CN102933713B - Viral-based transient-expression vector system that allows multiple applications - Google Patents
Viral-based transient-expression vector system that allows multiple applications Download PDFInfo
- Publication number
- CN102933713B CN102933713B CN201180027897.1A CN201180027897A CN102933713B CN 102933713 B CN102933713 B CN 102933713B CN 201180027897 A CN201180027897 A CN 201180027897A CN 102933713 B CN102933713 B CN 102933713B
- Authority
- CN
- China
- Prior art keywords
- virus
- ctv
- plant
- viral
- infection
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 230000003612 virological effect Effects 0.000 title description 15
- 239000013604 expression vector Substances 0.000 title description 3
- 230000010474 transient expression Effects 0.000 title description 3
- 239000013598 vector Substances 0.000 claims abstract description 41
- 239000013603 viral vector Substances 0.000 claims abstract description 30
- 206010042566 Superinfection Diseases 0.000 claims abstract description 27
- 108090000623 proteins and genes Proteins 0.000 claims abstract description 27
- 235000020971 citrus fruits Nutrition 0.000 claims abstract description 17
- 241000207199 Citrus Species 0.000 claims abstract description 15
- 238000000034 method Methods 0.000 claims abstract description 14
- 102000004169 proteins and genes Human genes 0.000 claims abstract description 8
- 241000700605 Viruses Species 0.000 claims description 94
- 241000196324 Embryophyta Species 0.000 claims description 64
- 208000015181 infectious disease Diseases 0.000 claims description 37
- 101710107921 Secreted protein BARF1 Proteins 0.000 claims description 20
- 239000002773 nucleotide Substances 0.000 claims description 4
- 125000003729 nucleotide group Chemical group 0.000 claims description 4
- 230000007717 exclusion Effects 0.000 abstract description 17
- 230000009286 beneficial effect Effects 0.000 abstract description 2
- 230000014509 gene expression Effects 0.000 abstract description 2
- 201000010099 disease Diseases 0.000 abstract 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 abstract 1
- 238000001890 transfection Methods 0.000 abstract 1
- 108091005804 Peptidases Proteins 0.000 description 18
- 239000004365 Protease Substances 0.000 description 18
- 102100037486 Reverse transcriptase/ribonuclease H Human genes 0.000 description 18
- 230000037430 deletion Effects 0.000 description 14
- 238000012217 deletion Methods 0.000 description 14
- 101710125418 Major capsid protein Proteins 0.000 description 9
- 210000000605 viral structure Anatomy 0.000 description 7
- 230000034303 cell budding Effects 0.000 description 6
- 101710132601 Capsid protein Proteins 0.000 description 5
- 101710094648 Coat protein Proteins 0.000 description 5
- 102100021181 Golgi phosphoprotein 3 Human genes 0.000 description 5
- 108060004795 Methyltransferase Proteins 0.000 description 5
- 101710141454 Nucleoprotein Proteins 0.000 description 5
- 108700026244 Open Reading Frames Proteins 0.000 description 5
- 101710083689 Probable capsid protein Proteins 0.000 description 5
- 101800001476 Viral genome-linked protein Proteins 0.000 description 5
- 238000002474 experimental method Methods 0.000 description 5
- 238000012986 modification Methods 0.000 description 5
- 230000004048 modification Effects 0.000 description 5
- 101800000605 p13 Proteins 0.000 description 5
- 101800002723 p18 Proteins 0.000 description 5
- 101710169873 Capsid protein G8P Proteins 0.000 description 4
- 208000003322 Coinfection Diseases 0.000 description 4
- 102100038980 Exosome complex component CSL4 Human genes 0.000 description 4
- 101710156564 Major tail protein Gp23 Proteins 0.000 description 4
- 239000002299 complementary DNA Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 241000723873 Tobacco mosaic virus Species 0.000 description 3
- 230000002458 infectious effect Effects 0.000 description 3
- 230000007486 viral budding Effects 0.000 description 3
- 210000002845 virion Anatomy 0.000 description 3
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 2
- 101710163595 Chaperone protein DnaK Proteins 0.000 description 2
- 238000002965 ELISA Methods 0.000 description 2
- 101710178376 Heat shock 70 kDa protein Proteins 0.000 description 2
- 101710152018 Heat shock cognate 70 kDa protein Proteins 0.000 description 2
- 241000258937 Hemiptera Species 0.000 description 2
- 102000016397 Methyltransferase Human genes 0.000 description 2
- 108010076039 Polyproteins Proteins 0.000 description 2
- 208000035415 Reinfection Diseases 0.000 description 2
- 238000012300 Sequence Analysis Methods 0.000 description 2
- 241000272534 Struthio camelus Species 0.000 description 2
- 230000003321 amplification Effects 0.000 description 2
- 239000012634 fragment Substances 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- 210000001938 protoplast Anatomy 0.000 description 2
- 230000010076 replication Effects 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 238000013519 translation Methods 0.000 description 2
- 230000009385 viral infection Effects 0.000 description 2
- 241001124076 Aphididae Species 0.000 description 1
- 101710118769 Cap-associated protein CAF20 Proteins 0.000 description 1
- 235000005979 Citrus limon Nutrition 0.000 description 1
- 244000131522 Citrus pyriformis Species 0.000 description 1
- 241000710177 Citrus tristeza virus Species 0.000 description 1
- 241000710151 Closterovirus Species 0.000 description 1
- 208000031886 HIV Infections Diseases 0.000 description 1
- 241000238631 Hexapoda Species 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 108091028043 Nucleic acid sequence Proteins 0.000 description 1
- 101800004803 Papain-like protease Proteins 0.000 description 1
- 101710177166 Phosphoprotein Proteins 0.000 description 1
- 101710192141 Protein Nef Proteins 0.000 description 1
- 101150023654 Pss gene Proteins 0.000 description 1
- 241000710960 Sindbis virus Species 0.000 description 1
- 210000001744 T-lymphocyte Anatomy 0.000 description 1
- 240000006909 Tilia x europaea Species 0.000 description 1
- 102100029887 Translationally-controlled tumor protein Human genes 0.000 description 1
- 108700005077 Viral Genes Proteins 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000037433 frameshift Effects 0.000 description 1
- 230000009368 gene silencing by RNA Effects 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 230000012010 growth Effects 0.000 description 1
- 238000011081 inoculation Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000002015 leaf growth Effects 0.000 description 1
- 108020004999 messenger RNA Proteins 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000035772 mutation Effects 0.000 description 1
- 108091027963 non-coding RNA Proteins 0.000 description 1
- 102000042567 non-coding RNA Human genes 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 230000001850 reproductive effect Effects 0.000 description 1
- 238000003757 reverse transcription PCR Methods 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 101150012509 sub gene Proteins 0.000 description 1
- 230000009885 systemic effect Effects 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- 230000010464 virion assembly Effects 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8201—Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
- C12N15/8202—Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation by biological means, e.g. cell mediated or natural vector
- C12N15/8203—Virus mediated transformation
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8241—Phenotypically and genetically modified plants via recombinant DNA technology
- C12N15/8261—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
- C12N15/8271—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
- C12N15/8279—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance
- C12N15/8283—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance for virus resistance
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Genetics & Genomics (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Biotechnology (AREA)
- Zoology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Chemical & Material Sciences (AREA)
- Wood Science & Technology (AREA)
- General Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Molecular Biology (AREA)
- Plant Pathology (AREA)
- Microbiology (AREA)
- Biophysics (AREA)
- Physics & Mathematics (AREA)
- Cell Biology (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Virology (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Peptides Or Proteins (AREA)
Abstract
Description
相关申请的交叉参考Cross References to Related Applications
本申请根据美国法典第35篇第119条(35USC 119)要求2010年8月8日提交的美国专利申请第61/321,970号和2011年2月8日提交的美国专利申请第61/440,445号的优先权。This application claims U.S. Patent Application No. 61/321,970, filed August 8, 2010, and U.S. Patent Application No. 61/440,445, filed February 8, 2011, under Title 35, United States Code, Section 119 (35USC 119) priority.
发明领域 field of invention
发明的初始实施例与一个基于病毒的瞬时表达载体有关,该载体可以长时间在子系中表达外来基因,从而允许在同一时间或者稍后对同个子系使用相似的载体。其他实施例与病毒载体结构和方法有关,这些方法可以避免排除双重感染,从而使载体的应用多样化。The original embodiment of the invention concerned a viral-based transient expression vector that could express a foreign gene in a daughter line for an extended period of time, allowing similar vectors to be used on the same daughter line at the same time or at a later time. Other embodiments relate to viral vector structures and methods that avoid ruling out superinfection, thereby diversifying the vector's applications.
背景技术 Background technique
基于病毒的瞬时表达载体是世界上植物分子生物学实验所用的常用工具,它可以快速表达或者沉默植物中的基因。它们也是植物基因组学中的重要工具,可以筛选某功能的位置序列。但是,只能从草本植物的有限数量的类似病毒中开发可用的载体。比较著名的例子有基于烟草花叶病毒(TWV)的载体(Dawson et al.,1989;Donson et al.,1991;Shivprasad et al.,1999;Rabindran和Dawson,2001)。木本植物的挑战更为特殊。即使存在可以感染树木的载体,系统感染和分析树木中表达基因所需的时间一般都超出了已知基于病毒的载体的稳定性。但是生殖限制以及改良树木所需的几十年时间带来的挑战增加了有用的基于病毒的载体的需求。Virus-based transient expression vectors are common tools used in plant molecular biology experiments around the world, which can rapidly express or silence genes in plants. They are also important tools in plant genomics, allowing the screening of sequence sequences for a function. However, usable vectors can only be developed from a limited number of similar viruses in herbaceous plants. Well-known examples are tobacco mosaic virus (TWV)-based vectors (Dawson et al., 1989; Donson et al., 1991; Shivprasad et al., 1999; Rabindran and Dawson, 2001). The challenges of woody plants are even more special. Even when vectors exist that can infect trees, the time required to systematically infect and analyze genes expressed in trees generally exceeds the stability of known virus-based vectors. But challenges posed by reproductive constraints and the decades it takes to improve trees have increased the need for useful virus-based vectors.
柑橘特里斯德察病毒(CTV)是复杂的长线病毒家族中的一员,该家族的病毒有单分、双分和三分的基因组,由部分昆虫载体传递,包括蚜虫,烟粉虱和粉蚧(Bar-Josephet al.,1979;Dolja et al.,1994;Agranovsky,1996;Karasev,2000)。CTV的长弯曲病毒子(2000nm X 10-12nm)被两个外壳蛋白包被:主要的外壳蛋白(CP)覆盖大约97%的病毒子,而非主要的外壳蛋白(CPm)负责将另一个末端包入壳内。CTV的单链RNA基因大约为19.3kb,被分成十二个开放阅读框(ORFs)(Pappu et al.,1994;Karasev et al.,1995)(图1)。ORF 1a编码一个349kDa大小的多蛋白质,此蛋白包括两个类木瓜蛋白酶的蛋白酶区域以及类转甲基酶和类解旋酶区域。多蛋白的翻译被认为通过在类聚合酶区域(ORF 1b)的a+1移码可以继续进行。ORFs 1a和1b加上非编码末端都是原生质体复制所必需的(Satyanarayana et al.,1999)。十个3′ORFs通过3′共末端亚基因(sg)mRNAs表达(Hilf et al.,1995;Karasev et al.,1997)。除了两个外壳蛋白质外,p65(HSP70同源)和p61是有效的病毒体组装所需的,而且是病毒在原生质体之间传代所需的,从而丰富柠檬树感染的接芽(Satyanarayana et al.,2000)。p6蛋白质是植物感染所需的,同时p20和p23蛋白质以及CP是RNA沉默的抑制子(Lu et al.,2004)。Citrus tristetravirus (CTV) is a member of a complex family of long-teloviruses with monopartite, bipartite, and tripartite genomes that are transmitted by partial insect vectors, including aphids, whitefly and whitefly Scale (Bar-Joseph et al., 1979; Dolja et al., 1994; Agranovsky, 1996; Karasev, 2000). The long curved virion (2000nm X 10-12nm) of CTV is coated by two coat proteins: the major coat protein (CP) covers approximately 97% of the virion, while the non-major coat protein (CPm) is responsible for wrapping the other end Packed into the shell. The single-stranded RNA gene of CTV is about 19.3 kb, which is divided into twelve open reading frames (ORFs) (Pappu et al., 1994; Karasev et al., 1995) (Figure 1). ORF 1a encodes a 349 kDa polyprotein that includes two papain-like protease domains and transmethylase-like and helicase-like domains. Translation of the polyprotein is thought to proceed through an a+1 frameshift in the polymerase-like region (ORF 1b). Both ORFs 1a and 1b plus the non-coding ends are required for protoplast replication (Satyanarayana et al., 1999). Ten 3' ORFs are expressed by 3' co-terminal subgene (sg) mRNAs (Hilf et al., 1995; Karasev et al., 1997). In addition to the two coat proteins, p65 (HSP70 homolog) and p61 are required for efficient virion assembly and for passage of the virus between protoplasts, thereby enriching lemon tree-infected buds (Satyanarayana et al ., 2000). The p6 protein is required for plant infection, while the p20 and p23 proteins and CP are suppressors of RNA silencing (Lu et al., 2004).
CTV可以感染并在一些被删除部分病毒基因的柑橘属果树变种中移动。CTV在病毒体复制或者形成中不需要的基因组的3’部分中包含五个基因,即p6、p33、p18、p13和p20。p33、p18和p13在此类病毒群的其他成员中并不保守,而且被认为已经进化从而保证与柑橘属宿主的特异相互作用。我们发现,p33、p18或者p13ORF中的删除分别都会导致病毒感染、扩增和在柑橘属果树之间的传播能力发生不严重的丢失(Tatineniet al.,2008)。而且p33、p18或者p13基因中任意组合的删除会使病毒从整体上侵染柑橘属果树,包括所有三个基因的删除。绿色荧光蛋白标记的CTV突变和p33ORF或者p33、p18和p13ORF中的删除证明这些删除变异的移动和分布与野生型的病毒类似。CTV can infect and move in some citrus varieties in which some viral genes have been deleted. CTV contains five genes, p6, p33, p18, p13 and p20, in the 3' portion of the genome not required for virion replication or formation. p33, p18, and p13 are not conserved among other members of this group of viruses and are thought to have evolved to ensure specific interactions with citrus hosts. We found that deletions in the p33, p18, or p13 ORFs, respectively, resulted in a modest loss of virus infection, amplification, and transmissibility among citrus trees (Tatineni et al., 2008). Moreover, deletion of any combination of p33, p18, or p13 genes allowed the virus to infect citrus trees as a whole, including deletion of all three genes. GFP-tagged CTV mutations and deletions in p33 ORF or p33, p18 and p13 ORF demonstrated that the movement and distribution of these deletion variants were similar to wild-type viruses.
在双重感染排除或者同源干扰中,先前存在的感染会阻止同个或者相近的病毒的二次感染,但是不能影响无关病毒的感染。此现象首先由McKinney(McKinney,1926;1929)在两个基因型的烟草花叶病毒(TMV)之间发现,随后也在噬菌体(Dulbecco,1952;Visconti,1953)中发现。自此之后,经常也在动物(Adams和Brown,1985;Bratt和Rubin,1968;Delwart和Panganiban,1989;Geib et al.,2003;Johnston et al.,1974;Karpf et al.,1997;Lee et al.,2005;Singh et al.,1997;Steck和Rubin,1966;Strauss和Strauss,1994;Whitaker-Dowling et al.,1983;Wildum et al.,2006)和植物(Bennett,1951;Fulton,1978;Gal-On和Shiboleth,2005;Hull和Plaskitt,1970;Hull,2002;Lecoq et al.,1991;Salaman,1933;Walkey et al.,1992)病毒中观察到这一现象。在植物病毒学中,同源干扰最先被用作病毒相关性的检测,用来确定两个病毒分离株是同个病毒的“品系”或者是代表着不同的病毒(McKinney,1929;Salaman,1933)。随后,这项技术被发展成一个管理工具,通过使用温和病毒分离株有目的地感染植物来减少更严重的病毒分离株的感染以及造成的损失,从而减少了农作物的损失,这被称为“交叉保护”(见Gal-On和Shiboleth,2005以及Hull,2002的综述)。In superinfection exclusion or cognate interference, preexisting infection prevents secondary infection by the same or a similar virus but cannot affect infection by an unrelated virus. This phenomenon was first discovered by McKinney (McKinney, 1926; 1929) between two genotypes of tobacco mosaic virus (TMV), and subsequently also in phages (Dulbecco, 1952; Visconti, 1953). Since then, often also in animals (Adams and Brown, 1985; Bratt and Rubin, 1968; Delwart and Panganiban, 1989; Geib et al., 2003; Johnston et al., 1974; Karpf et al., 1997; Lee et al. al., 2005; Singh et al., 1997; Steck and Rubin, 1966; Strauss and Strauss, 1994; Whitaker-Dowling et al., 1983; Wildum et al., 2006) and plants (Bennett, 1951; Fulton, 1978 ; Gal-On and Shiboleth, 2005; Hull and Plaskitt, 1970; Hull, 2002; Lecoq et al., 1991; Salaman, 1933; Walkey et al., 1992) viruses. In plant virology, homologous interference was first used as a test of viral relatedness to determine whether two virus isolates were the same "strain" of the virus or represented different viruses (McKinney, 1929; Salaman, 1933). Subsequently, the technology was developed into a management tool to reduce crop loss by using mild virus isolates to purposely infect plants to reduce infection and damage caused by more severe virus isolates, which has been termed " Cross-protection" (see Gal-On and Shiboleth, 2005 and Hull, 2002 for review).
附图说明 Description of drawings
图1中(A)为野生型CTV T36(T36CTV9R)基因组织的简图。(B)和(C)分别为Δp33CTV结构和被前蛋白酶区域取代的杂交结构图示。空白方框表示ORF及其翻译产物。PRO,类木瓜蛋白酶区域;MT,转甲基酶;HEL,解旋酶;RdRp,一个RNA依赖的RNA聚合酶;HSP70h,HSP70同源物;CPm,非主要的外壳蛋白质;CP,主要外壳蛋白质。黑框分别表示T36基因组中替代的T68-1序列。箭头指出p33 ORF删除的位置。(A) in Fig. 1 is a schematic diagram of the gene organization of wild-type CTV T36 (T36CTV9R). (B) and (C) are illustrations of the structure of Δp33CTV and the hybridized structure substituted by the pro-protease domain, respectively. Blank boxes indicate ORFs and their translation products. PRO, papain-like domain; MT, methyltransferase; HEL, helicase; RdRp, an RNA-dependent RNA polymerase; HSP70h, HSP70 homologue; CPm, non-major coat protein; CP, major coat protein . The black boxes represent the alternative T68-1 sequences in the T36 genome, respectively. Arrows indicate the location of p33 ORF deletion.
图2显示了被来自T68-1分离株(黑框)蛋白酶区域进入到T36基因组替代的杂交病毒的图示。下方:感染T36分离株或者单独感染杂交L1L2h(第2、3道)检测病毒在植物中的增殖;第4道表示的是L1L2h在预感染T36的植物中的增殖。通过反转录PCR反应来分析病毒扩增,其中每个反应混合物中都有1套引物:一套是T36蛋白酶特异性,另一套是针对T68的蛋白酶区域,从而区分T36和L1L2h。Figure 2 shows a schematic representation of the hybrid virus replaced by the protease region from the T68-1 isolate (black box) into the T36 genome. Bottom: Virus multiplication in plants infected with T36 isolate or hybrid L1L2h alone (lanes 2, 3); lane 4 shows L1L2h multiplication in plants pre-infected with T36. Viral amplification was analyzed by reverse transcription-PCR reactions in which each reaction mixture contained 1 set of primers: one set specific for T36 protease and the other set targeting the protease region of T68 to differentiate T36 from L1L2h.
发明详述Detailed description of the invention
病毒倾向于通过相关的病毒来防止双重感染。加入基于病毒的瞬时载体一般会阻止在同样的树木中使用该载体或者相关载体。发明者现在也意识到目标生物已经被感染有一个相似的载体之后,有时候在目标生物(例如树木或者植物)中加入载体仍然具有意义。例如,发明者发现如果一个植物丢失了正在表达的外来基因,那么能够加入载体将会很必要;如果发现一个更好的基因在树木中表达;和/或者如果需要表达不止一个基因。同样,发明者也意识到有必要将一个病毒品系的载体应用到一个已感染有该品系的野生型的植物中。发明者发现对病毒载体的相应部分作出目标明确的修改可以避免双重感染排除现象。Viruses tend to prevent superinfection by related viruses. Addition of a virus-based transient vector generally prevents the use of that vector or related vectors in the same tree. The inventors also now realize that it sometimes still makes sense to add a vector to a target organism (such as a tree or plant) after the target organism is already infected with a similar vector. For example, the inventors discovered that it would be necessary to be able to add a vector if a plant lost a foreign gene being expressed; if a better gene was found to be expressed in the tree; and/or if more than one gene needed to be expressed. Likewise, the inventors have also recognized the need to apply the vector of a viral strain to a wild-type plant infected with that strain. The inventors have found that targeted modifications to the corresponding parts of the viral vector can avoid the superinfection exclusion phenomenon.
此处描述的本发明的相应实施例为基于柑橘特里斯德察病毒(CTV)和一个正链RNA长线型病毒构造的病毒结构,它们能够在已经被一个相似品系的病毒感染的植物中进行双重感染。发明者发现通过修改野生型CTV病毒来构造的病毒结构能够解决双重感染排除的问题,比如,让他们的前蛋白酶被一个不同病毒品种的前蛋白酶序列所替代。The corresponding embodiment of the invention described here is a virus structure based on citrus tristetra virus (CTV) and a positive-sense RNA long-line virus construction, which are capable of double infection in plants already infected by a virus of a similar strain. Infect. The inventors found that the viral structure constructed by modifying wild-type CTV viruses could solve the problem of superinfection exclusion, for example, by having their proprotease replaced by a proprotease sequence from a different virus species.
根据其他的具体实施例,本发明也关系到了基于其他柑橘特里斯德察病毒(CTV)和一个正链RNA长线型病毒构造的病毒结构,这些病毒能够实现之后引入的基于CTV病毒结构的双重感染。发明者发现通过修改野生型CTV病毒来构造的病毒结构无法对野生型病毒的感染提供保护,比如这些病毒缺乏编码功能性p33蛋白质的基因。当连续的植物接芽使用缺乏p33蛋白质的病毒结构和野生型CTV时,植物初次感染具有删除变异的病毒结构,此次感染对野生型病毒的二次感染的建立没有显著的影响。因而,删除p33ORF会产生一个CTV的“非交叉保护”变异。According to other embodiments, the present invention also relates to viral constructs based on other citrus tristetraviruses (CTV) and a positive-sense RNA long line virus, which are capable of superinfection with subsequently introduced CTV viral constructs . The inventors found that the virus structure constructed by modifying the wild-type CTV virus, such as the virus lacking the gene encoding the functional p33 protein, could not protect against the infection of the wild-type virus. When successive plant buds were used with viral constructs lacking the p33 protein and wild-type CTV, primary infection of plants with deletion mutant viral constructs had no significant effect on the establishment of secondary infection with wild-type virus. Thus, deletion of the p33 ORF produces a "non-cross-protecting" variant of CTV.
在之前,发明者检查了柑橘特里斯德察病毒(CTV)不同基因型在阻止其他病毒分离株双重感染能力之间的关系。只有同个CTV品系的分离株之间才会发生双重感染排除。当使用同个品系的分离株来进行按次序的植物接芽时,首次感染会提供危险分离株的全面防护。注意到CTV病毒之间的完全交叉保护的一个例子是在初次感染了属于同个T36品系的野生型CTV的植物中,表达GFP的CTV感染被完全抑制。Previously, the inventors examined the relationship between the ability of different genotypes of citrus tristetravirus (CTV) to prevent superinfection by other virus isolates. Exclusion of superinfection occurred only between isolates of the same CTV strain. When using isolates of the same line for sequential plant budding, the first infection provides complete protection against the dangerous isolate. An example of complete cross-protection between CTV viruses was noted when infection with GFP-expressing CTV was completely suppressed in plants primed with wild-type CTV belonging to the same T36 line.
根据一个实施例,发明者检查了基于CTV的T36品系的感染cDNA克隆构造的病毒结构的双重感染排除。结果表明,通过修改野生型CTV病毒构造的病毒结构不能为野生型病毒感染提供双重感染排除,例如这些病毒缺乏编码功能性p33蛋白质的基因或者有一个来自于其他CTV品系(T68)的前蛋白酶区域替代物。当其中一种病毒结构被用于柑橘属果树的初次接芽,之后使用野生型CTV接芽,植物初次感染的变异病毒对野生型病毒的二次感染没有显著的影响。因而,p33ORF删除以及前蛋白酶区域的替代会产生CTV的“非交叉保护”变异。这些病毒结构可以被用作植物载体,从而实现多样化应用。According to one example, the inventors examined the superinfection exclusion of viral constructs based on infectious cDNA clonal constructs of the T36 strain of CTV. The results showed that superinfection exclusion was not provided for wild-type virus infection by modifying the viral structure of the wild-type CTV virus construct, for example, these viruses lacked the gene encoding a functional p33 protein or had a proprotease region from another CTV strain (T68) substitution. When one of the virus constructs was used for primary budding of citrus trees, followed by budding with wild-type CTV, the primary infection of plants with the mutant virus had no significant effect on secondary infection with the wild-type virus. Thus, deletion of the p33 ORF and substitution of the pro-protease region produces "non-cross-protecting" variants of CTV. These virus constructs can be used as plant vectors to achieve diverse applications.
在另一个实施例中,发明关系到一个病毒载体结构,此处该病毒结构被设计成使用来自于一个常用病毒品种不同品系的分离株的前蛋白酶来替代病毒载体的内源前蛋白酶。CTV的品系被定义为根据1a ORF核苷酸序列分析病毒从系统上的不同品系(Hilf etal.,2005)。使用这一定义,T36和T68是品系。每个病毒样本都被称为这些品系中的一个的分离株。每个品系都被命名为“类型分离株”,并且由与类型成员序列差异较小的分离株组成。在一个更为具体的实施例中,病毒载体是前蛋白酶序列被另一个CTV品系的分离株取代的CTV分离株。在一个比前一个更加具体的实施例中,CTV载体是根据T36品系分离株构造的,它的前蛋白酶序列被T68CTV品系的一个分离株的前蛋白酶序列所替代。在一个更具体的实施例中,被替代的蛋白酶序列是类木瓜蛋白酶区域。In another embodiment, the invention relates to a viral vector construct where the viral construct is engineered to replace the endogenous proprotease of the viral vector with a proprotease from an isolate of a different strain of a commonly used virus species. Strains of CTV are defined as different strains from the system according to the 1a ORF nucleotide sequence analysis of the virus (Hilf et al., 2005). Using this definition, T36 and T68 are lines. Each virus sample is referred to as an isolate of one of these lines. Each line was named a "type isolate" and consisted of isolates with minor sequence differences from members of the type. In a more specific embodiment, the viral vector is a CTV isolate in which the proprotease sequence has been replaced by an isolate of another CTV strain. In a more specific embodiment than the previous one, the CTV vector is constructed based on an isolate of the T36 strain, whose proprotease sequence is replaced by that of an isolate of the T68 CTV strain. In a more specific embodiment, the substituted protease sequence is a papain-like region.
根据另一个实施例,发明与一个减轻连续病毒接芽带来的CTV病毒载体双重感染排除的方法有关。该方法包括让目标植物首次接芽p33ORF丢失或者被破坏的CTV病毒载体,从而使首次CTV病毒载体感染目标植物而产生一个已感染的植物,然后让这个已感染的植物接芽第二个CTV病毒载体,该载体或有或没有pss基因或者已破坏的p33基因。第二个CTV病毒载体能够感染已经被感染的植物。在具体的实施例中,目标植物是柑橘属果树。在另一个具体的实施例中,首次和/或者二次CTV载体被构造成包括一个编码异源蛋白质的可表达序列。According to another embodiment, the invention relates to a method of alleviating the exclusion of CTV viral vector superinfection by continuous viral budding. The method comprises inoculating the target plant for the first time with a CTV virus vector that has lost or destroyed the p33 ORF, so that the first CTV virus vector infects the target plant to produce an infected plant, and then allowing the infected plant to inoculate the second CTV virus A vector with or without the pss gene or a disrupted p33 gene. The second CTV viral vector is capable of infecting already infected plants. In a specific embodiment, the target plant is a citrus fruit tree. In another specific embodiment, primary and/or secondary CTV vectors are configured to include an expressible sequence encoding a heterologous protein.
根据另一个实施例,发明与一个减轻连续病毒接芽带来的CTV病毒载体双重感染排除的方法有关。该方法包括让目标植物相继接芽第一个和第二个病毒载体。第一个病毒载体被构造成一个前蛋白酶序列被一个来自于另一个CTV品系分离株的同源前蛋白酶序列所替代。在具体的实施例中,第一个和第二个病毒载体来自于一个常用的病毒品种。在一个更具体的实施例中,第一个和第二个病毒载体包含有来自于不同CTV品系的分离株的前蛋白酶区域。在具体的实施例中,目标生物是植物,而且在一个更为具体的实施例中,该植物是柑橘属果树。在另一个具体的实施例中,第一个和/或者第二个CTV载体被构造成包括一个编码异源蛋白质的可表达序列。According to another embodiment, the invention relates to a method of alleviating the exclusion of CTV viral vector superinfection by continuous viral budding. The method involves sequentially inoculating a target plant with a first and a second viral vector. The first viral vector was constructed so that a pro-protease sequence was replaced by a homologous pro-protease sequence from an isolate of another CTV strain. In specific embodiments, the first and second viral vectors are from a commonly used virus species. In a more specific embodiment, the first and second viral vectors comprise proprotease regions from isolates of different CTV strains. In a specific embodiment, the target organism is a plant, and in a more specific embodiment, the plant is a citrus fruit tree. In another specific embodiment, the first and/or the second CTV vector is configured to include an expressible sequence encoding a heterologous protein.
发明者意识到有时候在目标生物已经被感染有一个相似的载体之后,在目标生物The inventors realized that sometimes after the target organism had been infected with a similar vector, the target organism
(例如树木或者植物)中加入载体仍然具有意义。例如,发明者发现如果一个植物中的载体丢失了正在表达的外来基因,那么能够加入载体将会很必要;如果发现一个更好的基因在树木中表达;和/或者如果需要表达不止一个基因。同样,发明者也意识到有必要将一个病毒品系的载体应用到一个已感染有该品系的野生型的植物中。发明者发现对病毒载体的相应部分作出目标明确的修改可以避免双重感染排除现象。(such as trees or plants) is still meaningful. For example, the inventors discover that it would be necessary to be able to add a vector if a vector in a plant is missing a foreign gene being expressed; if a better gene is found to be expressed in trees; and/or if expression of more than one gene is desired. Likewise, the inventors have also recognized the need to apply the vector of a viral strain to a wild-type plant infected with that strain. The inventors have found that targeted modifications to the corresponding parts of the viral vector can avoid the superinfection exclusion phenomenon.
发明者发现通过修改野生型CTV病毒来构造的病毒结构能够解决双重感染排除的问题,比如,让它们的前蛋白酶被一个不同病毒品种的前蛋白酶序列所替代。The inventors found that the virus structure constructed by modifying wild-type CTV viruses can solve the problem of superinfection exclusion, for example, by having their proprotease replaced by a proprotease sequence from a different virus species.
检查了不同基因型柑橘特里斯德察病毒(CTV)在阻止其他病毒分离株双重感染的能力之间的关系。结果表明,双重感染排除只在同个CTV品系的分离株之间发生。当使用同个品系的分离株来进行按次序的植物接芽时,第一次感染为危险分离株提供了全面的排除。注意到CTV病毒之间的完全交叉保护的一个例子是在初次感染了属于同个T36品系的野生型CTV的植物中,表达GFP的CTV感染被完全抑制(Folimonova et al.,2010)。The relationship between different genotypes of citrus tristetravirus (CTV) in their ability to prevent superinfection by other virus isolates was examined. The results showed that superinfection exclusion only occurred between isolates of the same CTV strain. When using isolates of the same line for sequential plant budding, the first infection provides complete exclusion of at-risk isolates. An example of complete cross-protection between CTV viruses was noted when infection with GFP-expressing CTV was completely inhibited in plants primed with wild-type CTV belonging to the same T36 line (Folimonova et al., 2010).
根据一个实施例,发明者检查了基于CTV的T36品系的感染cDNA克隆构造的病毒结构的双重感染排除。结果表明,通过修改野生型CTV病毒构造的病毒结构,例如将L1L2蛋白酶区域替代成一个来自不同病毒品系的同源序列,使得构造的病毒载体即使在已经被同个病毒品系感染过的植物中也能避免双重感染排除。相应地,可以将本发明的病毒载体实施例用作之前已感染过同品系病毒的树木的载体,例如在田野中生长的树木通过病毒的自然传播被感染或者由于早期使用一个基于同个病毒品系构造的CTV载体而导致的树木感染,从而避免二次病毒载体感染的排除。According to one example, the inventors examined the superinfection exclusion of viral constructs based on infectious cDNA clonal constructs of the T36 strain of CTV. The results showed that by modifying the virus structure of the wild-type CTV virus construct, such as replacing the L1L2 protease region with a homologous sequence from a different virus strain, the constructed virus vector could be used even in plants that had been infected by the same virus strain. Double infection can be avoided. Accordingly, viral vector embodiments of the present invention can be used as vectors for trees that have been previously infected with a virus of the same strain, such as trees growing in the field infected by natural transmission of the virus or due to earlier use of a construct based on the same strain of virus. The tree infection caused by the CTV vector, so as to avoid the exclusion of secondary virus vector infection.
在另一个实施例中,发明关系到一个病毒载体结构,此处该病毒结构被设计成使用来自于一个常用病毒品种不同品系的分离株的前蛋白酶来替代病毒载体的内源前蛋白酶。CTV的品系被定义为根据1a ORF核苷酸序列分析病毒从系统上的不同品系(Hilf etal.,2005)。使用这一定义,T36和T68是品系。每个病毒样本都被称为这些品系中的一个的分离株。每个品系都被命名为“类型分离株”,并且由与类型成员序列差异较小的分离株组成。在一个更为具体的实施例中,病毒载体是前蛋白酶序列被另一个CTV品系的分离株取代的CTV分离株。在一个比前一个更加具体的实施例中,CTV载体是根据T36品系分离株构造的,它的前蛋白酶序列被T68CTV品系的一个分离株的前蛋白酶序列所替代。在一个更具体的实施例中,被替代的蛋白酶序列是L1L2区域。In another embodiment, the invention relates to a viral vector construct where the viral construct is engineered to replace the endogenous proprotease of the viral vector with a proprotease from an isolate of a different strain of a commonly used virus species. Strains of CTV are defined as different strains from the system according to the 1a ORF nucleotide sequence analysis of the virus (Hilf et al., 2005). Using this definition, T36 and T68 are lines. Each virus sample is referred to as an isolate of one of these lines. Each line was named a "type isolate" and consisted of isolates with minor sequence differences from members of the type. In a more specific embodiment, the viral vector is a CTV isolate in which the proprotease sequence has been replaced by an isolate of another CTV strain. In a more specific embodiment than the previous one, the CTV vector is constructed based on an isolate of the T36 strain, whose proprotease sequence is replaced by that of an isolate of the T68 CTV strain. In a more specific embodiment, the substituted protease sequence is the L1L2 region.
根据另一个实施例,发明与一个减轻连续病毒接芽带来的CTV病毒载体双重感染排除的方法有关。在一个具体的实施例中,该方法可能包括让目标植物接芽第一个基于CTV的第一个品系构造的CTV病毒载体,从而使首次CTV病毒载体感染目标植物而产生一个已感染的植物,然后让这个已感染的植物接芽第二个基于同个CTV品系但是已被修改成包括一个不同病毒品系(第二个)的前蛋白酶序列的CTV病毒载体。第二个CTV病毒载体也可以包括表达一个可以获得有益结果的蛋白质的基因。在一个具体的实施例中,第一个品系是T36,第二个品系是T68。第二个CTV病毒载体被允许感染已经感染过的植物。在一个具体的实施例中,目标植物是柑橘属果树。在另一个具体的实施例中,第一个和/或者第二个CTV载体被构造成包括一个编码异源蛋白质的可表达序列。According to another embodiment, the invention relates to a method of alleviating the exclusion of CTV viral vector superinfection by continuous viral budding. In a specific embodiment, the method may comprise allowing the target plant to inoculate the first CTV viral vector based on the first strain of CTV, whereby the first CTV viral vector infects the target plant to produce an infected plant, This infected plant was then inoculated with a second CTV viral vector based on the same CTV strain but modified to include the proprotease sequence of a different virus strain (the second). The second CTV viral vector may also include a gene for expressing a protein that yields beneficial results. In a specific embodiment, the first line is T36 and the second line is T68. The second CTV viral vector was allowed to infect already infected plants. In a specific embodiment, the target plant is a citrus fruit tree. In another specific embodiment, the first and/or the second CTV vector is configured to include an expressible sequence encoding a heterologous protein.
根据另一个实施例,发明与一个减轻病毒载体双重感染排除的方法有关。该方法包括让目标植物接芽一个已经感染过目标植物的病毒载体品系。第二个病毒载体被构造成一个前蛋白酶序列被一个来自于另一个CTV品系分离株的同源前蛋白酶序列所替代。在具体的实施例中,第一个和第二个病毒载体来自于一个常用的病毒品种。在一个更具体的实施例中,第一个和第二个病毒载体包含有来自于不同CTV品系的分离株的前蛋白酶区域。在一个更为具体的实施例中,前蛋白酶序列包含一个完整前蛋白序列片断,分别由800个碱基对(bp)或者更少、700bp或者更少、600bp或者更少、500bp或者更少、400bp或者更少、300bp或者更少、200bp或者更少或者100bp或者更少组成。或者,载体由一个至少为100bp、200bp、300bp、400bp或者500bp片段的完整前蛋白酶序列组成。已知前蛋白酶序列例子的无限制描述在下文的参考章节进行讨论。在一个具体的实施例中,目标生物是植物,而在一个更为具体的实施例中,目标生物是树,而再一个更加具体的实施例中,目标生物是柑橘属果树。在另一个实施例中,第一个/第二个CTV载体被构造出包括一个编码异源蛋白质的可表达序列。According to another embodiment, the invention relates to a method of alleviating superinfection exclusion with viral vectors. The method involves inoculating a target plant with a viral vector strain that has already infected the target plant. A second viral vector was constructed in which a pro-protease sequence was replaced by a homologous pro-protease sequence from an isolate of another CTV strain. In specific embodiments, the first and second viral vectors are from a commonly used virus species. In a more specific embodiment, the first and second viral vectors comprise proprotease regions from isolates of different CTV strains. In a more specific embodiment, the protease sequence comprises a complete preprotein sequence fragment, respectively consisting of 800 base pairs (bp) or less, 700 bp or less, 600 bp or less, 500 bp or less, 400bp or less, 300bp or less, 200bp or less or 100bp or less composition. Alternatively, the vector consists of an entire proprotease sequence that is at least a 100bp, 200bp, 300bp, 400bp or 500bp fragment. A non-limiting description of examples of known proprotease sequences is discussed in the References section below. In a specific embodiment, the target organism is a plant, and in a more specific embodiment, the target organism is a tree, and in a still more specific embodiment, the target organism is a citrus tree. In another embodiment, the first/second CTV vector is constructed to include an expressible sequence encoding a heterologous protein.
此处使用的病毒品种是一群具有相似特征的病毒,而且可以感染相同(或者近似)的宿主品种。参考至“病毒品系”表示被分为一类的病毒,例如CTV或者其他病毒品种,但是他们的基因序列或者一些其他特征与被分成同一类的其他病毒不同。A virus species as used herein is a group of viruses that have similar characteristics and can infect the same (or similar) host species. Reference to a "virus strain" indicates viruses that are grouped into one class, such as CTV or other virus species, but whose genetic sequence or some other characteristic differs from other viruses that are grouped into the same class.
实施例: Example:
实施例1:CTV ΔP33结构Embodiment 1: CTV ΔP33 structure
发明者检查了几个病毒结构,所有的病毒都包含基于T36CTV的感染cDNA克隆而构造的p33ORF删除(Tatineni et al.,2008),从而可以防止表达GFP的CTV的双重感染。结果表明这些删除变异可以在树木中扩增,也能从整体上侵染大部份柑橘属变种树(Tatineni et al.,2008)。为了评估一个初次感染了CTV p33删除变异的宿主植物在同个宿主中双重感染的GFP标记CTV的能力,小的大叶来檬树首先接芽变异的病毒。作为此实验的对照组,将另外一组的植物接芽野生型CTV,参见图1,表示了野生型CTV(A)和p33删除变异结构(B)的图示。对于这两组,通过嫁接病毒感染的组织到树干上来建立初次感染。修剪上方的叶子来促使新的叶子生成。接芽后六周,通过ELISA来确认新的叶子的系统感染。然后在植物中加入第二个含有CTV-BC5/GFP的树皮组织。当嫁接愈合之后,再次修剪上方的叶子来诱导新的生长。第二次新叶子长成之后(开始于6周),通过观察新生部分的树皮组织中的GFP荧光来确定病毒对树木的双重感染。结果野生型CTV完全地阻止了GFP表达病毒的双重感染:首次感染了CTV9R的植物中未检测到GFP荧光。相反地,首次感染了缺乏功能性p33蛋白质的变异病毒的植物都显示了GFP荧光,与没有初次感染而且只接芽了实验病毒CTVBC5/GFP的树木一样。这表明删除变异对GFP标记的CTV感染没有影响。The inventors examined several virus constructs, all of which contained p33ORF deletions constructed based on infectious cDNA clones of T36CTV (Tatineni et al., 2008), thus preventing superinfection of GFP-expressing CTV. The results show that these deletion variants can be amplified in trees, and can also infect most of the citrus trees as a whole (Tatineni et al., 2008). To assess the ability of a host plant primary infected with a CTV p33 deletion variant to be dual-infected with GFP-tagged CTV in the same host, small lime trees were first inoculated with the mutant virus. As a control group for this experiment, another group of plants were inoculated with wild-type CTV, see Figure 1, which shows a schematic representation of wild-type CTV (A) and p33 deletion variant structure (B). For both groups, primary infection was established by grafting virus-infected tissue onto tree trunks. Trim the upper leaves to encourage new foliage. Six weeks after budding, systemic infection of new leaves was confirmed by ELISA. The plants were then added with a second bark tissue containing CTV-BC5/GFP. When the graft has healed, trim the upper leaves again to induce new growth. After the second new leaf growth (starting at 6 weeks), superinfection of the trees with the virus was determined by observing the GFP fluorescence in the bark tissue of the newly formed part. Results Wild-type CTV completely prevented superinfection by GFP expressing virus: GFP fluorescence was not detected in plants first infected with CTV9R. Conversely, plants that were first infected with a mutant virus lacking a functional p33 protein all showed GFP fluorescence, as did trees that were not primed and only inoculated with the experimental virus CTVBC5/GFP. This indicates that deletion variants have no effect on GFP-tagged CTV infection.
实施例2:前蛋白酶区域被取代的CTV结构Example 2: CTV structure with substituted protease region
在一个类似的实验中,发明者检查了前蛋白酶区域(CTV基因组中核苷酸位置108-3040)被取代成T68-1基因组相应区域的杂交病毒结构,杂交结构的其余部分包含T36的序列(该结构的图示见图1(C))。T68-1表示CTV T68品系中的一个分离株。与上述实验相类似,该结构被用于初次接芽柑橘属植物,之后(通过ELISA确认以建立感染之后)再使用CTV-BC5/GFP。野生型CTV被用来初次接芽对照树木(如上述实验)。第二次接芽之后的6周,通过观察新生部分的树皮组织中的GFP荧光来确定病毒对树木的双重感染。与预期的一样,野生型CTV完全地阻止了GFP表达病毒的双重感染:首次感染了CTV9R的植物中未检测到GFP荧光。相比之下,首次感染了含有替代的前蛋白酶区域的病毒的植物都显示了GFP荧光,与没有初次感染而且只接芽了实验病毒CTV BC5/GFP的树木一样。这表明杂交病毒对GFP标记的CTV感染没有影响。In a similar experiment, the inventors examined hybrid virus structures in which the proprotease region (nucleotide positions 108-3040 in the CTV genome) was replaced with the corresponding region of the T68-1 genome, the remainder of the hybrid structure containing the sequence of T36 (the A schematic representation of the structure is shown in Fig. 1(C)). T68-1 represents an isolate in the CTV T68 line. Similar to the experiments described above, this construct was used for primary budding of citrus plants, followed later (after confirmation by ELISA to establish infection) with CTV-BC5/GFP. Wild-type CTVs were used to prime control trees (as in experiments described above). Six weeks after the second inoculation, superinfection of the trees with the virus was determined by observing the GFP fluorescence in the bark tissue of the nascent part. As expected, wild-type CTV completely prevented superinfection with GFP-expressing viruses: no GFP fluorescence was detected in plants first infected with CTV9R. In contrast, plants primed with a virus containing an alternative protease domain all showed GFP fluorescence, as did trees that were not primed and only budded with the experimental virus CTV BC5/GFP. This indicates that the hybrid virus has no effect on GFP-tagged CTV infection.
实施例3:蛋白酶区域被替代的病毒可以解除排除。最近,实验研究了前蛋白酶区域的修改是否会为病毒提供解除排除的能力。我们构造了一个杂交病毒结构,在这个病毒中,含有两个前蛋白酶L1和L2(CTV基因组中的nts位置位108-3039)的T36cDNA克隆中的一个区域被T68品系的T68-1分离株的相应区域所取代,杂交结构的其余部分则包含T36的序列(图2)。使用描述的病毒结构来再次接芽已经感染有T36CTV病毒的植物。如我们之前证明的一样,初次感染CTV分离株之后,可以完全地排除再次感染同个品系的另一个分离株。例如,感染T36品系的一个分离株可以排除再次感染T36品系的其他分离株,而且可以排除感染基于T36的GFP标记的病毒。而且,感染T36分离株可以完全排除二次感染基于T36分离株构造的杂交病毒,在这个病毒中3’基因组部分的8个基因的序列被取代(单个基因序列或者几个基因组合的序列)成T30或者T68品系分离株的相应序列。明显地,T68前蛋白酶区域被取代成T36基因组的杂交病毒被证明有一个特殊的行为:变异的病毒能够从整体上感染已经被母本T36病毒感染过的植物,而且病毒积累的水平和感染相同病毒的健康植物的病毒积累水平一样(图1;比较第4道和对照接芽的其他道)。Example 3: Viruses with substituted protease regions can be de-excluded. Recently, it was experimentally investigated whether modification of the pro-protease region would provide the virus with the ability to de-exclude. We constructed a hybrid virus construct in which a region in the T36 cDNA clone containing the two proproteases L1 and L2 (nts position 108-3039 in the CTV genome) was replaced by the T68-1 isolate of the T68 strain The corresponding region was substituted, and the rest of the hybridized structure contained the sequence of T36 (Fig. 2). Plants already infected with T36CTV virus were revaccinated using the described virus constructs. As we demonstrated previously, following primary infection with a CTV isolate, reinfection with another isolate of the same strain can be completely ruled out. For example, infection with one isolate of the T36 strain can rule out reinfection with other isolates of the T36 strain, and infection with T36-based GFP-tagged viruses can be ruled out. Moreover, infection with the T36 isolate completely ruled out secondary infection with a hybrid virus constructed on the basis of the T36 isolate, in which the sequence of eight genes in the 3' genome portion was replaced (single gene sequence or sequence of several genes combined) into Corresponding sequences of T30 or T68 line isolates. Apparently, hybrid viruses in which the T68 pro-protease region was replaced by the T36 genome proved to have a peculiar behavior: the mutated virus was able to infect plants already infected by the parental T36 virus as a whole, and the virus accumulated to the same level as the infection Healthy plants of the virus had the same level of virus accumulation (Figure 1; compare lane 4 with other lanes of control buds).
参考文献references
Adams,R.H.,and D.T.Brown.1985.BHK cells expressing Sindbis Virus-inducedhomologous interference allow the translation of nonstructural genes of superinfectingvirus.J.Virol.54:351-357.Adams, R.H., and D.T.Brown.1985.BHK cells expressing Sindbis Virus-inducedhomologous interference allow the translation of nonstructural genes of superinfectingvirus.J.Virol.54:351-357.
Bratt,M.A.,and H.Rubin.1968.Specific interference among strains of Newcastledisease virus 3 Mechanism of interference.Virology 35:395-407.Bratt, M.A., and H. Rubin. 1968. Specific interference among strains of Newcastledisease virus 3 Mechanism of interference. Virology 35: 395-407.
Dawson,W.O.,Lewandowski,D.J.,Hilf,M.E.,Bubrick,P.,Raffo,A.J.,Shaw,J.J.,Grantham,G.L.,Desjardins,P.R.,1989.A Tobacco mosaic virus-hybrid expresses and losesan added gene.Virology 172,285-292.Dawson, W.O., Lewandowski, D.J., Hilf, M.E., Bubrick, P., Raffo, A.J., Shaw, J.J., Grantham, G.L., Desjardins, P.R., 1989. A Tobacco mosaic virus-hybrid expresses and losesan added gene. Virology 172, 285-292.
Delwart,E.L.,and A.T.Panganiban.1989.Role of reticuloendotheliosis virusenvelope glycoprotein in superinfection interference.J.Virol.63:273-280.Delwart, E.L., and A.T.Panganiban.1989.Role of reticuloendotheliosis virusenvelope glycoprotein in superinfection interference.J.Virol.63:273-280.
Donson,J.,Kearney,C.M.,Hilf,M.E.,Dawson,W.O.,1991.Systemic expression of abacterial gene by a Tobacco mosaic virus-based vector.Proc.Natl.Acad.Sci.USA 88,7204-7208.Donson, J., Kearney, C.M., Hilf, M.E., Dawson, W.O., 1991. Systemic expression of bacterial gene by a Tobacco mosaic virus-based vector. Proc. Natl. Acad. Sci. USA 88, 7204-7208.
Dulbecco,R.1952.Mutual exclusion between related phages.J.Bacteriol.63:209-217.Dulbecco, R. 1952. Mutual exclusion between related phages. J. Bacteriol. 63: 209-217.
Fulton,R.W.1978.Superinfection by strains of tobacco streak virus.Virology85:1-8.Fulton, R.W.1978. Superinfection by strains of tobacco streak virus. Virology85: 1-8.
Gal-On,A.,and Y.M.Shiboleth.2005.Cross protection,p.261-288.In G.Loebensteinand J.P.Carr(ed.),Natural resistance mechanisms of plants to viruses.Springer,Dordrecht,The Netherlands.Gal-On, A., and Y.M. Shiboleth. 2005. Cross protection, p.261-288. In G. Loebenstein and J.P. Carr (ed.), Natural resistance mechanisms of plants to viruses. Springer, Dordrecht, The Netherlands.
Geib,T.,C.Sauder,S.Venturelli,S.Hassler,P.Staeheli,and M.Schwemmle.2003.selective virus resistance conferred by expression of borna disease virus nucleocapsidcomponents.J.Virol.77:4283-4290.Geib, T., C. Sauder, S. Venturelli, S. Hassler, P. Staeheli, and M. Schwemmle. 2003. Selective virus resistance conferred by expression of borna disease virus nucleocapsid components. J. Virol. 77: 4283-4290.
Hilf,M.E.,Karasev,A.V.,Pappu,H.R.,Gumpf,D.J.,Niblett,C.L.,Garnsey,S.M.,1995.Characterization of Citrus tristeza virus subgenomic RNAs in infected tissue.Virology 208,576-582.Hilf, M.E., Karasev, A.V., Pappu, H.R., Gumpf, D.J., Niblett, C.L., Garnsey, S.M., 1995. Characterization of Citrus tristeza virus subgenomic RNAs in infected tissue. Virology 208, 576-582.
Hilf,M.E.,V.A.Mavrodieva,and S.M.Garnsey.2005.Genetic marker analysis of aglobal collection of isolates of Citrus tristeza virus:Characterization and distribution of CTVgenotypes and association with symptoms.Phytopathology 95:909-917.Hilf, M.E., V.A. Mavrodieva, and S.M. Garnsey. 2005. Genetic marker analysis of aglobal collection of isolates of Citrus tristeza virus: Characterization and distribution of CTVgenotypes and association with symptoms. Phytopathology 09-99:
Hull,R.,and A.Plaskitt.1970.Electron microscopy on the behaviour of two strainsof alfalfa mosaic virus in mixed infections.Virology 42:773-776.Hull, R., and A. Plaskitt. 1970. Electron microscopy on the behavior of two strains of alfalfa mosaic virus in mixed infections. Virology 42: 773-776.
Hull,R.2002.Matthews’Plant Virology.Academic Press,New York.Hull, R. 2002. Matthews' Plant Virology. Academic Press, New York.
Johnston,R.E.K.Wan,and H.R.Bose.1974.Homologous interference induced bySindbis virus.J.Virol.14:1076-1082.Johnston, R.E.K. Wan, and H.R. Bose. 1974. Homologous interference induced by Sindbis virus. J. Virol. 14: 1076-1082.
Karasev,A.V.,2000.Genetic diversity and evolution of closteroviruses.Annu.Rev.Phytopathol.38,293-324.Karasev, A.V., 2000. Genetic diversity and evolution of closteroviruses. Annu. Rev. Phytopathol. 38, 293-324.
Karasev,A.V.,Boyko,V.P.,Gowda,S.,Nikolaeva,O.V.,Hilf,M.E.,Koonin,E.V.,Niblett,C.L.,Cline,K.,Gumpf,D.J.,Lee,R.F.,Garnsey,S.M.,Lewandowski,D.J.,Dawson,W.O.,1995.Complete sequence of the Citrus tristeza virus RNA genome.Virology 208,511-520.This reference teaches portions of the CTV virus including the leader proteasesequence.It is incorporated herein to show an example of the sequences that can bereplaced in one genome of a first isolate with cognate sequences in another isolate.See alsoGenbank Accession Nos.EU937521.1;AF001623.1;DQ272579.1 for sequence informationon the CTV genome of different strains.Karasev, A.V., Boyko, V.P., Gowda, S., Nikolaeva, O.V., Hilf, M.E., Koonin, E.V., Niblett, C.L., Cline, K., Gumpf, D.J., Lee, R.F., Garnsey, S.M., Lewandowski, D.J., Dawson, W.O., 1995. Complete sequence of the Citrus tristeza virus RNA genome. Virology 208, 511-520. This reference teaches portions of the CTV virus including the leader protease sequence. It is incorporated herein th cequer ed at show an example in one genome of a first isolate with cognate sequences in another isolate. See also Genbank Accession Nos.EU937521.1; AF001623.1; DQ272579.1 for sequence information on the CTV genome of different strains.
Karpf,A.R.,E.Lenches,E.G.Strauss,J.H.Strauss,and D.T.Brown.1997.Karpf, A.R., E. Lenches, E.G. Strauss, J.H. Strauss, and D.T. Brown. 1997.
Superinfection exclusion of alphaviruses in three mosquito cell lines persistently infectedwith Sindbis virus.J.Virol.71:7119-7123.Superinfection exclusion of alphaviruses in three mosquito cell lines persistently infected with Sindbis virus. J. Virol. 71: 7119-7123.
Lecoq,H.,J.M.Lemaire,and C.Wipf-Scheibel.1991.Control of zucchini yellowmosaic virus in squash by cross protection.Plant Dis.75:208-211.Lecoq, H., J.M. Lemaire, and C. Wipf-Scheibel. 1991. Control of zucchini yellowmosaic virus in squash by cross protection. Plant Dis. 75: 208-211.
Lee Y.M.,D.M.Tscherne,S.I.Yun,I.Frolov,and C.M.Rice.2005.Dualmechanisms of pestiviral superinfection exclusion at entry and RNA replication.J.Virol.79:3231-3242.Lee Y.M., D.M.Tscherne, S.I.Yun, I.Frolov, and C.M.Rice. 2005. Dual mechanisms of pestiviral superinfection exclusion at entry and RNA replication. J. Virol. 79: 3231-3242.
Lu,R.,Folimonov,A.,Shintaku,M.,Li,W.X.,Falk,B.W.,Dawson,W.O.,Ding,S.W.,2004.Three distinct suppressors of RNA silencing encodedby a 20-kb viral RNA genome.Proc.Natl.Acad.Sci.USA 101,15742-15747.Lu, R., Folimonov, A., Shintaku, M., Li, W.X., Falk, B.W., Dawson, W.O., Ding, S.W., 2004. Three distinct suppressors of RNA silencing encoded by a 20-kb viral RNA genome.Proc. Natl. Acad. Sci. USA 101, 15742-15747.
McKinney,H.H.1926.Virus mixtures that may not be detected in young tobaccoplants.Phytopathology 16:893.McKinney, H.H. 1926. Virus mixtures that may not be detected in young tobacco plants. Phytopathology 16:893.
McKinney,H.H.1929.Mosaic diseases in the Canary Islands,West Africa and Gibraltar.J.Agric.Res.39:557-578.McKinney, H.H. 1929. Mosaic diseases in the Canary Islands, West Africa and Gibraltar. J. Agric. Res. 39: 557-578.
Pappu,H.R.,Karasev,A.V.,Anderson,E.J.,Pappu,S.S.,Hilf,M.E.,Febres,V.J.,Eckloff,R.M.G.,McCaffery,M.,Boyko,V.,Gowda,S.,Dolia,V.V.,Koonin,E.V.,Gumpf,D.J.,Cline,K.C.,Garnsey,S.M.,Dawson,W.O.,Lee,R.F.,Niblett,C.L.,1994.Nucleotide sequence and organization of eight 3′open reading frames of the Citrus tristezaclosterovirus genome.Virology 199,35-46.Pappu, H.R., Karasev, A.V., Anderson, E.J., Pappu, S.S., Hilf, M.E., Febres, V.J., Eckloff, R.M.G., McCaffery, M., Boyko, V., Gowda, S., Dolia, V.V., Koonin, E.V. , Gumpf, D.J., Cline, K.C., Garnsey, S.M., Dawson, W.O., Lee, R.F., Niblett, C.L., 1994. Nucleotide sequence and organization of eight 3′open reading frames of the Citrus tristezaclosterovirus genome. Virology 199, 35-46 .
Rabindran,S.,Dawson,W.O.,2001.Assessment of recombinants that arise from the useof a TMV-based transient expression vector.Virology 284,182-189.Rabindran, S., Dawson, W.O., 2001. Assessment of recombinants that arise from the use of a TMV-based transient expression vector. Virology 284, 182-189.
Salaman,R.N.1933.Protective inoculation against a plant virus.Nature(London)131:468.Salaman, R.N. 1933. Protective inoculation against a plant virus. Nature (London) 131: 468.
Satyanarayana,T.,Gowda,S.,Boyko,V.P.,Albiach-Martí,M.R.,Mawassi,M.,Navas-Castillo,J.,Karasev,A.V.,Dolja,V.,Hilf,M.E.,Lewandowski,D.J.,Moreno,P.,Bar-Joseph,M.,Garnsey,S.M.,Dawson,W.O.,1999.An engineered closterovirus RNAreplicon and analysis of heterologous terminal sequences for replication.Proc.Natl.Acad.Sci.USA 96,7433-7438.Satyanarayana, T., Gowda, S., Boyko, V.P., Albiach-Martí, M.R., Mawassi, M., Navas-Castillo, J., Karasev, A.V., Dolja, V., Hilf, M.E., Lewandowski, D.J., Moreno , P., Bar-Joseph, M., Garnsey, S.M., Dawson, W.O., 1999.An engineered closterovirus RNAreplicon and analysis of heterologous terminal sequences for replication.Proc.Natl.Acad.Sci.USA 96,7433-7438.
Satyanarayana,T.,Gowda,S.,Mawassi,M.,Albiach-Martí,M.R.,Ayllón,M.A.,Robertson,C.,Garnsey,S.M.,Dawson,W.O.,2000.Closterovirus encoded HSP70 homologand p61 in addition to both coat proteins function in efficient virion assembly.Virology 278,253-265.Satyanarayana, T., Gowda, S., Mawassi, M., Albiach-Martí, M.R., Ayllón, M.A., Robertson, C., Garnsey, S.M., Dawson, W.O., 2000. Closterovirus encoded HSP70 homologand p61 in addition to both coat proteins function in efficient virion assembly. Virology 278, 253-265.
Satyanarayana,T.,Bar-Joseph,M.,Mawassi,M.,Albiach-Martí,M.R.,Ayllón,M.A.,Gowda,S.,Hilf,M.E.,Moreno,P.,Garnsey,S.M.,Dawson,W.O.,2001.Amplification ofCitrus tristeza virus from a cDNA clone and infection of citrus trees.Virology 280,87-96.Satyanarayana, T., Bar-Joseph, M., Mawassi, M., Albiach-Martí, M.R., Ayllón, M.A., Gowda, S., Hilf, M.E., Moreno, P., Garnsey, S.M., Dawson, W.O., 2001 .Amplification of Citrus tristeza virus from a cDNA clone and infection of citrus trees. Virology 280, 87-96.
Satyanarayana,T.,Gowda,S.,Ayllón,M.A.,Albiach-Martí,M.R.,Rabindran,S.,Dawson,W.O.,2002.The p23 protein of Citrus tristeza virus controls asymmetrical RNAaccumulation.J.Virol.76,473-483.Satyanarayana, T., Gowda, S., Ayllón, M.A., Albiach-Martí, M.R., Rabindran, S., Dawson, W.O., 2002.The p23 protein of Citrus tristeza virus controls asymmetrical RNAaccumulation.J.Virol.76,473- 483.
Satyanarayana,T.,Gowda,S.,Ayllón,M.A.,Dawson,W.O.,2003.Frameshiftmutations in infectious cDNA clones of Citrus tristeza virus:a strategy to minimize thetoxicity of viral sequences to Escherichia coli.Virology 313,481-491.Satyanarayana, T., Gowda, S., Ayllón, M.A., Dawson, W.O., 2003. Frameshift mutations in infectious cDNA clones of Citrus tristeza virus: a strategy to minimize the toxicity of viral sequences to Escherichia coli-431. Virology 3
Shivprasad,S.,Pogue,G.P.,Lewandowski,D.J.,Hidalgo,J.,Donson,J.,Grill,L.K.,Dawson,W.O.,1999.Heterologous sequences greatly affect foreign gene expression inTobacco mosaic virus-based vectors.Virology 255,312-323.Shivprasad, S., Pogue, G.P., Lewandowski, D.J., Hidalgo, J., Donson, J., Grill, L.K., Dawson, W.O., 1999.Heterologous sequences greatly affect foreign gene expression in Tobacco mosaic virus-based vectors. Virology 255, 312-323.
Singh,I.R.,M.Suomalainen,S.Varadarajan,H.Garoff,and A.Helenius.1997.Mechanisms for the inhibition of entry and uncoating of superinfecting Semliki forest virus.Virology 231:59-71.Singh, I.R., M. Suomalainen, S. Varadarajan, H. Garoff, and A. Helenius. 1997. Mechanisms for the inhibition of entry and uncoating of superinfecting Semliki forest virus. Virology 231:59-71.
Steck,F.T.,and H.Rubin.1966.The mechanism of interference between an Avianleukosis virus and Rous sarcoma virus,I establishment of interference.Virology 29:628-641.Steck, F.T., and H. Rubin. 1966. The mechanism of interference between an Avianleukosis virus and Rous sarcoma virus, I establishment of interference. Virology 29: 628-641.
Strauss,J.H.,and E.G.Strauss.1994.The alphaviruses:gene expression,replication,and evolution.Microbiol.Rev.58:491-562.Strauss, J.H., and E.G. Strauss. 1994. The alphaviruses: gene expression, replication, and evolution. Microbiol. Rev. 58: 491-562.
Tatineni,S.,Robertson,C.J.,Garnsey,S.M.,Bar-Joseph,M.,Gowda,S.,andDawson,W.O.2008.Three genes of Citrus tristeza virus are dispensable for infection andmovement throughout citrus trees.Virology 376:297-307.Tatineni, S., Robertson, C.J., Garnsey, S.M., Bar-Joseph, M., Gowda, S., and Dawson, W.O. 2008. Three genes of Citrus tristeza virus are dispensable for infection and movement throughout citrus trees. Virology 376: 297- 307.
Visconti,N.1953.Resistance to lysis from without in bacteria infected with T2bacteriophage.J.Bacteriol.66:247-253.Visconti, N.1953.Resistance to lysis from without in bacteria infected with T2bacteriophage.J.Bacteriol.66:247-253.
Walkey,D.G.A.,H.Lecoq,R.Collier,and S.Dobson.1992.Studies on the controlof zucchini yellow mosaic virus in courgettes by mild strain protection.Plant Pathol.41:762-771.Walkey, D.G.A., H. Lecoq, R. Collier, and S. Dobson. 1992. Studies on the control of zucchini yellow mosaic virus in courgettes by mild strain protection. Plant Pathol. 41: 762-771.
Whitaker-Dowling,P.A.,J.S.Youngner,C.C.Widnell,and D.K.Wilcox.1983.Superinfection exclusion by vesicular stomatitis virus I.Virology 131:137-143.Whitaker-Dowling, P.A., J.S. Youngner, C.C. Widnell, and D.K. Wilcox. 1983. Superinfection exclusion by vesicular stomatitis virus I. Virology 131:137-143.
Wildum,S.M.,M.Schindler,J.Munch,and F.Kirchhoff.2006.Contribution of Vpu,Env,and Nef to CD4 down-modulation and resistance of human immunodeficiency virustype I-infected T cells to superinfection.J.Virol.80:8047-8059.Wildum, S.M., M.Schindler, J.Munch, and F.Kirchhoff. 2006. Contribution of Vpu, Env, and Nef to CD4 down-modulation and resistance of human immunodeficiency virustype I-infected T cells to superinfection. J. Virol. 80:8047-8059.
Also,see Foliminova et al.,J Virol.(2010)84:1314-1325,for disclosure on making viralconstructs and using same for infection in plants.Also, see Foliminova et al., J Virol. (2010) 84: 1314-1325, for disclosure on making viral constructs and using same for infection in plants.
在不与本文中的教导相矛盾的前提下,在本文中引用的任何参考文献的揭示通过完整引用结合在本发明中。需要知道此处描述的例子和实施例只是以更好地说明为目的,而且建议本领域的技术人员可由此做出各种修改或者更改,而此种修改或更改应在本发明的精神和范围之内。The disclosure of any reference cited herein is hereby incorporated by reference in its entirety to the extent that it does not contradict the teachings herein. It needs to be known that the examples and embodiments described here are only for the purpose of better illustration, and it is suggested that those skilled in the art can make various modifications or changes, and such modifications or changes should be within the spirit and scope of the present invention within.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510204207.5A CN105087638B (en) | 2010-04-08 | 2011-04-08 | With multi-functional transient expression viral vector systems |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US32197010P | 2010-04-08 | 2010-04-08 | |
US61/321,970 | 2010-04-08 | ||
US201161440445P | 2011-02-08 | 2011-02-08 | |
US61/440,445 | 2011-02-08 | ||
PCT/US2011/031671 WO2011127340A2 (en) | 2010-04-08 | 2011-04-08 | Viral-based transient-expression vector system that allows multiple applications |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510204207.5A Division CN105087638B (en) | 2010-04-08 | 2011-04-08 | With multi-functional transient expression viral vector systems |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102933713A CN102933713A (en) | 2013-02-13 |
CN102933713B true CN102933713B (en) | 2015-05-13 |
Family
ID=44763557
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510204207.5A Active CN105087638B (en) | 2010-04-08 | 2011-04-08 | With multi-functional transient expression viral vector systems |
CN201180027897.1A Expired - Fee Related CN102933713B (en) | 2010-04-08 | 2011-04-08 | Viral-based transient-expression vector system that allows multiple applications |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510204207.5A Active CN105087638B (en) | 2010-04-08 | 2011-04-08 | With multi-functional transient expression viral vector systems |
Country Status (5)
Country | Link |
---|---|
CN (2) | CN105087638B (en) |
BR (1) | BRPI1101853A2 (en) |
ES (1) | ES2477141B2 (en) |
WO (1) | WO2011127340A2 (en) |
ZA (1) | ZA201208259B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015031130A1 (en) * | 2013-08-28 | 2015-03-05 | Southern Gardens Citrus | Citrus plants resistant to citrus huanglongbing (ex greening) caused by candidatus liberibacter asiaticus (las) and bacterial canker caused by (xanthomonas axonopodis pv. citri) (xac) |
CN115976275B (en) * | 2022-09-29 | 2025-02-11 | 赣南师范大学 | Multiplex RT-PCR primer set, kit and application for simultaneous detection of four CTV genotypes |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101270395A (en) * | 2008-05-08 | 2008-09-24 | 重庆大学 | Citrus decay virus one-step real-time fluorescent reverse transcription polymerase chain reaction solid-phase kit and its detection method |
WO2009099877A2 (en) * | 2008-01-31 | 2009-08-13 | State Of Oregon Acting By And Through The State Board Of Higher Educ. On Behalf Of Oregon State University | Closterovirus vectors and methods |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2283461A1 (en) * | 1997-03-14 | 1998-09-17 | Uab Research Foundation | Adenoviral vectors with modified tropism |
GB0221778D0 (en) * | 2002-09-19 | 2002-10-30 | Molmed Spa | Conjugate |
EP1500394A1 (en) * | 2003-07-22 | 2005-01-26 | Polichem S.A. | Pharmaceutical compositions comprising ascorbic acid or the treatment of fungal superinfections and fungal recurrences |
JP5992654B2 (en) * | 2007-12-21 | 2016-09-14 | ニュートリー株式会社 | Composition for intestinal regulation and / or improvement of bowel movement |
-
2011
- 2011-04-08 CN CN201510204207.5A patent/CN105087638B/en active Active
- 2011-04-08 BR BRPI1101853-4A patent/BRPI1101853A2/en not_active Application Discontinuation
- 2011-04-08 ES ES201290074A patent/ES2477141B2/en active Active
- 2011-04-08 CN CN201180027897.1A patent/CN102933713B/en not_active Expired - Fee Related
- 2011-04-08 WO PCT/US2011/031671 patent/WO2011127340A2/en active Application Filing
-
2012
- 2012-11-05 ZA ZA2012/08259A patent/ZA201208259B/en unknown
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009099877A2 (en) * | 2008-01-31 | 2009-08-13 | State Of Oregon Acting By And Through The State Board Of Higher Educ. On Behalf Of Oregon State University | Closterovirus vectors and methods |
CN101270395A (en) * | 2008-05-08 | 2008-09-24 | 重庆大学 | Citrus decay virus one-step real-time fluorescent reverse transcription polymerase chain reaction solid-phase kit and its detection method |
Non-Patent Citations (3)
Title |
---|
Semliki Forest virus vectors with mutations in the nonstructural protein 2 gene permit extended superinfection of neuronal and non-neuronal cells;MARKUS U EHRENGRUBER et al.;《Journal of Neurovirology》;20070430;第13卷(第4期);摘要、第354页左栏第1行-右栏第4行 * |
柑橘衰退病毒柚类分离物CP基因的克隆及原核表达分析;王彩霞;《青岛农业大学学报(自然科学版)》;20090615;第26卷(第2期);139-142 * |
柑橘衰退病毒柠檬分离物外壳蛋白基因原核表达及多抗血清制备;尹跃艳等;《云南大学学报(自然科学版)》;20080415;第30卷(第1期);77-80 * |
Also Published As
Publication number | Publication date |
---|---|
ES2477141A2 (en) | 2014-07-15 |
ES2477141R1 (en) | 2014-08-06 |
WO2011127340A2 (en) | 2011-10-13 |
ZA201208259B (en) | 2013-07-31 |
CN105087638A (en) | 2015-11-25 |
WO2011127340A3 (en) | 2012-08-09 |
BRPI1101853A2 (en) | 2015-08-11 |
CN102933713A (en) | 2013-02-13 |
CN105087638B (en) | 2019-07-12 |
ES2477141B2 (en) | 2015-02-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Folimonova | Superinfection exclusion is an active virus-controlled function that requires a specific viral protein | |
Zhao et al. | Engineering plant virus resistance: from RNA silencing to genome editing strategies | |
Folimonova et al. | Infection with strains of Citrus tristeza virus does not exclude superinfection by other strains of the virus | |
Liu et al. | CRISPR/Cas9‐mediated resistance to cauliflower mosaic virus | |
Folimonova | Developing an understanding of cross-protection by Citrus tristeza virus | |
Dawson et al. | Citrus tristeza virus-host interactions | |
Kurth et al. | Virus-derived gene expression and RNA interference vector for grapevine | |
Cañizares et al. | Multiple suppressors of RNA silencing encoded by both genomic RNAs of the crinivirus, Tomato chlorosis virus | |
Abhary et al. | Post-transcriptional gene silencing in controlling viruses of the Tomato yellow leaf curl virus complex | |
Cui et al. | An efficient viral vector for functional genomic studies of Prunus fruit trees and its induced resistance to Plum pox virus via silencing of a host factor gene | |
Dolja et al. | The closterovirus-derived gene expression and RNA interference vectors as tools for research and plant biotechnology | |
Gómez‐Muñoz et al. | The resistance of sour orange to Citrus tristeza virus is mediated by both the salicylic acid and RNA silencing defence pathways | |
Yamamura et al. | Tomato bushy stunt virus: a resilient model system to study virus–plant interactions | |
Atallah et al. | A 5′-proximal region of the Citrus tristeza virus genome encoding two leader proteases is involved in virus superinfection exclusion | |
Toth et al. | Improvement of the movement and host range properties of a plant virus vector through DNA shuffling | |
Orílio et al. | Infectious cDNA clones of the crinivirus Tomato chlorosis virus are competent for systemic plant infection and whitefly-transmission | |
US10472641B2 (en) | Viral based transient-expression vector system that allows multiple applications | |
Alcaide et al. | Transcriptome analyses unveiled differential regulation of AGO and DCL genes by pepino mosaic virus strains | |
Folimonova et al. | Superinfection exclusion by Citrus tristeza virus does not correlate with the production of viral small RNAs | |
Dawson | A personal history of virus-based vector construction | |
CN102933713B (en) | Viral-based transient-expression vector system that allows multiple applications | |
US20240002871A1 (en) | RNA Vectors with Hairpin-like Inserts | |
Ruiz-Ruiz et al. | Citrus tristeza virus: Host RNA silencing and virus counteraction | |
Ambrós et al. | A genetic system for Citrus Tristeza Virus using the non-natural host Nicotiana benthamiana: an update | |
Watanabe et al. | Construction of monopartite geminivirus-based virus-induced gene silencing (VIGS) vectors using a two-component strategy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20150513 Termination date: 20160408 |