CN102942157A - Flow sensor manufacturing method by the way of positive corrosion - Google Patents
Flow sensor manufacturing method by the way of positive corrosion Download PDFInfo
- Publication number
- CN102942157A CN102942157A CN2012103846376A CN201210384637A CN102942157A CN 102942157 A CN102942157 A CN 102942157A CN 2012103846376 A CN2012103846376 A CN 2012103846376A CN 201210384637 A CN201210384637 A CN 201210384637A CN 102942157 A CN102942157 A CN 102942157A
- Authority
- CN
- China
- Prior art keywords
- layer
- groove
- manufacturing
- etching
- flow sensor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Measuring Volume Flow (AREA)
- Pressure Sensors (AREA)
- Weting (AREA)
Abstract
本发明涉及一种采用正面腐蚀方式制造流量传感器的方法。本方法在基底的正面利用反应离子刻蚀法形成用于制作空腔的槽,槽的深度决定了空腔上方基底的厚度,然后在基底的表面和槽的侧壁与底部淀积阻挡层,选择性的去除基底的表面和槽底部的阻挡层,在槽的侧壁形成侧壁保护层,以侧壁保护层为掩模,继续刻蚀槽,形成深槽。采用湿法腐蚀法腐蚀深槽,在基底的内部形成腔体;然后于正面特定区域内制造含金属的加热装置和测温装置,随后沉积保护层。如此可以高效率低成本的获得加热装置和测温装置所处特定区域下方厚度可控的硅基底腔体。
The invention relates to a method for manufacturing a flow sensor by means of frontal corrosion. In this method, a groove for making a cavity is formed on the front surface of the substrate by reactive ion etching. The depth of the groove determines the thickness of the substrate above the cavity, and then a barrier layer is deposited on the surface of the substrate and the side walls and bottom of the groove. Selectively remove the barrier layer on the surface of the substrate and the bottom of the groove, form a sidewall protective layer on the sidewall of the groove, and use the sidewall protective layer as a mask to continue etching the groove to form a deep groove. Wet etching is used to etch deep grooves to form cavities inside the substrate; then metal-containing heating devices and temperature measuring devices are fabricated in specific areas on the front side, and then a protective layer is deposited. In this way, the thickness-controllable silicon substrate cavity under the specific area where the heating device and the temperature measuring device are located can be obtained with high efficiency and low cost.
Description
技术领域 technical field
本发明涉及微机电系统(MEMS)制造技术领域,具体来说,本发明涉及一种采用正面腐蚀方式制造流量传感器的方法。 The invention relates to the technical field of micro-electromechanical system (MEMS) manufacturing, in particular, the invention relates to a method for manufacturing a flow sensor by means of front-side corrosion.
背景技术 Background technique
在某些与温度相关半导体传感器的结构中,有时需要在传感器处于一个厚度较薄的悬空膜上,悬空膜的厚度较薄,在封装后,传感器下方的衬底不与封装的基座直接接触,而是悬空与空气或者真空接触,达到降低外界环境温度干扰的目的。 In the structure of some temperature-related semiconductor sensors, it is sometimes necessary for the sensor to be on a thin suspended film, and the thickness of the suspended film is relatively thin. After packaging, the substrate below the sensor is not in direct contact with the base of the package. , but suspended in the air and in contact with air or vacuum to achieve the purpose of reducing the interference of the external environment temperature.
从上述传感器的应用方面来说,传感器的精度与器件下方衬底材料的厚度紧密相关。为了实现较高的测温精度和较短的响应时间,需要使悬空上方的膜厚度较薄,达到降低器件纵向热传导;当然另一方面也需要考虑较薄基底对器件的支撑作用,厚度越厚,传感器结构越牢固,因此最终需要综合考虑上述几方面的因素,选定合适的表层薄膜厚度。 In terms of the application of the above sensors, the accuracy of the sensor is closely related to the thickness of the substrate material below the device. In order to achieve higher temperature measurement accuracy and shorter response time, it is necessary to make the thickness of the film above the suspension thinner to reduce the longitudinal heat conduction of the device; of course, on the other hand, it is also necessary to consider the supporting effect of the thinner substrate on the device, the thicker the thickness , the stronger the structure of the sensor, it is ultimately necessary to consider the above factors comprehensively to select an appropriate thickness of the surface film.
对于半导体工艺来说,当前绝大多数传感器的工艺都需要背面的工艺,这些工艺是当前的主流,然而却与常规的半导体工艺不兼容,因此需要采用定制化特点的传感器加工生产线,增加了生产成本。而且通过背面腐蚀工艺获得精确的表层硅厚度的难度也很高。在尺寸较大、批次较多的半导体工厂里面加工的时候,片中器件的均匀性、片间器件的可重复性问题就更加显露。采用本发明的制作方法,能够很好地解决上述的问题,制造出的传感器的品质显然更高。 For the semiconductor process, most of the current sensor processes require the backside process. These processes are the current mainstream, but they are not compatible with the conventional semiconductor process. Therefore, it is necessary to use a customized sensor processing line, which increases production cost. Moreover, it is also very difficult to obtain an accurate surface silicon thickness through the backside etching process. When processing in a semiconductor factory with a large size and many batches, the uniformity of the devices in the chip and the repeatability of the devices between the chips are more exposed. By adopting the manufacturing method of the present invention, the above-mentioned problems can be well solved, and the quality of the manufactured sensor is obviously higher.
本发明涉及一种流量传感器的制造方法,具有良好的片中器件的均匀性、片间器件的可重复性,适合大批量的生产。 The invention relates to a manufacturing method of a flow sensor, which has good uniformity of devices in a chip and repeatability of devices between chips, and is suitable for mass production.
发明内容 Contents of the invention
本发明的目的在于针对已有技术存在的缺陷提供一种采用正面腐蚀方式制造流量传感器的方法,能够与常规的半导体制造工艺兼容,简化制造工艺,降低生产成本。 The purpose of the present invention is to provide a method for manufacturing a flow sensor by front-side etching, which is compatible with conventional semiconductor manufacturing processes, simplifies the manufacturing process, and reduces production costs.
为解决上述技术问题,本发明采用下述技术方案:一种采用正面腐蚀方式制造流量传感器的方法,其特征在于:制造工艺步骤如下: In order to solve the above-mentioned technical problems, the present invention adopts the following technical scheme: a method for manufacturing a flow sensor by front-side corrosion, characterized in that: the manufacturing process steps are as follows:
1)取一硅衬底,该硅衬底上方有覆盖一层隔离层,采用干法刻蚀法在所述硅衬底中形成用于制作空腔的槽; 1) Take a silicon substrate, which is covered with a layer of isolation layer, and form grooves for making cavities in the silicon substrate by dry etching;
2)在所述衬底的表面和所述槽的侧壁与底部淀积阻挡层; 2) depositing a barrier layer on the surface of the substrate and the sidewalls and bottom of the trench;
3)去除所述衬底的表面和所述槽的底部的阻挡层,在所述槽的侧壁形成侧壁保护层; 3) removing the barrier layer on the surface of the substrate and the bottom of the groove, and forming a sidewall protection layer on the sidewall of the groove;
4)以所述侧壁保护层为掩模,继续刻蚀所述槽,形成深槽; 4) Using the sidewall protective layer as a mask, continue to etch the groove to form a deep groove;
5)采用湿法腐蚀法腐蚀所述深槽,在所述衬底的内部形成腔体; 5) Etching the deep groove by wet etching to form a cavity inside the substrate;
6)在所述槽的侧壁保护层之间填满隔离和/或填充材料,形成插塞结构,将所述腔体与外界隔离; 6) Filling the isolation and/or filling material between the side wall protection layers of the groove to form a plug structure to isolate the cavity from the outside world;
7)将所述衬底的表面平坦化; 7) planarizing the surface of the substrate;
8)在所述硅衬底上淀积电热层; 8) Depositing an electrothermal layer on the silicon substrate;
9)对所述电热层作图形化,在所述硅衬底上形成加热装置、测温装置和电极; 9) Patterning the electrothermal layer, forming a heating device, a temperature measuring device and electrodes on the silicon substrate;
10)在所述衬底上淀积保护层,所述保护层覆盖所述加热装置和所述测温装置。 10) Depositing a protective layer on the substrate, the protective layer covering the heating device and the temperature measuring device.
可选地,所述方法还包括在形成制作腔体的槽之前淀积绝缘层。 Optionally, the method further includes depositing an insulating layer before forming the cavity for forming the cavity.
可选地,所述衬底为(111)晶向的硅。 Optionally, the substrate is silicon with (111) crystal orientation.
可选地,所述槽的形状和/或深度根据实际需要是可调的。 Optionally, the shape and/or depth of the grooves are adjustable according to actual needs.
可选地,所述阻挡层是通过化学气相淀积法或者原子层淀积法形成的。 Optionally, the barrier layer is formed by chemical vapor deposition or atomic layer deposition.
可选地,所述衬底的表面和所述槽的底部的阻挡层是通过回刻工艺去除的。 Optionally, the barrier layer on the surface of the substrate and the bottom of the groove is removed by an etch-back process.
可选地,所述深槽的深度为0.1~10um。 Optionally, the depth of the deep groove is 0.1-10um.
可选地,所述湿法腐蚀法采用各向异性的腐蚀工艺在所述衬底的内部形成腔体。 Optionally, the wet etching method uses an anisotropic etching process to form a cavity inside the substrate.
可选地,所述湿法腐蚀的溶液为KOH和/或TMAH。 Optionally, the wet etching solution is KOH and/or TMAH.
可选地,所述腔体的形状和/或深度是任意的。 Optionally, the shape and/or depth of the cavity is arbitrary.
可选地,通过化学气相淀积法或者原子层淀积法在所述槽的侧壁保护层之间填充隔离和/或填充材料。 Optionally, an isolation and/or filling material is filled between the sidewall protection layers of the trench by chemical vapor deposition or atomic layer deposition.
可选地,所述隔离和/或填充材料为单层或者多层结构。 Optionally, the isolation and/or filling material is a single-layer or multi-layer structure.
可选地,所述平坦化工艺包括化学机械抛光和/或回刻。 Optionally, the planarization process includes chemical mechanical polishing and/or etching back.
可选地,所述电热层为含金属的材料。 Optionally, the electrothermal layer is made of metal-containing material.
可选地,所述电热层为单层的或者多层的结构。 Optionally, the electrothermal layer is a single-layer or multi-layer structure.
可选地,所述含金属的材料为温阻材料。 Optionally, the metal-containing material is a temperature-resistant material.
可选地,所述温阻材料包括铂或者金。 Optionally, the temperature resistance material includes platinum or gold.
可选地,所述加热装置和所述测温装置的形状、布局、线条尺寸、厚度和圈数根据不同的需要是可调整的。 Optionally, the shape, layout, line size, thickness and number of turns of the heating device and the temperature measuring device can be adjusted according to different needs.
可选地,所述保护层为单层的或者多层的结构。 Optionally, the protective layer is a single-layer or multi-layer structure.
本发明与现有技术相比,具有如下显而易见的突出实质性特点和显著技术进步: Compared with the prior art, the present invention has the following obvious outstanding substantive features and significant technical progress:
本发明提供的空气流量传感器制造方法是采用正面腐蚀的、与常规的半导体工艺兼容的工艺,在通用的半导体生产线上能够实现大规模的制造,具有实用、经济、高性能等优点。 The air flow sensor manufacturing method provided by the present invention adopts a front-side corrosion process compatible with conventional semiconductor processes, and can realize large-scale manufacturing on a general-purpose semiconductor production line, and has the advantages of practicality, economy, and high performance.
附图说明 Description of drawings
图1是本发明的一个流量传感器的结构示意图。 Fig. 1 is a structural schematic diagram of a flow sensor of the present invention.
图2是图1中A-A处剖面图。 Fig. 2 is a sectional view at A-A in Fig. 1 .
图3~16是图1所示流量传感器制造过程的各程序呈显的结构示意图。 3 to 16 are structural schematic diagrams of various procedures in the manufacturing process of the flow sensor shown in FIG. 1 .
具体实施方式 Detailed ways
本发明的优选实施例结合附图详述如下: Preferred embodiments of the present invention are described in detail as follows in conjunction with accompanying drawings:
图1为本发明一个实施例制造的温阻传感器结构的平面示意图。在图1所显示的传感器结构的平面图中,在基底001上包含形成空腔的槽002、加热单元003、测温单元004和空腔010。为了更好地说明该温阻传感器的结构,对上述的传感器在A-A方向做剖面结构示意图,如图2所示。
FIG. 1 is a schematic plan view of the structure of a temperature resistance sensor manufactured by an embodiment of the present invention. In the plan view of the sensor structure shown in FIG. 1 , a
图2为图1所示的温阻传感器结构沿着图中的A-A方向的剖面结构示意图。从图2中可见,加热单元003和测温单元004形成在具有一定的厚度的基底膜上,膜悬空在空腔010的上方,图中标号006所示的是填充材料,标号108和008分别为顶层保护层和槽侧壁保护层,标号009为隔离层。
FIG. 2 is a schematic cross-sectional structure diagram of the temperature resistance sensor structure shown in FIG. 1 along the A-A direction in the figure. It can be seen from FIG. 2 that the
本领域的技术人员应该认识到,上述由图1和图2所示的温阻传感器结构的分布图式示意性的。在此还要理解,其可以随意根据需要对温阻传感器结构的内部各个单元进行位置的排布和调整,都是在本发明申请的保护范围之内。另外,对于本发明中涉及加热单元、测温单元的形状和/或尺寸也都是可以根据需要进行任意调整的。 Those skilled in the art should recognize that the above distribution diagrams of the temperature resistance sensor structures shown in FIG. 1 and FIG. 2 are schematic. It should also be understood here that the arrangement and adjustment of the positions of the internal units of the temperature resistance sensor structure can be done at will according to the needs, all of which are within the protection scope of the application of the present invention. In addition, the shape and/or size of the heating unit and the temperature measuring unit in the present invention can also be adjusted arbitrarily as required.
下面结合具体实施例和附图对本发明实施例的温阻传感器的制造过程作进一步说明。 The manufacturing process of the temperature resistance sensor according to the embodiment of the present invention will be further described below in combination with specific embodiments and accompanying drawings.
图3至图16为本发明的一个实施例的温阻传感器的制造过程的剖面结构示意图。需要注意的是,这些以及后续其他的附图均仅作为示例,其并非是按照等比例的条件绘制的,并且不应该以此作为对本发明实际要求的保护范围构成限制。 3 to 16 are schematic cross-sectional structural views of the manufacturing process of the temperature resistance sensor according to an embodiment of the present invention. It should be noted that these and other subsequent drawings are only examples, which are not drawn according to the same scale, and should not be taken as limitations on the protection scope of the actual claims of the present invention.
本采用正面腐蚀方式制造流量传感器的方法,制造工艺步骤如下: In this method of manufacturing a flow sensor using a front-side corrosion method, the manufacturing process steps are as follows:
1) 如图3所示,取一硅基底001,在该基底的上方有覆盖一层隔离层100,该隔离层可以是氧化物、氮化物等。在此基底001以硅(Si)为例,但是本发明可以采用的基底材料显然不限于此,本领域技术人员可以根据实际的需要进行相应得调整。
1) As shown in Figure 3, a
如图4所示,刻蚀基底001,在基底001中形成用于制作腔体的槽002,其中槽002的形状和/或深度根据实际需要是可调节的(adjustable)。而从俯视图(未图示)上看,槽002的投影可以使多边形(含矩形),也可以是圆形,显然也可以是其他形状,在此不在赘述。
As shown in FIG. 4 , the
2) 如图5所示,利用例如化学气相淀积法在隔离层100的表面和槽002的侧壁与底部淀积一层阻挡层101,也可以采用其他的例如原子层淀积法等方法代替,但是淀积的阻挡层101务必要覆盖槽002的侧壁。因此,本领域的技术人员应该认识到,具体采用何种的淀积方法取决于该种方法能否很好地覆盖槽002的侧壁。
2) As shown in Figure 5, a layer of
3) 如图6所示,通过回刻工艺完全去除隔离层100的表面和槽002的底部的阻挡层101,特别是要露出槽002的底部,即完全去除底部的阻挡层101。该阻挡层101在槽002中附着于侧壁上未被去除的部分则成为槽002的侧壁保护层。
3) As shown in Figure 6, the surface of the
4) 如图7所示,采用刻蚀工艺,以侧壁保护层101为掩模,继续刻蚀槽002,形成深槽102,该深槽102的深度可以为0.1~100um,在此过程中,由于侧壁保护层101作为刻蚀过程中的硬掩膜存在,保护其他区域,因此,选择的刻蚀条件需要较好的刻蚀选择比。
4) As shown in Figure 7, using the etching process, using the
5) 如图8所示,采用湿法腐蚀法腐蚀深槽102,在基底001的内部形成腔体010。例如,选择硅作为基底,在其内部腔体腐蚀时采用KOH和/或NaOH和/或EPW和/或TMAH等湿法腐蚀溶液对基底001进行各向异性的(选择性)腐蚀,在其内部形成腔体010。本领域的技术人员可以根据实际的需要,优选地采用各向异性的腐蚀工艺,当然也可以是其他的腐蚀方式。需要注意的是,这里显示的腔体010在截面上看是规则的矩形,然而,在此需要指出,视图不过是为了表述方便,实际得到的腔体010的形状和/或深度是任意的,与腐蚀工艺、基底和其他方面密切相关的。本领域的技术人员应该理解到腔体010的形状和/或深度并不是限制本发明的内容。
5) As shown in Figure 8, the
6) 如图9所示,优选通过化学气相淀积法或者原子层淀积法等工艺在槽002的侧壁保护层101之间填满隔离和/或填充材料103,例如单层或者多层的多晶硅、氧化硅,氮化硅等,将腔体010与外界隔离,同时利用氧化硅等绝热材料可以降低某些特定区域之间的热传导。
6) As shown in Figure 9, it is preferable to fill the spacer and/or filling
7) 在填充完成后,如图10所示,对基底001表面做平坦化。
7) After the filling is completed, as shown in Figure 10, planarize the surface of the
8) 在硅衬底001上淀积电热层。
8) Deposit the electrothermal layer on the
9) 通过图形化,在隔离层100上形成含金属的材料的各类图形。在平坦化之后的阻挡层100的表面先淀积一层含金属的材料107,这层材料可以是单层的也可以是多层的,所沉积的含金属的材料的特征在于在通电的情况下能够作为电热装置的材料,并且随着温度的变化,材料表现出电阻率随着温度变化的特性。含金属的材料可以是Pt等温阻材料。然后,通过半导体光刻和干法刻蚀技术形成用于制作加热单元、测温单元和电极的图形。截面图如图11a所示,在此仅是示意图,表示在基底上形成不仅包括加热单元003,也还包括测温单元004等;以此为例,图11a的俯视图如图15所示。可以看到,在隔离层上形成了加热单元003和测温单元004,此外还包括电极020。在此需要明确指出,本发明涉及的加热单元和测温单元的形状、布局、线条尺寸、厚度和圈数都不限制本发明的内容,可以根据不同的需要进行调整。
9) Through patterning, various patterns of metal-containing materials are formed on the
如图11b所示,金属材料的图形化也可以通过以下方法实现。在平坦化之后的阻挡层100的表面先后淀积一层含磷硅玻璃层(PSG)和一层氮化硅层(Si3N4);然后,通过半导体光刻和干法刻蚀技术形成用于制作加热单元、测温单元和电极的窗口。在精确控制腐蚀时间的前提下,利用一种缓冲氧化硅腐蚀液(BOE)形成如图12的窗口106;如图13所示淀积Pt材料,最后通过湿法化学剥离的方法最终形成如图14所示的结构,其对应的俯视图如图15。如图13,湿法化学剥离的具体过程是在Pt淀积之后,利用BOE将PSG连同生长在PSG上的Si3N4和Pt一起去除。在此需要明确指出,本发明中用于形成窗口的两层材料以及腐蚀液显然不限于上述的PSG、Si3N4和BOE,其关键在于所选的腐蚀液对所选的两层材料要具有高度的选择性,即腐蚀104层却不腐蚀105层,并且所选腐蚀液对104材料具有各向同性的腐蚀特性,因此本领域技术人员可以根据实际的需要进行相应得调整。
As shown in Figure 11b, the patterning of metal materials can also be achieved by the following methods. A layer of phosphorus-silicate glass (PSG) and a layer of silicon nitride (Si 3 N 4 ) are deposited successively on the surface of the
10)沉积保护层108,可以是单层或者多层的结构,如图16所示。
10) Depositing a
在图16得到的结构的基础上可以进行封装。因为传感器组件通过导热性较好的基底与封装的基板将会直接接触,因此,传感器的温度将受到外界环境温度的干扰,如此,将给流量和温度的测量引入背景噪声,造成测量的不准确,因此才需要将传感器装置悬空。 Packaging can be performed on the basis of the structure obtained in FIG. 16 . Because the sensor component will be in direct contact with the substrate of the package through the substrate with better thermal conductivity, the temperature of the sensor will be disturbed by the temperature of the external environment. In this way, background noise will be introduced into the measurement of flow and temperature, resulting in inaccurate measurement , so it is necessary to suspend the sensor device. the
Claims (12)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2012103846376A CN102942157A (en) | 2012-10-12 | 2012-10-12 | Flow sensor manufacturing method by the way of positive corrosion |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2012103846376A CN102942157A (en) | 2012-10-12 | 2012-10-12 | Flow sensor manufacturing method by the way of positive corrosion |
Publications (1)
Publication Number | Publication Date |
---|---|
CN102942157A true CN102942157A (en) | 2013-02-27 |
Family
ID=47725181
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2012103846376A Pending CN102942157A (en) | 2012-10-12 | 2012-10-12 | Flow sensor manufacturing method by the way of positive corrosion |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102942157A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111247090A (en) * | 2017-09-15 | 2020-06-05 | 伯金公司 | Method for manufacturing micro-machined channel |
CN112484800A (en) * | 2020-11-24 | 2021-03-12 | 中国科学院上海微系统与信息技术研究所 | Thermal reactor type gas mass flow sensor and preparation method thereof |
CN112501593A (en) * | 2020-10-29 | 2021-03-16 | 长芯科技(上海)有限公司 | Manufacturing method of flow sensor chip |
CN113654600A (en) * | 2021-07-23 | 2021-11-16 | 无锡莱斯能特科技有限公司 | Manufacturing method of flow sensor |
CN114684777A (en) * | 2020-12-30 | 2022-07-01 | 上海新微技术研发中心有限公司 | Manufacturing method of MEMS (micro-electromechanical systems) thermal bubble printing head heating structure |
CN114852953A (en) * | 2022-04-15 | 2022-08-05 | 中北大学 | MEMS vector hydrophone-oriented CMOS release method after cross beam sensitive structure |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6460411B1 (en) * | 1997-02-14 | 2002-10-08 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Flow sensor component |
CN101150300A (en) * | 2007-09-17 | 2008-03-26 | 北京大学 | A method of preparing a planar capacitive resonator |
CN201247082Y (en) * | 2008-08-25 | 2009-05-27 | 中国电子科技集团公司第四十九研究所 | Flat diaphragm type gas flow sensor |
US20110030468A1 (en) * | 2009-08-10 | 2011-02-10 | Siargo, Ltd. | Robust micromachining thermal mass flow sensor and method of making the same |
CN102320558A (en) * | 2011-09-13 | 2012-01-18 | 上海先进半导体制造股份有限公司 | Manufacturing method for cavity of full silica-based microfluidic device |
CN102328899A (en) * | 2011-08-05 | 2012-01-25 | 上海先进半导体制造股份有限公司 | Method for manufacturing cavities of different depths |
CN102515087A (en) * | 2011-12-01 | 2012-06-27 | 上海先进半导体制造股份有限公司 | Manufacturing method of flow sensor |
-
2012
- 2012-10-12 CN CN2012103846376A patent/CN102942157A/en active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6460411B1 (en) * | 1997-02-14 | 2002-10-08 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Flow sensor component |
CN101150300A (en) * | 2007-09-17 | 2008-03-26 | 北京大学 | A method of preparing a planar capacitive resonator |
CN201247082Y (en) * | 2008-08-25 | 2009-05-27 | 中国电子科技集团公司第四十九研究所 | Flat diaphragm type gas flow sensor |
US20110030468A1 (en) * | 2009-08-10 | 2011-02-10 | Siargo, Ltd. | Robust micromachining thermal mass flow sensor and method of making the same |
CN102328899A (en) * | 2011-08-05 | 2012-01-25 | 上海先进半导体制造股份有限公司 | Method for manufacturing cavities of different depths |
CN102320558A (en) * | 2011-09-13 | 2012-01-18 | 上海先进半导体制造股份有限公司 | Manufacturing method for cavity of full silica-based microfluidic device |
CN102515087A (en) * | 2011-12-01 | 2012-06-27 | 上海先进半导体制造股份有限公司 | Manufacturing method of flow sensor |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111247090A (en) * | 2017-09-15 | 2020-06-05 | 伯金公司 | Method for manufacturing micro-machined channel |
CN111247090B (en) * | 2017-09-15 | 2023-04-25 | 伯金公司 | Method for manufacturing micro-machined channel |
CN112501593A (en) * | 2020-10-29 | 2021-03-16 | 长芯科技(上海)有限公司 | Manufacturing method of flow sensor chip |
CN112484800A (en) * | 2020-11-24 | 2021-03-12 | 中国科学院上海微系统与信息技术研究所 | Thermal reactor type gas mass flow sensor and preparation method thereof |
CN114684777A (en) * | 2020-12-30 | 2022-07-01 | 上海新微技术研发中心有限公司 | Manufacturing method of MEMS (micro-electromechanical systems) thermal bubble printing head heating structure |
CN114684777B (en) * | 2020-12-30 | 2024-06-11 | 上海新微技术研发中心有限公司 | Manufacturing method of MEMS thermal bubble printing head heating structure |
CN113654600A (en) * | 2021-07-23 | 2021-11-16 | 无锡莱斯能特科技有限公司 | Manufacturing method of flow sensor |
CN114852953A (en) * | 2022-04-15 | 2022-08-05 | 中北大学 | MEMS vector hydrophone-oriented CMOS release method after cross beam sensitive structure |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102942157A (en) | Flow sensor manufacturing method by the way of positive corrosion | |
JP5113980B2 (en) | Pressure sensor device and manufacturing method thereof | |
US7148077B2 (en) | Micromechanical structural element having a diaphragm and method for producing such a structural element | |
CN102190284B (en) | Methods for manufacturing MEMS sensor, film and cantilever beam | |
US7963147B2 (en) | Micro gas sensor and method for manufacturing the same | |
CN104280160B (en) | Pressure sensor and forming method thereof | |
CN105424090B (en) | MEMS piezoresistive composite sensor and processing method thereof | |
CN102502479B (en) | Composite integrated sensor structure and manufacture method thereof | |
CN105841852B (en) | A kind of MEMS piezoresistive pressure sensor and its manufacturing method based on doping silene | |
CN103344229A (en) | Miniature hemispherical resonant gyroscope based on SOI (Silicon on Insulator) silicon slice and manufacturing method of miniature hemispherical resonant gyroscope | |
US20130134530A1 (en) | Method of fabricating isolated semiconductor structures | |
CN104280161A (en) | Pressure sensor and forming method thereof | |
WO2013004081A1 (en) | Method for manufacturing composite integrated sensor structure | |
CN102539033A (en) | Method for making micro electromechanical system pressure sensor | |
CN104671186A (en) | MEMS device | |
JP2003517611A (en) | Method for micromechanical production of semiconductor components, in particular acceleration sensors | |
CN105547371A (en) | Two-dimensional thermal-type wind speed and directions sensor based on ceramic packaging, and manufacturing method therefor | |
CN104944360B (en) | MEMS (Micro Electro Mechanical System) device and forming method thereof | |
CN104330196A (en) | Cavity film piezoresistive pressure sensor and manufacturing method thereof | |
CN104048592B (en) | Method for detecting depth of etched groove through current change | |
CN102515087A (en) | Manufacturing method of flow sensor | |
CN103274349A (en) | Thermal stress insulating MEMS micro heater interconnected substrate and method for manufacturing thermal stress insulating MEMS micro heater interconnected substrate | |
EP3347708A1 (en) | Gas sensor platform and the method of making the same | |
WO2013023446A1 (en) | Cavity manufacturing method | |
US20130199301A1 (en) | Vertical Pressure Sensitive Structure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20130227 |