CN102944564A - Portable stray light detection device of double far center inclined lighting structure - Google Patents
Portable stray light detection device of double far center inclined lighting structure Download PDFInfo
- Publication number
- CN102944564A CN102944564A CN2012104883461A CN201210488346A CN102944564A CN 102944564 A CN102944564 A CN 102944564A CN 2012104883461 A CN2012104883461 A CN 2012104883461A CN 201210488346 A CN201210488346 A CN 201210488346A CN 102944564 A CN102944564 A CN 102944564A
- Authority
- CN
- China
- Prior art keywords
- lens
- inspected
- imaging system
- telecentric imaging
- ccd
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
Abstract
一种便携式双远心倾斜照明结构杂散光检测装置,属于光学检测技术领域,为解决现有技术对光学系统杂散光检测方法成本高、设备便携性差及效率低的问题,该装置由照明系统、双远心成像系统和CCD系统组成;双远心成像系统的物方位置为待检透镜表面,像方位置放置CCD系统,且待检透镜、双远心成像系统和CCD系统同轴放置,照明系统的出射光以倾斜角度入射到待检透镜,被待检透镜聚焦,焦点在双远心成像系统之外,照明系统的部分光被待检透镜表面散射点散射,散射后的光由有限远距离成像系统成像在CCD系统上,该装置具有成本低、效率高、方便携带的优点。
A portable double-telecentric oblique lighting structure stray light detection device belongs to the field of optical detection technology. In order to solve the problems of high cost, poor equipment portability and low efficiency of the existing optical system stray light detection method, the device consists of a lighting system, Composed of a bi-telecentric imaging system and a CCD system; the object space position of the bi-telecentric imaging system is the surface of the lens to be inspected, and the CCD system is placed at the image space, and the lens to be inspected, the bi-telecentric imaging system and the CCD system are coaxially placed, and the illumination The outgoing light of the system enters the lens to be inspected at an oblique angle and is focused by the lens to be inspected. The focal point is outside the bi-telecentric imaging system. The distance imaging system images on the CCD system, and the device has the advantages of low cost, high efficiency, and portability.
Description
技术领域 technical field
本发明涉及一种便携式双远心倾斜照明结构杂散光检测装置,属于光学检测技术领域。The invention relates to a portable double-telecentric oblique illumination structure stray light detection device, which belongs to the technical field of optical detection.
背景技术 Background technique
目前,在高精尖的光学系统中,杂散光直接影响了系统的性能,而作为光学系统重要组成部分的光学透镜,其光洁度也一直影响着系统中杂散光的水平,但对于光学透镜的杂散光检测问题还没有直接的解决方法。通常是利用原子力显微镜等微观检测仪器进行表面微观检测,或者利用积分球等设备将透镜装配到镜头中以后再进行系统检测,这些方法都有成本高、设备便携性差和效率低等诸多缺点。系统杂散光问题也已经成为高端光学系统继续发展的瓶颈。At present, in high-precision optical systems, stray light directly affects the performance of the system, and the smoothness of the optical lens, which is an important part of the optical system, has always affected the level of stray light in the system. There is no straightforward solution to the astigmatism detection problem. Usually, the surface microscopic inspection is carried out by using microscopic inspection instruments such as atomic force microscopes, or the system inspection is carried out after the lens is assembled into the lens by using an integrating sphere and other equipment. These methods have many disadvantages such as high cost, poor equipment portability, and low efficiency. The problem of system stray light has also become a bottleneck for the continued development of high-end optical systems.
发明内容 Contents of the invention
本发明为解决现有技术对光学系统杂散光检测方法成本高、设备便携性差及效率低的问题,提供一种便携式双远心倾斜照明结构杂散光检测装置。In order to solve the problems of high cost, poor equipment portability and low efficiency of the existing optical system stray light detection method, the present invention provides a portable double telecentric oblique illumination structure stray light detection device.
本发明是通过以下技术方案实现的:The present invention is achieved through the following technical solutions:
一种便携式双远心倾斜照明结构杂散光检测装置,该装置由照明系统、双远心成像系统和CCD系统组成;双远心成像系统的物方位置为待检透镜表面,像方位置放置CCD系统,且待检透镜、双远心成像系统和CCD系统同轴放置,照明系统的出射光以倾斜角度入射到待检透镜,被待检透镜聚焦,焦点在双远心成像系统之外,照明系统的部分光被待检透镜表面散射点散射,散射后的光由有限远距离成像系统成像在CCD系统上。A portable stray light detection device with a bi-telecentric oblique illumination structure, the device is composed of an illumination system, a bi-telecentric imaging system and a CCD system; the object space position of the bi-telecentric imaging system is the surface of the lens to be inspected, and the CCD is placed at the image space position system, and the lens to be inspected, the bi-telecentric imaging system and the CCD system are coaxially placed, the outgoing light of the illumination system is incident on the lens to be inspected at an oblique angle, and is focused by the lens to be inspected, and the focal point is outside the bi-telecentric imaging system. Part of the light in the system is scattered by the scattering points on the surface of the lens to be inspected, and the scattered light is imaged on the CCD system by the limited long-distance imaging system.
本发明的有益效果:本发明装置照明系统出射光沿与待检透镜的光轴成一定角度方向入射到待检透镜表面,光被待检透镜聚焦到双远心成像系统之外,以免进入后面的系统影响检测;部分光入射到待检透镜的杂散点上被散射,形成散射光,散射光再经双远心成像系统成像在CCD系统上,从而实现待检透镜的杂散光检测;该装置中成像系统采用了双远心结构,由于双远心成像系统的物方景深和像方景深都较大,这样避免了由于成像系统调焦不准、待检透镜曲率过大以及CCD偏离像面位置所造成的检测误差;该装置具有成本低、效率高、方便携带的优点。Beneficial effects of the present invention: the light emitted from the lighting system of the device of the present invention is incident on the surface of the lens to be inspected along a direction at a certain angle with the optical axis of the lens to be inspected, and the light is focused by the lens to be inspected outside the bi-telecentric imaging system to avoid entering the back The system affects the detection; part of the light incident on the stray point of the lens to be inspected is scattered to form scattered light, and the scattered light is imaged on the CCD system through the bi-telecentric imaging system, thereby realizing the stray light detection of the lens to be inspected; The imaging system in the device adopts a double-telecentric structure. Since the object-side depth of field and the image-side depth of field of the double-telecentric imaging system are large, it avoids inaccurate focusing of the imaging system, excessive curvature of the lens to be inspected, and CCD deviation from the image. The detection error caused by the surface position; the device has the advantages of low cost, high efficiency, and easy to carry.
附图说明 Description of drawings
图1:本发明一种便携式双远心倾斜照明结构杂散光检测装置示意图。Figure 1: Schematic diagram of a portable double-telecentric oblique illumination structure stray light detection device of the present invention.
图2:本发明一种便携式双远心倾斜照明结构杂散光检测装置另一示意图。Fig. 2: Another schematic diagram of a portable double-telecentric oblique illumination structure stray light detection device of the present invention.
图中:1、照明系统,2、待检透镜,3、双远心成像系统,4、CCD系统,5、目镜系统。In the figure: 1. Illumination system, 2. Lens to be inspected, 3. Bi-telecentric imaging system, 4. CCD system, 5. Eyepiece system.
具体实施方式 Detailed ways
下面结合附图对本发明的技术方案作进一步详细说明。The technical scheme of the present invention will be described in further detail below in conjunction with the accompanying drawings.
如图1所示,本发明一种便携式双远心倾斜照明结构杂散光检测装置,该装置由照明系统1、双远心成像系统3和CCD系统4组成,且双远心成像系统3和CCD系统需要同轴放置;照明系统1发出的平行光与待检透镜2的光轴成A角度方向倾斜入射到待检透镜2上,光被待检透镜2聚焦到双远心成像系统3以外,以免进入后面的系统影响检测结果;来自照明系统1的部分光被待检透镜2表面的散射点散射,形成散射光,散射光再经双远心成像系统3成像在CCD系统4上。As shown in Figure 1, a portable double telecentric oblique illumination structure stray light detection device of the present invention is composed of an illumination system 1, a double
照明系统1发出的光是平行光或者有一定发散角(会聚角)的光,光与待检透镜2的光轴成A角度方向倾斜入射到待检透镜2上,可采用一个接收屏接收聚焦点,在其它装置及待检透镜2不动的情况下,转换照明系统1的出射光入射到待检透镜2上,入射角度为角度A,当接收屏接收到的焦点刚刚移出双远心成像系统3的视场时,此时的角度为θ,那么角度A的的范围应该大于等于θ而小于90°。The light emitted by the illumination system 1 is parallel light or light with a certain divergence angle (convergence angle). The light is obliquely incident on the
双远心成像系统3属于近距离成像系统,系统设计波长为照明光源的波长。双远心成像系统3由7片镜组成,自物方的三片透镜看做前镜组,后4片透镜看做后镜组,前镜组的右方焦点和后镜组的左方焦点重合,光阑就设置在此焦点处。光阑通过前镜组所成的像为入射光瞳,在双远心成像系统3的物方无穷远,光阑通过后镜组所成的像为出射光瞳,在双远心成像系统3的像方无穷远。通过光阑中心的主光线必然平行射出双远心成像系统3的物方和像方,反之双远心成像系统的物面发出的光束的主光线必然通过入射光瞳、光阑及出射光瞳的中心,且垂直于像面;而双远心成像系统的像面发出的光束的主光线必然通过出射光瞳、光阑及入射光瞳的中心,且垂直于物面。若待检透镜2发生一定沿光轴的平移,其真实的像面会偏离CCD系统4的位置,但其主光线仍通过CCD的同一位置;同理若CCD系统4发生沿光轴的平移,其共轭物面也会偏离待检透镜的位置,但成像在CCD上的点的主光线仍可看做来自待检透镜2的对应位置。根据上述情况可知,采用双远心成像系统3,可以使本发明装置在待检透镜偏移物面、成像系统调焦不准、待检透镜曲率过大以及CCD偏离像面位置的情况下都不会出现测量的误差,且可以成清晰的像。双远心成像系统3是物方景深和像方景深都较大的成像系统,可以在景深范围内避免了检测的误差。The
待检透镜2置于双远心成像系统3的物距位置,且待检透镜2要和成像系统3同轴放置,照明系统1的部分光被待检透镜2的缺陷、瑕疵点或表面灰尘散射,形成散射光,这部分散射光对于双远心成像系统3来说,是以待检透镜2表面为物距的点光源所发出的,散射光经双远心成像系统3成像。The
用CCD系统4接收以上散射光的像点,CCD系统4置于双远心成像系统的像距位置且与双远心成像系统3同轴放置,与待检透镜2为共轭位置关系,CCD系统4采集的信号经电脑处理,经过显示屏进行观察,便可以观测到待检透镜的缺陷、瑕疵点的分布及灰尘污染物的密度。Use the CCD system 4 to receive the image point of the above scattered light. The CCD system 4 is placed at the image distance position of the bi-telecentric imaging system and placed coaxially with the
如图2所示,将目镜系统5置于双远心成像系统3后,使得目镜系统5的物面位置和双远心成像系统3的像面位置重合,由目镜系统5将散射光的像投影到无穷远,供人眼直接观察。As shown in Figure 2, the
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2012104883461A CN102944564A (en) | 2012-11-26 | 2012-11-26 | Portable stray light detection device of double far center inclined lighting structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2012104883461A CN102944564A (en) | 2012-11-26 | 2012-11-26 | Portable stray light detection device of double far center inclined lighting structure |
Publications (1)
Publication Number | Publication Date |
---|---|
CN102944564A true CN102944564A (en) | 2013-02-27 |
Family
ID=47727526
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2012104883461A Pending CN102944564A (en) | 2012-11-26 | 2012-11-26 | Portable stray light detection device of double far center inclined lighting structure |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102944564A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110554048A (en) * | 2019-09-12 | 2019-12-10 | 南京先进激光技术研究院 | touch-sensitive screen ITO membrane roughness defect detection device |
CN113701675A (en) * | 2021-08-02 | 2021-11-26 | 清华大学 | Stray light measuring device and method |
CN113701676A (en) * | 2021-08-02 | 2021-11-26 | 清华大学 | Stray light measuring device and method |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11194069A (en) * | 1997-12-30 | 1999-07-21 | Tetsuya Kawanishi | Optical parts-inspecting device using scattered light |
DE10210209A1 (en) * | 2002-03-01 | 2003-09-11 | Zeiss Carl Smt Ag | Automatic scattered light inspection of optical lenses and crystal to detect internal defects, whereby an inspection and evaluation component is arranged at an angle to an incident test beam that passes through the test piece |
CN1493868A (en) * | 2002-10-31 | 2004-05-05 | 电子科技大学 | Method and device for detecting the condition of optical components inside an optical instrument |
US20060001885A1 (en) * | 2004-04-05 | 2006-01-05 | Hertzsch Albrecht E | Method and device for quantitative determination of the optical quality of a transparent material |
CN101360985A (en) * | 2005-11-21 | 2009-02-04 | 康宁股份有限公司 | Oblique transmission illumination inspection system and method for inspecting a glass sheet |
CN101487983A (en) * | 2009-02-18 | 2009-07-22 | 上海微电子装备有限公司 | Light beam transmission apparatus and method |
US20110085161A1 (en) * | 2009-09-07 | 2011-04-14 | Pepperl+Fuchs Gmbh | Method and device for detecting soiling |
CN102128839A (en) * | 2009-09-25 | 2011-07-20 | 肖特股份有限公司 | Method for detecting defects in a transparent material transparent and a device for same |
CN102426648A (en) * | 2011-11-01 | 2012-04-25 | 长春方圆光电技术有限责任公司 | Finger and palm print instrument used for collection of soaked finger and palm prints |
-
2012
- 2012-11-26 CN CN2012104883461A patent/CN102944564A/en active Pending
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11194069A (en) * | 1997-12-30 | 1999-07-21 | Tetsuya Kawanishi | Optical parts-inspecting device using scattered light |
DE10210209A1 (en) * | 2002-03-01 | 2003-09-11 | Zeiss Carl Smt Ag | Automatic scattered light inspection of optical lenses and crystal to detect internal defects, whereby an inspection and evaluation component is arranged at an angle to an incident test beam that passes through the test piece |
CN1493868A (en) * | 2002-10-31 | 2004-05-05 | 电子科技大学 | Method and device for detecting the condition of optical components inside an optical instrument |
US20060001885A1 (en) * | 2004-04-05 | 2006-01-05 | Hertzsch Albrecht E | Method and device for quantitative determination of the optical quality of a transparent material |
CN101360985A (en) * | 2005-11-21 | 2009-02-04 | 康宁股份有限公司 | Oblique transmission illumination inspection system and method for inspecting a glass sheet |
CN101487983A (en) * | 2009-02-18 | 2009-07-22 | 上海微电子装备有限公司 | Light beam transmission apparatus and method |
US20110085161A1 (en) * | 2009-09-07 | 2011-04-14 | Pepperl+Fuchs Gmbh | Method and device for detecting soiling |
CN102128839A (en) * | 2009-09-25 | 2011-07-20 | 肖特股份有限公司 | Method for detecting defects in a transparent material transparent and a device for same |
CN102426648A (en) * | 2011-11-01 | 2012-04-25 | 长春方圆光电技术有限责任公司 | Finger and palm print instrument used for collection of soaked finger and palm prints |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110554048A (en) * | 2019-09-12 | 2019-12-10 | 南京先进激光技术研究院 | touch-sensitive screen ITO membrane roughness defect detection device |
CN113701675A (en) * | 2021-08-02 | 2021-11-26 | 清华大学 | Stray light measuring device and method |
CN113701676A (en) * | 2021-08-02 | 2021-11-26 | 清华大学 | Stray light measuring device and method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102944171B (en) | Detection device and method for position and inclination angle of chip | |
CN101334334B (en) | Lens eccentricity detection system | |
CN102944937B (en) | Sub-aperture polarization imaging system | |
CN102346291A (en) | Coaxial double-telecentric imaging optics system | |
CN104360463A (en) | Three-distal coaxial illumination imaging optical system | |
CN107490851B (en) | Optical detection device and method for left and right zoom system of operating microscope | |
CN202078293U (en) | Portable fundus camera | |
CN111189806B (en) | Visualization of the internal full flow field of sessile droplets | |
CN110057294B (en) | A method for measuring the axial nanoscale displacement of particles in an optical tweezers system | |
CN101644603B (en) | Large-visual-field wide-wave-band optical analog system based on digital micromirror array view | |
CN102944564A (en) | Portable stray light detection device of double far center inclined lighting structure | |
CN102944533B (en) | A portable central blocking structure stray light detection device | |
CN114689281B (en) | Method for detecting pupil drift of optical module | |
CN113483692B (en) | Hole detection optical system | |
CN1790092A (en) | High precision light beam coaxiality adjusting method | |
CN103389311A (en) | Line scanning phase differential imaging device for optical element phase defect detection | |
CN102096337A (en) | Detection device for eccentricity and focal plane position of spherical surface or curved surface in projection lithography | |
CN102928385A (en) | Portable stray light detection device with inclined illumination structure | |
CN218213592U (en) | Industrial lens and near-to-eye display system detection device | |
CN207148322U (en) | A kind of synthetic aperture imaging device | |
CN106643798B (en) | A Visible Light Target Simulation System | |
CN204881866U (en) | A real-time quantitative phase recovery device | |
CN105181303B (en) | Infinity conjugate distance microcobjective Stray Light Testing Equipment and measuring accuracy adjusting method | |
CN114813056A (en) | Curved surface screen defect detection device and method | |
CN204405031U (en) | Eliminate stray light double light path optical centering instrument |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20130227 |