CN102944622B - Extraction and detection method of Jerusalem artichoke fructan - Google Patents
Extraction and detection method of Jerusalem artichoke fructan Download PDFInfo
- Publication number
- CN102944622B CN102944622B CN201210457010.9A CN201210457010A CN102944622B CN 102944622 B CN102944622 B CN 102944622B CN 201210457010 A CN201210457010 A CN 201210457010A CN 102944622 B CN102944622 B CN 102944622B
- Authority
- CN
- China
- Prior art keywords
- sugar
- jerusalem artichoke
- extraction
- detection
- sample
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000001514 detection method Methods 0.000 title claims abstract description 31
- 238000000605 extraction Methods 0.000 title claims abstract description 17
- 240000008892 Helianthus tuberosus Species 0.000 title claims description 43
- 235000003230 Helianthus tuberosus Nutrition 0.000 title claims description 41
- 229920002670 Fructan Polymers 0.000 title description 27
- 235000000346 sugar Nutrition 0.000 claims abstract description 59
- 238000004128 high performance liquid chromatography Methods 0.000 claims abstract description 29
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 15
- 238000010828 elution Methods 0.000 claims abstract description 9
- 238000000105 evaporative light scattering detection Methods 0.000 claims abstract description 9
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 claims description 15
- 239000000706 filtrate Substances 0.000 claims description 14
- 239000012071 phase Substances 0.000 claims description 11
- 238000002414 normal-phase solid-phase extraction Methods 0.000 claims description 5
- 239000008367 deionised water Substances 0.000 claims description 4
- 229910021641 deionized water Inorganic materials 0.000 claims description 4
- 238000000746 purification Methods 0.000 claims description 4
- 239000006228 supernatant Substances 0.000 claims description 4
- 238000012360 testing method Methods 0.000 claims description 3
- ZGXJTSGNIOSYLO-UHFFFAOYSA-N 88755TAZ87 Chemical compound NCC(=O)CCC(O)=O ZGXJTSGNIOSYLO-UHFFFAOYSA-N 0.000 claims 2
- 229940118199 levulan Drugs 0.000 claims 2
- 238000005374 membrane filtration Methods 0.000 claims 1
- 238000000034 method Methods 0.000 abstract description 17
- 150000001720 carbohydrates Chemical class 0.000 abstract description 9
- 235000014633 carbohydrates Nutrition 0.000 abstract description 9
- 238000004458 analytical method Methods 0.000 abstract description 5
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 abstract description 4
- AIHDCSAXVMAMJH-GFBKWZILSA-N levan Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)OC[C@@H]1[C@@H](O)[C@H](O)[C@](CO)(CO[C@@H]2[C@H]([C@H](O)[C@@](O)(CO)O2)O)O1 AIHDCSAXVMAMJH-GFBKWZILSA-N 0.000 abstract description 3
- 238000000926 separation method Methods 0.000 abstract description 3
- 238000002144 chemical decomposition reaction Methods 0.000 abstract description 2
- MYRTYDVEIRVNKP-UHFFFAOYSA-N 1,2-Divinylbenzene Chemical compound C=CC1=CC=CC=C1C=C MYRTYDVEIRVNKP-UHFFFAOYSA-N 0.000 abstract 2
- 150000008442 polyphenolic compounds Chemical class 0.000 abstract 2
- 235000013824 polyphenols Nutrition 0.000 abstract 2
- 239000004793 Polystyrene Substances 0.000 abstract 1
- 150000002337 glycosamines Chemical class 0.000 abstract 1
- 229920002223 polystyrene Polymers 0.000 abstract 1
- 150000008163 sugars Chemical class 0.000 description 26
- ZFTFOHBYVDOAMH-XNOIKFDKSA-N (2r,3s,4s,5r)-5-[[(2r,3s,4s,5r)-5-[[(2r,3s,4s,5r)-3,4-dihydroxy-2,5-bis(hydroxymethyl)oxolan-2-yl]oxymethyl]-3,4-dihydroxy-2-(hydroxymethyl)oxolan-2-yl]oxymethyl]-2-(hydroxymethyl)oxolane-2,3,4-triol Chemical class O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)OC[C@@H]1[C@@H](O)[C@H](O)[C@](CO)(OC[C@@H]2[C@H]([C@H](O)[C@@](O)(CO)O2)O)O1 ZFTFOHBYVDOAMH-XNOIKFDKSA-N 0.000 description 12
- 239000002585 base Substances 0.000 description 12
- 241000196324 Embryophyta Species 0.000 description 11
- 238000006116 polymerization reaction Methods 0.000 description 11
- ODEHMIGXGLNAKK-OESPXIITSA-N 6-kestotriose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)OC[C@@H]1[C@@H](O)[C@H](O)[C@](CO)(O[C@@H]2[C@@H]([C@@H](O)[C@H](O)[C@@H](CO)O2)O)O1 ODEHMIGXGLNAKK-OESPXIITSA-N 0.000 description 9
- 229930091371 Fructose Natural products 0.000 description 9
- 239000005715 Fructose Substances 0.000 description 9
- RFSUNEUAIZKAJO-ARQDHWQXSA-N Fructose Chemical compound OC[C@H]1O[C@](O)(CO)[C@@H](O)[C@@H]1O RFSUNEUAIZKAJO-ARQDHWQXSA-N 0.000 description 9
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 9
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 9
- 229930006000 Sucrose Natural products 0.000 description 9
- 239000008103 glucose Substances 0.000 description 9
- 239000005720 sucrose Substances 0.000 description 9
- 238000013207 serial dilution Methods 0.000 description 7
- 239000000243 solution Substances 0.000 description 7
- 238000004255 ion exchange chromatography Methods 0.000 description 6
- 229920001202 Inulin Polymers 0.000 description 5
- JYJIGFIDKWBXDU-MNNPPOADSA-N inulin Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)OC[C@]1(OC[C@]2(OC[C@]3(OC[C@]4(OC[C@]5(OC[C@]6(OC[C@]7(OC[C@]8(OC[C@]9(OC[C@]%10(OC[C@]%11(OC[C@]%12(OC[C@]%13(OC[C@]%14(OC[C@]%15(OC[C@]%16(OC[C@]%17(OC[C@]%18(OC[C@]%19(OC[C@]%20(OC[C@]%21(OC[C@]%22(OC[C@]%23(OC[C@]%24(OC[C@]%25(OC[C@]%26(OC[C@]%27(OC[C@]%28(OC[C@]%29(OC[C@]%30(OC[C@]%31(OC[C@]%32(OC[C@]%33(OC[C@]%34(OC[C@]%35(OC[C@]%36(O[C@@H]%37[C@@H]([C@@H](O)[C@H](O)[C@@H](CO)O%37)O)[C@H]([C@H](O)[C@@H](CO)O%36)O)[C@H]([C@H](O)[C@@H](CO)O%35)O)[C@H]([C@H](O)[C@@H](CO)O%34)O)[C@H]([C@H](O)[C@@H](CO)O%33)O)[C@H]([C@H](O)[C@@H](CO)O%32)O)[C@H]([C@H](O)[C@@H](CO)O%31)O)[C@H]([C@H](O)[C@@H](CO)O%30)O)[C@H]([C@H](O)[C@@H](CO)O%29)O)[C@H]([C@H](O)[C@@H](CO)O%28)O)[C@H]([C@H](O)[C@@H](CO)O%27)O)[C@H]([C@H](O)[C@@H](CO)O%26)O)[C@H]([C@H](O)[C@@H](CO)O%25)O)[C@H]([C@H](O)[C@@H](CO)O%24)O)[C@H]([C@H](O)[C@@H](CO)O%23)O)[C@H]([C@H](O)[C@@H](CO)O%22)O)[C@H]([C@H](O)[C@@H](CO)O%21)O)[C@H]([C@H](O)[C@@H](CO)O%20)O)[C@H]([C@H](O)[C@@H](CO)O%19)O)[C@H]([C@H](O)[C@@H](CO)O%18)O)[C@H]([C@H](O)[C@@H](CO)O%17)O)[C@H]([C@H](O)[C@@H](CO)O%16)O)[C@H]([C@H](O)[C@@H](CO)O%15)O)[C@H]([C@H](O)[C@@H](CO)O%14)O)[C@H]([C@H](O)[C@@H](CO)O%13)O)[C@H]([C@H](O)[C@@H](CO)O%12)O)[C@H]([C@H](O)[C@@H](CO)O%11)O)[C@H]([C@H](O)[C@@H](CO)O%10)O)[C@H]([C@H](O)[C@@H](CO)O9)O)[C@H]([C@H](O)[C@@H](CO)O8)O)[C@H]([C@H](O)[C@@H](CO)O7)O)[C@H]([C@H](O)[C@@H](CO)O6)O)[C@H]([C@H](O)[C@@H](CO)O5)O)[C@H]([C@H](O)[C@@H](CO)O4)O)[C@H]([C@H](O)[C@@H](CO)O3)O)[C@H]([C@H](O)[C@@H](CO)O2)O)[C@@H](O)[C@H](O)[C@@H](CO)O1 JYJIGFIDKWBXDU-MNNPPOADSA-N 0.000 description 5
- 229940029339 inulin Drugs 0.000 description 5
- 150000002016 disaccharides Chemical class 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 150000002772 monosaccharides Chemical class 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 244000061176 Nicotiana tabacum Species 0.000 description 3
- 235000002637 Nicotiana tabacum Nutrition 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 102000004169 proteins and genes Human genes 0.000 description 3
- 108090000623 proteins and genes Proteins 0.000 description 3
- 244000291564 Allium cepa Species 0.000 description 2
- 241000894006 Bacteria Species 0.000 description 2
- 244000298479 Cichorium intybus Species 0.000 description 2
- 235000007542 Cichorium intybus Nutrition 0.000 description 2
- 244000068988 Glycine max Species 0.000 description 2
- 235000010469 Glycine max Nutrition 0.000 description 2
- 240000005979 Hordeum vulgare Species 0.000 description 2
- 235000007340 Hordeum vulgare Nutrition 0.000 description 2
- 244000098338 Triticum aestivum Species 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 239000008346 aqueous phase Substances 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 150000008040 ionic compounds Chemical class 0.000 description 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 229920001542 oligosaccharide Polymers 0.000 description 2
- 150000002482 oligosaccharides Chemical class 0.000 description 2
- -1 small molecule monosaccharides Chemical class 0.000 description 2
- 235000005255 Allium cepa Nutrition 0.000 description 1
- 235000002732 Allium cepa var. cepa Nutrition 0.000 description 1
- XOJVHLIYNSOZOO-SWOBOCGESA-N Arctiin Chemical compound C1=C(OC)C(OC)=CC=C1C[C@@H]1[C@@H](CC=2C=C(OC)C(O[C@H]3[C@@H]([C@@H](O)[C@H](O)[C@@H](CO)O3)O)=CC=2)C(=O)OC1 XOJVHLIYNSOZOO-SWOBOCGESA-N 0.000 description 1
- 241000208843 Arctium Species 0.000 description 1
- 240000005528 Arctium lappa Species 0.000 description 1
- 235000003130 Arctium lappa Nutrition 0.000 description 1
- 235000008078 Arctium minus Nutrition 0.000 description 1
- 241000186000 Bifidobacterium Species 0.000 description 1
- 241000209210 Dactylis Species 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 230000005526 G1 to G0 transition Effects 0.000 description 1
- 241000287828 Gallus gallus Species 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- 241000234435 Lilium Species 0.000 description 1
- 240000008058 Lilium brownii Species 0.000 description 1
- 235000015982 Lilium brownii Nutrition 0.000 description 1
- 241000209082 Lolium Species 0.000 description 1
- 240000004296 Lolium perenne Species 0.000 description 1
- 241000218922 Magnoliophyta Species 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- 206010035148 Plague Diseases 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 235000021307 Triticum Nutrition 0.000 description 1
- 241000607479 Yersinia pestis Species 0.000 description 1
- 244000273928 Zingiber officinale Species 0.000 description 1
- 235000006886 Zingiber officinale Nutrition 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- DLRVVLDZNNYCBX-ZZFZYMBESA-N beta-melibiose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@@H]1OC[C@@H]1[C@@H](O)[C@H](O)[C@@H](O)[C@H](O)O1 DLRVVLDZNNYCBX-ZZFZYMBESA-N 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 210000001072 colon Anatomy 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000029087 digestion Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- QNTKVQQLMHZOKP-UHFFFAOYSA-N fructofuranosylnystose Natural products OC1C(O)C(CO)OC1(CO)OCC1(OCC2(OCC3(OC4C(C(O)C(O)C(CO)O4)O)C(C(O)C(CO)O3)O)C(C(O)C(CO)O2)O)C(O)C(O)C(CO)O1 QNTKVQQLMHZOKP-UHFFFAOYSA-N 0.000 description 1
- 235000008397 ginger Nutrition 0.000 description 1
- 125000002791 glucosyl group Chemical group C1([C@H](O)[C@@H](O)[C@H](O)[C@H](O1)CO)* 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 235000015243 ice cream Nutrition 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 229910001410 inorganic ion Inorganic materials 0.000 description 1
- 230000000968 intestinal effect Effects 0.000 description 1
- 235000014655 lactic acid Nutrition 0.000 description 1
- 239000004310 lactic acid Substances 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 235000015097 nutrients Nutrition 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229920003053 polystyrene-divinylbenzene Polymers 0.000 description 1
- 239000006041 probiotic Substances 0.000 description 1
- 230000000529 probiotic effect Effects 0.000 description 1
- 235000018291 probiotics Nutrition 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 239000012086 standard solution Substances 0.000 description 1
- 150000005846 sugar alcohols Chemical class 0.000 description 1
- 238000004809 thin layer chromatography Methods 0.000 description 1
- 150000004043 trisaccharides Chemical class 0.000 description 1
- 235000013618 yogurt Nutrition 0.000 description 1
Images
Landscapes
- Investigating Or Analysing Biological Materials (AREA)
Abstract
Description
技术领域technical field
本发明属于分析检测领域,涉及一种菊芋果聚糖的提取与检测方法。The invention belongs to the field of analysis and detection, and relates to a method for extracting and detecting Jerusalem artichoke fructan.
背景技术Background technique
植物果聚糖主要是由多个果糖基通过糖苷键连接而成的一类水溶性的碳水化合物的总称。虽然15%的被子植物中均能发现果聚糖,但植物体中果聚糖的总量一般较低,只有在菊芋(Helianthus tuberosus,也称为鬼子姜,洋姜)的块茎;菊苣(Cichoriumintybus)、牛蒡(Arctium lappal)和鸡脚草(Dactylis glomeratus)的根;百合(Liliumbrownii)和洋葱(Allium cepa)的球茎;黑麦草(Lolium perenne)、大麦(Hordeumvulgare)和小麦(Triticum aestivum)茎叶等少数几种植物的组织中含量相对较高(VanLaere and Van Den Ende,2002;Ritsema and Smeekens,2003a)。Plant fructan is a general term for a class of water-soluble carbohydrates that are mainly composed of multiple fructosyl groups connected by glycosidic bonds. Although fructans can be found in 15% of angiosperms, the total amount of fructans in plants is generally low, only in the tubers of Jerusalem artichoke (Helianthus tuberosus, also known as devil ginger, Jerusalem artichoke); chicory (Cichoriumintybus ), burdock (Arctium lappal), and chicken feet (Dactylis glomeratus); bulbs of lilies (Liliumbrownii) and onions (Allium cepa); ryegrass (Lolium perenne), barley (Hordeumvulgare), and wheat (Triticum aestivum) stems and leaves The content is relatively high in the tissues of a few species of plants (VanLaere and Van Den Ende, 2002; Ritsema and Smeekens, 2003a).
从菊芋块茎中提取的菊粉(Inulin)是果聚糖的一种,基本由果糖基通过β(2-1)键连接,末端存在一个葡萄糖基。菊芋中的菊粉的聚合度在3~50之间,其聚合度就是果糖基的数目(Van Der Meer et al.,1998)。菊芋的菊粉就是不同聚合度的果聚糖混合而成的。菊粉最大可以占到菊芋块茎鲜重的20%或者干重的90%(Van den Ende et al.,2004)。Inulin (Inulin) extracted from Jerusalem artichoke tubers is a kind of fructan, which is basically connected by fructosyl groups through β (2-1) bonds, and there is a glucose group at the end. The degree of polymerization of inulin in Jerusalem artichoke is between 3 and 50, and the degree of polymerization is the number of fructosyl groups (Van Der Meer et al., 1998). The inulin of Jerusalem artichoke is a mixture of fructans with different degrees of polymerization. Inulin can constitute up to 20% fresh weight or 90% dry weight of Jerusalem artichoke tubers (Van den Ende et al., 2004).
果聚糖是一类非常有益于人类健康的可溶性碳水化合物。由于人体不含分解果聚糖的酶,因此人类本身不能消化吸收果聚糖,而是通过果聚糖进入结肠后,成为肠道菌群的营养物质,选择性地促进肠道中双歧杆菌和乳酸菌的生长而进行消化吸收。同时这些益生细菌的生长又可减少与人体肿瘤发生有关物质的产生。此外,短链的果聚糖作为一种低热量的甜味成分,可作为糖类或脂类替代物被用在酸奶和冰激凌等中,也可用于糖尿病患者的特殊食品中(李兴军,2010)。Fructans are a class of soluble carbohydrates that are very beneficial to human health. Since the human body does not contain enzymes that decompose fructan, humans cannot digest and absorb fructan, but enter the colon through fructan, where it becomes a nutrient for intestinal flora, selectively promoting bifidobacteria and Digestion and absorption by the growth of lactic acid bacteria. At the same time, the growth of these probiotic bacteria can reduce the production of substances related to the occurrence of human tumors. In addition, short-chain fructans, as a low-calorie sweetening ingredient, can be used as sugar or lipid substitutes in yogurt and ice cream, etc., and can also be used in special foods for diabetics (Li Xingjun, 2010) .
由于菊芋尤其是块茎中的果聚糖含量较高,经济价值高,但成分复杂,不同聚合度的果聚糖混合在一起,不同成分的果聚糖的功能不同,因此分离并检测这些果聚糖成分就显得尤为重要。Because the content of fructan in Jerusalem artichoke, especially tubers, is high and has high economic value, but its components are complex, fructans with different degrees of polymerization are mixed together, and fructans with different components have different functions, so these fructans are separated and detected Sugar content is particularly important.
由于传统分光光度计或者薄层层析的方法只能检测植物水溶性总糖或者极少数几个糖类,在检测植物多种糖分中用的不多。目前检测植物中多种糖类的方法基本是用高效液相色谱法(HPLC)。HPLC具体方法中又可以分为两类:一类是普通的HPLC法,通过采用示差检测器(RID)或者蒸发光检测器(ELSD)来检测,例如采用RID检测器检测低聚糖中的果糖以及三糖四糖(蒋世琼,1996),检测菊芋中高聚合度果聚糖(聚合度高于6)(孙雪梅等,2011)等,采用ELSD检测器检测烟草中单糖或二糖(孙雨安,2004;程勇,2010);一类是相对特殊的色谱-离子色谱法(HPAEC),主要采用脉冲安培检测器(PAD)等,例如检测烟草中的葡萄糖等小分子单糖(徐祎然等,2010),检测大豆中的单糖和蔗糖和蜜二糖等二糖或者三糖等(李仁勇等,2009),PAD检测器理论上可检测皮克级的糖类。Because the traditional spectrophotometer or thin layer chromatography method can only detect the total water-soluble sugar of plants or a few sugars, it is not used much in the detection of various sugars in plants. The current method for detecting various sugars in plants is basically high performance liquid chromatography (HPLC). The specific methods of HPLC can be divided into two categories: one is the ordinary HPLC method, which is detected by using a differential detector (RID) or an evaporative light detector (ELSD), for example, using a RID detector to detect fructose in oligosaccharides and three sugars and four sugars (Jiang Shiqiong, 1996), detection of high degree of polymerization fructans (polymerization degree higher than 6) in Jerusalem artichoke (Sun Xuemei et al., 2011), etc., using ELSD detector to detect monosaccharides or disaccharides in tobacco (Sun Yuan, 2004 ; Cheng Yong, 2010); one is relatively special chromatography-ion chromatography (HPAEC), which mainly uses pulsed amperometric detector (PAD), etc., such as the detection of small molecule monosaccharides such as glucose in tobacco (Xu Yiran et al., 2010), detect monosaccharides and disaccharides or trisaccharides such as sucrose and melibiose in soybeans (Li Renyong et al., 2009), PAD detectors can theoretically detect picogram-level sugars.
虽然离子色谱检测植物糖类的检测下限理论上比普通HPLC低,但由于离子色谱仪器体系中流动相为强酸强碱,仪器价格普遍较贵,基本是传统HPLC价格的2倍~3倍。平时使用中对流动相水的要求极高,日常使用维持成本也较高。此外PAD检测器的多功能性不强,糖类的检测会在电极表面上对某些分子产生氧化或还原。由于传统HPLC使用范围和对象比离子色谱大的多,有机的非极性、极性及离子化合物都可以,而离子色谱目前主要用于无机离子的分析,及少量有机离子化合物的分析。因此,作为分析仪器使用中应用最为广泛的HPLC,如何利用普通HPLC建立一个高效分离并检测植物果聚糖的方法就显得尤其重要。Although the detection limit of plant sugars detected by ion chromatography is theoretically lower than that of ordinary HPLC, but because the mobile phase in the ion chromatography instrument system is strong acid and strong alkali, the price of the instrument is generally more expensive, which is basically 2 to 3 times the price of traditional HPLC. In normal use, the requirements for mobile phase water are extremely high, and the maintenance cost of daily use is also high. In addition, the versatility of the PAD detector is not strong, and the detection of sugars will cause oxidation or reduction of certain molecules on the electrode surface. Since traditional HPLC has a much larger application range and objects than ion chromatography, organic non-polar, polar and ionic compounds can be used, while ion chromatography is currently mainly used for the analysis of inorganic ions and a small amount of organic ionic compounds. Therefore, as the most widely used HPLC in the use of analytical instruments, how to use ordinary HPLC to establish an efficient method for separating and detecting plant fructans is particularly important.
在传统HPLC中,虽然RID检测器也可以用于检测糖类物质,但RID检测器是基于连续测定色谱柱流出物折射率的变化,仅适用于紫外(UV)吸收很弱的糖类的测定;同时RID对温度极其敏感使得基线很不稳定,与梯度洗脱不相容,且检测灵敏度很低。因此,RID用于检测糖类物质存在相当的限制。In traditional HPLC, although the RID detector can also be used to detect carbohydrates, the RID detector is based on the continuous measurement of the change in the refractive index of the effluent from the chromatographic column, and is only suitable for the determination of carbohydrates with weak ultraviolet (UV) absorption ; At the same time, RID is extremely sensitive to temperature, making the baseline very unstable, incompatible with gradient elution, and the detection sensitivity is very low. Therefore, there are considerable limitations in the use of RID for the detection of carbohydrates.
虽然以前的研究也有利用HPLC-ELSD法测定植物中的糖类物质,但存在一定的缺陷,具体体现在(一):部分研究使用普通的硅胶基氨基柱,该柱耐用性不强(因水分可引起氨基固定相的自身水解),柱子的寿命不长。同时样品提取中,简单的进行加热和离心,非糖类物质对于检测有干扰;(二):以前的研究对小分子的单糖二糖或糖醇等分析检测较多,对于寡聚糖和多聚合度的糖的研究较少。菊芋组织中葡萄糖,果糖,蔗糖,以及寡果聚糖含量较高,其它糖分很少或者几乎没有;(三)对于果聚糖含量较高的植物例如菊芋等检测较少,对烟草大豆等植物检测较多。Although the previous studies also used the HPLC-ELSD method to determine sugars in plants, there are certain defects, which are specifically reflected in (1): some studies use ordinary silica gel-based amino columns, which are not durable (due to moisture can cause self-hydrolysis of the amino stationary phase), and the life of the column is not long. At the same time, during sample extraction, heating and centrifugation are simply performed, and non-sugar substances interfere with the detection; (2): Previous studies have mostly analyzed and detected small molecules such as monosaccharides, disaccharides, or sugar alcohols, etc. For oligosaccharides and There are fewer studies on sugars with higher degrees of polymerization. The content of glucose, fructose, sucrose, and oligofructans in Jerusalem artichoke tissue is relatively high, and other sugars are little or almost non-existent; (3) For plants with high fructan content, such as Jerusalem artichoke, there are few detections, and for plants such as tobacco and soybean More detection.
发明内容Contents of the invention
本发明的目的是针对现有技术的上述缺陷,提供一种菊芋果聚糖的提取与检测方法。The purpose of the present invention is to provide a kind of extraction and detection method of Jerusalem artichoke fructan aiming at the above-mentioned defect of prior art.
本发明的目的可通过如下技术方案实现:The purpose of the present invention can be achieved through the following technical solutions:
菊芋果聚糖的提取与检测方法,包含以下步骤:The extraction and detection method of Jerusalem artichoke fructan comprises the following steps:
(1)菊芋组织可溶性总糖的提取与纯化:(1) Extraction and purification of total soluble sugars from Jerusalem artichoke tissue:
a菊芋组织鲜样于烘箱中70~80℃下恒温烘40~55h,a Fresh Jerusalem artichoke tissue samples were dried in an oven at a constant temperature of 70-80°C for 40-55 hours,
b组织样品研磨后,与去离子水按1:2~5的质量体积比混匀,放进100℃的水浴锅中15~25分钟,反复抽提3~5次,收集三次提取的所有溶液以去除蛋白,b After the tissue sample is ground, mix it with deionized water at a mass volume ratio of 1:2~5, put it in a water bath at 100°C for 15~25 minutes, repeat the
c将b中所得的溶液过滤,滤液8000~12000g离心20~30分钟,收集上清,c Filtrate the solution obtained in b, centrifuge the filtrate at 8000-12000 g for 20-30 minutes, collect the supernatant,
d上步获得的滤液过固相萃提柱GracePureTM SPE C18-Max,The filtrate obtained in the last step is passed through the solid phase extraction column GracePureTM SPE C18-Max,
e滤液过0.45μm水相滤膜过滤,作为下一步HPLC的样品;e The filtrate is filtered through a 0.45 μm aqueous phase filter membrane, and used as a sample for the next step of HPLC;
(2)菊芋果聚糖的检测:上一步制备的样品通过HPLC检测,检测条件如下:(2) Detection of Jerusalem artichoke fructan: the sample prepared in the previous step was detected by HPLC, and the detection conditions were as follows:
色谱柱:PrevailTM Carbohydrate ES Coloumn-W250*46mm 5um;Chromatographic column: Prevail TM Carbohydrate ES Coloumn-W250*46mm 5um;
检测器:蒸发光检测器ELSD,Alltech 3300;Detector: evaporative light detector ELSD, Alltech 3300;
进样量为10ul;The injection volume is 10ul;
流速为1ml/min,每次样品的运行时间为55min,The flow rate is 1ml/min, and the running time of each sample is 55min,
流动相:B相:水,C相:乙腈;Mobile phase: B phase: water, C phase: acetonitrile;
洗脱方式:梯度洗脱,洗脱程序如表1所示:Elution method: gradient elution, the elution program is shown in Table 1:
表1Table 1
表中的“%”表示体积百分含量。"%" in the table means volume percentage.
所述的菊芋组织可溶性总糖的提取与纯化优选包含:The extraction and purification of the Jerusalem artichoke tissue soluble total sugar preferably include:
a菊芋组织鲜样于烘箱中80℃下恒温烘48h,a Fresh Jerusalem artichoke tissue samples were dried in an oven at a constant temperature of 80°C for 48 hours,
b组织样品研磨后,与去离子水按1:3的质量体积比混匀,放进100℃的水浴锅中20分钟,反复抽提3次,收集三次提取的所有溶液以去除蛋白,b After the tissue sample is ground, mix it with deionized water at a mass volume ratio of 1:3, put it in a water bath at 100°C for 20 minutes, and repeat the
c将b中所得的溶液过滤,滤液10000g离心20分钟,收集上清,c Filtrate the solution obtained in b, centrifuge the filtrate at 10000 g for 20 minutes, collect the supernatant,
d上步获得的滤液过固相萃提柱GracePureTM SPE C18-Max,d The filtrate obtained in the previous step is passed through the solid phase extraction column GracePure TM SPE C18-Max,
e滤液过0.45μm水相滤膜过滤,作为下一步HPLC的样品。e The filtrate was filtered through a 0.45 μm aqueous phase filter, and used as a sample for the next step of HPLC.
有益效果:Beneficial effect:
本发明首次建立了一整套菊芋植物样品果聚糖的提取和检测流程。在菊芋植物样品提取中,采用GRACE公司的GracePureTM SPE C18-Max反向固相萃取柱进行样品过滤,该柱适合于复杂样品检测。由于糖在水溶液中为非极性或中等极性,该柱可以有效去除水溶液中的极性物质,对糖分几乎无吸附,可有效的降低检测的背景,并可以浓缩样品。利用本发明建立的方法,通过使用常规HPLC仪器,避免了昂贵且常规实验室较少使用的HPAEC仪器。通过在样品提取过程中使用的GracePureTM SPE C18-Max柱,有效去除非糖物质对糖分的干扰;利用PREVAIL Carbohydrate ES专用糖柱,该糖柱为聚苯乙烯一二乙烯基苯键合的氨基糖柱,不存在困扰其他氨基柱的问题,没有化学降解现象,且在室温及梯度洗脱的情况下亦很稳定,可长期并高效的分离各种糖类化合物。通过建立的该检测方法,在常规分析实验室,利用普通HPLC仪器,可以达到与HPAEC分离和检测多种糖分的效果,而使用和维护的成本均较低。The present invention firstly establishes a whole set of extraction and detection process of fructan from Jerusalem artichoke plant samples. In the extraction of Jerusalem artichoke plant samples, the GracePure TM SPE C18-Max reverse solid phase extraction column from GRACE was used for sample filtration, which is suitable for complex sample detection. Since sugar is non-polar or moderately polar in aqueous solution, the column can effectively remove polar substances in aqueous solution, has almost no adsorption on sugar, can effectively reduce the background of detection, and can concentrate samples. Utilizing the method established by the present invention, by using conventional HPLC instruments, HPAEC instruments, which are expensive and rarely used in conventional laboratories, are avoided. Through the GracePure TM SPE C18-Max column used in the sample extraction process, the interference of non-sugar substances on the sugar content can be effectively removed; the special sugar column of PREVAIL Carbohydrate ES is used, and the sugar column is a polystyrene-divinylbenzene bonded amino group The sugar column does not have the problems that plague other amino columns, there is no chemical degradation phenomenon, and it is also very stable at room temperature and gradient elution, and can separate various sugar compounds for a long time and efficiently. Through the established detection method, in a routine analysis laboratory, using ordinary HPLC instruments, the effect of separating and detecting various sugars from HPAEC can be achieved, and the cost of use and maintenance is low.
附图说明Description of drawings
图1:果糖标准曲线(果糖浓度0.01~6mg/ml,5倍梯度稀释)Figure 1: Fructose standard curve (fructose concentration 0.01~6mg/ml, 5-fold serial dilution)
横坐标为以10为底的各自糖分浓度对数,纵坐标为以10为底的峰面积的对数。The abscissa is the logarithm of the respective sugar concentration with the
图2:葡萄糖的标准曲线(葡萄糖的浓度范围为6.7~4×103μg/ml,5倍梯度稀释)Figure 2: Standard curve of glucose (glucose concentration range is 6.7~4×103μg/ml, 5-fold serial dilution)
横坐标为以10为底的各自糖分浓度对数,纵坐标为以10为底的峰面积的对数。The abscissa is the logarithm of the respective sugar concentration with the
图3:蔗糖的标准曲线(浓度范围为0.01~6mg/ml,5倍梯度稀释)Figure 3: Standard curve of sucrose (concentration range 0.01~6mg/ml, 5-fold serial dilution)
横坐标为以10为底的各自糖分浓度对数,纵坐标为以10为底的峰面积的对数。The abscissa is the logarithm of the respective sugar concentration with the
图4:蔗果三糖的标准曲线(浓度范围为8.3~5×103μg/ml,5倍梯度稀释)Figure 4: Standard curve of kestose (concentration range: 8.3~5×103μg/ml, 5-fold serial dilution)
横坐标为以10为底的各自糖分浓度对数,纵坐标为以10为底的峰面积的对数。The abscissa is the logarithm of the respective sugar concentration with the
图5:蔗果四糖的标准曲线(浓度范围为8.3~5×103μg/ml,5倍梯度稀释)Figure 5: Standard curve of kestose (concentration range: 8.3~5×103μg/ml, 5-fold serial dilution)
横坐标为以10为底的各自糖分浓度对数,纵坐标为以10为底的峰面积的对数。The abscissa is the logarithm of the respective sugar concentration with the
图6:蔗果五糖的标准曲线(浓度范围为8.3~5×103μg/ml,5倍梯度稀释)Figure 6: Standard curve of kestopentaose (concentration range: 8.3~5×103μg/ml, 5-fold serial dilution)
横坐标为以10为底的各自糖分浓度对数,纵坐标为以10为底的峰面积的对数。The abscissa is the logarithm of the respective sugar concentration with the
图7:6种糖分的HPLC图Figure 7: HPLC charts of 6 sugars
果糖浓度,0.1mg/ml;葡萄糖浓度,0.067mg/ml;蔗糖浓度,0.1mg/ml;蔗果三糖浓度,0.083mg/ml;蔗果四糖浓度,0.083mg/ml;蔗果五糖浓度,0.083mg/ml。Fructose concentration, 0.1mg/ml; Glucose concentration, 0.067mg/ml; Sucrose concentration, 0.1mg/ml; Kestose triose concentration, 0.083mg/ml; Kestose tetraose concentration, 0.083mg/ml; Concentration, 0.083mg/ml.
图8:菊芋叶片的HPLC分析Figure 8: HPLC analysis of Jerusalem artichoke leaves
图9:菊芋茎秆的HPLC分析Figure 9: HPLC analysis of Jerusalem artichoke stems
图10:菊芋块茎的HPLC分析Figure 10: HPLC analysis of Jerusalem artichoke tubers
具体实施方式Detailed ways
实施例1Example 1
样品:sample:
菊芋品种:常规菊芋Jerusalem artichoke varieties: Regular Jerusalem artichoke
糖:果糖(SIGMA)、蔗糖(SIGMA)、葡萄糖(SIGMA)、蔗果三糖(Wako)、蔗果四糖(Wako)、蔗果五糖(Wako)标准液Sugar: fructose (SIGMA), sucrose (SIGMA), glucose (SIGMA), kestose (Wako), kestose (Wako), sucrose pentaose (Wako) standard solution
试验方法:experiment method:
1.菊芋组织可溶性总糖的提取与纯化:1. Extraction and purification of total soluble sugars from Jerusalem artichoke tissue:
a菊芋茎、叶或者块茎等鲜样于烘箱中80℃下恒温烘48h;a. Fresh samples such as Jerusalem artichoke stems, leaves or tubers are baked in an oven at a constant temperature of 80°C for 48 hours;
b组织样品研磨后,与去离子水按1:3(g/ml)比例混匀,放进100℃的水浴锅中20分钟,反复抽提3次,收集三次提取的所有溶液以去除蛋白;b After the tissue sample is ground, mix it with deionized water at a ratio of 1:3 (g/ml), put it in a water bath at 100°C for 20 minutes, repeat the
c将第二步所得的溶液过滤,滤液10000g离心20分钟,收集上清;c The solution obtained in the second step is filtered, the filtrate is centrifuged at 10000g for 20 minutes, and the supernatant is collected;
d上步获得的滤液过固相萃提柱GracePureTM SPE C18-Max(GRACE公司);d The filtrate obtained in the previous step is passed through the solid phase extraction column GracePure TM SPE C18-Max (GRACE company);
e滤液过0.45μm水相滤膜过滤,注射进HPLC。e The filtrate was filtered through a 0.45 μm aqueous membrane filter and injected into HPLC.
2.HPLC糖测定2. HPLC sugar determination
所需设备:高效液相色谱仪(Agilent1200)、糖柱(PrevailTM Carbohydrate ESColoumn-W250*46mm 5um)、蒸发光检测器(ELSD,Alltech 3300)Required equipment: high performance liquid chromatography (Agilent1200), sugar column (Prevail TM Carbohydrate ESColoumn-W250*46mm 5um), evaporative light detector (ELSD, Alltech 3300)
所需试剂:HPLC级乙腈(分析纯)、HPLC级水HPLC测定方法:Required reagents: HPLC grade acetonitrile (analytical grade), HPLC grade water HPLC determination method:
样品进样量为10ul。The sample injection volume is 10ul.
梯度洗脱方法:流速为1ml/min,每次样品的运行时间为55min,Gradient elution method: the flow rate is 1ml/min, the running time of each sample is 55min,
流动相:B相:水,C相:乙腈。梯度洗脱中水和乙腈的体积比具体见下表。Mobile phase: B phase: water, C phase: acetonitrile. The volume ratio of water and acetonitrile in the gradient elution is shown in the table below.
表1 果聚糖HPLC洗脱程序Table 1 Levan HPLC elution program
表中的“%”表示体积百分含量。"%" in the table means volume percentage.
3.果聚糖检测方法的建立3. Establishment of fructan detection method
3.1标准曲线的建立3.1 Establishment of standard curve
通过系列稀释,将单一成分的糖分别进行测定,建立各种糖分的标准曲线,如图1~6所示。从上述6种糖的标准曲线可以看出,利用发明者建立的HPLC-ELSD方法,菊芋组织中几种主要的糖分均可以测出,检测的下限基本为微克级别,同离子色谱方法相比,检测下限基本相当(王建华等,2007),可以满足绝大部分实验的需求。聚合度高于蔗果五糖的果聚糖由于没有标准品,实验者无从鉴别。Through serial dilution, the sugars of a single component were measured separately, and the standard curves of various sugars were established, as shown in Figures 1-6. As can be seen from the standard curves of the above-mentioned 6 kinds of sugars, using the HPLC-ELSD method established by the inventor, several main sugars in Jerusalem artichoke tissue can be measured, and the lower limit of detection is basically a microgram level. Compared with the ion chromatography method, The lower limit of detection is basically the same (Wang Jianhua et al., 2007), which can meet the needs of most experiments. Since there is no standard product for fructans with a higher degree of polymerization than fructopentose, experimenters have no way to identify them.
3.2多种糖分的分离效果3.2 Separation effect of various sugars
为检测多种糖分,发明者将上述6种糖混合在一起,上柱分离,结果如图7所示。从图7中,可以发现,通过发明者建立的方法,上述6种糖分均能很好的分离开来,说明发明者建立的实验方法可以用于菊芋复杂样品的检测。In order to detect multiple sugars, the inventors mixed the above six sugars together and separated them on a column. The results are shown in Figure 7. From Figure 7, it can be found that through the method established by the inventor, the above six sugars can be well separated, indicating that the experimental method established by the inventor can be used for the detection of complex samples of Jerusalem artichoke.
3.3菊芋组织样品3.3 Jerusalem artichoke tissue samples
依照发明者建立的分离和分析方法,发明者对菊芋不同组织(种植后5个月的叶片、茎秆、块茎)进行了分析测定。According to the separation and analysis method established by the inventor, the inventor analyzed and measured different tissues of Jerusalem artichoke (leaves, stems,
从图8的检测结果发现,在生长了5个月的菊芋叶片中,1g菊芋叶干样中各糖分含量分别为:果糖,7.83mg;葡萄糖,10.08mg;蔗糖,19.44mg;蔗果三糖:0.9mg;蔗果四糖或聚合度高的果聚糖等几乎为检出。这也说明在菊芋叶片中,基本以单糖和二糖等小分子糖为主。From the test results in Figure 8, it is found that in the Jerusalem artichoke leaves that have grown for 5 months, the sugar content in 1g of dry Jerusalem artichoke leaves is as follows: fructose, 7.83mg; glucose, 10.08mg; sucrose, 19.44mg; kestose : 0.9mg; Kestetose or fructan with high degree of polymerization was almost detected. This also shows that in Jerusalem artichoke leaves, small molecular sugars such as monosaccharides and disaccharides are basically the main ones.
从图9的检测的结果中,生长了5个月的菊芋茎秆中,1g菊芋茎干样中各糖含量分别为:果糖,77.04mg;葡萄糖,18.18mg;蔗糖,38.25mg;蔗果三糖,24.21mg;蔗果四糖,26.55mg;蔗果五糖,36.09mg。在同期的茎秆中,逐步已经有了高聚合度的糖类并且茎秆作为一个暂时的糖类储存器官。From the detection results in Figure 9, in the Jerusalem artichoke stalks that have grown for 5 months, the sugar contents in 1g of Jerusalem artichoke stem samples are: fructose, 77.04mg; glucose, 18.18mg; sucrose, 38.25mg; Sugar, 24.21mg; Kestose, 26.55mg; Kestose, 36.09mg. In the stalks of the same period, there is gradually already a high degree of polymerization of sugars and the stalk acts as a temporary sugar storage organ.
从图10的检测结果发现,在块茎发育期中,1g菊芋块茎干样中各糖含量:果糖,33.03mg;葡萄糖,7.56mg;蔗糖,30.78mg;蔗果三糖,20.97mg;蔗果四糖,32.85mg;蔗果五糖,39.06mg,其余高聚合度的糖大量出现。说明在块茎中,不同聚合度的果聚糖已经占到主导地位。From the test results in Figure 10, it is found that during the tuber development period, the sugar content in 1g of Jerusalem artichoke tuber dry sample: fructose, 33.03mg; glucose, 7.56mg; sucrose, 30.78mg; kestose, 20.97mg; kestetose , 32.85mg; cane pentaose, 39.06mg, and other highly polymerized sugars appeared in large quantities. It shows that in tubers, fructans with different degrees of polymerization have taken the dominant position.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210457010.9A CN102944622B (en) | 2012-11-14 | 2012-11-14 | Extraction and detection method of Jerusalem artichoke fructan |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210457010.9A CN102944622B (en) | 2012-11-14 | 2012-11-14 | Extraction and detection method of Jerusalem artichoke fructan |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102944622A CN102944622A (en) | 2013-02-27 |
CN102944622B true CN102944622B (en) | 2014-04-02 |
Family
ID=47727584
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201210457010.9A Expired - Fee Related CN102944622B (en) | 2012-11-14 | 2012-11-14 | Extraction and detection method of Jerusalem artichoke fructan |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102944622B (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103267821A (en) * | 2013-05-17 | 2013-08-28 | 四川农业大学 | A kind of HPLC-ELSD determination method of grape fruit sugar content |
CN103823006B (en) * | 2014-03-04 | 2015-04-29 | 广州甘蔗糖业研究所 | High performance liquid chromatography tandem mass spectrum detecting method for fructo-oligosaccharides in milk powder |
CN104133032B (en) * | 2014-08-08 | 2016-01-20 | 青海威德特种糖业有限公司 | A kind of efficient liquid phase detection method of inulin |
CN110542737B (en) * | 2019-10-23 | 2022-03-22 | 贵州缔谊健康制药有限公司 | Detection method for dissolution determination of flunarizine hydrochloride capsule |
CN112552419A (en) * | 2020-10-21 | 2021-03-26 | 河南科技大学 | Extraction and determination method of fructan in wheat grains |
CN115372536B (en) * | 2022-08-23 | 2023-09-15 | 大连工业大学 | Method and application of qualitative detection of xanthan gum degradation products by ion chromatography |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102520094A (en) * | 2011-12-28 | 2012-06-27 | 广东中烟工业有限责任公司 | Method for determining glucose, fructose and saccharose in tobacco essence perfume |
CN102636608A (en) * | 2012-04-10 | 2012-08-15 | 广东东泰乳业有限公司 | Method for detecting content of fructooligosaccharide in infant formula milk rice flour |
-
2012
- 2012-11-14 CN CN201210457010.9A patent/CN102944622B/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
CN102944622A (en) | 2013-02-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102944622B (en) | Extraction and detection method of Jerusalem artichoke fructan | |
CN107589203B (en) | Method for simultaneously detecting three cannabinol compounds in hemp by SPE-HPLC | |
Lin et al. | Characteristics of fruit growth, component analysis and antioxidant activity of mulberry (Morus spp.) | |
CN103267821A (en) | A kind of HPLC-ELSD determination method of grape fruit sugar content | |
CN102225969A (en) | Eucommia leaf polysaccharide with anti-complement activity and its extraction, separation and purification method | |
CN103558115A (en) | Method for measuring content of free water in tobacco and tobacco product | |
CN101995403B (en) | Physiological marking method for evaluating processing capacity of pear fruits | |
Herrero et al. | Advanced analysis of carbohydrates in foods | |
CN107024524A (en) | It is a kind of to differentiate the method for transplanting the Radix Astragali and the wild Radix Astragali | |
Rosliuk et al. | Interaction between cross-linked cationic starch microgranules and chlorogenic acid isomers in artichoke and green coffee bean aqueous extracts | |
CN111638278A (en) | Method for measuring hydrogen-oxygen isotope ratio of fruit moisture and application thereof | |
CN109521123B (en) | Application of a PMP-HPLC method in the identification of ginseng under the garden | |
CN104215614B (en) | A kind of high performance liquid chromatography-diode array/fluorescence detector Series detectors barbaloin A, B and the method for aloe-emodin | |
CN107759710B (en) | Preparation method of large leaf white hemp extract and its application in tobacco | |
CN110632209A (en) | A method for rapid detection of phenolic acid compounds in raspberries | |
CN110551233A (en) | Callicarpa kwangtungensis polysaccharide and extraction method and application thereof | |
CN112666302B (en) | Method for identifying active flavone component group in barley seedling and rapidly detecting active flavone component group | |
Shaw | Analysis of potato sugars by gas chromatography | |
CN110028531B (en) | A kind of method for extracting and separating flavonoids from soil | |
CN111175408A (en) | A high-performance liquid chromatography method for the determination of soluble sugar in tomato fruit | |
CN102204949B (en) | Method for preparing dalbergia odorifera seed extract and dalbergia odorifera seed extract | |
CN113155997A (en) | Short chain fatty acid detection method | |
Herpai et al. | A rapid and sensitive method for the determination of high-fructose corn syrup (HFCS) in honey | |
CN112326826A (en) | A method for screening key metabolites in response to high temperature stress in poplar | |
CN103995064B (en) | The HPLC quantitative detecting method of sulforaphen in sulforaphen extract |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20140402 |