CN102937607B - A kind of series-connection flexible vibration piezoelectric diaphragm type biosensor and preparation method thereof - Google Patents
A kind of series-connection flexible vibration piezoelectric diaphragm type biosensor and preparation method thereof Download PDFInfo
- Publication number
- CN102937607B CN102937607B CN201210448539.4A CN201210448539A CN102937607B CN 102937607 B CN102937607 B CN 102937607B CN 201210448539 A CN201210448539 A CN 201210448539A CN 102937607 B CN102937607 B CN 102937607B
- Authority
- CN
- China
- Prior art keywords
- layer
- film
- piezoelectric
- silicon
- barrier film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000002360 preparation method Methods 0.000 title claims abstract description 11
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 61
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 60
- 239000010703 silicon Substances 0.000 claims abstract description 60
- 238000000034 method Methods 0.000 claims abstract description 45
- 238000001514 detection method Methods 0.000 claims abstract description 35
- 239000000758 substrate Substances 0.000 claims abstract description 27
- 238000005516 engineering process Methods 0.000 claims abstract description 6
- 239000012528 membrane Substances 0.000 claims abstract description 4
- 239000010408 film Substances 0.000 claims description 101
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 41
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 41
- 239000010409 thin film Substances 0.000 claims description 20
- 238000001755 magnetron sputter deposition Methods 0.000 claims description 18
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 18
- 239000010936 titanium Substances 0.000 claims description 18
- 238000001312 dry etching Methods 0.000 claims description 14
- 229910052751 metal Inorganic materials 0.000 claims description 11
- 239000002184 metal Substances 0.000 claims description 11
- 238000004518 low pressure chemical vapour deposition Methods 0.000 claims description 9
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical group O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 8
- 229910052782 aluminium Inorganic materials 0.000 claims description 8
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 8
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 8
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 7
- 229910052719 titanium Inorganic materials 0.000 claims description 7
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 6
- 229910052697 platinum Inorganic materials 0.000 claims description 6
- 229910052454 barium strontium titanate Inorganic materials 0.000 claims description 5
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 claims description 4
- 238000005260 corrosion Methods 0.000 claims description 4
- 230000007797 corrosion Effects 0.000 claims description 4
- 239000000523 sample Substances 0.000 claims description 4
- 230000000694 effects Effects 0.000 claims description 3
- 229910052759 nickel Inorganic materials 0.000 claims description 3
- 239000000377 silicon dioxide Substances 0.000 claims description 3
- 230000015572 biosynthetic process Effects 0.000 claims description 2
- 238000001039 wet etching Methods 0.000 claims description 2
- 230000004888 barrier function Effects 0.000 claims 23
- 238000000151 deposition Methods 0.000 claims 4
- 239000004020 conductor Substances 0.000 claims 3
- 230000008021 deposition Effects 0.000 claims 3
- 238000001259 photo etching Methods 0.000 claims 3
- 150000004767 nitrides Chemical class 0.000 claims 2
- WGTYBPLFGIVFAS-UHFFFAOYSA-M tetramethylammonium hydroxide Chemical compound [OH-].C[N+](C)(C)C WGTYBPLFGIVFAS-UHFFFAOYSA-M 0.000 claims 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 claims 1
- 229910002115 bismuth titanate Inorganic materials 0.000 claims 1
- 229910052681 coesite Inorganic materials 0.000 claims 1
- 229910052906 cristobalite Inorganic materials 0.000 claims 1
- 238000005137 deposition process Methods 0.000 claims 1
- 230000000763 evoking effect Effects 0.000 claims 1
- 238000007306 functionalization reaction Methods 0.000 claims 1
- 239000007788 liquid Substances 0.000 claims 1
- 238000007789 sealing Methods 0.000 claims 1
- 229910052708 sodium Inorganic materials 0.000 claims 1
- 239000011734 sodium Substances 0.000 claims 1
- 238000004544 sputter deposition Methods 0.000 claims 1
- 229910052682 stishovite Inorganic materials 0.000 claims 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 claims 1
- 229910052905 tridymite Inorganic materials 0.000 claims 1
- 238000004519 manufacturing process Methods 0.000 abstract description 9
- 238000000059 patterning Methods 0.000 abstract description 6
- 238000013461 design Methods 0.000 abstract description 5
- 239000007791 liquid phase Substances 0.000 abstract description 5
- 238000011065 in-situ storage Methods 0.000 abstract description 4
- 238000005459 micromachining Methods 0.000 abstract description 4
- 235000012431 wafers Nutrition 0.000 abstract 2
- 238000000206 photolithography Methods 0.000 description 14
- 238000005530 etching Methods 0.000 description 13
- 239000010931 gold Substances 0.000 description 13
- 229910004298 SiO 2 Inorganic materials 0.000 description 7
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 7
- 239000000243 solution Substances 0.000 description 7
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 6
- 229910052737 gold Inorganic materials 0.000 description 6
- 239000003656 tris buffered saline Substances 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 235000012239 silicon dioxide Nutrition 0.000 description 5
- 235000018102 proteins Nutrition 0.000 description 4
- 102000004169 proteins and genes Human genes 0.000 description 4
- 108090000623 proteins and genes Proteins 0.000 description 4
- 238000004549 pulsed laser deposition Methods 0.000 description 4
- 238000001179 sorption measurement Methods 0.000 description 4
- 241000283707 Capra Species 0.000 description 3
- 229910010413 TiO 2 Inorganic materials 0.000 description 3
- 239000005018 casein Substances 0.000 description 3
- BECPQYXYKAMYBN-UHFFFAOYSA-N casein, tech. Chemical group NCCCCC(C(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(CC(C)C)N=C(O)C(CCC(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(C(C)O)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(COP(O)(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(N)CC1=CC=CC=C1 BECPQYXYKAMYBN-UHFFFAOYSA-N 0.000 description 3
- 235000021240 caseins Nutrition 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 230000005284 excitation Effects 0.000 description 3
- 238000002955 isolation Methods 0.000 description 3
- 239000010453 quartz Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- WOIHABYNKOEWFG-UHFFFAOYSA-N [Sr].[Ba] Chemical compound [Sr].[Ba] WOIHABYNKOEWFG-UHFFFAOYSA-N 0.000 description 2
- 238000000347 anisotropic wet etching Methods 0.000 description 2
- 229910002113 barium titanate Inorganic materials 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- FSAJRXGMUISOIW-UHFFFAOYSA-N bismuth sodium Chemical compound [Na].[Bi] FSAJRXGMUISOIW-UHFFFAOYSA-N 0.000 description 2
- 239000002981 blocking agent Substances 0.000 description 2
- 229910052451 lead zirconate titanate Inorganic materials 0.000 description 2
- HFGPZNIAWCZYJU-UHFFFAOYSA-N lead zirconate titanate Chemical group [O-2].[O-2].[O-2].[O-2].[O-2].[Ti+4].[Zr+4].[Pb+2] HFGPZNIAWCZYJU-UHFFFAOYSA-N 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 238000003980 solgel method Methods 0.000 description 2
- 239000004408 titanium dioxide Substances 0.000 description 2
- 241000196324 Embryophyta Species 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 1
- 239000012491 analyte Substances 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- -1 antibodies Proteins 0.000 description 1
- 239000000427 antigen Substances 0.000 description 1
- 102000036639 antigens Human genes 0.000 description 1
- 108091007433 antigens Proteins 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- 230000008105 immune reaction Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 102000039446 nucleic acids Human genes 0.000 description 1
- 108020004707 nucleic acids Proteins 0.000 description 1
- 150000007523 nucleic acids Chemical class 0.000 description 1
- GSWAOPJLTADLTN-UHFFFAOYSA-N oxidanimine Chemical compound [O-][NH3+] GSWAOPJLTADLTN-UHFFFAOYSA-N 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000004451 qualitative analysis Methods 0.000 description 1
- 238000004445 quantitative analysis Methods 0.000 description 1
- 102000005962 receptors Human genes 0.000 description 1
- 108020003175 receptors Proteins 0.000 description 1
- 238000010897 surface acoustic wave method Methods 0.000 description 1
- 125000003698 tetramethyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Landscapes
- Transducers For Ultrasonic Waves (AREA)
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
Abstract
本发明涉及一种串联柔性振动压电隔膜式生物传感器及其制备方法。其利用微加工技术在SOI硅片衬底上制备柔性振动压电隔膜,其中SOI硅片的Device层作为隔膜的支撑层,压电薄膜作为隔膜振动的驱动层,上下电极分别位于压电层上下表面。本发明的传感器从原理和结构设计上,巧妙地避免了成本高、效果差的压电层图形化工艺,同时,参比单元的存在极大的提高了传感器的检测精度。另外,相比于QCM生物传感器,本发明所述的传感器更为灵敏,用于液相原位检测时品质因数高,而且便于微小化和批量化制造;相比于柔性振动悬臂梁式传感器,本发明所述的传感器结构牢固,用于液相原位检测时品质因数高。
The invention relates to a serial flexible vibrating piezoelectric membrane biosensor and a preparation method thereof. It uses micromachining technology to prepare flexible vibrating piezoelectric diaphragms on SOI silicon wafer substrates. The Device layer of SOI silicon wafers is used as the supporting layer of the diaphragm, and the piezoelectric film is used as the driving layer for diaphragm vibration. The upper and lower electrodes are respectively located on the upper and lower sides of the piezoelectric layer. surface. In terms of principle and structural design, the sensor of the present invention skillfully avoids the high-cost and poor-effect piezoelectric layer patterning process, and at the same time, the existence of the reference unit greatly improves the detection accuracy of the sensor. In addition, compared with the QCM biosensor, the sensor of the present invention is more sensitive, has a high quality factor when used for liquid phase in-situ detection, and is convenient for miniaturization and batch manufacturing; compared with the flexible vibrating cantilever beam sensor, The sensor of the invention has firm structure and high quality factor when used for liquid phase in-situ detection.
Description
技术领域 technical field
本发明属于生物传感器技术领域,涉及一种生物传感器,尤其是一种应用于生物检测的串联柔性振动压电隔膜式生物传感器及其制备方法。 The invention belongs to the technical field of biosensors, and relates to a biosensor, in particular to a series flexible vibration piezoelectric diaphragm biosensor applied to biological detection and a preparation method thereof.
背景技术 Background technique
生物传感器是利用一定的生物或化学的固定技术,将生物识别元件(酶、抗体、抗原、蛋白、核酸、受体、细胞、微生物、动植物组织等)固定在换能器上,当待测物与生物识别元件发生特异性反应后,通过换能器将所产生的反应结果(形成复合物或产生声、光、电、热等)转变为可以输出、检测的电信号和光信号等,以此对待测物质进行定性和定量分析,从而达到检测分析目的。压电生物传感器是近年来发展起来的一种新型生物传感器,这类传感器不需要任何标记,并具有仪器简单、操作方便,响应灵敏、选择性好、便于自动化等优点。早期的压电生物传感器主要是利用压电石英谐振器对质量的敏感性,通过监测谐振器经免疫反应后,因表面质量改变而导致的谐振频率变化来检测待测物,这里使用的压电体为石英单晶。然而随着系统向微小化发展,本领域技术人员迫切希望能使用薄膜形态的压电体,因此,转而研究由其它可以成膜压电材料制成的压电传感器,是本领域技术人员所期望的。 Biosensors use certain biological or chemical immobilization techniques to immobilize biological recognition elements (enzymes, antibodies, antigens, proteins, nucleic acids, receptors, cells, microorganisms, animal and plant tissues, etc.) After the specific reaction between the substance and the biometric element, the resulting reaction result (formation of a complex or generation of sound, light, electricity, heat, etc.) This is to carry out qualitative and quantitative analysis of the substance to be tested, so as to achieve the purpose of detection and analysis. Piezoelectric biosensor is a new type of biosensor developed in recent years. This kind of sensor does not need any label, and has the advantages of simple instrument, convenient operation, sensitive response, good selectivity, and easy automation. Early piezoelectric biosensors mainly used the sensitivity of piezoelectric quartz resonators to mass, and detected the analyte by monitoring the resonant frequency change caused by the change of surface quality after the resonator undergoes an immune reaction. The piezoelectric biosensor used here The body is a quartz single crystal. However, as the system develops towards miniaturization, those skilled in the art are eager to use the piezoelectric body in the form of a thin film. Therefore, it is desirable for those skilled in the art to study piezoelectric sensors made of other piezoelectric materials that can be formed into films. Expected.
本发明将介绍一种串联柔性振动压电隔膜式生物传感器及其制备方法。该传感器的制备采用了微加工技术和压电薄膜制备技术,同时从 原理和结构设计上巧妙地避免了成本高、效果差的压电薄膜图形化工艺。该传感器的另一个优点是提供了原生的参照单元,使测量结果更为准确可靠。 The present invention will introduce a series flexible vibration piezoelectric diaphragm biosensor and its preparation method. The preparation of the sensor adopts micro-machining technology and piezoelectric film preparation technology, and at the same time skillfully avoids the high-cost and poor-effect piezoelectric film patterning process from the principle and structural design. Another advantage of this sensor is that it provides a native reference unit, making the measurement results more accurate and reliable.
发明内容 Contents of the invention
本发明的目的在于克服上述现有技术的缺点,提供一种串联柔性振动压电隔膜式生物传感器及其制备方法,该传感器的制备采用微加工技术和压电薄膜制备技术,同时能够从原理和结构设计上巧妙地避免成本高、效果差的压电薄膜图形化工艺;并且,该传感器能够提供原生的参照单元,使测量结果更为准确可靠。 The purpose of the present invention is to overcome the above-mentioned shortcoming of the prior art, provide a kind of series flexible vibrating piezoelectric diaphragm type biosensor and its preparation method, the preparation of this sensor adopts micromachining technology and piezoelectric thin film preparation technology, can be from principle and The structural design cleverly avoids the high-cost and poor-effect piezoelectric film patterning process; moreover, the sensor can provide a native reference unit to make the measurement results more accurate and reliable.
本发明的目的是通过以下技术方案来解决的: The purpose of the present invention is solved by the following technical solutions:
这种串联柔性振动压电隔膜式生物传感器,包括SOI硅片,其中在SOI硅片的Device层表面依次设有底电极粘附层、压电层;在所述压电层上设置有两个相邻的柔性振动压电隔膜:隔膜一和隔膜二;所述柔性振动压电隔膜的上下电极分别设置于压电层的上下表面;在所述SOI硅片的Handle层表面附有一层氮化硅薄膜层,其中SOI硅片的Handle层和氮化硅薄膜层在对应于所述隔膜一和隔膜二位置开设有硅杯;所述隔膜一作为探测单元,在隔膜一上电极上设置有生物探针分子;所述隔膜二作为参比单元。 This series flexible vibration piezoelectric diaphragm type biosensor includes SOI silicon chip, wherein the bottom electrode adhesion layer and piezoelectric layer are arranged successively on the surface of the Device layer of SOI silicon chip; two piezoelectric layers are arranged on the piezoelectric layer. Adjacent flexible vibrating piezoelectric diaphragms: diaphragm one and diaphragm two; the upper and lower electrodes of the flexible vibrating piezoelectric diaphragm are arranged on the upper and lower surfaces of the piezoelectric layer respectively; Silicon thin film layer, wherein the Handle layer and the silicon nitride thin film layer of the SOI silicon wafer are provided with silicon cups at the positions corresponding to the first and second diaphragms; the first diaphragm is used as a detection unit, and biological probe molecule; the septum two serves as a reference unit.
进一步的,上述柔性振动压电隔膜均为正方形。所述柔性振动压电隔膜均为圆形。所述柔性振动压电隔膜的上电极通过上电极引线连接有上电极焊盘。所述压电层为采用溶胶凝胶法、磁控溅射或者脉冲激光沉积工艺制备的锆钛酸铅薄膜、钛酸锶钡薄膜或钛酸铋钠薄膜。所述柔性 振动压电隔膜的下电极是粘附在底电极粘附层(13)上的白金、铝或镍金属薄膜。 Further, the above-mentioned flexible vibrating piezoelectric diaphragms are all square. The flexible vibrating piezoelectric diaphragms are all circular. The upper electrode of the flexible vibrating piezoelectric diaphragm is connected to an upper electrode pad through an upper electrode lead wire. The piezoelectric layer is a lead zirconate titanate film, strontium barium titanate film or bismuth sodium titanate film prepared by sol-gel method, magnetron sputtering or pulsed laser deposition process. The lower electrode of the flexible vibrating piezoelectric diaphragm is a platinum, aluminum or nickel metal film adhered to the bottom electrode adhesion layer (13).
本发明还提出一种串联柔性振动压电隔膜式生物传感器的制备方法,包括以下步骤: The present invention also proposes a method for preparing a series flexible vibration piezoelectric diaphragm type biosensor, comprising the following steps:
1)取SOI硅衬底,规定其Device层的一侧为正面,在Handle层的一侧为反面; 1) Take the SOI silicon substrate, specify that the side of the Device layer is the front side, and the side of the Handle layer is the back side;
2)在SOI硅衬底的正面,采用射频磁控溅射法沉积二氧化钛薄膜作为底电极粘附层,再底电极粘附层上沉积金属薄膜作为柔性振动压电隔膜的下电极;底电极粘附层和柔性振动压电隔膜的下电极均是在射频磁控溅射仪中沉积所得; 2) On the front side of the SOI silicon substrate, a titanium dioxide film is deposited by radio frequency magnetron sputtering as the bottom electrode adhesion layer, and then a metal film is deposited on the bottom electrode adhesion layer as the lower electrode of the flexible vibrating piezoelectric diaphragm; the bottom electrode adhesion Both the attached layer and the lower electrode of the flexible vibrating piezoelectric diaphragm are deposited in a radio frequency magnetron sputtering apparatus;
3)在SOI硅衬底的正面,于所述柔性振动压电隔膜的下电极上沉积压电薄膜作为压电层,沉积压电薄膜的厚度为0.1~10μm; 3) On the front side of the SOI silicon substrate, a piezoelectric thin film is deposited on the lower electrode of the flexible vibrating piezoelectric diaphragm as a piezoelectric layer, and the thickness of the deposited piezoelectric thin film is 0.1-10 μm;
4)采用LPCVD法在正面沉积氮化硅薄膜,氮化硅薄膜的厚度为80~200nm; 4) Deposit silicon nitride film on the front side by LPCVD method, the thickness of silicon nitride film is 80~200nm;
5)在正面,利用光刻和干法刻蚀工艺对氮化硅薄膜进行图形化,暴露出执行柔性振动隔膜的压电层; 5) On the front side, the silicon nitride film is patterned using photolithography and dry etching processes to expose the piezoelectric layer that performs the flexible vibration diaphragm;
6)在正面,利用光刻和射频磁控溅射并结合剥离工艺制备Ti/Au上电极及其引线与焊盘;其中与压电层相接触的Ti/Au为上电极,将上电极连接至旁边的氮化硅薄膜上,并便于键合引线的Ti/Au称为引线及焊盘;其中Ti层厚度为10~20nm,Au层厚度为100~500nm; 6) On the front side, the Ti/Au upper electrode and its leads and pads are prepared by photolithography and radio frequency magnetron sputtering combined with the lift-off process; the Ti/Au in contact with the piezoelectric layer is the upper electrode, and the upper electrode is connected to Ti/Au on the silicon nitride film next to it, which is convenient for bonding wires, is called wires and pads; the thickness of the Ti layer is 10~20nm, and the thickness of the Au layer is 100~500nm;
7)在反面,采用LPCVD法沉积氮化硅薄膜,氮化硅薄膜的厚度为80~200nm; 7) On the reverse side, the silicon nitride film is deposited by LPCVD method, and the thickness of the silicon nitride film is 80~200nm;
8)在反面,利用光刻和干法刻蚀工艺对氮化硅薄膜进行图形化,暴露出与上电极相对应的Handle层硅腐蚀窗口; 8) On the reverse side, use photolithography and dry etching processes to pattern the silicon nitride film to expose the silicon etching window of the Handle layer corresponding to the upper electrode;
9)在反面,利用硅各向异性湿法腐蚀或干法腐蚀工艺去除Handle层硅腐蚀窗口区域的硅,形成硅杯,释放执行柔性振动隔膜;腐蚀液为氢氧化钾溶液或四甲基氢氧化铵溶液;腐蚀停止层为SOI衬底Device层和Handle层之间的埋层SiO2; 9) On the reverse side, use silicon anisotropic wet etching or dry etching to remove the silicon in the silicon etching window area of the Handle layer, form a silicon cup, and release the flexible vibration diaphragm; the etching solution is potassium hydroxide solution or tetramethyl hydrogen Ammonium oxide solution; the corrosion stop layer is the buried layer SiO 2 between the Device layer and the Handle layer of the SOI substrate;
10)在正面,利用干法腐蚀去除表面氮化硅薄膜; 10) On the front side, the silicon nitride film on the surface is removed by dry etching;
11)两个相邻的隔膜构成一个串联柔性振动压电隔膜式生物传感器; 11) Two adjacent diaphragms form a series flexible vibration piezoelectric diaphragm biosensor;
12)对生物传感器隔膜区域的压电层进行极化;然后对串联隔膜中的一个隔膜的表面进行功能化,作为探测单元;串联隔膜中的另一个隔膜作为参比单元。 12) Polarize the piezoelectric layer in the diaphragm region of the biosensor; then functionalize the surface of one diaphragm in the series as a detection unit; the other diaphragm in the series as a reference unit.
进一步,上述步骤1)中,所述SOI硅衬底的Device层厚度为0.5~10μm,取向为(100)或(110)或(111);SOI硅衬底的埋层SiO2厚度为0.1~1μm;SOI硅衬底的Handle层厚度为200~900μm,取向为(100)。 Further, in the above step 1), the thickness of the Device layer of the SOI silicon substrate is 0.5-10 μm, and the orientation is (100) or (110) or (111); the thickness of the buried layer SiO 2 of the SOI silicon substrate is 0.1-10 μm. 1μm; the thickness of the Handle layer of the SOI silicon substrate is 200~900μm, and the orientation is (100).
进一步,上述步骤2)中,作为底电极粘附层的二氧化钛薄膜的厚度为10~20nm;柔性振动压电隔膜的下电极金属薄膜厚度为100~500nm;下电极为分布在整个衬底上的连续薄膜。 Further, in the above step 2), the thickness of the titanium dioxide film used as the adhesion layer of the bottom electrode is 10-20nm; the thickness of the metal film of the bottom electrode of the flexible vibrating piezoelectric diaphragm is 100-500nm; the bottom electrode is distributed on the entire substrate. continuous film.
与现有技术相比,本发明具有以下有益效果: Compared with the prior art, the present invention has the following beneficial effects:
1.本发明两个相邻隔膜的上电极及其引线和焊盘,用以将交流激励信号施加给传感器,以及对传感器的频率响应进行测定,而两个相邻隔膜的串联通过连通的底电极实现(底电极为分布在整个衬底上的连续金 属薄膜,因此在制造工艺中有效避免了成本高、效果差的压电层图形化工艺。不用图形化压电层和底电极,缩短了制造时间,降低了制造成本,提高了加工成品率。 1. The upper electrodes of the two adjacent diaphragms of the present invention and their leads and pads are used to apply the AC excitation signal to the sensor and measure the frequency response of the sensor, while the series connection of the two adjacent diaphragms passes through the connected bottom Electrode realization (the bottom electrode is a continuous metal film distributed on the entire substrate, so the piezoelectric layer patterning process with high cost and poor effect is effectively avoided in the manufacturing process. No patterning of the piezoelectric layer and bottom electrode shortens the The manufacturing time is reduced, the manufacturing cost is reduced, and the processing yield is improved.
2.由于本发明参比单元的存在,降低了非特异性吸附、温度漂移等外界因素对传感器检测结果的影响,因而极大地提高了传感器的检测精度。 2. Due to the existence of the reference unit of the present invention, the influence of external factors such as non-specific adsorption and temperature drift on the detection results of the sensor is reduced, thereby greatly improving the detection accuracy of the sensor.
3.因为本发明采用了微加工工艺,所以相比于石英微天平(QCM)生物传感器,本发明的传感器不但灵敏度高,而且便于微小化和批量化制造,可以在一片硅片上制备出成百上千个传感器(具体数量视单个传感器的尺寸而定),而且为进一步将相关驱动和检测电路集成在硅片上提供了可能。 3. Because the present invention adopts the micromachining process, compared with the quartz microbalance (QCM) biosensor, the sensor of the present invention not only has high sensitivity, but also is convenient for miniaturization and mass production, and can be prepared on a silicon chip. Hundreds of sensors (the specific number depends on the size of a single sensor), and it is possible to further integrate related driving and detection circuits on silicon chips.
4.相比于柔性振动悬臂梁式传感器和QCM生物传感器,本发明的传感器在液相中检测时具有较高的品质因数。 4. Compared with the flexible vibrating cantilever sensor and the QCM biosensor, the sensor of the present invention has a higher quality factor when detecting in the liquid phase.
5.相比于QCM和薄膜体声波谐振器(FBAR)以及声表面波器件(SAW),本发明的传感器具有较低的谐振频率,有利于相关的驱动和检测电路设计。 5. Compared with QCM, film bulk acoustic resonator (FBAR) and surface acoustic wave device (SAW), the sensor of the present invention has a lower resonance frequency, which is beneficial to the design of related driving and detection circuits.
6.相比于柔性振动悬臂梁式传感器,本发明的传感器结构强度较高。 6. Compared with the flexible vibrating cantilever beam sensor, the sensor of the present invention has higher structural strength.
附图说明 Description of drawings
图1为一种串联柔性振动压电隔膜式生物传感器结构示意三视图;其中,(a)为俯视图,(b)为(a)的A-A’剖视图;(c)为(b)的B-B’剖视图; Figure 1 is a schematic three-view diagram of the structure of a series flexible vibration piezoelectric diaphragm biosensor; where (a) is a top view, (b) is the A-A' sectional view of (a); (c) is B of (b) -B' section view;
图2为另一种串联柔性振动压电隔膜式生物传感器结构示意三视 图;其中,(a)为俯视图,(b)为(a)的A-A’剖视图;(c)为(b)的B-B’剖视图; Fig. 2 is another schematic three views of the structure of another flexible vibration piezoelectric diaphragm biosensor in series; where (a) is a top view, (b) is the A-A' sectional view of (a); (c) is (b) BB' section view;
在图1和图2中:1为参比单元上电极;2为参比单元上电极引线;3为参比单元的上电极焊盘;4为探测单元上电极焊盘;5为探测单元上电极引线;6为探测单元上电极;7为生物探针分子;8为硅杯;9为氮化硅薄膜或金属铝薄膜;10Handle层;11为埋层二氧化硅;12为Device层;13为底电极粘附层;14为压电层;15为用作隔膜上电极引线和焊盘隔离层的氮化硅薄膜。 In Figure 1 and Figure 2: 1 is the upper electrode of the reference unit; 2 is the lead wire of the upper electrode of the reference unit; 3 is the pad of the upper electrode of the reference unit; 4 is the pad of the upper electrode of the detection unit; Electrode leads; 6 is the upper electrode of the detection unit; 7 is the biological probe molecule; 8 is the silicon cup; 9 is the silicon nitride film or metal aluminum film; 10Handle layer; 14 is a piezoelectric layer; 15 is a silicon nitride film used as an electrode lead and a pad isolation layer on the diaphragm.
图3柔性振动压电隔膜一阶柔性振动示意图; Fig. 3 Schematic diagram of first-order flexible vibration of flexible vibration piezoelectric diaphragm;
图4为本发明传感器的谐振峰及检测原理图。 Fig. 4 is a schematic diagram of the resonant peak and the detection principle of the sensor of the present invention.
具体实施方式 detailed description
本发明的该种串联柔性振动压电隔膜式生物传感器,包括SOI硅片,其中在SOI硅片的Device层12表面依次设有底电极粘附层13、压电层14;在压电层14上设置有两个相邻的柔性振动压电隔膜:隔膜一和隔膜二;柔性振动压电隔膜的上下电极分别设置于压电层14的上下表面;在所述SOI硅片的Handle层10表面附有一层氮化硅薄膜层9,其中SOI硅片的Handle层10和氮化硅薄膜层9在对应于所述隔膜一和隔膜二位置开设有硅杯8;隔膜一作为探测单元,在隔膜一上电极6上设置有生物探针分子7;隔膜二作为参比单元。所述柔性振动压电隔膜的上电极通过上电极引线连接有上电极焊盘。压电层14为采用溶胶凝胶法、磁控溅射或者脉冲激光沉积工艺制备的锆钛酸铅薄膜、钛酸锶钡薄膜或钛酸铋钠薄膜。柔性振动压电隔膜的下电极是粘附在底电极粘附层 13上的白金、铝或镍金属薄膜。在参比单元上电极引线2;为参比单元的上电极焊盘3与压电层14之间有用作隔膜上电极引线和焊盘隔离层的氮化硅薄膜15。 This kind of series flexible vibration piezoelectric diaphragm type biosensor of the present invention comprises SOI silicon chip, wherein on the Device layer 12 surface of SOI silicon chip, be provided with bottom electrode adhesion layer 13, piezoelectric layer 14 successively; On piezoelectric layer 14 There are two adjacent flexible vibrating piezoelectric diaphragms: diaphragm one and diaphragm two; the upper and lower electrodes of the flexible vibrating piezoelectric diaphragm are respectively arranged on the upper and lower surfaces of the piezoelectric layer 14; on the surface of the Handle layer 10 of the SOI silicon wafer A layer of silicon nitride film layer 9 is attached, wherein the Handle layer 10 of the SOI silicon chip and the silicon nitride film layer 9 are provided with a silicon cup 8 at the position corresponding to the diaphragm one and diaphragm two; the diaphragm one is used as a detection unit, and the diaphragm The first upper electrode 6 is provided with biological probe molecules 7; the second diaphragm is used as a reference unit. The upper electrode of the flexible vibrating piezoelectric diaphragm is connected to an upper electrode pad through an upper electrode lead wire. The piezoelectric layer 14 is a lead zirconate titanate film, strontium barium titanate film or bismuth sodium titanate film prepared by sol-gel method, magnetron sputtering or pulsed laser deposition process. The lower electrode of the flexible vibrating piezoelectric diaphragm is a platinum, aluminum or nickel metal thin film adhered to the bottom electrode adhesion layer 13. Between the upper electrode leads 2 of the reference unit; the upper electrode pad 3 of the reference unit and the piezoelectric layer 14, there is a silicon nitride film 15 used as an isolation layer for the upper electrode leads of the diaphragm and the pad.
本发明的柔性振动压电隔膜的形状可以是正方形或者圆形,如图1和图2所示。 The shape of the flexible vibrating piezoelectric membrane of the present invention can be square or circular, as shown in FIG. 1 and FIG. 2 .
在两个相邻隔膜的上电极焊盘上,施加交流激励电压,因整个底电极层是连通的,所以自然形成串联隔膜结构,并因压电效应而在两个隔膜中激起柔性振动。当交流激励电压频率和隔膜共振频率一致时,将在两个隔膜中产生可由测量电路检测到的压电谐振峰。 On the upper electrode pads of two adjacent diaphragms, an AC excitation voltage is applied. Since the entire bottom electrode layer is connected, a series diaphragm structure is naturally formed, and flexible vibrations are excited in the two diaphragms due to the piezoelectric effect. When the frequency of the AC excitation voltage coincides with the resonant frequency of the diaphragm, piezoelectric resonance peaks will be generated in the two diaphragms which can be detected by the measuring circuit.
下面结合附图给出本发明串联柔性振动压电隔膜式生物传感器制备方法的几种具体实施例: Several specific embodiments of the preparation method of the serial flexible vibration piezoelectric diaphragm type biosensor of the present invention are given below in conjunction with the accompanying drawings:
实施例1 Example 1
本实施例串联柔性振动压电隔膜式生物传感器结构示意图如图1所示。该实施例中每个传感器所包含的隔膜均为边长为200μm的正方形。 The structural schematic diagram of the series flexible vibration piezoelectric diaphragm biosensor of this embodiment is shown in FIG. 1 . The diaphragm contained in each sensor in this embodiment is a square with a side length of 200 μm.
具体制作工艺包括如下步骤: The specific manufacturing process includes the following steps:
1)采用SOI硅衬底,并规定正面与反面以便后文叙述,其在Device侧的表面为正面,在Handle侧的表面为反面。SOI硅衬底的Device层12厚度为1μm,取向为(100),埋层SiO2厚度为0.1μm,Handle层10厚度为400μm,取向为(100)。 1) The SOI silicon substrate is used, and the front and back are specified for later description. The surface on the Device side is the front, and the surface on the Handle side is the back. The thickness of the Device layer 12 of the SOI silicon substrate is 1 μm, the orientation is (100), the thickness of the buried layer SiO 2 is 0.1 μm, the thickness of the Handle layer 10 is 400 μm, and the orientation is (100).
2)在正面,采用射频磁控溅射法沉积二氧化钛(TiO2)薄膜作为底电极粘附层13,再沉积金属铂(Pt)薄膜作为底电极(即柔性振动压电隔膜的下电极)。底电极粘附层13和柔性振动压电隔膜的下电极均是在 射频磁控溅射仪中沉积所得,TiO2薄膜的厚度为10nm,Pt薄膜厚度为100nm。 2) On the front side, a titanium dioxide (TiO 2 ) film is deposited as the bottom electrode adhesion layer 13 by radio frequency magnetron sputtering, and a metal platinum (Pt) film is deposited as the bottom electrode (ie, the bottom electrode of the flexible vibrating piezoelectric diaphragm). Both the bottom electrode adhesion layer 13 and the bottom electrode of the flexible vibrating piezoelectric diaphragm are deposited in a radio frequency magnetron sputtering apparatus, the thickness of the TiO 2 film is 10nm, and the thickness of the Pt film is 100nm.
3)在正面,采用脉冲激光沉积工艺制备厚度为1μm厚的钛酸锶钡(BST)压电薄膜作为压电层14。 3) On the front side, a barium strontium titanate (BST) piezoelectric film with a thickness of 1 μm is prepared as the piezoelectric layer 14 by using a pulsed laser deposition process.
4)在正面,再采用LPCVD法沉积氮化硅(Si3N4)薄膜层,氮化硅薄膜的厚度为100nm。 4) On the front side, a silicon nitride (Si 3 N 4 ) film layer is deposited by LPCVD method, and the thickness of the silicon nitride film is 100nm.
5)在正面,利用光刻和干法刻蚀工艺对氮化硅薄膜进行图形化,暴露出执行柔性振动隔膜的压电层14,暴露出的压电层14与隔膜的大小和形状相同,也是边长为200μm的正方形。光刻时需注意晶向对准,使压电层暴露的正方形区域的边与衬底指示(100)取向的缺口边平行。 5) On the front side, the silicon nitride film is patterned using photolithography and dry etching processes to expose the piezoelectric layer 14 that performs the flexible vibration diaphragm. The exposed piezoelectric layer 14 is the same size and shape as the diaphragm, It is also a square with a side length of 200 μm. During photolithography, care should be taken to align the crystal orientation so that the side of the exposed square area of the piezoelectric layer is parallel to the notch side of the substrate indicating the (100) orientation.
6)在正面,利用光刻和射频磁控溅射并结合剥离工艺制备钛/黄金(Ti/Au)上电极(即探测单元上电极6)及上电极引线5与探测单元上电极焊盘4。钛层厚度为10nm,黄金层厚度为100nm。探测单元上电极6也是正方形,且与压电层14暴露的正方形区域对中,边互相平行。探测单元上电极6的边长为160μm,引线宽度为50μm,焊盘边长为150μm。同样的方式,在探测单元上电极6的旁边制备参比单元上电极1以及参比单元上电极引线2和参比单元的上电极焊盘3。 6) On the front side, the titanium/gold (Ti/Au) upper electrode (that is, the upper electrode 6 of the detection unit), the upper electrode lead 5 and the upper electrode pad 4 of the detection unit are prepared by photolithography and radio frequency magnetron sputtering combined with the lift-off process . The thickness of the titanium layer is 10nm, and the thickness of the gold layer is 100nm. The upper electrode 6 of the detection unit is also square and aligned with the exposed square area of the piezoelectric layer 14 with sides parallel to each other. The side length of the upper electrode 6 of the detection unit is 160 μm, the width of the lead wire is 50 μm, and the side length of the welding pad is 150 μm. In the same manner, the upper electrode 1 of the reference unit, the lead wire 2 of the upper electrode of the reference unit and the pad 3 of the upper electrode of the reference unit are prepared beside the upper electrode 6 of the detection unit.
7)在反面,采用LPCVD法沉积氮化硅(Si3N4)薄膜9,氮化硅薄膜9的厚度为100nm; 7) On the reverse side, a silicon nitride (Si 3 N 4 ) film 9 is deposited by LPCVD, and the thickness of the silicon nitride film 9 is 100 nm;
8)在反面,利用双面对准光刻和干法刻蚀工艺对氮化硅薄膜9进行图形化,暴露出与上电极相对应的Handle层10硅腐蚀窗口。窗口为正方形,且与上电极(包括探测单元上电极6和参比单元上电极1)对中, 边互相平行,窗口边长为760μm。 8) On the reverse side, the silicon nitride film 9 is patterned by double-side alignment photolithography and dry etching process, exposing the silicon etching window of the Handle layer 10 corresponding to the upper electrode. The window is square and centered with the upper electrode (including the upper electrode 6 of the detection unit and the upper electrode 1 of the reference unit), the sides are parallel to each other, and the side length of the window is 760 μm.
9)在反面,利用硅各向异性湿法腐蚀工艺去除Handle层10硅腐蚀窗口区域的硅,形成硅杯8,释放执行柔性振动隔膜。腐蚀液为30%氢氧化钾(KOH)溶液,腐蚀温度为80℃。腐蚀停止层为SOI衬底Device层12和Handle层10之间的埋层二氧化硅(SiO2)11。 9) On the reverse side, use an anisotropic silicon wet etching process to remove the silicon in the silicon etching window area of the Handle layer 10 to form a silicon cup 8 and release the flexible vibration diaphragm. The etching solution is 30% potassium hydroxide (KOH) solution, and the etching temperature is 80°C. The etch stop layer is a buried silicon dioxide (SiO 2 ) 11 between the Device layer 12 and the Handle layer 10 of the SOI substrate.
10)在正面,利用干法腐蚀去除表面氮化硅薄膜。 10) On the front side, the silicon nitride film on the surface is removed by dry etching.
11)两个相邻的隔膜构成一个串联柔性振动压电隔膜传感器。 11) Two adjacent diaphragms constitute a series flexible vibrating piezoelectric diaphragm sensor.
12)对传感器隔膜区域的压电层14进行热极化;然后对串联隔膜中用作探测单元的隔膜的表面进行功能化,固定的生物探针分子7为蛋白A,固定方法为物理吸附法,阻塞剂为酪蛋白的TBS(三羟甲基氨基甲烷缓冲液)缓冲剂。使用该传感器可检测山羊IgG。 12) Thermally polarize the piezoelectric layer 14 in the diaphragm area of the sensor; then functionalize the surface of the diaphragm used as the detection unit in the series diaphragm, immobilize the bioprobe molecule 7 as protein A, and the immobilization method is physical adsorption , the blocking agent is casein in TBS (tris-buffered saline) buffer. Goat IgG can be detected using this sensor.
实施例2 Example 2
图1给出了一种串联柔性振动压电隔膜式生物传感器结构示意三视图。该实例中每个传感器所包含的隔膜均为边长为200μm的正方形,具体制作工艺包括如下步骤: Fig. 1 shows a schematic three views of the structure of a series flexible vibrating piezoelectric diaphragm biosensor. In this example, the diaphragm contained in each sensor is a square with a side length of 200 μm. The specific manufacturing process includes the following steps:
1)采用SOI硅衬底,并规定正面与反面以便后文叙述,其在Device侧的表面为正面,在Handle侧的表面为反面。SOI硅衬底的Device层厚度为1μm,取向为(100),埋层SiO2厚度为0.1μm,Handle层厚度为400μm,取向为(100)。 1) The SOI silicon substrate is used, and the front and back are specified for later description. The surface on the Device side is the front, and the surface on the Handle side is the back. The thickness of the Device layer of the SOI silicon substrate is 1 μm, the orientation is (100), the thickness of the buried layer SiO 2 is 0.1 μm, the thickness of the Handle layer is 400 μm, and the orientation is (100).
2)在正面,采用射频磁控溅射法沉积二氧化钛(TiO2)薄膜作为粘附层,再沉积金属铂(Pt)薄膜作为底电极。粘附层和底电极均是在射频磁控溅射仪中沉积所得,TiO2薄膜的厚度为10nm,Pt薄膜厚度为 100nm。 2) On the front side, a titanium dioxide (TiO 2 ) film is deposited as an adhesion layer by radio frequency magnetron sputtering, and a metal platinum (Pt) film is deposited as a bottom electrode. Both the adhesion layer and the bottom electrode are deposited in a radio frequency magnetron sputtering apparatus, the thickness of the TiO 2 film is 10nm, and the thickness of the Pt film is 100nm.
3)在正面,采用脉冲激光沉积工艺制备厚度为1μm厚的钛酸锶钡(BST)压电薄膜。 3) On the front side, a barium strontium titanate (BST) piezoelectric film with a thickness of 1 μm was prepared by a pulsed laser deposition process.
4)采用LPCVD法沉积氮化硅(Si3N4)薄膜层,氮化硅薄膜的厚度为100nm。 4) A silicon nitride (Si 3 N 4 ) film layer is deposited by LPCVD method, and the thickness of the silicon nitride film is 100 nm.
5)在正面,利用光刻和干法刻蚀工艺对氮化硅薄膜进行图形化,暴露出执行柔性振动隔膜的压电层,暴露出的压电层与隔膜的大小和形状相同,也是边长为200μm的正方形。光刻时需注意晶向对准,使压电层暴露的正方形区域的边与衬底指示(100)取向的缺口边平行。 5) On the front side, the silicon nitride film is patterned using photolithography and dry etching processes to expose the piezoelectric layer that performs the flexible vibration diaphragm. The exposed piezoelectric layer is the same size and shape as the diaphragm and is also the side A square with a length of 200 μm. During photolithography, care should be taken to align the crystal orientation so that the side of the exposed square area of the piezoelectric layer is parallel to the notch side of the substrate indicating the (100) orientation.
6)在正面,利用光刻和射频磁控溅射并结合剥离工艺制备钛/黄金(Ti/Au)上电极及其引线与焊盘。钛层厚度为10nm,黄金层厚度为100nm。上电极也是正方形,且与压电层暴露的正方形区域对中,边互相平行。上电极的边长为160μm,引线宽度为50μm,焊盘边长为150μm。 6) On the front side, the titanium/gold (Ti/Au) upper electrode and its leads and pads are prepared using photolithography and radio frequency magnetron sputtering combined with a lift-off process. The thickness of the titanium layer is 10nm, and the thickness of the gold layer is 100nm. The upper electrode is also square and centered on the exposed square area of the piezoelectric layer with sides parallel to each other. The side length of the upper electrode is 160 μm, the width of the lead wire is 50 μm, and the side length of the pad is 150 μm.
7)采用LPCVD法沉积氮化硅(Si3N4)薄膜,氮化硅薄膜的厚度为100nm。 7) A silicon nitride (Si 3 N 4 ) film is deposited by LPCVD method, and the thickness of the silicon nitride film is 100 nm.
8)在反面,利用双面对准光刻和干法刻蚀工艺对氮化硅薄膜进行图形化,暴露出与上电极相对应的Handle层硅腐蚀窗口。窗口为正方形,且与上电极对中,边互相平行,窗口边长为760μm。 8) On the reverse side, use double-sided alignment photolithography and dry etching to pattern the silicon nitride film, exposing the silicon etching window of the Handle layer corresponding to the upper electrode. The window is square and centered with the upper electrode, the sides are parallel to each other, and the side length of the window is 760 μm.
9)在反面,利用硅各向异性湿法腐蚀工艺去除Handle层硅腐蚀窗口区域的硅,形成硅杯,释放执行柔性振动隔膜。腐蚀液为30%氢氧化钾(KOH)溶液,腐蚀温度为80℃。腐蚀停止层为SOI衬底Device层和Handle层之间的埋层SiO2。 9) On the reverse side, use the silicon anisotropic wet etching process to remove the silicon in the silicon etching window area of the Handle layer to form a silicon cup and release the flexible vibration diaphragm. The etching solution is 30% potassium hydroxide (KOH) solution, and the etching temperature is 80°C. The etch stop layer is the SiO 2 buried layer between the Device layer and the Handle layer of the SOI substrate.
10)在正面,利用干法腐蚀去除表面氮化硅薄膜。 10) On the front side, the silicon nitride film on the surface is removed by dry etching.
11)两个相邻的隔膜构成一个串联柔性振动压电隔膜传感器。 11) Two adjacent diaphragms constitute a series flexible vibrating piezoelectric diaphragm sensor.
12)对传感器隔膜区域的压电层进行热极化;然后对串联隔膜中用作探测单元的隔膜的表面进行功能化,固定的生物探针分子为蛋白A,固定方法为物理吸附法,阻塞剂为酪蛋白的TBS(三羟甲基氨基甲烷缓冲液)缓冲剂。使用该传感器可检测山羊IgG。 12) Thermally polarize the piezoelectric layer in the diaphragm area of the sensor; then functionalize the surface of the diaphragm used as the detection unit in the series diaphragm, the immobilized bioprobe molecule is protein A, and the immobilization method is physical adsorption method, blocking The agent is casein in TBS (tris-buffered saline). Goat IgG can be detected using this sensor.
实施例3 Example 3
图2给出了另一种串联柔性振动压电隔膜式生物传感器结构示意三视图。该实例中每个传感器所包含的隔膜均为直径为300μm的圆形,具体制作工艺包括如下步骤: Fig. 2 shows another schematic three views of the structure of another series flexible vibrating piezoelectric diaphragm biosensor. The diaphragm contained in each sensor in this example is a circle with a diameter of 300 μm. The specific manufacturing process includes the following steps:
1)采用SOI硅衬底,并规定正面与反面以便后文叙述,其在Device侧的表面为正面,在Handle侧10的表面为反面。SOI硅衬底的Device层12厚度为2μm,取向为(111),埋层SiO2厚度为0.5μm,Handle层厚度为400μm,取向为(111)。 1) The SOI silicon substrate is used, and the front and back are specified for later description. The surface on the Device side is the front, and the surface on the Handle side 10 is the back. The thickness of the Device layer 12 of the SOI silicon substrate is 2 μm, the orientation is (111), the thickness of the buried layer SiO 2 is 0.5 μm, the thickness of the Handle layer is 400 μm, and the orientation is (111).
2)在正面,采用射频磁控溅射法沉积二氧化钛(TiO2)薄膜作为底电极粘附层13,再沉积白金(Pt)薄膜作为底电极。底电极粘附层13和底电极均是在射频磁控溅射仪中沉积所得,TiO2薄膜的厚度为10nm,Pt薄膜厚度为100nm。 2) On the front side, deposit a titanium dioxide (TiO 2 ) film as the bottom electrode adhesion layer 13 by radio frequency magnetron sputtering, and then deposit a platinum (Pt) film as the bottom electrode. Both the bottom electrode adhesion layer 13 and the bottom electrode are deposited in a radio frequency magnetron sputtering apparatus, the thickness of the TiO 2 film is 10 nm, and the thickness of the Pt film is 100 nm.
3)在正面,采用射频磁控溅射法沉积制备厚度为2μm的氧化锌(ZnO)压电薄膜作为压电层14。 3) On the front side, a zinc oxide (ZnO) piezoelectric film with a thickness of 2 μm is deposited and prepared as the piezoelectric layer 14 by radio frequency magnetron sputtering.
4)在正面采用LPCVD法沉积氮化硅(Si3N4)薄膜层,氮化硅薄膜的厚度为100nm。 4) Deposit a silicon nitride (Si 3 N 4 ) thin film layer on the front surface by LPCVD method, and the thickness of the silicon nitride thin film is 100nm.
5)在正面,利用光刻和干法刻蚀工艺对氮化硅薄膜进行图形化,暴露出执行柔性振动隔膜的压电层14,暴露出的压电层14与隔膜的大小和形状相同,也是边长为300μm的圆形。 5) On the front side, the silicon nitride film is patterned using photolithography and dry etching processes to expose the piezoelectric layer 14 that performs the flexible vibration diaphragm. The exposed piezoelectric layer 14 is the same size and shape as the diaphragm, It is also a circle with a side length of 300 μm.
6)在正面,利用光刻和射频磁控溅射并结合剥离工艺制备参比单元和探测单元的钛/黄金(Ti/Au)上电极及其引线与焊盘。钛层厚度为10nm,黄金层厚度为100nm。上电极也是圆形,且与压电层暴露的圆形区域对中。上电极的直径为240μm,引线宽度为50μm,焊盘边长为150μm。 6) On the front side, the titanium/gold (Ti/Au) upper electrodes of the reference unit and the detection unit and their leads and pads are prepared by using photolithography and radio frequency magnetron sputtering combined with the lift-off process. The thickness of the titanium layer is 10nm, and the thickness of the gold layer is 100nm. The top electrode is also circular and is centered on the exposed circular area of the piezoelectric layer. The diameter of the upper electrode is 240 μm, the width of the lead wire is 50 μm, and the side length of the pad is 150 μm.
7)在反面,利用射频磁控溅射沉积铝(Al)薄膜层(即金属铝薄膜9),铝薄膜的厚度为200nm。 7) On the reverse side, an aluminum (Al) thin film layer (namely the metal aluminum thin film 9 ) is deposited by radio frequency magnetron sputtering, and the thickness of the aluminum thin film is 200 nm.
8)在反面,利用双面对准光刻和剥离工艺对铝薄膜进行图形化,暴露出与上电极相对应的Handle层10硅腐蚀窗口。窗口为圆形,且与各单元上电极对中,窗口直径为300μm。 8) On the reverse side, the aluminum thin film is patterned by double-side alignment photolithography and lift-off process, exposing the silicon etching window of the Handle layer 10 corresponding to the upper electrode. The window is circular and centered with the upper electrodes of each unit, and the diameter of the window is 300 μm.
9)在反面,利用硅干法腐蚀工艺去除Handle层10硅腐蚀窗口区域的硅,形成硅杯8,释放执行柔性振动隔膜。腐蚀气体为SF6/C4F8。腐蚀停止层为SOI衬底Device层12和Handle层10之间的埋层二氧化硅11。 9) On the reverse side, the silicon in the silicon etching window area of the Handle layer 10 is removed by a silicon dry etching process to form a silicon cup 8 to release the flexible vibration diaphragm. The corrosive gas is SF 6 /C 4 F 8 . The etch stop layer is the buried silicon dioxide 11 between the Device layer 12 and the Handle layer 10 of the SOI substrate.
10)在正面,利用干法腐蚀去除表面氮化硅薄膜。用作隔膜上电极引线和焊盘隔离层的氮化硅薄膜15保留。 10) On the front side, the silicon nitride film on the surface is removed by dry etching. The silicon nitride film 15 used as an isolation layer for electrode leads and pads on the diaphragm remains.
11)两个相邻的隔膜构成一个串联柔性振动压电隔膜式传感器。 11) Two adjacent diaphragms form a series flexible vibration piezoelectric diaphragm sensor.
12)对传感器隔膜区域的压电层进行热极化;然后对串联隔膜中用作探测单元的隔膜的表面进行功能化,固定的生物探针分子7为蛋白A,固定方法为物理吸附法,阻塞剂为酪蛋白的TBS(三羟甲基氨基甲烷缓 冲液)缓冲剂。使用该传感器可检测山羊IgG。 12) Thermally polarize the piezoelectric layer in the diaphragm area of the sensor; then functionalize the surface of the diaphragm used as the detection unit in the series diaphragm, the immobilized bioprobe molecule 7 is protein A, and the immobilization method is physical adsorption method, The blocking agent was casein in TBS (tris-buffered saline). Goat IgG can be detected using this sensor.
检测时,如图3所示,功能化的探测单元上的生物探针分子将会对目标生物分子进行捕获,这种捕获体现为传感器表面附加质量的改变,进而导致其谐振频率发生改变,通过对比探测单元和参比单元谐振峰的移动,即可对目标生物分子进行检测。 During detection, as shown in Figure 3, the bioprobe molecules on the functionalized detection unit will capture the target biomolecules. This capture is reflected in the change of the additional mass on the surface of the sensor, which in turn leads to a change in its resonance frequency. Through By comparing the movement of the resonance peaks of the detection unit and the reference unit, the target biomolecules can be detected.
图4为本发明的谐振峰及检测原理图。其中f1和f2分别为传感器进行检测前探测单元和参比单元的一阶谐振峰,f’1和f’2分别为传感器进行检测后探测单元和参比单元的一阶谐振峰。则由捕获目标分子所导致的频率移动量为Δf=(f1-f′1)-(f2-f′2)=(22040-21170)-(24350-24180)=700Hz。 Fig. 4 is a schematic diagram of the resonant peak and detection principle of the present invention. Among them, f 1 and f 2 are the first-order resonance peaks of the detection unit and the reference unit before the sensor detects, and f' 1 and f' 2 are the first-order resonance peaks of the detection unit and the reference unit after the sensor detects, respectively. Then the frequency shift caused by capturing the target molecule is Δf=(f 1 -f′ 1 )-(f 2 −f′ 2 )=(22040-21170)-(24350-24180)=700Hz.
综上所述,本发明的传感器从原理和结构设计上,巧妙地避免了成本高、效果差的压电层图形化工艺,同时,参比单元的存在极大的提高了传感器的检测精度。另外,相比于QCM生物传感器,本发明所述的传感器更为灵敏,用于液相原位检测时品质因数高,而且便于微小化和批量化制造;相比于柔性振动悬臂梁式传感器,本发明所述的传感器结构牢固,用于液相原位检测时品质因数高。 To sum up, the sensor of the present invention skillfully avoids the costly and poorly effective piezoelectric layer patterning process in terms of principle and structural design, and at the same time, the existence of the reference unit greatly improves the detection accuracy of the sensor. In addition, compared with the QCM biosensor, the sensor of the present invention is more sensitive, has a high quality factor when used for liquid phase in-situ detection, and is convenient for miniaturization and batch manufacturing; compared with the flexible vibrating cantilever beam sensor, The sensor of the invention has firm structure and high quality factor when used for liquid phase in-situ detection.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210448539.4A CN102937607B (en) | 2012-11-09 | 2012-11-09 | A kind of series-connection flexible vibration piezoelectric diaphragm type biosensor and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210448539.4A CN102937607B (en) | 2012-11-09 | 2012-11-09 | A kind of series-connection flexible vibration piezoelectric diaphragm type biosensor and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102937607A CN102937607A (en) | 2013-02-20 |
CN102937607B true CN102937607B (en) | 2016-08-10 |
Family
ID=47696518
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201210448539.4A Expired - Fee Related CN102937607B (en) | 2012-11-09 | 2012-11-09 | A kind of series-connection flexible vibration piezoelectric diaphragm type biosensor and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102937607B (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2922107B1 (en) * | 2014-03-18 | 2017-05-03 | Alcatel Lucent | Apparatus for harvesting energy |
CN106788318B (en) * | 2016-11-22 | 2020-03-06 | 山东科技大学 | A method for fabricating thin-film bulk acoustic resonators on flexible substrates |
US10601397B2 (en) * | 2017-03-24 | 2020-03-24 | Zhuhai Crystal Resonance Technologies Co., Ltd. | RF resonator electrode and membrane combinations and method of fabrication |
CN107643228B (en) * | 2017-08-31 | 2021-04-27 | 中国船舶重工集团公司第七一九研究所 | Preparation method of chip for measuring mercury vapor and use method of sensor |
CN108447979B (en) * | 2018-03-08 | 2019-09-20 | 清华大学 | Piezoelectric film sensor and preparation method thereof |
CN113970585A (en) * | 2021-09-03 | 2022-01-25 | 江苏大学 | Enhanced adsorption electrochemical immunosensor and preparation method and detection method thereof |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1517706A (en) * | 2003-01-24 | 2004-08-04 | Lg | Material Sensing Sensors and Modules Using Thin Film Bulk Acoustic Resonators |
CN1894583A (en) * | 2003-12-30 | 2007-01-10 | 英特尔公司 | Biosensor utilizing a resonator having a functionalized surface |
-
2012
- 2012-11-09 CN CN201210448539.4A patent/CN102937607B/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1517706A (en) * | 2003-01-24 | 2004-08-04 | Lg | Material Sensing Sensors and Modules Using Thin Film Bulk Acoustic Resonators |
CN1894583A (en) * | 2003-12-30 | 2007-01-10 | 英特尔公司 | Biosensor utilizing a resonator having a functionalized surface |
Non-Patent Citations (3)
Title |
---|
Biosensors Based on Flexural Mode Piezo-Diaphragm;Zhihong Wang et al.;《Proceedings of the 3rd IEEE Int. Conf. on Nano/Micro Engineered and Molecular Systems》;20080109;第374-378页 * |
Development of biosensor based on micro-diaphragm;Sui-qiong Li et al.;《Proceedings of SPIE》;20041231;第5389卷;第306-313页 * |
ferroelectric thin film diaphragm resonators for bio-detection;SHAOKANG LI et al.;《Ferroelectrics》;20111231;第410卷;第145-151页 * |
Also Published As
Publication number | Publication date |
---|---|
CN102937607A (en) | 2013-02-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102937607B (en) | A kind of series-connection flexible vibration piezoelectric diaphragm type biosensor and preparation method thereof | |
US7468608B2 (en) | Device and method for detecting a substance of a liquid | |
JP5431301B2 (en) | Physical / biochemical sensor using multi-size piezoelectric microcantilever resonator array and method for manufacturing the same | |
KR100479687B1 (en) | Cantilever sensor and method for fabrication thereof | |
JP2000180250A (en) | Mass sensor and mass detection method | |
JP2004510145A (en) | Microfabricated ultrasound arrays for use as resonance sensors | |
CN101246162A (en) | Antibody Detection Biochip Using Piezoelectric Thin Film Bulk Acoustic Wave Device | |
WO2000026636A1 (en) | Qcm sensor | |
JP2000321117A (en) | Mass sensor and method for detecting mass | |
US11346814B2 (en) | Resonator for the detection of a mass analyte and method for operation of the resonator | |
JP3933340B2 (en) | Multi-channel QCM sensor device | |
CN102414855B (en) | Monolithic fbar-cmos structure such as for mass sensing | |
CN209624463U (en) | Piezoelectric sensor chip and piezoelectric sensor | |
US12296361B2 (en) | High frequency ultrasonic transducer and method of fabrication | |
US20130045474A1 (en) | Devices and methods for detecting and monitoring hiv and other infections and diseases | |
US8004021B2 (en) | Microfabricated devices and method for fabricating microfabricated devices | |
CN102608172A (en) | Film bulk acoustic galloping resonance biochemistry sensor with direct-current electrodes | |
JP2004361269A (en) | Multichannel sensor and method for manufacturing the same and biosensor system and method for manufacturing the same | |
US20210265974A1 (en) | Film bulk acoustic sensors using thin ln-lt layer | |
Lin et al. | Label-free detection of prostate-specific antigen with FBAR-based sensor with oriented antibody immobilization | |
CN115127594A (en) | Temperature and humidity sensor based on functional electrode layer and preparation method thereof | |
US9140671B2 (en) | Quantitative sensor and manufacturing method thereof | |
KR100450261B1 (en) | High sensitive cantilever sensor and method for fabrication thereof | |
Zhang et al. | Biochemical Detection Based on Nanoparticle Induced Ultrasonic Rayleigh Scattering | |
CN102476788B (en) | Curved plate wave sensitivity sensor and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20160810 Termination date: 20191109 |
|
CF01 | Termination of patent right due to non-payment of annual fee |