF+-VREF)*-1]+VREF. If the reference level VREF voltage is 1V, the The ten resistor R10 is 99K, and the eleventh resistor R11 has a resistance value of 1K, then VREF+=1+(1 * 1K/99K)=1.01V, and VREF-=[(1.01V-1V)*-1]+1V= 0.99V.
请参照图1至图4及图9,本发明脉宽调变产生单元6具二比较电路,并该一比较电路输入端连接脉宽调变参数信号EA及上直流参考位准REF+,另一比较电路输入端连接脉宽调变参数以信号EA及下直流参考位准REF-,并二比较电路输出形成反应脉宽调变参数信号斜率变化的方波信号,而该方波信号可经正反器放大并配合软启动电路产生脉宽调变信号,而本实施例具有第九运算放大器OP9、第十运算放大器OP10、RS正反器、软启动电路61,而该软启动电路61为电源转换器的习知技术,不再予以多述,又该第九运算放大器OP9的同相输入端连接相位合成单元4输入的脉宽调变参数信号EA,又第九运算放大器OP9的反相输入端连接上直流参考位准REF+,并第十运算放大器OP10反相输入端连接相位合成单元4输入的脉宽调变参数信号EA,并其同相输入端连接下直流参考位准REF-,又该第九运算放大器OP9、第十运算放大器OP10的输出端分别连接RS正反器的R端、S端,又RS正反器的Q端与软启动电路61的输出端连接AND闸,并该AND闸输出产生脉宽调变信号PWM,使得VEA的电压波形斜率上升至VREF+位准时第九运算放器OP9输出一高电位方波,并使RS正反器输出Q为低电位以降低转换器输出电压,又VEA的电压波形斜率降低至VREF-位准时第十运算放大器OP10输出一高电位方波,并使RS正反器输出Q为高电位以提升转换器输出电压。 Please refer to FIG. 1 to FIG. 4 and FIG. 9, the pulse width modulation generating unit 6 of the present invention has two comparison circuits, and the input end of the comparison circuit is connected to the pulse width modulation parameter signal EA and the upper DC reference level REF+, and the other The input terminal of the comparison circuit is connected with the pulse width modulation parameter signal EA and the lower DC reference level REF-, and the output of the two comparison circuits forms a square wave signal reflecting the slope change of the pulse width modulation parameter signal, and the square wave signal can be normalized The inverter amplifies and cooperates with the soft-start circuit to generate a pulse width modulation signal, and the present embodiment has the ninth operational amplifier OP9, the tenth operational amplifier OP10, the RS flip-flop, and the soft-start circuit 61, and the soft-start circuit 61 is a power supply The known technology of the converter is no longer described, and the non-inverting input terminal of the ninth operational amplifier OP9 is connected to the pulse width modulation parameter signal EA input by the phase synthesis unit 4, and the inverting input terminal of the ninth operational amplifier OP9 Connect the upper DC reference level REF+, and connect the inverting input terminal of the tenth operational amplifier OP10 to the pulse width modulation parameter signal EA input by the phase synthesis unit 4, and connect the non-inverting input terminal to the lower DC reference level REF-. The output terminals of the nine operational amplifiers OP9 and the tenth operational amplifier OP10 are respectively connected to the R terminal and the S terminal of the RS flip-flop, and the Q terminal of the RS flip-flop and the output terminal of the soft start circuit 61 are connected to an AND gate, and the AND gate The output generates a pulse width modulation signal PWM, so that when the slope of the voltage waveform of VEA rises to the VREF+ level, the ninth operational amplifier OP9 outputs a high potential square wave, and makes the RS flip-flop output Q a low potential to reduce the output voltage of the converter , and when the slope of the voltage waveform of VEA decreases to VREF-level, the tenth operational amplifier OP10 outputs a high-potential square wave, and makes the RS flip-flop output Q a high potential to increase the output voltage of the converter.
请参照图10,本发明具由虚拟电流涟波脉宽调变电路1及驱动器91及上、下桥组件Q1、Q2的脉宽调变架构,并各脉宽调变架构输入端连结同一反应输出电压信号,并各脉宽调变架构分别连接一对应输出电感,并该各对应输出电感分别连接同一输出电容作多相配置,并使本发明可配合负载需求提升输出电流,而图中所示为二组脉宽调变架构并联,亦可配合负载作二组以上的脉宽调变架构并联设置。 Please refer to FIG. 10, the present invention has a pulse width modulation structure consisting of a virtual current ripple pulse width modulation circuit 1, a driver 91, and upper and lower bridge components Q1, Q2, and the input ends of each pulse width modulation structure are connected to the same response Output voltage signals, and each pulse width modulation structure is connected to a corresponding output inductor, and the corresponding output inductors are respectively connected to the same output capacitor for multi-phase configuration, so that the present invention can increase the output current according to the load demand, and the figure shown in the figure It is shown that two sets of PWM architectures are connected in parallel, and more than two sets of PWM architectures can be set in parallel with the load.
本发明前述电路为本发明的例示,并非作为本发明的申请专利范围限制,凡依据本发明精神所示的等效改变亦应属于本发明申请专利范围所含盖。 The foregoing circuits of the present invention are examples of the present invention, and are not intended to limit the scope of the patent application of the present invention. All equivalent changes shown according to the spirit of the present invention shall also fall within the scope of the patent application of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201110250707.4A CN102957319B (en) | 2011-08-29 | 2011-08-29 | Power converter pulse width modulation control circuit and its control method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201110250707.4A CN102957319B (en) | 2011-08-29 | 2011-08-29 | Power converter pulse width modulation control circuit and its control method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102957319A CN102957319A (en) | 2013-03-06 |
CN102957319B true CN102957319B (en) | 2015-01-14 |
Family
ID=47765682
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201110250707.4A Expired - Fee Related CN102957319B (en) | 2011-08-29 | 2011-08-29 | Power converter pulse width modulation control circuit and its control method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102957319B (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104283451B (en) * | 2013-07-05 | 2018-05-15 | 研能科技股份有限公司 | Polarity switching circuit |
US9600063B2 (en) * | 2015-03-18 | 2017-03-21 | Intersil Americas LLC | Enhanced peak current-mode pulse-width-modulated (PWM) switching regulators |
CN107846049B (en) * | 2016-09-20 | 2020-03-31 | 立锜科技股份有限公司 | Charging circuit, capacitive power supply conversion circuit thereof and charging control method |
CN106656193A (en) * | 2016-12-08 | 2017-05-10 | 天津天喜国瑞科技发展有限公司 | Sigma-delta modulator and pulse width modulation tracking quantizer |
CN107239052B (en) * | 2017-05-23 | 2019-09-24 | 中国电子科技集团公司第四十一研究所 | A kind of triggering level automatic calibrating method realized based on FPGA |
CN113630688B (en) * | 2021-08-05 | 2024-05-17 | 东莞凯韵科技有限公司 | Direct current servo circuit |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1897440A (en) * | 2006-06-30 | 2007-01-17 | 北京中星微电子有限公司 | Circuit for controlling switch power supply |
CN101075740A (en) * | 2006-05-16 | 2007-11-21 | 精拓科技股份有限公司 | Multiphase Pulse Width Modulation Device with Load Current Balance and Its Pulse Delay Unit |
CN101093957A (en) * | 2006-06-13 | 2007-12-26 | 美国凹凸微系有限公司 | Direct current/direct current transducer with modified type transient response |
US7498792B2 (en) * | 2005-06-03 | 2009-03-03 | Richtek Technology Coporation | Pulse modulation system with nonlinear ramp |
TW201006081A (en) * | 2008-07-17 | 2010-02-01 | Asustek Comp Inc | Power supply and over voltage protection apparatus and method therein |
JP2010183722A (en) * | 2009-02-05 | 2010-08-19 | Mitsumi Electric Co Ltd | Dc-dc converter and switching control circuit |
JP2010252627A (en) * | 2010-07-01 | 2010-11-04 | Texas Instr Japan Ltd | Switching power supply |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4811850B2 (en) * | 2005-08-11 | 2011-11-09 | ルネサスエレクトロニクス株式会社 | Switching regulator |
-
2011
- 2011-08-29 CN CN201110250707.4A patent/CN102957319B/en not_active Expired - Fee Related
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7498792B2 (en) * | 2005-06-03 | 2009-03-03 | Richtek Technology Coporation | Pulse modulation system with nonlinear ramp |
CN101075740A (en) * | 2006-05-16 | 2007-11-21 | 精拓科技股份有限公司 | Multiphase Pulse Width Modulation Device with Load Current Balance and Its Pulse Delay Unit |
CN101093957A (en) * | 2006-06-13 | 2007-12-26 | 美国凹凸微系有限公司 | Direct current/direct current transducer with modified type transient response |
CN1897440A (en) * | 2006-06-30 | 2007-01-17 | 北京中星微电子有限公司 | Circuit for controlling switch power supply |
TW201006081A (en) * | 2008-07-17 | 2010-02-01 | Asustek Comp Inc | Power supply and over voltage protection apparatus and method therein |
JP2010183722A (en) * | 2009-02-05 | 2010-08-19 | Mitsumi Electric Co Ltd | Dc-dc converter and switching control circuit |
JP2010252627A (en) * | 2010-07-01 | 2010-11-04 | Texas Instr Japan Ltd | Switching power supply |
Also Published As
Publication number | Publication date |
---|---|
CN102957319A (en) | 2013-03-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8536841B2 (en) | PWM control circuit of a converter and the control method thereof | |
JP5391318B2 (en) | Pulse width modulation control circuit and control method thereof | |
CN102651604B (en) | Control circuit and method of ripple regulator | |
US8963523B2 (en) | Switching regulator with error correction and control method thereof | |
TWI385907B (en) | Dc-dc converter | |
TWI457740B (en) | Current sensing apparatus and voltage converter apparatus | |
US8766615B2 (en) | DC-DC converter control circuit and DC-DC converter including same | |
US9543832B2 (en) | Current detection circuit and switching regulator thereof | |
CN102957319B (en) | Power converter pulse width modulation control circuit and its control method | |
US8760138B2 (en) | DC-DC converter control circuit and DC-DC converter including same | |
US8760137B2 (en) | DC-DC converter control circuit and DC-DC converter including same | |
US20100283441A1 (en) | Pwm controller and control method for a dc-dc voltage converter | |
US8760139B2 (en) | DC-DC converter control circuit and DC-DC converter including same | |
TW201742360A (en) | Buck-boost converter with ramp compensation and controller and control method thereof | |
TW201325053A (en) | Switching-mode power supply with ripple mode control and associated methods | |
JP2008131746A (en) | Step-up/down switching regulator | |
JP2009011147A (en) | Switching power supply | |
US7193871B2 (en) | DC-DC converter circuit | |
CN101471603B (en) | DC-DC buck converter and ripple improvement circuit | |
CN113162402B (en) | Control circuit for switching converter | |
US6972974B2 (en) | Compensator to achieve constant bandwidth in a switching regulator | |
CN103378726B (en) | Switching power supply and its control circuit and control method | |
CN212486389U (en) | DC/DC voltage regulating circuit and electronic equipment | |
JP2006517379A (en) | Improved detection method of switching power supply output current | |
TWM428391U (en) | Pulse width modulation control circuit of power converter |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20150114 Termination date: 20200829 |