[go: up one dir, main page]

CN102944803A - Leakage power estimation - Google Patents

Leakage power estimation Download PDF

Info

Publication number
CN102944803A
CN102944803A CN201210363721XA CN201210363721A CN102944803A CN 102944803 A CN102944803 A CN 102944803A CN 201210363721X A CN201210363721X A CN 201210363721XA CN 201210363721 A CN201210363721 A CN 201210363721A CN 102944803 A CN102944803 A CN 102944803A
Authority
CN
China
Prior art keywords
logic
cache
processor
leakage
leakage power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201210363721XA
Other languages
Chinese (zh)
Other versions
CN102944803B (en
Inventor
P·查帕罗蒙费尔
G·马格克里斯
J·冈萨雷斯
A·冈萨雷斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Intel Corp
Original Assignee
Intel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Intel Corp filed Critical Intel Corp
Priority to CN201210363721.XA priority Critical patent/CN102944803B/en
Publication of CN102944803A publication Critical patent/CN102944803A/en
Application granted granted Critical
Publication of CN102944803B publication Critical patent/CN102944803B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Semiconductor Integrated Circuits (AREA)

Abstract

本发明描述了提供泄漏功率估计的方法和设备。在一个实施例中,一个或多个检测的温度值(108)和一个或多个电压值(110)被用来确定集成电路(IC)部件的泄漏功率。也描述了其他实施例。

Figure 201210363721

The present invention describes methods and apparatus for providing leakage power estimates. In one embodiment, one or more sensed temperature values (108) and one or more voltage values (110) are used to determine leakage power of integrated circuit (IC) components. Other embodiments are also described.

Figure 201210363721

Description

泄漏功率估计Leakage Power Estimation

本申请是申请日为2006年6月30日、申请号为200680054765.7、发明名称为“泄漏功率估计”的中国发明专利申请的分案申请。This application is a divisional application of a Chinese invention patent application with an application date of June 30, 2006, an application number of 200680054765.7, and an invention title of "Leakage Power Estimation".

背景技术 Background technique

本发明总地涉及电子领域,更具体地讲,本发明的实施例涉及集成电路(IC)器件中的泄漏功率估计。The present invention relates generally to the field of electronics, and more particularly, embodiments of the invention relate to leakage power estimation in integrated circuit (IC) devices.

技术领域 technical field

无论是动态功耗还是泄漏功耗,都是IC设计中的主要关注点之一。特别是,亚阈泄漏(或泄漏功率)可能随着每个相继的设计阶段而增加。举例来说,在降低供电电压时(例如,为了降低动态功耗),阈值电压也会被降低(例如,目的是为了维持低的门延时或高的频率)。但是,降低阈值电压可能以非线性方式影响泄漏功率。Both dynamic power consumption and leakage power consumption are one of the main concerns in IC design. In particular, subthreshold leakage (or leakage power) may increase with each successive design stage. For example, when the supply voltage is reduced (eg, to reduce dynamic power consumption), the threshold voltage is also lowered (eg, to maintain low gate delay or high frequency). However, lowering the threshold voltage may affect leakage power in a non-linear fashion.

在一些实施例中,可假设泄漏功率在运行时等于常数。但是,泄漏功率也可能在运行时发生变化,例如随温度、供电电压或阈值电压的变化而变化。所以,不知道泄漏功率,功率管理技术就可能不太精确。In some embodiments, the leakage power may be assumed to be constant at run time. However, leakage power can also vary during operation, for example with changes in temperature, supply voltage, or threshold voltage. Therefore, without knowing the leakage power, power management techniques can be less accurate.

附图说明 Description of drawings

详细说明将参考附图来进行。在这些附图中,参考标号中最左端的数字表示该参考标号初次出现的图号。在不同的附图中,采用相同的参考标号表示类似或相同项。The detailed description will be made with reference to the accompanying drawings. In the figures, the left-most digit(s) in a reference number indicates the figure number in which the reference number first appears. In different drawings, the same reference numerals are used to designate similar or identical items.

图1、图5和图6表示根据本发明各个实施例的计算系统的方框图。1, 5 and 6 show block diagrams of computing systems according to various embodiments of the invention.

图2A和图2B表示根据各个实施例的泄漏功率估计系统的各部分的方框图。2A and 2B represent block diagrams of portions of a leakage power estimation system according to various embodiments.

图3表示根据实施例的处理器核的方框图。Figure 3 shows a block diagram of a processor core according to an embodiment.

图4表示根据实施例的方法的流程图。Fig. 4 represents a flowchart of a method according to an embodiment.

具体实施方式 Detailed ways

在下面的说明中,给出了许多特定细节以便于透彻理解各种实施例。但是,本发明的各个实施例可以不采用这些特定细节来实施。在其他情形下,也没有对众所周知的方法、过程、部件和电路详加说明,这样做的目的是为了突出本发明的特定实施例。本发明的诸实施例的各个方面可以采用不同的手段来实现,例如采用集成半导体电路(“硬件”)、构成一个或多个程序的计算机可读指令(“软件”)、或者硬件和软件的组合。就本说明书而言,提到“逻辑”就是指硬件、软件或者它们的组合。In the following description, numerous specific details are given to provide a thorough understanding of various embodiments. However, various embodiments of the invention may be practiced without these specific details. In other instances, well-known methods, procedures, components and circuits have not been described in detail, so as not to highlight particular embodiments of the invention. The various aspects of the embodiments of the invention may be implemented by various means, such as integrated semiconductor circuits ("hardware"), computer readable instructions constituting one or more programs ("software"), or a combination of hardware and software. combination. For purposes of this specification, references to "logic" refer to hardware, software, or a combination thereof.

本文讨论的一些实施例可以提供有效的技术来估计泄漏功率(例如由IC器件的一个或多个部件产生的静态或亚阈泄漏功率)。在实施例中,该泄漏功率可能是由一种或多种变化引起的,例如温度和/或电压(如阈值和/或供电电压)中的变化。而且,本文所讨论的一些实施例可以应用于各种计算系统,例如参照图1、图5和图6所讨论的计算系统。更具体地讲,图1是根据实施例的计算系统100的方框图。系统100可以包括一个或多个域102–1至102–M(本文将其全体通称为“域102”)。域102–1至102-M中的每个域可以包括各种各样的部件,但为清楚起见,只对域102–1和域102–2画出了示例部件。而且,每个域102可以对应于计算系统的一部分(例如参照图5和图6讨论的部件,或者更一般地讲,IC器件的一个或多个晶体管)。在实施例中,域102中的每个域可以包括由时钟信号计时的不同电路(或逻辑),而该时钟信号可以不同于其他域中使用的时钟信号。在一个实施例中,这些时钟信号中的一个或多个信号可以是平均同步的,或者按照其他方式相关的(例如具有随时间自身重复或随时间不自身重复的关系)。Some embodiments discussed herein may provide efficient techniques for estimating leakage power (eg, static or subthreshold leakage power generated by one or more components of an IC device). In embodiments, this leakage power may be caused by one or more changes, such as changes in temperature and/or voltage (eg, threshold and/or supply voltage). Moreover, some embodiments discussed herein may be applied to various computing systems, such as those discussed with reference to FIGS. 1 , 5 , and 6 . More specifically, FIG. 1 is a block diagram of a computing system 100 according to an embodiment. System 100 may include one or more domains 102 - 1 through 102 -M (collectively referred to herein as "domains 102"). Each of domains 102 - 1 through 102 -M may include a wide variety of components, but for clarity, only example components are drawn for domains 102 - 1 and 102 - 2 . Also, each domain 102 may correspond to a portion of a computing system (eg, a component discussed with reference to FIGS. 5 and 6 , or more generally, one or more transistors of an IC device). In an embodiment, each of domains 102 may include different circuitry (or logic) clocked by a clock signal that may be different than the clock signal used in the other domains. In one embodiment, one or more of these clock signals may be synchronized on average, or otherwise related (eg, have a relationship that repeats itself or does not repeat itself over time).

如图1所示,每个域可以通过一个或多个缓冲器104和其他域进行数据通信。在一个实施例中,缓冲器104可以是先入先出(FIFO)缓冲器。每个域可以包括用来估计相应域内一个或多个部件的泄漏功率的逻辑(例如分别参照域102–1和102–2所示出的逻辑106–1和106–2,本文通称为“逻辑106”)、一个或多个温度传感器(例如分别参照域102–1和102–2所示出的传感器108–1和108–2)、控制频率和/或电压电平以及/或者提供当前阈值电压和/或供电电压值的逻辑(例如分别参照域102–1和102–2所示出的逻辑110–1和110–2)、以及管理相应域内的一个或多个部件功耗的逻辑(例如分别参照域102–1和102–2所示出的逻辑112–1和112–2,本文通称为“逻辑112”)。在实施例中,晶体管的阈值电压可以通过对晶体管本体(基底)施加电流来进行调节。As shown in FIG. 1 , each domain may communicate data with other domains through one or more buffers 104 . In one embodiment, buffer 104 may be a first-in-first-out (FIFO) buffer. Each domain may include logic (such as logic 106-1 and 106-2 shown with reference to domains 102-1 and 102-2, respectively, collectively referred to herein as "logic") to estimate the leakage power of one or more components within the corresponding domain. 106"), one or more temperature sensors (such as sensors 108-1 and 108-2 shown with reference to fields 102-1 and 102-2, respectively), control frequency and/or voltage level and/or provide current threshold logic for voltage and/or supply voltage values (such as logic 110-1 and 110-2 shown with reference to domains 102-1 and 102-2, respectively), and logic to manage power consumption of one or more components within the corresponding domain ( For example, logic 112 - 1 and 112 - 2 shown with reference to fields 102 - 1 and 102 - 2 , respectively, collectively referred to herein as "logic 112 "). In an embodiment, the threshold voltage of a transistor can be adjusted by applying a current to the body (substrate) of the transistor.

在各个实施例中,功率管理逻辑112可以调节相应域的一个或多个部件的功耗。举例来说,逻辑112可以利用一些信息来调节相应域的一个或多个部件的供电电压和/或阈值电压,这些信息可以是泄漏功率估计值(例如由相应逻辑106提供的值)、动态功率估计、以及/或者一些其他信息(例如每个循环所承担的指令、高速缓存错误等等)。而且,逻辑112可以调节时钟信号(例如相应域的至少一部分内使用的时钟信号)的频率。在实施例中,逻辑112可以关断一个或多个部件:例如一个或多个处理器核或者这些处理器核的某些部分(例如不同的流水线等等)以及/或者数据高速缓存(例如,可以包括各级高速缓存,如第一级(L1)、第二级(L2)或其他级)或者数据高速缓存的某些部分(例如不同的高速缓存簇)。In various embodiments, power management logic 112 may regulate power consumption of one or more components of the corresponding domain. For example, logic 112 may utilize information such as leakage power estimates (such as values provided by corresponding logic 106 ), dynamic power estimates, and/or some other information (such as instructions per cycle, cache errors, etc.). Also, the logic 112 may adjust the frequency of a clock signal (eg, a clock signal used within at least a portion of the respective domain). In an embodiment, logic 112 may shut down one or more components: for example, one or more processor cores or portions of these processor cores (eg, different pipelines, etc.) and/or data caches (eg, May include various levels of cache, such as first level (L1), second level (L2), or others) or portions of data caches (such as different cache clusters).

图2A和图2B表示根据各个实施例的泄漏功率估计系统200及系统250的组成部分的方框图。在一个实施例中,系统200及系统250和参照图1讨论的逻辑106相同或相似。在实施例中,参照图2A和图2B讨论的存储单元可以和参照图5和/或图6讨论的存储器部件相同或相似。2A and 2B show block diagrams of components of leakage power estimation system 200 and system 250 according to various embodiments. In one embodiment, system 200 and system 250 are the same as or similar to logic 106 discussed with reference to FIG. 1 . In embodiments, the memory cells discussed with reference to FIGS. 2A and 2B may be the same or similar to the memory components discussed with reference to FIGS. 5 and/or 6 .

如图2A和图2B所示,系统200和系统250可以包括温度标定因子存储单元202(例如,用来存储多个温度标定因子值)。存储单元202可以从和一个或多个部件(例如参照图1、图5和图6讨论的那些部件)相对应的传感器108接受所检测的温度值。系统200还可以包括电压标定因子存储单元204(例如,用来存储多个电压因子值)以及参考泄漏存储单元206(例如,用来存储参考或基准泄漏功率值)。存储单元206中存储的基准泄漏值可以在设计时加以确定(例如通过仿真或电路测量来确定),或者在测试时加以确定。举例来说,对具有较高可变性的设计,可以在测试时确定基准泄漏值(这是因为,对每个芯片和/或功能块,该基准值可以单独进行计算以便适应对每个电路细节的估计)。As shown in FIGS. 2A and 2B , systems 200 and 250 may include a temperature calibration factor storage unit 202 (eg, configured to store a plurality of temperature calibration factor values). Storage unit 202 may receive detected temperature values from sensors 108 corresponding to one or more components, such as those discussed with reference to FIGS. 1 , 5 , and 6 . System 200 may also include a voltage scaling factor storage unit 204 (eg, to store a plurality of voltage factor values) and a reference leakage storage unit 206 (eg, to store a reference or baseline leakage power value). The reference leakage value stored in the storage unit 206 may be determined during design (for example, through simulation or circuit measurement), or determined during testing. For example, for designs with higher variability, a baseline leakage value can be determined at test time (this is because, for each chip and/or functional block, this baseline value can be calculated individually to accommodate each circuit detail estimate).

在实施例中,系统200还可以包括舍入逻辑210,用来对从传感器108接受到的温度值进行四舍五入(例如使检测值舍入成为和存储单元202所存储的值最接近的值)。插值逻辑212可以对存储单元202输出的值插值成为传感器108提供的实际温度测量值。类似地,系统200可以包括电压舍入逻辑214(例如,用来对当前阈值和/或供电电压值舍入成为和存储单元204所存储的值最接近的值)以及电压插值逻辑218(例如,用来对存储单元204输出的值插值成为控制逻辑110提供的实际电压值)。乘法器208可以将所确定的温度标定因子(例如根据传感器108的检测温度从存储单元202中查找的)、所确定的电压标定因子(例如根据逻辑110所提供的当前电压值从存储单元204中查找的)以及参考泄漏值(来自存储单元206)相乘。然后,该乘积值就可以如图1所讨论的那样被用来管理功率设定值(例如通过功率管理逻辑112进行管理)。In an embodiment, the system 200 may further include rounding logic 210 for rounding the temperature value received from the sensor 108 (eg, rounding the detected value to the closest value to the value stored in the storage unit 202 ). Interpolation logic 212 may interpolate the value output by storage unit 202 into the actual temperature measurement provided by sensor 108 . Similarly, system 200 may include voltage rounding logic 214 (e.g., to round current threshold and/or supply voltage values to the nearest value stored in storage unit 204) and voltage interpolation logic 218 (e.g., used to interpolate the value output by the storage unit 204 into the actual voltage value provided by the control logic 110 ). The multiplier 208 can take the determined temperature calibration factor (for example, from the storage unit 202 according to the detected temperature of the sensor 108), the determined voltage calibration factor (for example, according to the current voltage value provided by the logic 110, from the storage unit 204 lookup) and the reference leak value (from storage unit 206). This product value may then be used to manage the power set point (eg, via power management logic 112 ) as discussed in FIG. 1 .

现在参看图2B。系统250可以包括参考泄漏存储单元252,为相应的一组电压存储基准泄漏值。相应地,在一个实施例中,单个存储单元(252)可以存储多个值,这些值和图2A的参考泄漏存储单元206中所存储的值以及图2A的电压标定因子存储单元204中所存储的相应值的组合相对应。举例来说,多个泄漏功率值可以按照温度因子(例如,由传感器108提供的)和电压因子(例如,和逻辑110提供的阈值电压值和/或供电电压值相对应的)编索引。这样的实施例可以通过单次查找(例如,根据来自逻辑110的当前阈值和/或供电电压值进行查找)来提供可以通过经由乘法器254从存储单元202中查找(例如根据传感器108所提供的检测温度值进行查找)的温度标定因子来进行标定的参考泄漏值。另一种方法是,存储单元202、204、206和/或252中存储的值可以被组合到单个存储单元(未示出),以便允许单次查找来提供和传感器108提供的检测的温度值以及/或者来自逻辑110的当前阈值和/或供电电压值相对应的泄漏值。而且,系统250可以包括根据一些实施例的舍入和/或插值逻辑(例如,可以和逻辑210、212、214和/或218相同或相似)。Referring now to Figure 2B. System 250 may include a reference leakage storage unit 252 that stores reference leakage values for a corresponding set of voltages. Accordingly, in one embodiment, a single memory cell (252) may store multiple values that are comparable to the value stored in reference leakage memory cell 206 of FIG. 2A and the value stored in voltage scaling factor memory cell 204 of FIG. 2A Corresponds to the combination of corresponding values of . For example, the plurality of leakage power values may be indexed by temperature factors (eg, provided by sensor 108 ) and voltage factors (eg, corresponding to threshold voltage values and/or supply voltage values provided by logic 110 ). Such an embodiment may be provided by a single lookup (eg, based on the current threshold and/or supply voltage value from logic 110 ) Detected temperature value to find) the temperature calibration factor to calibrate the reference leak value. Alternatively, the values stored in storage units 202, 204, 206, and/or 252 may be combined into a single storage unit (not shown) to allow a single lookup to provide the sensed temperature value provided by sensor 108 And/or from the logic 110 the leakage value corresponding to the current threshold and/or supply voltage value. Also, system 250 may include rounding and/or interpolation logic (eg, may be the same as or similar to logic 210, 212, 214, and/or 218) according to some embodiments.

图3表示根据实施例的处理器核300的方框图。在一个实施例中,核300可以代表处理器或若干处理器中可能存在的各种部件(例如参照图5和图6所讨论的那些部件)。处理器核300可以包括一个或多个域,例如第二级高速缓存域302、前端域304以及一个或多个后端域306。域302、304及306中的每个域内的部件可以由参照图1讨论的不同时钟信号来计时。而且,在不同实施例中,每个域(例如302、304及306)所包括的部件可以多于或少于图3所示的部件。FIG. 3 shows a block diagram of a processor core 300 according to an embodiment. In one embodiment, core 300 may represent various components that may be present in a processor or several processors (such as those discussed with reference to FIGS. 5 and 6 ). Processor core 300 may include one or more domains, such as a second-level cache domain 302 , a front-end domain 304 , and one or more back-end domains 306 . Components within each of domains 302, 304, and 306 may be clocked by different clock signals as discussed with reference to FIG. 1 . Also, in different embodiments, each domain (eg, 302 , 304 , and 306 ) may include more or fewer components than those shown in FIG. 3 .

第二级(L2)高速缓存域302可以包括L2高速缓存308(例如可用来存储包括指令的数据)、传感器108以及逻辑106、110和112。在一个实施例中,L2高速缓存308可以由参考图5和图6讨论的多核处理器中的多个核共享。而且,L2高速缓存308也许和这些处理器核来自同一个管芯。所以,在本发明的各个实施例中,处理器可以包括域304及306,而且,处理器可以包括L2高速缓存308,也可以不包括。Level 2 (L2) cache domain 302 may include L2 cache 308 (eg, operable to store data including instructions), sensor 108 , and logic 106 , 110 , and 112 . In one embodiment, L2 cache 308 may be shared by multiple cores in the multi-core processor discussed with reference to FIGS. 5 and 6 . Also, L2 cache 308 may be from the same die as these processor cores. Therefore, in various embodiments of the present invention, the processor may include domains 304 and 306, and the processor may or may not include L2 cache 308.

如图3所示,前端域304可以包括传感器108,逻辑106、110及112,重新排序缓存器318,更名和导引单元320,指令高速缓存322,解码单元324,定序器326,以及/或者分支预测单元328中的一个或多个。在一个实施例中,前端域304可以包括其他部件,例如指令提取单元。As shown in FIG. 3, front-end domain 304 may include sensors 108, logic 106, 110, and 112, reorder buffer 318, rename and redirect unit 320, instruction cache 322, decode unit 324, sequencer 326, and/or Or one or more of branch prediction units 328 . In one embodiment, the front-end domain 304 may include other components, such as an instruction fetch unit.

后端域306可以包括第一级(L1)高速缓存域328以及一个或多个执行域330–1至330-N中的一个或多个。L1高速缓存域328可以包括L1高速缓存332(例如,用来存储包括指令的数据),传感器108,以及逻辑106、110及112。而且,执行域330-1至330-N可以包括一个或多个整数执行单元以及/或者浮点执行单元。执行域330-1至330-N中的每个域可以包括发起队列(分别为338-1至338-N),寄存器文件(分别为340-1至340-N),传感器108,逻辑106、110及112,以及/或者执行单元(分别为346-1至346-N)。The backend domain 306 may include a level one (L1) cache domain 328 and one or more of one or more execution domains 330 - 1 through 330 -N. L1 cache domain 328 may include L1 cache 332 (eg, to store data including instructions), sensor 108 , and logic 106 , 110 , and 112 . Furthermore, execution domains 330-1 through 330-N may include one or more integer execution units and/or floating point execution units. Each of execution domains 330-1 through 330-N may include an initiation queue (338-1 through 338-N, respectively), a register file (340-1 through 340-N, respectively), sensors 108, logic 106, 110 and 112, and/or execution units (346-1 to 346-N, respectively).

在一个实施例中,域302、304及306中的每个域可以包括一个或多个先入先出(FIFO)缓存器348来同步各个时钟域之间(例如域302、304及/或306之间)的通信。In one embodiment, each of domains 302, 304, and 306 may include one or more first-in-first-out (FIFO) buffers 348 to synchronize clock domains (eg, between domains 302, 304, and/or 306) between) communications.

另外,处理器核300(以及实施例中(例如在图3所示的实施例中)的后端域306)可以包括互连或总线350,以便于处理器核300的各个部件之间的通信。举例来说,在指令被成功执行后(例如由执行域330–1至330-N执行后),该指令的提交可以被传送到ROB318(例如经由互连350进行传送)以撤回该指令。另外,后端域内的域(例如域328以及330–1至330–N)可以经由互连350进行通信。举例来说,对类型转换指令而言,就可能发生执行单元(330–1至330–N)之间的通信。图1至图3的部件的进一步操作将参照图4的方法400加以讨论。Additionally, processor core 300 (and, in an embodiment (such as the embodiment shown in FIG. 3 ), backend domain 306 ) may include an interconnect or bus 350 to facilitate communication between the various components of processor core 300 . For example, after an instruction is successfully executed (eg, by execution domains 330 - 1 through 330 -N), the commit of the instruction may be communicated to ROB 318 (eg, via interconnect 350 ) to retire the instruction. Additionally, domains within the backend domain (eg, domain 328 and 330 - 1 through 330 -N) can communicate via interconnect 350 . For example, for type conversion instructions, communication between execution units ( 330 - 1 to 330 -N) may occur. Further operation of the components of FIGS. 1-3 will be discussed with reference to method 400 of FIG. 4 .

另外,尽管图3示出了域302、304及306中的每个域可以包括传感器108和逻辑106、110及112,但是,各个域也可以共享相同的传感器108和逻辑106、110及112。举例来说,处理器核300的所有域可以只使用一组传感器108和逻辑106、110及112。Additionally, while FIG. 3 shows that each of domains 302 , 304 , and 306 may include sensors 108 and logic 106 , 110 , and 112 , the domains may also share the same sensors 108 and logic 106 , 110 , and 112 . For example, all domains of processor core 300 may use only one set of sensors 108 and logic 106 , 110 , and 112 .

图4表示根据实施例的、提供估计泄漏功率的方法400的流程图。在一个实施例中,方法400的操作可以由一个或多个部件来执行,例如由参照图1~图3以及图5和图6所讨论的部件来执行。FIG. 4 shows a flowchart of a method 400 of providing an estimated leakage power, according to an embodiment. In one embodiment, the operations of method 400 may be performed by one or more components, such as those discussed with reference to FIGS. 1-3 and FIGS. 5 and 6 .

现在来看图1~图4。在操作402,传感器108可以检测和IC器件相应的一个或多个温度值。所测温度值可以在操作404用来确定温度标定因子(例如利用存储单元202加以确定)。在操作404,电压标定因子也可以如同参照图2A和图2B所讨论的那样来确定(例如利用存储单元204和/或252加以确定)。在操作406,操作404所确定的标定因子可以被用来如同参照图2A和图2B所讨论的那样标定基准泄漏值(例如单元206和/或252所存储的)。在操作408,可以产生和该IC器件的估计泄漏功率相应的信号(例如通过乘法器205和254产生)。正如参照图1所讨论的那样,估计的泄漏功率(408)可以被用来调节计算系统(例如参照图1、图5和/或图6所讨论的系统)的一个或多个部件的功耗。Now look at Figures 1 to 4. At operation 402, the sensor 108 may detect one or more temperature values corresponding to the IC device. The measured temperature value may be used at operation 404 to determine a temperature scaling factor (eg, determined using storage unit 202 ). At operation 404 , a voltage scaling factor may also be determined (eg, determined using storage units 204 and/or 252 ) as discussed with reference to FIGS. 2A and 2B . At operation 406 , the scaling factor determined at operation 404 may be used to scale the reference leakage value (eg, stored by units 206 and/or 252 ) as discussed with reference to FIGS. 2A and 2B . At operation 408 , a signal corresponding to the estimated leakage power of the IC device may be generated (eg, via multipliers 205 and 254 ). As discussed with reference to FIG. 1 , the estimated leakage power ( 408 ) may be used to adjust power consumption of one or more components of a computing system (such as the systems discussed with reference to FIGS. 1 , 5 , and/or 6 ). .

在实施例中,下述方程被用来在操作408提供估计泄漏功率:In an embodiment, the following equation is used to provide the estimated leakage power at operation 408:

PP (( VV dddd ,, VV ththe th ,, TT )) == PP 00 ·&Center Dot; VV dddd VV dddd 00 ·&Center Dot; ee ββ (( VV dddd -- VV dddd 00 )) ·&Center Dot; ee γγ ·&Center Dot; (( -- || VV ththe th || ++ || VV ththe th 00 || )) ·· ee δδ (( TT -- TT 00 ))

在上式中,P对应于估计泄漏功率值,P0对应于基准泄漏功率值(例如可以是存储在单元206和/或252中的),Vdd对应于供电电压(可以是由逻辑110提供的),Vth对应于阈值电压(可以是由逻辑110提供的),Vdd0对应于测量基准泄漏时的Vdd,Vtho对应于测量基准泄漏时的Vth,T对应于传感器108所检测到的当前温度值,T0对应于测量基准泄漏时的温度,δ、β和γ都是由设计人员设定的、取决于电路的常数。在不同的实施例中,和

Figure BDA00002194309100072
相应的值可以被存储到存储单元202,而和In the above formula, P corresponds to the estimated leakage power value, P 0 corresponds to the reference leakage power value (such as may be stored in units 206 and/or 252), V dd corresponds to the supply voltage (which may be provided by logic 110 ), V th corresponds to the threshold voltage (which may be provided by logic 110 ), V dd0 corresponds to V dd when measuring reference leakage, V tho corresponds to V th when measuring reference leakage, and T corresponds to To the current temperature value, T 0 corresponds to the temperature at which the reference leak is measured, and δ, β, and γ are all circuit-dependent constants set by the designer. In various embodiments, and
Figure BDA00002194309100072
The corresponding value can be stored to storage unit 202, and the

VV (( VV dddd ,, VV ththe th )) == VV dddd VV dddd 00 ·&Center Dot; ee ββ (( VV dddd -- VV dddd 00 )) ·&Center Dot; ee γγ ·&Center Dot; (( -- || VV ththe th || ++ || VV ththe th 00 || ))

对应的值可以被存储到存储单元204(或252)。所以,乘法器(208、254)可以被用来将T(T)和V(Vdd,Vth)进行相乘以便提供P的值。The corresponding value may be stored to storage unit 204 (or 252). Therefore, multipliers ( 208 , 254 ) can be used to multiply T(T) and V(V dd , V th ) to provide a value for P.

而且,在一个实施例中,也可以在空闲模式下(例如在没有动态功耗时)进行IC部件的动态校准。在这种情况下,该IC部件的每个部分(例如诸功能块)内的(相对于受控环境温度)的温升也许和该泄漏功率有关。能够被安装在诸功能块之中的热传感器108可以报告该稳定的温度(例如在相对长的时间间隔之后报告)。利用该温度图,工具(例如该IC部件之外的计算设备)可以推导出引起这种情形的功率图,例如可经由逆向工程来推导。然后,可以根据各部分的静态温度来计算泄漏值(这是因为,其他常数可能是已知的,例如供电电压、阈值电压和环境温度)。一旦计算2出该功率图,就可以将其存储到参考泄漏存储单元206。在实施例中,特殊专用微码可以被用来进行正在校准的IC部件和测试设备之间的通信(举例来说,以便报告这些温度读数以及执行基准泄漏更新)。Furthermore, in one embodiment, dynamic calibration of IC components may also be performed in idle mode (eg, when there is no dynamic power consumption). In this case, the temperature rise (relative to the controlled ambient temperature) within each portion of the IC component (eg, functional blocks) may be related to the leakage power. Thermal sensors 108, which can be installed among the functional blocks, can report this stable temperature (eg, after a relatively long time interval). Using this temperature map, a tool (eg, a computing device external to the IC component) can derive the power map that caused this situation, eg via reverse engineering. Leakage values can then be calculated from the quiescent temperatures of the parts (since other constants may be known, such as supply voltage, threshold voltage, and ambient temperature). Once the power map is calculated, it can be stored in the reference leakage storage unit 206. In an embodiment, special dedicated microcode may be used to communicate between the IC component being calibrated and the test equipment (for example, to report these temperature readings and perform baseline leakage updates).

图5表示根据本发明的实施例的计算系统500的方框图。计算系统500可以包括经由互连网络(或总线)504通信的一个或多个中央处理单元(CPU)502或者处理器。处理器502可以是任何类型的处理器,例如通用处理器、网络处理器(对在计算机网络503上通信的数据进行处理的处理器),或者其他类型的处理器(包括精简指令集计算机(RISC)处理器或者复杂指令集计算机(CISC)处理器)。而且,处理器502可以具有单核或多核设计。具有多核设计的处理器502可以在同一个集成电路(IC)管芯上集成不同类型的处理器核。而且,具有多核设计的处理器502还可以按照对称或非对称多处理器形式来实现。在实施例中,一个或多个处理器502可以利用参照图1~图4讨论的实施例。举例来说,一个或多个处理器502可以包括一个或多个处理器核(300)。而且,参照图1~图4讨论的操作也可以由系统500的一个或多个部件来执行。FIG. 5 shows a block diagram of a computing system 500 according to an embodiment of the present invention. Computing system 500 may include one or more central processing units (CPUs) 502 or processors in communication via an interconnection network (or bus) 504 . Processor 502 may be any type of processor, such as a general-purpose processor, a network processor (a processor that processes data communicated over computer network 503), or other types of processors (including Reduced Instruction Set Computer (RISC ) processor or Complex Instruction Set Computer (CISC) processor). Also, processor 502 may have a single-core or multi-core design. Processor 502 with a multi-core design may integrate different types of processor cores on the same integrated circuit (IC) die. Furthermore, processor 502 having a multi-core design may also be implemented as a symmetric or asymmetric multiprocessor. In an embodiment, one or more processors 502 may utilize the embodiments discussed with reference to FIGS. 1-4 . For example, one or more processors 502 may include one or more processor cores (300). Moreover, the operations discussed with reference to FIGS. 1-4 may also be performed by one or more components of the system 500 .

芯片组506还能够和互连网络504通信。芯片组506可以包括存储器控制中心(MCH)508。MCH508可以包括和存储器512通信的存储器控制器510。存储器512可以存储数据以及由计算系统500所包含的CPU502或者任何其他设备执行的指令序列。在本发明的一个实施例中,存储器512可以包括一个或多个易失性存储设备(存储器),例如随机存取存储器(RAM),动态RAM(DRAM)、同步DRAM(SDRAM)、静态RAM(SRAM)等等,也可以利用非易失性存储器,例如硬盘。其他设备也可以通过互连网络504进行通信,例如多CPU以及/或者多系统存储器。Chipset 506 is also capable of communicating with interconnection network 504 . Chipset 506 may include a memory hub (MCH) 508 . MCH 508 may include memory controller 510 in communication with memory 512 . Memory 512 may store data as well as sequences of instructions executed by CPU 502 or any other device included in computing system 500 . In one embodiment of the present invention, the memory 512 may include one or more volatile storage devices (memory), such as random access memory (RAM), dynamic RAM (DRAM), synchronous DRAM (SDRAM), static RAM ( SRAM), etc., can also use non-volatile memory, such as hard disk. Other devices may also communicate over the interconnection network 504, such as multiple CPUs and/or multiple system memories.

MCH508还包括和图形加速器516进行通信的图形接口514。在本发明的一个实施例中,图形接口514可以经由加速图形端口(AGP)和图形加速器516进行通信。在本发明的实施例中,显示器(例如平板显示器)可以经由例如信号变换器和图形接口512进行通信,该信号变换器将存储在存储设备(例如视频存储器或系统存储器)内的图像的数字表示方法转换成能够由显示器加以解释和显示的显示信号。由该显示器设备产生的显示信号在被解释并随后在显示器上显示之前需要通过各种控制设备。The MCH 508 also includes a graphics interface 514 for communicating with a graphics accelerator 516 . In one embodiment of the invention, graphics interface 514 may communicate with graphics accelerator 516 via an accelerated graphics port (AGP). In an embodiment of the invention, a display (such as a flat panel display) may communicate via, for example, a signal converter and graphics interface 512 that converts a digital representation of an image stored in a storage device (such as video memory or system memory) to method into a display signal that can be interpreted and displayed by the display. The display signals produced by the display device need to pass through various control devices before being interpreted and subsequently displayed on the display.

中心接口518可以使MCH508和输入/输出控制中心(ICH)520进行通信。ICH520可以为和计算系统500的部件进行通信的I/O设备提供接口。ICH520可以经由外围桥(或控制器)524和总线522进行通信,例如经由外围部件互连(PCI)桥、通用串行总线(USB)控制器等等进行通信。桥524可以提供CPU502和外围设备之间的数据通道。也可以采用其他类型的拓扑结构。而且,多路总线可以和ICH520进行通信,例如通过多个桥或控制器进行通信。另外,在本发明的各个实施例中,和ICH520通信的其他外设还包括集成驱动器电子技术(IDE)或小型计算机系统接口(SCSI)硬盘驱动器、USB端口、键盘、鼠标、并行端口、串行端口、软盘驱动器、数字输出支持设备(例如数字视频接口(DVI))等等。Central interface 518 enables MCH 508 to communicate with input/output control center (ICH) 520 . ICH 520 may provide an interface for I/O devices that communicate with components of computing system 500 . ICH 520 may communicate via peripheral bridge (or controller) 524 and bus 522 , such as via a peripheral component interconnect (PCI) bridge, a universal serial bus (USB) controller, or the like. Bridge 524 may provide a data path between CPU 502 and peripheral devices. Other types of topologies are also possible. Also, multiple buses can communicate with the ICH520, for example via multiple bridges or controllers. Additionally, in various embodiments of the present invention, other peripherals that communicate with the ICH520 include Integrated Drive Electronics (IDE) or Small Computer System Interface (SCSI) hard drives, USB ports, keyboards, mice, parallel ports, serial ports, floppy drives, digital output support devices such as Digital Visual Interface (DVI), and so on.

总线522可以和音频设备526、一个或多个磁盘驱动器528以及网络接口设备530进行通信(网络接口设备530则和计算机网络503进行通信)。其他设备可以和总线522进行通信。而且,在本发明的一些实施例中,各个部件(例如网络接口设备530)可以和MCH508进行通信。另外,处理器502和MCH508可以被组合构成单个芯片。而且,在本发明的其他实施例中,图形加速器516可以被包含在MCH508之中。Bus 522 may communicate with audio device 526, one or more disk drives 528, and network interface device 530 (which in turn communicates with computer network 503). Other devices may communicate with bus 522 . Moreover, in some embodiments of the present invention, various components (such as the network interface device 530 ) may communicate with the MCH 508 . Alternatively, processor 502 and MCH 508 may be combined to form a single chip. Furthermore, in other embodiments of the present invention, graphics accelerator 516 may be included in MCH 508 .

另外,计算系统500可以包括易失性和/或非易失性存储器(或存储装置)。举例来说,非易失性存储器可以包括如下设备中的一个或多个设备:只读存储器(ROM)、可编程ROM(PROM)、可擦写PROM(EPROM)、电子EPROM(EEPROM)、磁盘驱动器、软盘、光盘ROM(CD-ROM)、数字通用磁盘(DVD)、闪存存储器、磁光盘或其他类型的能够存储电子指令和/或数据的非易失性机器可读介质。Additionally, computing system 500 may include volatile and/or nonvolatile memory (or storage). Nonvolatile memory can include, for example, one or more of the following devices: Read Only Memory (ROM), Programmable ROM (PROM), Erasable PROM (EPROM), Electronic EPROM (EEPROM), Diskette Drive, floppy disk, compact disk ROM (CD-ROM), digital versatile disk (DVD), flash memory, magneto-optical disk, or other type of non-volatile machine-readable medium capable of storing electronic instructions and/or data.

图6表示根据本发明的实施例的、按照点到点(PtP)结构设计的计算系统600。特别是,图6示出了处理器、存储器以及输入/输出设备由若干点到点接口互相连接的系统。参照图1~图5所讨论的操作可以由系统600的一个或多个部件来执行。FIG. 6 illustrates a computing system 600 designed in a point-to-point (PtP) architecture, according to an embodiment of the present invention. In particular, Figure 6 shows a system in which processors, memory, and input/output devices are interconnected by several point-to-point interfaces. The operations discussed with reference to FIGS. 1-5 may be performed by one or more components of system 600 .

如图6所示,系统600可以包括几个处理器,不过为清晰起见,其中只画出了2个处理器:处理器602及604。处理器602及604可以各自包含本地存储器控制中心(MCH)606及608以和存储器610及612进行通信。存储器610及/或612可以存储各种数据,例如参照存储器512所讨论的那些数据。As shown in FIG. 6, system 600 may include several processors, although only two processors are shown: processors 602 and 604, for clarity. Processors 602 and 604 may each include a local memory hub (MCH) 606 and 608 to communicate with memories 610 and 612 . Memory 610 and/or 612 may store various data, such as those discussed with reference to memory 512 .

处理器602及604可以是任何类型的处理器,例如参照图5的处理器502所讨论的那类处理器。处理器602及604可以经由点到点(PtP)接口614采用PtP接口电路616及618来交换数据。处理器602及604可以各自经由单独PtP接口622及624采用点到点接口电路626、628、630及632和芯片组620交换数据。芯片组620还可以经由高性能图形接口636采用PtP接口电路637和高性能图形电路634交换数据。Processors 602 and 604 may be any type of processor, such as the type discussed with reference to processor 502 of FIG. 5 . Processors 602 and 604 may employ PtP interface circuits 616 and 618 via a point-to-point (PtP) interface 614 to exchange data. Processors 602 and 604 may each employ point-to-point interface circuits 626 , 628 , 630 and 632 and chipset 620 to exchange data via separate PtP interfaces 622 and 624 . Chipset 620 may also employ PtP interface circuit 637 and high-performance graphics circuit 634 to exchange data via high-performance graphics interface 636 .

本发明至少一个实施例可以在处理器602及604内部实现。举例来说,参照图1所讨论的一个或多个域102以及/或者处理器核300可以位于处理器602及604之内。然而,图6的系统600之内的其他电路、逻辑单元或设备也可以采用本发明的其他实施例。另外,本发明的其他实施例可以分布在图6所示的几个电路、逻辑单元或设备之中。At least one embodiment of the invention may be implemented within processors 602 and 604 . For example, one or more of domains 102 and/or processor core 300 discussed with reference to FIG. 1 may be located within processors 602 and 604 . However, other circuits, logic units, or devices within the system 600 of FIG. 6 may also employ other embodiments of the present invention. In addition, other embodiments of the present invention may be distributed among several circuits, logic units or devices shown in FIG. 6 .

芯片组620可以采用PtP接口电路641和总线640进行通信,总线640可以拥有一个或多个和它通信的设备,例如总线桥642以及I/O设备643。总线桥643可以经由总线644和其他设备进行通信,例如和键盘/鼠标645、通信设备646(例如可以和计算机网络503通信的调制解调器、网络接口设备等)、音频I/O设备、以及/或者数据存储设备648。数据存储设备648可以存储由处理器602和/或604加以执行的代码649。The chipset 620 can use a PtP interface circuit 641 to communicate with the bus 640 , and the bus 640 can have one or more devices communicating with it, such as a bus bridge 642 and an I/O device 643 . The bus bridge 643 can communicate with other devices via the bus 644, such as a keyboard/mouse 645, a communication device 646 (such as a modem that can communicate with the computer network 503, a network interface device, etc.), audio I/O devices, and/or data Storage device 648. Data storage 648 may store code 649 for execution by processor 602 and/or 604 .

在本发明的各个实施例中,本文所讨论的操作(例如参照图1~图6所讨论的)可以由作为计算机程序产品的软件、固件、微码、硬件(电路)或它们的组合来实现,例如,这些产品包括机器可读的或计算机可读的介质,这些介质上则存储用来对计算机编程以便执行本文所述过程的指令。而且,作为示例,术语“逻辑”可以包括软件、硬件、固件或软件及硬件的组合。该机器可读介质可以包括存储设备,例如参照图1~图6所讨论的那些设备。另外,这些计算机可读介质可以作为计算机程序产品被下载,其中,该程序可以借助按载波形式实现或按其他传播介质实现的数据信号经由通信链接(例如总线、调制解调器或网络连接)从远程计算机(例如服务器)传输到请求计算机(例如客户机)。所以,在本文中,将认为载波包括机器可读介质。In various embodiments of the present invention, the operations discussed herein (such as those discussed with reference to FIGS. 1 to 6 ) may be implemented by software, firmware, microcode, hardware (circuits), or a combination thereof as a computer program product. For example, the products include machine-readable or computer-readable media having stored thereon instructions for programming a computer to perform the processes described herein. Also, by way of example, the term "logic" may include software, hardware, firmware, or a combination of software and hardware. The machine-readable medium may include a storage device such as those discussed with reference to FIGS. 1-6 . In addition, these computer-readable media can be downloaded as a computer program product, wherein the program can be transmitted from a remote computer ( such as a server) to a requesting computer (such as a client). Therefore, herein, carrier waves will be considered to include machine-readable media.

在该说明书中,所提及的“一个实施例”或“实施例”是指,关于该实施例所描述的特性、结构或特征可以被包括在至少实施方案之中。在本说明书的不同地方出现的短语“在一个实施例中”可能都指同一个实施例,也可能不都指同一个实施例。In this specification, reference to "one embodiment" or "an embodiment" means that the characteristic, structure or characteristic described with respect to the embodiment can be included in at least the implementation. The appearances of the phrase "in one embodiment" in various places in this specification may or may not all refer to the same embodiment.

而且,在说明书和权利要求中,可以采用术语“耦合”和“连接”以及它们的派生术语。在本发明的一些实施例中,“连接”可以被用来表示两个或多个元件彼此直接物理或电气接触。“耦合”可以表示两个或多个元件直接物理或电气接触;但是,“耦合”还可以表示两个或多个元件也许彼此并不直接接触,但是仍然能够彼此协调或交互作用。Also, in the description and claims, the terms "coupled" and "connected", along with their derivatives, may be used. In some embodiments of the invention, "connected" may be used to mean that two or more elements are in direct physical or electrical contact with each other. "Coupled" may mean that two or more elements are in direct physical or electrical contact; however, "coupled" may also mean that two or more elements may not be in direct contact with each other, but are still capable of coordinating or interacting with each other.

所以,尽管本发明的诸实施例已经采用专用于结构特征和/或方性动作的语言进行了描述,但应当理解,对其提出权利要求的主题可能并不局限于所述的这些特定特征或动作。相反,这些特定特征和行为只是作为实现所要求的主题的示例形式而加以公布的。Therefore, although embodiments of the invention have been described in language specific to structural features and/or functional acts, it is to be understood that claimed subject matter may not be limited to the specific features or acts described. action. Rather, the specific features and acts are disclosed as example forms of implementing the claimed subject matter.

Claims (1)

1.一种处理器,包括:1. A processor comprising: 多个核,其中,每个核包括:Multiple cores, where each core includes: 用于提取指令的指令提取单元;an instruction fetch unit for fetching instructions; 用于对所述指令进行解码的指令解码单元;an instruction decoding unit for decoding said instruction; 分支预测单元;branch prediction unit; 寄存器文件;register file; 具有多个高速缓存级的高速缓存,包括第一级(L1)高速缓存和第二级(L2)高速缓存;A cache with multiple cache levels, including a first-level (L1) cache and a second-level (L2) cache; 用于执行所述指令的多个执行单元;a plurality of execution units for executing said instructions; 其中,每个核被组织成多个域,每个域以指定的电压和频率进行操作,where each core is organized into multiple domains, each operating at a specified voltage and frequency, 其中,将所述L2高速缓存分配给具有第一电压和频率的第一域,并且将所述处理器的至少一个其它逻辑单元分配给具有第二电压和频率的第二域;wherein the L2 cache is assigned to a first domain having a first voltage and frequency, and at least one other logic unit of the processor is assigned to a second domain having a second voltage and frequency; 用于在确定泄漏影响的同时执行与功率使用情况有关的操作的逻辑。Logic to perform actions related to power usage while determining the impact of leakage.
CN201210363721.XA 2006-06-30 2006-06-30 Leakage power estimation Expired - Fee Related CN102944803B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210363721.XA CN102944803B (en) 2006-06-30 2006-06-30 Leakage power estimation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210363721.XA CN102944803B (en) 2006-06-30 2006-06-30 Leakage power estimation

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN200680054765.7A Division CN101449176B (en) 2006-06-30 2006-06-30 Leakage Power Estimation

Publications (2)

Publication Number Publication Date
CN102944803A true CN102944803A (en) 2013-02-27
CN102944803B CN102944803B (en) 2015-06-24

Family

ID=47727764

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210363721.XA Expired - Fee Related CN102944803B (en) 2006-06-30 2006-06-30 Leakage power estimation

Country Status (1)

Country Link
CN (1) CN102944803B (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1532693A (en) * 2003-03-24 2004-09-29 ���µ�����ҵ��ʽ���� processor and compiler
US6842714B1 (en) * 2003-08-22 2005-01-11 International Business Machines Corporation Method for determining the leakage power for an integrated circuit

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1532693A (en) * 2003-03-24 2004-09-29 ���µ�����ҵ��ʽ���� processor and compiler
US6842714B1 (en) * 2003-08-22 2005-01-11 International Business Machines Corporation Method for determining the leakage power for an integrated circuit

Also Published As

Publication number Publication date
CN102944803B (en) 2015-06-24

Similar Documents

Publication Publication Date Title
CN101449176B (en) Leakage Power Estimation
JP5254224B2 (en) Die-unit temperature programming for thermally efficient integrated circuit (IC) operation
EP1381931B1 (en) Method and apparatus for determining throttle settings
TWI468925B (en) Deterministic management of dynamic thermal response of processors
TWI391858B (en) Apparatus, method, system, and computer-readable medium to provide per die voltage programming for energy efficient integrated circuit (ic) operation
US20090222683A1 (en) Synchronization of Processor Time Stamp Counters to Master Counter
TWI777927B (en) Processor core energy management
US9298243B2 (en) Selection of an operating point of a memory physical layer interface and a memory controller based on memory bandwidth utilization
US9483092B2 (en) Performance state boost for multi-core integrated circuit
US9052359B2 (en) Method and system for varying sampling frequency to avoid software harmonics when sampling digital power indicators
US9903764B2 (en) Integrated circuit for estimating power of at least one node using temperature and a system including the same
JP2013105492A (en) System and method for designing digital circuitry with activity sensor
US20080028252A1 (en) Clustered Variations-Aware Architecture
US9217771B2 (en) Method for breaking down hardware power into sub-components
CN102944803B (en) Leakage power estimation
US9477568B2 (en) Managing interconnect electromigration effects
CN119003404B (en) A low-latency and small-area read data path for DDR hosts
US20250224787A1 (en) Performing thermal management based on temperature evolution models in processor devices
JPH07297880A (en) Method and device for detecting communication speed
JP2001274660A (en) Delay time automatic detection circuit

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20150624

CF01 Termination of patent right due to non-payment of annual fee