[go: up one dir, main page]

CN102931987A - Quantum interference device, atomic oscillator, and magnetic sensor - Google Patents

Quantum interference device, atomic oscillator, and magnetic sensor Download PDF

Info

Publication number
CN102931987A
CN102931987A CN2012104543718A CN201210454371A CN102931987A CN 102931987 A CN102931987 A CN 102931987A CN 2012104543718 A CN2012104543718 A CN 2012104543718A CN 201210454371 A CN201210454371 A CN 201210454371A CN 102931987 A CN102931987 A CN 102931987A
Authority
CN
China
Prior art keywords
light
quantum interference
interference device
alkali metal
pairs
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2012104543718A
Other languages
Chinese (zh)
Other versions
CN102931987B (en
Inventor
青山拓
珎道幸治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority claimed from CN201010113602XA external-priority patent/CN101800545B/en
Publication of CN102931987A publication Critical patent/CN102931987A/en
Application granted granted Critical
Publication of CN102931987B publication Critical patent/CN102931987B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Optical Communication System (AREA)

Abstract

量子干涉装置、原子振荡器以及磁传感器。使具有多普勒扩展的光共振波长分布的原子团高效地产生EIT现象。具有:射出各共振光的LD(2);产生LD的中心波长的中心波长产生单元(1);振荡器(9),振荡产生相当于2个不同基态的能量差(ΔE12)的频率的1/2频率;振荡器(10),振荡产生远小于多普勒扩展的频率;EOM(电子光学调制元件)(3、4),利用电信号对从LD射出的共振光(11)实施频率调制;气室(5),根据EOM(4)调制的光(12)的波长来改变光的吸收量,封入了气态碱金属(铯)原子;光检测器(光检测单元)(6),检测从气室透射的光(13);频率控制单元(7),根据光检测器的输出检测气室的EIT状态,控制输出电压。

Figure 201210454371

Quantum interference devices, atomic oscillators, and magnetic sensors. The EIT phenomenon is efficiently generated in an atomic group having a Doppler-spread optical resonance wavelength distribution. Consists of: LD (2) that emits each resonance light; a center wavelength generating unit (1) that generates the center wavelength of the LD; an oscillator (9) that oscillates at 1 frequency equivalent to the energy difference (ΔE12) between two different ground states /2 frequency; oscillator (10), oscillating to produce a frequency much smaller than Doppler spread; EOM (Electron Optical Modulation Element) (3, 4), using electrical signals to implement frequency modulation on the resonant light (11) emitted from the LD The gas chamber (5) changes the light absorption according to the wavelength of the light (12) modulated by the EOM (4), and seals gaseous alkali metal (cesium) atoms; the light detector (light detection unit) (6) detects The light (13) transmitted from the gas chamber; the frequency control unit (7), detects the EIT state of the gas chamber according to the output of the light detector, and controls the output voltage.

Figure 201210454371

Description

量子干涉装置、原子振荡器以及磁传感器Quantum Interference Devices, Atomic Oscillators, and Magnetic Sensors

本申请是申请日为2010年2月5日,申请号为201010113602.x,发明名称为“量子干涉装置、原子振荡器以及磁传感器”的发明专利申请的分案申请。This application is a divisional application of an invention patent application with an application date of February 5, 2010, an application number of 201010113602.x, and an invention title of "Quantum Interference Device, Atomic Oscillator, and Magnetic Sensor".

技术领域technical field

本发明涉及量子干涉装置、原子振荡器以及磁传感器,更详细地讲,涉及用于高效地产生EIT现象的技术。The present invention relates to quantum interference devices, atomic oscillators, and magnetic sensors, and more particularly, to techniques for efficiently generating the EIT phenomenon.

背景技术Background technique

电磁诱导透明方式(有时也称为EIT方式、CPT方式)的原子振荡器是利用了如下这样的现象的振荡器,即:当同时向碱金属原子照射波长不同的2种共振光时,2种共振光的吸收停止(EIT现象)。图24(a)表示1个碱金属原子的能量状态。众所周知,当向碱金属原子分别单独地照射具有相当于第1基态能级23与激发能级21之间的能量差的波长的第1共振光、或具有相当于第2基态能级24与激发能级21之间的能量差的波长的第2共振光时,将引起光吸收。但是,当向该碱金属原子同时照射第1共振光和第2共振光、且同时照射的第1共振光和第2共振光之间的频率差与第1基态能级23和第2基态能级24之间的能量差(ΔE12)准确地一致时,图24(a)的系统处于2个基态能级的重合状态,即量子干涉状态,向激发能级21跃变的激发停止,产生透明(EIT)现象。利用该现象来检测第1共振光与第2共振光之间的波长差偏离ΔE12时的光吸收动作的急剧变化,并将其作为信号进行控制,由此,能够制造出高精度的振荡器。另外,ΔE12随外部磁场的强度或变动而敏感地变化,因此,能够利用EIT现象来制造高灵敏度的磁传感器。Electromagnetically induced transparency method (sometimes called EIT method, CPT method) atomic oscillator is an oscillator that utilizes the phenomenon that when two kinds of resonant light with different wavelengths are irradiated to an alkali metal atom at the same time, the two kinds of Absorption of resonance light ceases (EIT phenomenon). Fig. 24(a) shows the energy state of one alkali metal atom. As is well known, when the alkali metal atoms are individually irradiated with first resonant light having a wavelength corresponding to the energy difference between the first ground state level 23 and the excited level 21, or having wavelengths corresponding to the energy difference between the second ground state level 24 and the excited level When the second resonant light of the wavelength of the energy difference between the energy levels 21, will cause light absorption. However, when the first resonant light and the second resonant light are simultaneously irradiated to the alkali metal atom, and the frequency difference between the simultaneously irradiated first resonant light and the second resonant light is the same as that of the first ground state energy level 23 and the second ground state energy When the energy difference (ΔE12) between levels 24 is exactly the same, the system in Figure 24(a) is in the overlap state of the two ground state energy levels, that is, the state of quantum interference, and the excitation to the transition to the excited level 21 stops, resulting in a transparent (EIT) phenomenon. By using this phenomenon to detect a sudden change in the light absorption operation when the wavelength difference between the first resonant light and the second resonant light deviates from ΔE12, and controlling it as a signal, a high-precision oscillator can be manufactured. In addition, since ΔE12 changes sensitively according to the strength or fluctuation of the external magnetic field, it is possible to manufacture a highly sensitive magnetic sensor by utilizing the EIT phenomenon.

另外,为了提高EIT现象下的光输出信号的信噪比(S/N),只要增加与共振光相互作用的碱金属的原子数量即可。例如,在专利文献1中,以改善原子振荡器的输出信号的S/N为目的,公开了以下等方法:增大封入有气态碱金属原子的气室(cell)的厚度,或增大入射到气室的激光的光束直径。无论哪一种方法,为了增大碱金属原子与共振光接触的区域,如图24(b)或图24(c)所示,均增大了气室的厚度或高度。关于这里所使用的激光,只使用了1对满足EIT现象的产生条件(発見条件)的2种波长的激光。In addition, in order to improve the signal-to-noise ratio (S/N) of the light output signal under the EIT phenomenon, it is only necessary to increase the number of atoms of the alkali metal interacting with the resonant light. For example, in Patent Document 1, for the purpose of improving the S/N of the output signal of an atomic oscillator, methods such as increasing the thickness of a gas cell (cell) in which gaseous alkali metal atoms are enclosed, or increasing the incident The beam diameter of the laser to the gas cell. Regardless of the method, in order to increase the area where the alkali metal atoms are in contact with the resonant light, as shown in Figure 24(b) or Figure 24(c), the thickness or height of the gas cell is increased. As for the laser beams used here, only one pair of laser beams with two wavelengths satisfying the generation condition (recognition condition) of the EIT phenomenon was used.

另外,在专利文献2中,(1)公开了关于提高EIT(CPT)方式的原子振荡器的灵敏度的技术。即,特征在于将D1线用作光源。与以往的D2线的情况相比,理论上可提高EIT(CPT)信号强度。由此,灵敏度/频率稳定度得到提高。(2)并且,使用4光波光源,利用双重Λ型跃迁使能量分裂为2个而成的P1/2激发能级(超精细结构)同时相互作用,由此,进一步改善信号强度,但这里公开的技术涉及4光波混合,不属于本发明涉及的技术领域的范围。In addition, Patent Document 2 (1) discloses a technique for improving the sensitivity of an EIT (CPT) system atomic oscillator. That is, it is characterized in that the D1 line is used as a light source. Compared with the previous D2 line, the EIT (CPT) signal strength can theoretically be improved. As a result, sensitivity/frequency stability is improved. (2) In addition, using a 4-wave light source, the P1/2 excitation level (hyperfine structure) formed by splitting the energy into two by double Λ-type transitions interacts simultaneously, thereby further improving the signal intensity, but it is disclosed here The technology involved in the mixing of 4 light waves does not belong to the scope of the technical field involved in the present invention.

专利文献1:日本特开2004-96410号公报Patent Document 1: Japanese Patent Laid-Open No. 2004-96410

专利文献2:USP6359916Patent Document 2: USP6359916

关注气室内的构成气态碱金属原子团的各个原子,可知具有与各自的运动状态对应的一定的速度分布。如果入射到该原子团的激光的波长只有2种(一对),则在原子运动的多普勒效应(多普勒频移)的影响下,实际上可相互作用的原子只是气室内的多个原子中的、在激光入射方向上具有特定的速度分量值的极少部分的原子,有助于产生EIT的原子的比例极低。专利文献1所公开的现有技术存在下述课题,即:由于原子振荡器是在这种EIT产生效率低的状态下构成的,因此为了得到信噪比(S/N)较大的期望的吸收光谱,必须增大气室的厚度或高度中的一个,难以在维持信噪比的同时实现小型化。即,气室内的每单位体积内有助于EIT现象的原子数量保持不变。另外,专利文献2-(1)所公开的技术也存在相同的课题。Focusing on each atom constituting the gaseous alkali metal atomic group in the gas cell, it can be seen that there is a constant velocity distribution corresponding to each state of motion. If there are only 2 wavelengths (a pair) of laser light incident on the atomic group, under the influence of the Doppler effect (Doppler frequency shift) of atomic motion, the atoms that can actually interact are only multiple atoms in the gas chamber. Among the atoms, a very small portion of atoms having a specific velocity component value in the laser incident direction has an extremely low ratio of atoms contributing to EIT. The prior art disclosed in Patent Document 1 has the following problem. Since the atomic oscillator is configured in such a state where EIT generation efficiency is low, in order to obtain a desired signal-to-noise ratio (S/N) For the absorption spectrum, either the thickness or the height of the gas cell must be increased, and it is difficult to achieve miniaturization while maintaining the signal-to-noise ratio. That is, the number of atoms contributing to the EIT phenomenon per unit volume in the gas cell remains constant. In addition, the technique disclosed in Patent Document 2-(1) also has the same problem.

即,专利文献1、2-(1)均只使用了2种光波。气室内的碱原子具有速度分布,存在与此相伴的能量的多普勒扩展。因此,在只有2种光波的Λ型跃迁中,只与极少部分的原子相互作用,因此,每单位体积的EIT产生收获率极差。因此,存在EIT信号强度弱的问题。That is, both Patent Documents 1 and 2-(1) use only two types of light waves. Alkaline atoms in the gas cell have a velocity distribution, and there is a Doppler spread of energy associated with this. Therefore, in the Λ-type transition with only 2 kinds of light waves, only a very small part of the atoms are interacted with, and therefore, the yield of EIT generation per unit volume is extremely poor. Therefore, there is a problem that the EIT signal strength is weak.

实际的碱原子的激发能级具有超精细结构,分裂成图20所示的具有彼此不同的能量的能级。因此,不能用图24(a)所示的简单的Λ型3能态系统来说明以碱原子为对象的EIT现象,因此,实际上,为了高效地产生EIT,需要考虑这样的多能级。但存在这样的问题,即:至今为止,考虑了多能级的存在与伴随于上述原子速度分布的能量多普勒扩展之间的关系的研究尚不充分。The actual excited energy level of the alkali atom has a hyperfine structure, and is split into energy levels having different energies from each other as shown in FIG. 20 . Therefore, the simple Λ-type 3-energy state system shown in Fig. 24(a) cannot be used to explain the EIT phenomenon targeting alkali atoms, and therefore, in practice, it is necessary to consider such multiple energy levels in order to efficiently generate EIT. However, there is a problem that studies considering the relationship between the presence of multiple energy levels and the energy Doppler spread accompanying the above-mentioned atomic velocity distribution have been insufficient.

尤其,从应用了EIT现象的量子干涉器件的驱动条件的优化等角度看,像本发明这样,在使用多对共振光对的情况下考虑激发能级的能量状态来决定光源(激光)的中心频率或决定激光的调制条件是很重要的。In particular, from the viewpoint of optimization of driving conditions of a quantum interference device to which the EIT phenomenon is applied, as in the present invention, the center of the light source (laser light) is determined in consideration of the energy state of the excitation level in the case of using a plurality of resonant light pairs. The frequency or modulation conditions that determine the laser are important.

发明内容Contents of the invention

本发明正是鉴于上述课题而完成的,其目的在于,提供通过生成波长不同的多对共振光对,来使气室内的更多的气态碱金属原子高效地产生EIT现象的量子干涉装置,并且通过利用该量子干涉装置而提供小型的原子振荡器、磁传感器或量子干涉传感器。The present invention has been accomplished in view of the above-mentioned problems, and its object is to provide a quantum interference device that efficiently causes more gaseous alkali metal atoms in a gas chamber to generate an EIT phenomenon by generating multiple pairs of resonant light pairs with different wavelengths, and By using this quantum interference device, a small atomic oscillator, a magnetic sensor, or a quantum interference sensor can be provided.

本发明是为了解决上述课题的至少一部分而完成的,可作为以下的方式或应用例来实现。An advantage of some aspects of the invention is to solve at least a part of the problems described above, and the invention can be implemented as the following forms or application examples.

[应用例1]量子干涉装置至少具有:气态的碱金属原子;以及光源,其用于产生不同频率的共振光对,该共振光对保持与该碱金属原子的2个基态之间的能量差相应的频率差,使所述碱金属原子与所述共振光对相互作用,产生电磁诱导透明现象(EIT),其特征在于,所述共振光对的数量为多对,各个共振光对的中心频率彼此不同。[Application example 1] The quantum interference device has at least: a gaseous alkali metal atom; and a light source for generating a resonant light pair of different frequencies that maintains an energy difference between two ground states of the alkali metal atom The corresponding frequency difference causes the alkali metal atoms to interact with the resonant light pairs to produce electromagnetically induced transparency (EIT), which is characterized in that the number of the resonant light pairs is multiple pairs, and the center of each resonant light pair The frequencies are different from each other.

本发明的量子干涉装置的特征在于,激发激光对的数量为2对以上的多对,且各个激光对的中心频率彼此不同。由此,能够在每单位体积内,使更多的气态碱金属原子产生EIT现象。The quantum interference device of the present invention is characterized in that the number of excitation laser pairs is two or more pairs, and the center frequencies of the respective laser pairs are different from each other. Thus, more gaseous alkali metal atoms can be caused to generate the EIT phenomenon per unit volume.

[应用例2]特征在于,与所述碱金属原子相互作用的共振光对为线偏振光。[Application example 2] is characterized in that the resonant light pair interacting with the alkali metal atom is linearly polarized light.

对于从光源射出的共振光对,在与光的传播方向垂直的面内电矢量的末端描绘出直线的情况下,该光被称为线偏振光。因此,如果不对从光源射出的共振光对实施偏振,则其为线偏振光。另外,可将光的偏振状态考虑成垂直的2个线偏振光的重合。由此,由于来自光源的共振光原本就是线偏振光,因此不需要进行偏振的手段,从而能够简化光源结构。When a resonant light pair emitted from a light source draws a straight line at the ends of an in-plane electric vector perpendicular to the propagation direction of the light, the light is called linearly polarized light. Therefore, if no polarization is applied to the resonant light pair emitted from the light source, it is linearly polarized light. In addition, the polarization state of light can be considered as the superposition of two perpendicular linearly polarized lights. Therefore, since the resonant light from the light source is linearly polarized light originally, no means for polarizing is required, and the structure of the light source can be simplified.

[应用例3]特征在于,与所述碱金属原子相互作用的所述共振光对为圆偏振光。[Application example 3] is characterized in that the resonant light pair interacting with the alkali metal atom is circularly polarized light.

对于从光源射出的共振光对,在与光的传播方向垂直的面内电矢量的末端描绘出圆的情况下,该光被称为圆偏振光。经实验确认,当把共振光对转换成圆偏振光时,波长λ0的光透射强度增大到通常的6倍左右。由此,能够提高EIT现象下的光输出信号的S/N。When a circle is drawn at the end of an in-plane electric vector perpendicular to the propagation direction of the light of the resonant light pair emitted from the light source, the light is called circularly polarized light. It has been confirmed by experiments that when the resonant light pair is converted into circularly polarized light, the light transmission intensity at the wavelength λ0 increases to about 6 times that of the usual one. Thereby, the S/N of the optical output signal under the EIT phenomenon can be improved.

[应用例4]特征在于,与所述碱金属原子相互作用的所述共振光对为楕圆偏振光。[Application example 4] is characterized in that the resonant light pair interacting with the alkali metal atom is elliptically polarized light.

对于从光源射出的共振光对,在与光的传播方向垂直的面内电矢量的末端描绘出楕圆的情况下,该光被称为楕圆偏振光。且可知,存在这样的椭圆偏振光,即:当在共振光对的光路上,以与光路垂直的方式设置了波长板并旋转其表面时,该椭圆偏振光的偏振状态发生变化且是在垂直偏振光与圆偏振光之间连续地变化。因此,即使是楕圆偏振光,也能够提高EIT现象下的光输出信号的S/N。When the resonant light pair emitted from the light source draws an ellipse at the end of an in-plane electric vector perpendicular to the propagation direction of the light, the light is called elliptical polarized light. And it can be seen that there is such elliptically polarized light, that is, when a wavelength plate is arranged perpendicular to the optical path on the optical path of the resonant light pair and its surface is rotated, the polarization state of the elliptically polarized light changes and is in the vertical There is a continuous change between polarized light and circularly polarized light. Therefore, even with elliptically polarized light, the S/N of the optical output signal under the EIT phenomenon can be improved.

[应用例5]特征在于,在所述光源与封入了所述碱金属原子的气室之间的光路上设有波长板。[Application Example 5] A wavelength plate is provided on an optical path between the light source and the gas cell enclosing the alkali metal atoms.

波长板是指使垂直的偏振光分量之间产生相位差的多折射元件。将产生相位差π(180°)的波长板称为λ/2板或半波长板,其用于改变线偏振光的偏振方向。将产生相位差π/2(90°)的波长板称为λ/4板或四分之一波长板,其用于将线偏振光转换成圆偏振光(楕圆偏振光),或相反地将圆偏振光(楕圆偏振光)转换成线偏振光。在发明中,由于需要将线偏振光转换成圆偏振光或楕圆偏振光,因此需要使用λ/4板,利用波长板40将从光源射出的线偏振光的共振光对转换成圆偏振光或楕圆偏振光,入射到气室。由此,只需简单的结构即可提高EIT现象下的光输出信号的S/N。The wave plate refers to a multi-refraction element that produces a phase difference between vertically polarized light components. A wavelength plate that produces a phase difference of π (180°) is called a λ/2 plate or a half-wavelength plate, which is used to change the polarization direction of linearly polarized light. A wavelength plate that produces a phase difference of π/2 (90°) is called a λ/4 plate or a quarter-wave plate, which is used to convert linearly polarized light into circularly polarized light (楕 circularly polarized light), or vice versa Convert circularly polarized light (o-circularly polarized light) into linearly polarized light. In the invention, since it is necessary to convert linearly polarized light into circularly polarized light or elliptic polarized light, it is necessary to use a λ/4 plate and use a wavelength plate 40 to convert the resonant light pair of linearly polarized light emitted from the light source into circularly polarized light Or ellipse circularly polarized light, incident on the gas cell. Accordingly, the S/N of the optical output signal under the EIT phenomenon can be improved with a simple structure.

[应用例6]特征在于,所述多对共振光对满足电磁诱导透明现象的产生条件,各个共振光对的光强度处于EIT信号强度线性增大的区域中的最大值P0附近。[Application example 6] is characterized in that the multiple pairs of resonant light pairs meet the conditions for the generation of electromagnetically induced transparency, and the light intensity of each resonant light pair is near the maximum value P0 in the region where the EIT signal intensity increases linearly.

采用这样的多对共振光对的光强度分布,能够提高光利用效率。By adopting such a light intensity distribution of multiple pairs of resonant light pairs, light utilization efficiency can be improved.

[应用例7]特征在于,所述多对共振光对的强度分布相对于各个对的中心频率呈高斯分布,且与最大的光强度对应的共振光对满足与该光方向的速度分量为0附近的所述碱金属的原子团对应的电磁诱导透明现象的产生条件,其强度是线性区域中的最大值P0。[Application example 7] is characterized in that the intensity distribution of the multiple pairs of resonant light pairs is Gaussian distribution relative to the center frequency of each pair, and the resonant light pair corresponding to the maximum light intensity satisfies that the velocity component of the light direction is 0 The vicinity of the atomic group of the alkali metal corresponds to the generation condition of the electromagnetically induced transparency phenomenon, the intensity of which is the maximum value P0 in the linear region.

由于碱金属原子的速度分布为高斯分布,因此只要预先将共振光对的光强度分布设定成高斯分布,即可利用简单的光驱动电路来实现高的光利用效率。Since the velocity distribution of the alkali metal atoms is a Gaussian distribution, as long as the light intensity distribution of the resonant light pair is set to a Gaussian distribution in advance, a simple light drive circuit can be used to achieve high light utilization efficiency.

[应用例8]特征在于,通过振幅调制与频率调制或相位调制的合成来生成所述多对共振光对。[Application example 8] is characterized in that the plurality of resonant light pairs are generated by combining amplitude modulation with frequency modulation or phase modulation.

这种调制方式能够以较高的自由度来控制共振光对的光强度分布。This modulation method can control the light intensity distribution of the resonant light pair with a high degree of freedom.

[应用例9]特征在于,通过具有正弦波、三角波、锯齿波、矩形波中的任意一个波形的信号的调制,来生成所述多对共振光对。[Application example 9] is characterized in that the plurality of resonant light pairs are generated by modulation of a signal having any one of a sine wave, a triangular wave, a sawtooth wave, and a rectangular wave.

这种调制方式能够利用简单的光驱动电路以较高的自由度来控制共振光对的光强度分布。This modulation method can use a simple optical drive circuit to control the light intensity distribution of the resonant light pair with a high degree of freedom.

[应用例10]特征在于,具有用于对所述光源进行调制的驱动电路部,该驱动电路部与其它结构部件分离,在制造过程中或在产品化后的状态下,能够任意地控制、设定所述驱动电路部的常数。[Application example 10] is characterized in that it has a drive circuit unit for modulating the light source, the drive circuit unit is separated from other components, and can be arbitrarily controlled, A constant of the drive circuit section is set.

关于利用了EIT现象的“量子干涉器件”,可想到各种应用产品,例如高精度振荡器、钟表等高精度测量装置、以及以磁传感器、花粉或烟雾等微粒子检测传感器为代表的量子干涉传感器等,通过采用这种结构,能够获得与目的相符的最佳EIT信号曲线。Various applications are conceivable for "quantum interference devices" that utilize the EIT phenomenon, such as high-precision oscillators, high-precision measurement devices such as clocks, and quantum interference sensors represented by magnetic sensors and fine particle detection sensors such as pollen and smoke etc., by adopting such a structure, it is possible to obtain an optimal EIT signal curve suitable for the purpose.

[应用例11]特征在于,当设所述碱金属原子的核自旋量子数为I、所述碱金属原子的P1/2的激发能级或P3/2的激发能级中的超精细结构的量子数为F’、考虑了F’=I-1/2以及F’=I+1/2的多普勒扩展的两个能量的范围彼此重合的区域内的最小能量为E1、最大能量为E2时,引起所述电磁诱导透明(EIT)现象的多对共振光对中的任意一对的激发目标能量(励起先エネルギー)Eend满足E1<Eend<E2。[Application example 11] is characterized in that when the nuclear spin quantum number of the alkali metal atom is 1, the hyperfine structure in the P1/2 excitation level or P3/2 excitation level of the alkali metal atom The quantum number is F', the minimum energy is E1, and the maximum energy is E2 in the area where the two energy ranges of the Doppler expansion of F'=I-1/2 and F'=I+1/2 overlap each other. When , the excitation target energy Eend of any one of the multiple pairs of resonant light pairs that causes the electromagnetically induced transparency (EIT) phenomenon satisfies E1<Eend<E2.

对于与满足该条件的Eend对应的共振光对,能够使具有彼此相反方向的速度分量的原子同时产生EIT,因此不容易发生功率展宽(power broadening:光功率越强EIT信号的线宽越大的现象),因此,增大了Q值(EIT信号的半值宽度的倒数),由此提高了性能指数(后面进行定义)。For the resonant light pair corresponding to Eend that satisfies this condition, atoms with velocity components in opposite directions can simultaneously generate EIT, so power broadening (power broadening: the stronger the optical power, the larger the linewidth of the EIT signal) is not likely to occur. phenomenon), therefore, increasing the Q value (reciprocal of the half-value width of the EIT signal), thereby improving the performance index (defined later).

[应用例12]特征在于,设所述碱金属原子的核自旋量子数为I、所述碱金属原子的激发能级的超精细结构的量子数为F’,则在考虑了F’=I-1/2以及F’=I+1/2的多普勒扩展的两个能量的范围彼此不重合的状态下,当设考虑了所述多普勒扩展的所述F’=I-1/2的能量的范围为从E11到E12(其中,E11<E12)、考虑了所述多普勒扩展的所述F’=I+1/2的能量的范围为从E21到E22(其中,E21<E22)时,引起所述电磁诱导透明现象的多对共振光对中的任意一对的激发目标能量Eend只满足E11<Eend<E12或E21<Eend<E22中的某一方的条件。[Application example 12] is characterized in that, if the nuclear spin quantum number of the alkali metal atom is I, and the quantum number of the hyperfine structure of the excitation energy level of the alkali metal atom is F', then considering F'= In the state where the two energy ranges of the Doppler spread of I-1/2 and F'=I+1/2 do not overlap with each other, when the F'=I-1/ The energy range of 2 is from E11 to E12 (where E11<E12), and the energy range of F'=I+1/2 considering the Doppler spread is from E21 to E22 (where E21<E22 ), the excitation target energy Eend of any one of the multiple pairs of resonant light pairs that causes the electromagnetically induced transparency phenomenon only satisfies one of the conditions of E11<Eend<E12 or E21<Eend<E22.

当满足该条件时,能够在保持纯粹的3能级系统Λ型跃迁的同时,实现基于多对共振光对的EIT,因此,能够增大基于重叠效应的EIT信号的增强效果。When this condition is satisfied, the EIT based on multiple resonant light pairs can be realized while maintaining the pure Λ-type transition of the three-level system, so the enhancement effect of the EIT signal based on the overlapping effect can be increased.

[应用例13]该量子干涉装置使多对共振光对1次或多次地折返通过所述碱金属原子,从所述碱金属原子检测所述电磁诱导透明现象,其特征在于,当设未考虑多普勒宽度的激发能级的能量为E10、所述多对共振光对的激发目标能量为Eend 0时,所述Eend 0满足E10<Eend 0或Eend 0<E10。[Application example 13] The quantum interference device allows multiple pairs of resonant light to pass through the alkali metal atoms one or more times, and detects the electromagnetically induced transparency phenomenon from the alkali metal atoms. When the energy of the excitation level considering the Doppler width is E10, and the excitation target energy of the plurality of resonant light pairs is Eend 0, the Eend 0 satisfies E10<Eend 0 or Eend 0<E10.

在该情况下,能够使1对共振光在去路和回路上,分别在气室内与具有相反方向的速度分量的碱金属原子群产生EIT。因此,在这样的条件下由多对共振光对产生EIT时,与非反射型的情况相比,利用一半数量的共振光对或一半的光调制宽度,即可得到相同的效果。In this case, one pair of resonant light can be caused to generate EIT with the alkali metal atom group having the velocity components in opposite directions in the gas cell, respectively, on the outward path and the return path. Therefore, when EIT is generated by multiple resonant light pairs under such conditions, the same effect can be obtained by using half the number of resonant light pairs or half the light modulation width compared to the case of the non-reflective type.

[应用例14]该量子干涉装置使多对共振光对1次或多次地折返通过所述碱金属原子,从所述碱金属原子检测所述电磁诱导透明现象,其特征在于,当设引起所述电磁诱导透明现象的多对共振光对中的任意一对的激发目标能量为Eend时,所述Eend只满足Eend<E10或E10<Eend中的某一方的条件。[Application example 14] The quantum interference device allows multiple pairs of resonant light to pass through the alkali metal atoms one or more times, and detects the electromagnetically induced transparency phenomenon from the alkali metal atoms. When the excitation target energy of any one of the plurality of resonant light pairs in the electromagnetically induced transparency phenomenon is Eend, the Eend only satisfies either the condition of Eend<E10 or E10<Eend.

在该情况下,所有的共振光对均对EIT有贡献,且由于是反射型,因此与非反射型的情况相比,只需一半数量的共振光对即可,效率更高。In this case, all resonant light pairs contribute to EIT, and since it is a reflective type, only half the number of resonant light pairs is required compared with the case of a non-reflective type, and the efficiency is higher.

[应用例15]特征在于,所述折返次数为奇数次(去与回各自的总光路长度基本相等)。[Application Example 15] is characterized in that the number of times of reentry is an odd number (total optical path lengths of going and returning are substantially equal).

如果光的去路与回路的光路长度基本相等,则在彼此不同的速度群中对EIT有贡献的原子的数量基本相等,因此从EIT产生效率的角度来看是有利的。If the optical path lengths of the outward path and the return path of light are substantially equal, the number of atoms contributing to EIT in different velocity groups is substantially equal, which is advantageous from the viewpoint of EIT generation efficiency.

[应用例16]特征在于,原子振荡器具有所述量子干涉装置。[Application example 16] An atomic oscillator includes the quantum interference device.

原子振荡器通过具有本发明的量子干涉装置,能够在S/N高的状态下产生EIT现象,因此能够实现原子振荡器的小型化。Since the atomic oscillator has the quantum interference device of the present invention, the EIT phenomenon can be generated in a high S/N state, and thus the miniaturization of the atomic oscillator can be realized.

[应用例17]特征在于,磁传感器具有本发明的上述量子干涉装置。[Application example 17] A magnetic sensor is characterized in that it has the above-mentioned quantum interference device of the present invention.

原子振荡器的振荡频率以原子的2个基态能级之间的能量差(ΔE12)为基准。ΔE12的值随外部磁场的强度或变动而变化,因此,对原子振荡器的气室实施了磁场屏蔽,以不受外部磁场的影响。因此,可通过去除磁场屏蔽并根据振荡频率变化读取ΔE12的变化,来制造测定外部磁场的强度和变动的磁传感器。通过具有本发明的量子干涉装置,能够在S/N较高的状态下产生EIT现象,因此能够实现磁传感器的小型化。The oscillation frequency of the atomic oscillator is based on the energy difference (ΔE12) between the two ground state energy levels of the atom. The value of ΔE12 changes with the strength or fluctuation of the external magnetic field. Therefore, the gas chamber of the atomic oscillator is shielded from the magnetic field so as not to be affected by the external magnetic field. Therefore, a magnetic sensor that measures the strength and fluctuation of an external magnetic field can be manufactured by removing the magnetic field shield and reading the change in ΔE12 according to the change in oscillation frequency. By having the quantum interference device of the present invention, the EIT phenomenon can be generated in a state with a high S/N, and thus the magnetic sensor can be miniaturized.

[应用例18]特征在于,量子干涉传感器具有本发明的所述量子干涉装置。[Application example 18] The quantum interference sensor has the quantum interference device of the present invention.

通过具有本发明的量子干涉装置,能够实现用于检测影响EIT信号曲线的外部干扰的各种传感器的灵敏度和精度提高以及小型化。By having the quantum interference device of the present invention, it is possible to achieve improvement in sensitivity and accuracy and miniaturization of various sensors for detecting external disturbances that affect the EIT signal curve.

附图说明Description of drawings

图1是气态碱金属原子的速度分布的概略图。Fig. 1 is a schematic diagram of the velocity distribution of gaseous alkali metal atoms.

图2是示出本发明的第1实施方式的原子振荡器的结构的图。FIG. 2 is a diagram showing the configuration of an atomic oscillator according to the first embodiment of the present invention.

图3(a)及(b)是示出入射到气室(gas cell)的共振光的频谱的图。3( a ) and ( b ) are graphs showing the spectrum of resonance light incident on a gas cell.

图4是示出入射到气室的共振光和气态碱金属原子的移动方向的状态的图。FIG. 4 is a diagram showing the state of resonant light incident on the gas cell and the direction of movement of gaseous alkali metal atoms.

图5是说明基于原子运动的能量多普勒扩展与本发明的共振光之间的关系的示意图。FIG. 5 is a schematic diagram illustrating the relationship between energy Doppler spread based on atomic motion and resonant light of the present invention.

图6是示出本发明的第2实施方式的原子振荡器的结构的图。FIG. 6 is a diagram showing the configuration of an atomic oscillator according to a second embodiment of the present invention.

图7是示出本发明的第3实施方式的原子振荡器的结构的图。FIG. 7 is a diagram showing the configuration of an atomic oscillator according to a third embodiment of the present invention.

图8是示出本发明的实施方式的磁传感器的结构的图。FIG. 8 is a diagram showing a configuration of a magnetic sensor according to an embodiment of the present invention.

图9(a)是由波长不同的2种共振光的对引起的EIT现象的光透射强度的图,(b)是对波长不同的2种共振光的对进行调制时的EIT现象的光透射强度的图。Fig. 9(a) is a graph showing the light transmission intensity of the EIT phenomenon caused by the pair of two resonance lights with different wavelengths, and (b) is the light transmission intensity of the EIT phenomenon when the pair of two resonance lights with different wavelengths is modulated strength graph.

图10是示出本发明的第4实施方式的原子振荡器的结构的图。FIG. 10 is a diagram showing the configuration of an atomic oscillator according to a fourth embodiment of the present invention.

图11是示出本发明的第5实施方式的原子振荡器的结构的图。FIG. 11 is a diagram showing the configuration of an atomic oscillator according to a fifth embodiment of the present invention.

图12(a)是示出原子的“速度(一维射影)”分布(麦克斯韦玻耳兹曼分布)的图,(b)是示出原子的“速度”分布(麦克斯韦玻耳兹曼分布)的图。Fig. 12(a) is a graph showing the "velocity (one-dimensional projection)" distribution of atoms (Maxwell Boltzmann distribution), and (b) is a graph showing the "velocity" distribution of atoms (Maxwell Boltzmann distribution) diagram.

图13(a)是示出正弦波调制时的高次谐波(+分量)分布的图,(b)是示出典型的方波调制时的高次谐波(+分量)分布的图,(c)是示出典型的三角波调制时的高次谐波(+分量)分布的图。13( a ) is a diagram showing the distribution of higher harmonics (+ components) during sine wave modulation, (b) is a diagram showing the distribution of higher harmonics (+ components) during typical square wave modulation, (c) is a figure which shows the distribution of a harmonic (+ component) at the time of typical triangular wave modulation.

图14(a)是示出光强度的线性―非线性分支点的图,(b)是示出激光频率分布的图。14( a ) is a graph showing a linear-nonlinear branch point of light intensity, and ( b ) is a graph showing laser frequency distribution.

图15(a)是示出EIT信号线宽的激光强度依赖性的图,(b)是针对EIT信号强度与EIT信号线宽之间的关系而示出以往与本发明的比较的图。15( a ) is a graph showing the laser intensity dependence of the EIT signal line width, and ( b ) is a graph showing a comparison between the conventional and the present invention regarding the relationship between the EIT signal intensity and the EIT signal line width.

图16是示出CsD2线附近激光频率分布的图。Fig. 16 is a graph showing laser frequency distribution near the CsD2 line.

图17是示出EIT信号强度与线宽之间的关系的图。FIG. 17 is a graph showing the relationship between EIT signal strength and line width.

图18是示出同一线宽下的EIT信号强度的比较的图。FIG. 18 is a graph showing a comparison of EIT signal strengths at the same line width.

图19是示出实验系统的结构的图。FIG. 19 is a diagram showing the configuration of an experimental system.

图20(a)是与D2线对应的能量图,(b)是与D1线对应的能量图,(c)是考虑了多普勒扩展的激发能级附近的能量图。20( a ) is an energy diagram corresponding to line D2 , ( b ) is an energy diagram corresponding to line D1 , and ( c ) is an energy diagram near the excitation level in consideration of Doppler spread.

图21(a)是考虑了多普勒扩展的激发能级附近的能量图,(b)是考虑了多普勒扩展的激发能级附近的能量图。FIG. 21( a ) is an energy diagram around the excitation level in consideration of Doppler spread, and FIG. 21( b ) is an energy diagram around the excitation level in consideration of Doppler spread.

图22(a)是激发能级附近的能量图,(b)是激发能级附近的能量图,(c)是示出本发明的第6实施方式的封入了碱金属原子的气室、光源、光路以及检测器的配置结构的图。Fig. 22(a) is an energy diagram near the excitation level, (b) is an energy diagram near the excitation level, and (c) shows a gas cell and a light source in which alkali metal atoms are enclosed according to the sixth embodiment of the present invention. , the optical path and the configuration diagram of the detector.

图23(a)是激发能级附近的能量图,(b)是激发能级附近的能量图,(c)是示出本发明的第7实施方式的封入了碱金属原子的气室、光源、光路以及检测器的配置结构的图。Fig. 23(a) is an energy diagram near the excitation level, (b) is an energy diagram near the excitation level, and (c) shows a gas cell and a light source in which alkali metal atoms are enclosed according to the seventh embodiment of the present invention. , the optical path and the configuration diagram of the detector.

图24(a)是说明以往的EIT方式的原理的图,(b)、(c)是示出以往的气室与共振光之间的关系的图。24( a ) is a diagram illustrating the principle of the conventional EIT method, and (b) and (c) are diagrams showing the relationship between the conventional gas cell and resonance light.

标号说明Label description

1中心波长产生单元;2LD;3EOM;4EOM;5气室;6光检测器;7频率控制单元单元;8压控石英振荡器;9振荡器;10振荡器;11、12、13共振光;14、15、16气态铯原子;17混合器;18、19调制信号;40波长板;41未实施调制时的被线偏振光化的波形;42未实施调制时的被圆偏振光化的波形;43实施了调制时的被线偏振光化的波形;44实施了调制时的被椭圆偏振光化的波形;45实施了调制时的被圆偏振光化的波形;50、51、52、53、54原子振荡器。1 Central wavelength generation unit; 2LD; 3EOM; 4EOM; 5 gas chamber; 6 photodetector; 7 frequency control unit; 8 voltage-controlled quartz oscillator; 9 oscillator; 10 oscillator; 11, 12, 13 resonance light; 14, 15, 16 gaseous cesium atom; 17 mixer; 18, 19 modulated signal; 40 wavelength plate; 41 linearly polarized waveform without modulation; 42 circularly polarized waveform without modulation ; 43 implements the waveform that is linearly polarized when modulation is implemented; 44 implements the waveform that is elliptically polarized when modulation is implemented; 45 implements the waveform that is circularly polarized when modulation is implemented; 50, 51, 52, 53 , 54 atomic oscillators.

具体实施方式Detailed ways

下面,使用附图所示的实施方式来详细说明本发明。不过,只要没有特别的记载,本实施方式所述的结构要素、种类、组合、形状、其相对配置等均只是单纯的说明例,其目的并不在于将本发明的范围仅局限于此。Hereinafter, the present invention will be described in detail using embodiments shown in the drawings. However, unless otherwise specified, the structural elements, types, combinations, shapes, relative arrangements, etc. described in this embodiment are merely illustrative examples, and are not intended to limit the scope of the present invention thereto.

这里,预先对下面将多次出现的“性能指数”进行定义。性能指数被定义为EIT信号的线宽的倒数(即Q值)与EIT信噪比(即S/N)的积。例如,由于S/N与EIT信号强度成比例,因此如果EIT信号强度增大,则性能指数提高。本发明的主要目的在于提高该性能指数。Here, "performance index" which will appear several times below is defined in advance. The performance index is defined as the product of the reciprocal of the line width of the EIT signal (ie, the Q value) and the EIT signal-to-noise ratio (ie, S/N). For example, since S/N is proportional to EIT signal strength, if the EIT signal strength increases, the performance index increases. The main purpose of the present invention is to improve this performance index.

图1示出了封入在容器中的气态碱金属原子团的速度分布的概要图。FIG. 1 is a schematic diagram showing the velocity distribution of gaseous alkali metal radicals enclosed in a container.

图1的横轴表示气态碱金属原子的速度,纵轴表示具有该速度的气态碱金属原子的数量的比例。如图1所示,气态碱金属原子具有以速度0为中心的与温度对应的一定的速度分布。这里,速度表示向气态碱金属原子团照射激光时与照射方向平行的原子速度分量,将与光源相对静止的速度的值设为0。这里,本发明人注意到了气态碱金属原子的速度对EIT现象的影响很大。当气态碱金属原子的速度存在分布时,由于光的多普勒效应(多普勒频移),在共振光的视波长即从气态碱金属原子观察到的共振光的波长中,产生分布。因此,注意到,在原子团中存在相当数量的如下这样的气态碱金属原子,即:即使同时照射1对共振光1和2,这些气态碱金属原子也不会产生EIT现象而将存留下来。在采用以往的方法即同时向碱金属原子团照射1对共振光1和2的情况下,被封入在气室内的气态碱金属原子团中的对EIT现象有贡献的碱金属原子仅仅是一部分。因此,本发明人进行了研究,使得以往由于多普勒效应的影响而对EIT现象没有贡献的气态碱金属原子也能够有助于产生EIT现象。下面,对本发明进行详细说明。The horizontal axis of FIG. 1 represents the velocity of gaseous alkali metal atoms, and the vertical axis represents the ratio of the number of gaseous alkali metal atoms having the velocity. As shown in FIG. 1 , gaseous alkali metal atoms have a certain velocity distribution centered on velocity 0 corresponding to temperature. Here, the velocity represents an atomic velocity component parallel to the irradiation direction when the gaseous alkali metal radical is irradiated with laser light, and the value of the velocity at rest relative to the light source is set to zero. Here, the present inventors have noticed that the velocity of gaseous alkali metal atoms greatly affects the EIT phenomenon. When there is a distribution in the velocity of gaseous alkali metal atoms, due to the Doppler effect of light (Doppler shift), distribution occurs in the apparent wavelength of resonance light, that is, the wavelength of resonance light observed from gaseous alkali metal atoms. Therefore, note that there are a considerable number of gaseous alkali metal atoms in the atomic group that will remain without generating the EIT phenomenon even if a pair of resonance lights 1 and 2 are irradiated at the same time. In the conventional method of simultaneously irradiating a pair of resonance lights 1 and 2 to an alkali metal radical, only a part of the alkali metal atoms that contribute to the EIT phenomenon are contained in the gaseous alkali metal radical enclosed in the gas cell. Therefore, the present inventors conducted research so that gaseous alkali metal atoms, which have not contributed to the EIT phenomenon due to the influence of the Doppler effect, can also contribute to the generation of the EIT phenomenon. Next, the present invention will be described in detail.

图2是示出本发明的第1实施方式的原子振荡器的结构的图。该原子振荡器50利用基于入射由2对以上(如后文所述为3对)的波长不同的相干光对构成的共振光时的量子干涉效应的光吸收特性,来控制振荡频率,该原子振荡器50构成为具有:射出各共振光的LD(VCSEL)(相干光源)2;产生LD 2的中心波长的中心波长产生单元1;振荡器9,其振荡产生相当于2个不同的基态的能量差(ΔE12)的频率(9.2GHz)的1/2(4.596GHz);振荡器10,其振荡产生25MHz左右的频率;EOM(电子光学调制元件)3、4,其利用电信号对从LD 2射出的共振光11实施频率调制;气室5,其根据经EOM 4调制的光12的波长来改变光的吸收量,封入有气态铯(Cs,碱金属)原子;光检测器(光检测单元)6,其检测从气室5透射过的光13;以及频率控制单元7,其根据光检测器6的输出,检测气室5的EIT状态,控制输出电压。另外,振荡器10的振荡频率被设定为25MHz,该频率是远小于铯原子的典型的多普勒宽度(例如在室温下大约为1GHz)的值。可对该频率进行适当变更。另外,关于振荡器9的输出频率,由于对于铯而言,相当于ΔE12的频率大约为9.2GHz(4.596GHz×2),因此,振荡器9的输出频率设为4.596GHz,其是通过对如下方式得到的频率进行倍频而生成的,所述频率是根据从频率控制单元7输出的控制电压对压控石英振荡器8进行控制而得到的。并且,利用振荡器10的频率(25MHz)对EOM3进行调制,利用振荡器9的频率(4.596GHz)对EOM 4进行调制,将EOM 3和EOM 4串联配置在LD 2的射出侧。并且,EOM 3和振荡器10的组合与EOM 4和振荡器9的组合的排列顺序也可以颠倒过来。FIG. 2 is a diagram showing the configuration of an atomic oscillator according to the first embodiment of the present invention. This atomic oscillator 50 controls the oscillation frequency by utilizing the light absorption characteristics based on the quantum interference effect when resonant light composed of two or more pairs (three pairs as described later) of coherent light pairs with different wavelengths enters, and the atomic oscillator 50 The oscillator 50 is composed of: an LD (VCSEL) (coherent light source) 2 that emits each resonant light; a center wavelength generating unit 1 that generates the center wavelength of the LD 2; an oscillator 9 that oscillates to generate two different ground states. 1/2 (4.596GHz) of the frequency (9.2GHz) of the energy difference (ΔE12); oscillator 10, which oscillates to generate a frequency of about 25MHz; EOM (Electron Optical Modulation Element) 3, 4, which uses electrical signals to slave LD 2. The emitted resonance light 11 implements frequency modulation; the gas chamber 5, which changes the light absorption amount according to the wavelength of the light 12 modulated by the EOM 4, is sealed with gaseous cesium (Cs, alkali metal) atoms; the photodetector (light detection Unit) 6, which detects the light 13 transmitted from the gas cell 5; and a frequency control unit 7, which detects the EIT state of the gas cell 5 according to the output of the light detector 6, and controls the output voltage. In addition, the oscillation frequency of the oscillator 10 is set to 25 MHz, which is a value much smaller than the typical Doppler width of cesium atoms (for example, approximately 1 GHz at room temperature). Appropriate changes can be made to this frequency. In addition, regarding the output frequency of the oscillator 9, since the frequency corresponding to ΔE12 is approximately 9.2 GHz (4.596 GHz × 2) for cesium, the output frequency of the oscillator 9 is set to 4.596 GHz by the following The frequency obtained by means of frequency multiplication is generated by controlling the voltage-controlled quartz oscillator 8 according to the control voltage output from the frequency control unit 7 . In addition, EOM3 is modulated by the frequency of oscillator 10 (25MHz), EOM4 is modulated by the frequency of oscillator 9 (4.596GHz), and EOM3 and EOM4 are arranged in series on the emission side of LD2. Also, the order of the combination of EOM 3 and oscillator 10 and the combination of EOM 4 and oscillator 9 can be reversed.

即,本实施方式的原子振荡器50的结构与以往的不同之处在于:针对从LD 2射出的共振光11,经由作为调制单元的EOM 3,得到2对以上(3对)的波长不同的2种共振光的对。在以往的原子振荡器中,只准备了1对波长不同的2种共振光的对,并对频率进行控制,使得同时照射的2种共振光的频率差(波长差)与各个基态能级的能量差ΔE12准确地一致。但是,由于因原子运动而产生的共振光的多普勒效应,封入在气室5中的铯原子团的共振光波长产生分布,对于1对共振光而言,只是偶尔与以满足与其波长对应的共振条件的速度运动的一部分铯原子发生相互作用,因此产生EIT现象的效率差。因此,在本实施方式中,将调制单元构成为,使得波长不同的至少4个(2个共振光对)共振光与封入在气室5中的气态的铯原子相互作用。由此,能够增大气室5的每单位体积内的有助于产生EIT现象的铯原子的数量,能够高效地取得EIT信号。That is, the structure of the atomic oscillator 50 of the present embodiment differs from conventional ones in that two or more pairs (three pairs) of different wavelengths are obtained for the resonant light 11 emitted from the LD 2 through the EOM 3 as a modulation unit. 2 pairs of resonant light. In conventional atomic oscillators, only one pair of two kinds of resonant light with different wavelengths is prepared, and the frequency is controlled so that the frequency difference (wavelength difference) of the two kinds of resonant light irradiated at the same time is different from that of each ground state energy level. The energy difference ΔE12 exactly coincides. However, due to the Doppler effect of the resonant light generated by the movement of atoms, the resonant light wavelengths of the cesium atomic clusters sealed in the gas cell 5 are distributed, and a pair of resonant light is only occasionally matched to satisfy the wavelength corresponding to the resonant light. Since a part of the cesium atoms moving at the velocity of the resonance condition interacts, the efficiency of generating the EIT phenomenon is poor. Therefore, in the present embodiment, the modulation unit is configured such that at least four (two resonant light pairs) of different wavelengths of resonant light interact with gaseous cesium atoms sealed in the gas cell 5 . Thereby, the number of cesium atoms contributing to the EIT phenomenon per unit volume of the gas cell 5 can be increased, and EIT signals can be acquired efficiently.

图3(a)及(b)是示出入射到气室的共振光的频谱的图。图4是示出入射到气室的共振光与气态铯原子的移动方向的状态的图。3( a ) and ( b ) are graphs showing the frequency spectrum of resonance light incident on the gas cell. FIG. 4 is a diagram showing the state of resonant light incident on the gas cell and the direction of movement of gaseous cesium atoms.

接着,参照图3及图4对本实施方式的动作进行说明。中心波长产生单元1以中心波长为λ0(中心频率f0)的方式产生LD 2的共振光11。当EOM 3和4对LD 2的共振光11实施了频率调制时,具有图3(a)所示的频谱30~32的共振光12被输入到气室5中。这里,在图3(a)中,A-A’的频率差为9.2GHz,对于这1对共振光,通过将λ0设定成适当的值,图4所示的入射光12的方向上的速度分量小的气态铯原子15产生EIT现象。另外,B-B’的频率差也是9.2GHz,对于这1对共振光,具有与图4所示的入射光12相反方向的速度分量的气态铯原子14产生EIT现象。另外,在图3(a)中,C-C’的频率差也是9.2GHz,对于这1对共振光,具有与图4所示的入射光12相同方向的速度分量的气态铯原子16产生EIT现象。这样,气室5内的原子具有多种速度分布。因此,当如上所述地向气室5入射被赋予了边带(sideband)B、B’、C、C’的分量的共振光12时,A-A’、B-B’、以及C-C’的频率差均为9.2GHz,这3对激光均与具有对应的速度分量的气态铯原子发生相互作用,其结果,增大了对EIT现象有贡献的铯原子的比例。由此,能够得到信噪比(S/N)大的期望的EIT信号。Next, the operation of this embodiment will be described with reference to FIGS. 3 and 4 . The central wavelength generating unit 1 generates the resonant light 11 of the LD 2 in such a manner that the central wavelength is λ0 (central frequency f0). When the EOMs 3 and 4 perform frequency modulation on the resonant light 11 of the LD 2, the resonant light 12 having the spectrum 30-32 shown in FIG. 3(a) is input into the gas cell 5. Here, in Fig. 3(a), the frequency difference of AA' is 9.2 GHz. For this pair of resonant lights, by setting λ0 to an appropriate value, the frequency in the direction of the incident light 12 shown in Fig. 4 The gaseous cesium atom 15 with a small velocity component produces the EIT phenomenon. Also, the frequency difference between BB' is 9.2 GHz, and the gaseous cesium atoms 14 having a velocity component in the opposite direction to that of the incident light 12 shown in Fig. 4 generate an EIT phenomenon with respect to this pair of resonant lights. In addition, in Fig. 3(a), the frequency difference of CC' is also 9.2 GHz. For this pair of resonant lights, the gaseous cesium atoms 16 having the velocity component in the same direction as the incident light 12 shown in Fig. 4 generate EIT Phenomenon. In this way, the atoms in the gas cell 5 have various velocity distributions. Therefore, when the resonant light 12 to which components of sidebands B, B', C, and C' are given enters the gas cell 5 as described above, AA', BB', and C- The frequency difference of C' is 9.2 GHz, and the three pairs of lasers all interact with gaseous cesium atoms with corresponding velocity components. As a result, the proportion of cesium atoms contributing to the EIT phenomenon increases. Thereby, a desired EIT signal with a large signal-to-noise ratio (S/N) can be obtained.

另外,在本实施方式中,虽然将EOM 4的调制频率设定为气态铯原子的频率差的1/2(4.596GHz),但是也可以设定为频率差9.2GHz。此时的共振光的频谱如图3(b)所示,产生了频谱33~35,但例如不使用频谱33,而是使用频谱34和35(也可以是频谱33和34)。即,A-λ0的频率差是9.2GHz,对于这1对共振光,通过将λ0设定成适当的值,在图4所示的入射光12的方向上的速度分量小的气态铯原子15产生EIT现象。B-λ1的频率差也是9.2GHz,对于这1对共振光,具有与图4所示的入射光12相反方向的速度分量的气态铯原子14产生EIT现象。另外,C-λ2的频率差也是9.2GHz,对于这1对共振光,具有与图4所示的入射光12相同方向的速度分量的气态铯原子16产生EIT现象。这样,气室5内的原子具有多种速度分布。因此,当如上述地向气室5入射被赋予了边带B、λ1、C、λ2的分量的共振光12时,A-λ0、B-λ1、以及C-λ2的频率差均为9.2GHz,这3对激光均与具有对应的速度分量的气态铯原子发生相互作用,其结果,增大了对EIT现象有贡献的铯原子的比例。由此能够得到信噪比(S/N)大的期望的EIT信号。In addition, in this embodiment, although the modulation frequency of EOM 4 is set to 1/2 (4.596 GHz) of the frequency difference of gaseous cesium atoms, it may be set to a frequency difference of 9.2 GHz. The spectrum of the resonant light at this time is as shown in FIG. 3( b ). Spectrum 33 to 35 are generated, but for example, spectrum 33 is not used, but spectrum 34 and 35 are used (spectrum 33 and 34 may also be used). That is, the frequency difference of A-λ0 is 9.2 GHz. For this pair of resonant lights, by setting λ0 to an appropriate value, gaseous cesium atoms 15 with a small velocity component in the direction of incident light 12 shown in FIG. EIT phenomenon occurs. The frequency difference of B-λ1 is also 9.2 GHz, and the gaseous cesium atoms 14 having a velocity component in the opposite direction to that of the incident light 12 shown in FIG. 4 generate an EIT phenomenon for this pair of resonant lights. In addition, the frequency difference of C-λ2 is also 9.2 GHz, and the gaseous cesium atoms 16 having a velocity component in the same direction as the incident light 12 shown in FIG. 4 generate an EIT phenomenon for this pair of resonant lights. In this way, the atoms in the gas cell 5 have various velocity distributions. Therefore, when the resonant light 12 to which the components of sidebands B, λ1, C, and λ2 are given enters the gas cell 5 as described above, the frequency differences of A-λ0, B-λ1, and C-λ2 are all 9.2 GHz. , the three pairs of lasers all interact with gaseous cesium atoms with corresponding velocity components, and as a result, the proportion of cesium atoms that contribute to the EIT phenomenon increases. Accordingly, a desired EIT signal having a large signal-to-noise ratio (S/N) can be obtained.

即,为了产生至少2对共振光对(这里为3对)的共振光,考虑使从LD 2射出的共振光重叠地产生边带,并利用其频谱。另外,需要用以下2个频率来对用于调制共振光的频率进行调制,即:相当于2个不同的基态的能量差(ΔE12)的频率(9.2GHz)的1/2的4.596GHz;以及远小于铯原子的典型的多普勒宽度(例如在室温下大约为1GHz)的值的频率(这里为25MHz)。另外,需要利用用于对光进行调制的EOM。因此在本实施方式中,准备了分别振荡产生2种频率的振荡器9和10,用各个频率对串联配置在LD 2的射出测的EOM 3和4进行调制。由此,能够基于从LD 2射出的共振光11,产生具有3对频谱的共振光,这3对频谱保持9.2GHz的频率差。That is, in order to generate at least two resonant light pairs (here, three pairs) of resonant light, it is considered that the resonant light emitted from the LD 2 overlaps to generate sidebands and utilize the spectrum thereof. In addition, the frequency for modulating the resonant light needs to be modulated with the following two frequencies, namely: 4.596 GHz corresponding to 1/2 of the frequency (9.2 GHz) of the energy difference (ΔE12) of two different ground states; and A frequency (here 25 MHz) of a value much smaller than the typical Doppler width of cesium atoms (eg about 1 GHz at room temperature). In addition, it is necessary to utilize the EOM for modulating the light. Therefore, in the present embodiment, the oscillators 9 and 10 that oscillate and generate two kinds of frequencies are prepared, and the EOMs 3 and 4 arranged in series at the injection side of the LD 2 are modulated with each frequency. Thereby, based on the resonant light 11 emitted from the LD 2, it is possible to generate resonant light having three pairs of spectrums, and these three pairs of spectrums maintain a frequency difference of 9.2 GHz.

另外,在本实施方式中,EOM 3和EOM 4各设有1个,不过,也可以在LD 2的射出侧串联配置EOM 4和至少2个EOM 3。由此,可任意设定共振光对的数量,且以梳齿状的频率间隔产生。In addition, in this embodiment, one EOM 3 and one EOM 4 are respectively provided, but it is also possible to arrange EOM 4 and at least two EOM 3 in series on the injection side of LD 2. As a result, the number of resonant light pairs can be set arbitrarily and generated at comb-tooth-like frequency intervals.

图5是说明基于原子运动的能量多普勒扩展与本发明的共振光之间的关系的示意图。封入容器中的气态碱金属原子团的能量状态图可通过如下方式来表现:用与多普勒扩展相当的能带来置换图24所示的针对1个原子的能量状态图的激发能级。图5中的20、21、22的各能级是与图4中的分别由16、15、14表示的原子对应的激发能级。由此可知,对于具有速度分布的气态碱金属原子团,利用多个共振光对增大了对EIT现象有贡献的原子的比例。因此,例如,如果将分配给1对共振光的功率设定为与以往的功率基本相等,则吸收的饱和极限变高,总功率增大,因此,能够取得高对比度的EIT信号。另外,在总光照射功率与以往基本相等的情况下,本发明的每1对共振光的功率减小,因此抑制了EIT信号的功率展宽(光功率越强EIT信号的线宽越大的现象),与以往相比,能够取得半值宽度窄的良好的EIT信号。因此,在将其应用于振荡器的情况下,与以往相比,能够提高频率稳定性。FIG. 5 is a schematic diagram illustrating the relationship between energy Doppler spread based on atomic motion and resonant light of the present invention. The energy state diagram of a gaseous alkali metal atomic group enclosed in a container can be expressed by replacing the excitation level of the energy state diagram for one atom shown in FIG. 24 with an energy band equivalent to Doppler spread. The respective energy levels 20, 21, and 22 in FIG. 5 are excitation energy levels corresponding to the atoms respectively indicated by 16, 15, and 14 in FIG. 4 . It can be seen that, for gaseous alkali metal atomic groups with velocity distribution, the use of multiple resonant light pairs increases the proportion of atoms that contribute to the EIT phenomenon. Therefore, for example, if the power allocated to one pair of resonant lights is set to be substantially equal to the conventional power, the saturation limit of absorption becomes higher and the total power increases, so that a high-contrast EIT signal can be obtained. In addition, when the total light irradiation power is substantially equal to the conventional one, the power of each pair of resonant light in the present invention is reduced, so the power broadening of the EIT signal (the phenomenon in which the line width of the EIT signal becomes larger as the optical power is stronger) is suppressed. ), it is possible to obtain a good EIT signal with a narrower half-value width than conventional ones. Therefore, when this is applied to an oscillator, frequency stability can be improved compared to conventional ones.

图6是示出本发明的第2实施方式的原子振荡器的结构的图。对相同结构要素标注与图2相同的参照标号来进行说明。图6与图2的不同之处在于,删除了EOM 4,并设置了将振荡器10和振荡器9的输出信号混合的混合器17,利用混合器17的输出信号18来驱动EOM 3,将EOM 3配置在LD 2的射出侧。由此,从EOM 3射出的共振光12产生与图3(a)相同的频谱。FIG. 6 is a diagram showing the configuration of an atomic oscillator according to a second embodiment of the present invention. The same constituent elements will be described with the same reference numerals as in FIG. 2 . The difference between Fig. 6 and Fig. 2 is that EOM 4 is deleted, and a mixer 17 that mixes the output signals of oscillator 10 and oscillator 9 is set, and the output signal 18 of mixer 17 is used to drive EOM 3, and the EOM 3 is placed on the injection side of LD 2. As a result, the resonant light 12 emitted from the EOM 3 has the same spectrum as that shown in Figure 3(a).

即,为了对光进行调制,使用了EOM,但存在下述问题,即:如果增加频谱的数量,则必须相应地增加EOM的数量,成本增高且部件数量增加。因此,在本实施方式中,预先用混合器17混合对EOM进行调制的信号,利用其输出信号18对1个EOM 3进行调制。由此,可将EOM的数量控制为最小,能够减少部件数量。That is, EOMs are used to modulate light, but there are problems in that if the number of spectrums is increased, the number of EOMs must be increased accordingly, which increases the cost and the number of parts. Therefore, in this embodiment, the signal for modulating the EOM is mixed in advance by the mixer 17, and one EOM 3 is modulated by the output signal 18 thereof. Accordingly, the number of EOMs can be minimized and the number of parts can be reduced.

图7是示出本发明的第3实施方式的原子振荡器的结构的图。对相同的结构要素标注与图6相同的参照标号来进行说明。图7与图6的不同之处在于,删除了EOM 3,利用混合器17的输出信号19直接对LD 2进行调制驱动。由此,从LD 2射出的共振光11产生与图3(a)相同的频谱。FIG. 7 is a diagram showing the configuration of an atomic oscillator according to a third embodiment of the present invention. The same reference numerals as in FIG. 6 are attached to the same constituent elements and described. The difference between Fig. 7 and Fig. 6 is that the EOM 3 is deleted, and the output signal 19 of the mixer 17 is used to directly modulate and drive the LD 2 . Thus, the resonant light 11 emitted from the LD 2 has the same spectrum as that shown in Fig. 3(a).

即,中心波长产生单元1以中心波长为λ0的方式产生从LD 2射出的共振光11。并且,为了对中心波长进行调制,除了用EOM对从LD 2射出的共振光11进行调制的方法以外,还有对LD 2本身进行调制的方法。因此,在本实施方式中,混合器17将振荡器10和振荡器9的输出频率混合,并用混合器17混合后的信号19对LD 2本身进行调制驱动。由此,可以不需要EOM。另外,还可从圧控石英振荡器8经由PLL等(也可利用振荡器9的电路的一部分)来生成振荡器10的输出频率。在该情况下,也不需要振荡器10。That is, the central wavelength generating unit 1 generates the resonant light 11 emitted from the LD 2 so that the central wavelength is λ0. In addition, in order to modulate the center wavelength, there is a method of modulating the LD 2 itself besides the method of modulating the resonant light 11 emitted from the LD 2 by the EOM. Therefore, in this embodiment, the mixer 17 mixes the output frequencies of the oscillator 10 and the oscillator 9, and uses the signal 19 mixed by the mixer 17 to modulate and drive the LD 2 itself. Thus, EOM may not be required. In addition, the output frequency of the oscillator 10 can also be generated from the pressure-controlled quartz oscillator 8 via a PLL or the like (a part of the circuit of the oscillator 9 can also be used). In this case, the oscillator 10 is also unnecessary.

另外,省略图示,也可以将设置在以往的EIT方式的原子振荡器中的LD形成为如下结构,即:将各个不同波长的面发光激光配置成阵列状。In addition, although illustration is omitted, the LD provided in a conventional EIT-type atomic oscillator may be formed in a structure in which surface-emitting laser beams of different wavelengths are arranged in an array.

图8是示出本发明的实施方式的磁传感器的结构的图。对相同结构要素标注与图7相同的参照标号来进行说明。图8与图7的不同之处在于,在气室5的附近配置了被测定磁场产生源37,并具有测定频率控制单元7的输出信号的变动的磁场测定器36。原子振荡器的振荡频率以原子的2个基态能级之间的能量差(ΔE12)为基准。ΔE12的值随外部磁场的强度或变动而变化,因此,对原子振荡器的气室实施了磁场屏蔽,以不受外部磁场的影响。因此,可通过去除磁场屏蔽并根据振荡频率变化读取ΔE12的变化,来制造测定外部磁场的强度和变动的磁传感器。通过采用本发明的结构,能够在S/N较高的状态下产生EIT现象,因此能够实现磁传感器的小型化。FIG. 8 is a diagram showing a configuration of a magnetic sensor according to an embodiment of the present invention. The same constituent elements will be described with the same reference numerals as in FIG. 7 . 8 is different from FIG. 7 in that a magnetic field generator 37 to be measured is arranged near the gas chamber 5 and a magnetic field measuring device 36 for measuring fluctuations in the output signal of the frequency control unit 7 is provided. The oscillation frequency of the atomic oscillator is based on the energy difference (ΔE12) between the two ground state energy levels of the atom. The value of ΔE12 changes with the strength or fluctuation of the external magnetic field. Therefore, the gas chamber of the atomic oscillator is shielded from the magnetic field so as not to be affected by the external magnetic field. Therefore, a magnetic sensor that measures the strength and fluctuation of an external magnetic field can be manufactured by removing the magnetic field shield and reading the change in ΔE12 according to the change in oscillation frequency. By employing the structure of the present invention, the EIT phenomenon can be generated in a state with a high S/N, and thus the size of the magnetic sensor can be reduced.

图9(a)是由波长不同的2个共振光的对引起的EIT现象的光透射强度的图,图9(b)是对波长不同的2个共振光的对进行调制时的EIT现象的光透射强度的图。根据图9(a)可知,波形41是来自VCSEL的经线偏振光化的光透射强度的波形,波形42表示进一步使该共振光对通过波长板而成为圆偏振光时的光透射强度。可知,波形42相对于波形41增加了大约20%的水平。另外,当如图9(b)所示地对共振光对进行调制时,多个共振光对均与具有对应的速度分布的气态铯原子发生相互作用,显现出具有多个峰值的波形43。在本实施方式中,例如图10所示,在LD 2与气室5之间,以与光路垂直的方式配置了波长板40,当逐渐旋转波长板面而使得共振光对11变成圆偏振光时,确认到在波长λ0处光透射强度为最大的波形45。因此,确认到,在共振光对从线偏振光向圆偏振光变化的过程中,光透射强度变成波形43(线偏振光)、波形44(楕圆偏振光)、波形45(圆偏振光)。Fig. 9(a) is a graph of the light transmission intensity of the EIT phenomenon caused by two pairs of resonant lights with different wavelengths, and Fig. 9(b) is a graph of the EIT phenomenon when two pairs of resonant lights with different wavelengths are modulated. Plot of light transmission intensity. As can be seen from FIG. 9( a ), the waveform 41 is a waveform of the linearly polarized light transmission intensity from the VCSEL, and the waveform 42 shows the light transmission intensity when the resonant light pair is further passed through a wavelength plate to become circularly polarized light. It can be seen that waveform 42 has a level increased by about 20% relative to waveform 41 . In addition, when the resonant light pairs are modulated as shown in FIG. 9( b ), multiple resonant light pairs all interact with gaseous cesium atoms with corresponding velocity distributions, and a waveform 43 with multiple peaks appears. In this embodiment, for example, as shown in FIG. 10 , between the LD 2 and the gas chamber 5, a wavelength plate 40 is arranged perpendicular to the optical path, and when the wavelength plate surface is gradually rotated, the resonant light pair 11 becomes circularly polarized. When the light is turned on, a waveform 45 in which the light transmission intensity is maximum at the wavelength λ0 is confirmed. Therefore, it was confirmed that when the resonant light pair changes from linearly polarized light to circularly polarized light, the transmitted light intensity changes to waveform 43 (linearly polarized light), waveform 44 (elliptical polarized light), and waveform 45 (circularly polarized light). ).

即,对于从LD 2射出的共振光对11,在与光的传播方向垂直面内电矢量的末端描绘出圆的情况下,该光被称为圆偏振光。经实验确认到:当将共振光对转换成圆偏振光时,波长λ0的光透射强度增大到通常的6倍左右。由此,能够提高EIT现象下的光输出信号的S/N。That is, when the resonant light pair 11 emitted from the LD 2 draws a circle at the end of the in-plane electric vector perpendicular to the propagation direction of the light, the light is called circularly polarized light. It has been confirmed through experiments that when the resonant light pair is converted into circularly polarized light, the light transmission intensity at the wavelength λ0 increases to about 6 times that of normal light. Thereby, the S/N of the optical output signal under the EIT phenomenon can be improved.

另外,对于从LD 2射出的共振光对11,在与光的传播方向垂直的面内电矢量的末端描绘出楕圆的情况下,该光被称为楕圆偏振光。存在这样的椭圆偏振光,即:当在共振光对的光路上,以与光路垂直的方式设置了波长板并旋转其表面时,该椭圆偏振光的偏振状态发生变化且是在垂直偏振光与圆偏振光之间连续地变化。因此,即使是楕圆偏振光,也能够提高EIT现象下的光输出信号的S/N。In addition, when the resonant light pair 11 emitted from the LD 2 draws an ellipse at the end of the in-plane electric vector perpendicular to the propagation direction of the light, the light is called elliptical polarized light. There is such elliptically polarized light that the polarization state of the elliptically polarized light changes when the wavelength plate is arranged perpendicular to the optical path on the optical path of the resonant light pair and its surface is rotated, and is between the vertically polarized light and the Continuously change between circularly polarized light. Therefore, even with elliptically polarized light, the S/N of the optical output signal under the EIT phenomenon can be improved.

图10是示出本发明的第4实施方式的原子振荡器的结构的图。第4实施方式是在图7的结构中追加了波长板40而得到的结构。即,在LD 2与气室5之间,以与光路垂直的方式配置了波长板40。从LD 2射出的线偏振光的共振光对11入射到波长板40,被偏振90度相位而成为圆偏振光11a。另外,波长板40可以配置在LD 2与气室5之间的任何位置,可以位于LD 2的出射面附近,也可以位于气室5的入射口附近。FIG. 10 is a diagram showing the configuration of an atomic oscillator according to a fourth embodiment of the present invention. The fourth embodiment is a configuration in which a wavelength plate 40 is added to the configuration of FIG. 7 . That is, between the LD 2 and the gas cell 5, the wavelength plate 40 is arranged perpendicular to the optical path. The resonant light pair 11 of linearly polarized light emitted from the LD 2 enters the wave plate 40 and is polarized at a 90-degree phase to become circularly polarized light 11a. In addition, the wavelength plate 40 can be arranged at any position between the LD 2 and the gas chamber 5, it can be located near the exit surface of the LD 2, or it can be located near the entrance of the gas chamber 5.

图11是示出本发明的第5实施方式的原子振荡器的结构的图。第5实施方式是在图6的结构中追加波长板40而得到的结构。即,在EOM 3与气室5之间,以与光路垂直的方式设置了波长板40。从LD 2射出的线偏振光的共振光对11经EOM 3调制后成为共振光12,入射到波长板40,被偏振90度相位而成为圆偏振光12a。另外,波长板40可以配置在EOM 3与气室5之间的任何位置处,可以配置在EOM 3的出射面附近,也可以配置在气室5的入射口附近。FIG. 11 is a diagram showing the configuration of an atomic oscillator according to a fifth embodiment of the present invention. The fifth embodiment is a configuration in which a wavelength plate 40 is added to the configuration of FIG. 6 . That is, between the EOM 3 and the gas cell 5, a wavelength plate 40 is provided perpendicular to the optical path. The resonant light pair 11 of the linearly polarized light emitted from the LD 2 is modulated by the EOM 3 to become a resonant light 12, which is incident on the wavelength plate 40 and is polarized at a 90-degree phase to become circularly polarized light 12a. In addition, the wavelength plate 40 can be disposed at any position between the EOM 3 and the gas chamber 5, can be disposed near the exit surface of the EOM 3, or can be disposed near the entrance of the gas chamber 5.

即,波长板是指使垂直的偏振光分量之间产生相位差的多折射元件。将产生相位差π(180°)的波长板称为λ/2板或半波长板,其用于改变线偏振光的偏振方向。将产生相位差π/2(90°)的波长板称为λ/4板或四分之一波长板,其用于将线偏振光转换成圆偏振光(楕圆偏振光),或相反地将圆偏振光(楕圆偏振光)转换成线偏振光。在本实施方式中,由于需要将线偏振光转换成圆偏振光或楕圆偏振光,因此需要使用λ/4板,利用波长板40将从LD 2射出的线偏振光的共振光对11转换成圆偏振光或楕圆偏振光,入射到气室5。由此,只需简单的结构即可提高EIT现象下的光输出信号的S/N。That is, the wave plate refers to a multi-refringence element that generates a phase difference between vertically polarized light components. A wavelength plate that produces a phase difference of π (180°) is called a λ/2 plate or a half-wavelength plate, which is used to change the polarization direction of linearly polarized light. A wavelength plate that produces a phase difference of π/2 (90°) is called a λ/4 plate or a quarter-wave plate, which is used to convert linearly polarized light into circularly polarized light (楕 circularly polarized light), or vice versa Convert circularly polarized light (o-circularly polarized light) into linearly polarized light. In this embodiment, since the linearly polarized light needs to be converted into circularly polarized light or elliptic polarized light, it is necessary to use a λ/4 plate to convert the resonant light pair 11 of the linearly polarized light emitted from the LD 2 by the wavelength plate 40. Circularly polarized light or elliptic polarized light is incident on the gas chamber 5 . Accordingly, the S/N of the optical output signal under the EIT phenomenon can be improved with a simple structure.

图14(a)是示出满足产生EIT的条件的2光波共振光对的光强度(横轴)与EIT信号强度(纵軸)之间的关系的图。在光强度很弱的区域,EIT信号强度与光强度保持比例关系且大致线性地变化。但是,当光强度超过某点(P0)时,即使增大光强度,EIT信号强度也不明显地变化(饱和区域)。考虑到这点,关注气室内的碱金属原子中的具有特定速度(如上所述,是指与入射光平行的速度分量)的原子团(ensemble),从光利用效率的角度来看,希望将入射光强度设定为EIT信号强度相对于入射光强度未达到饱和的最大光强度P0(强度线性地增加的区域中最大的光强度)。FIG. 14( a ) is a graph showing the relationship between the light intensity (horizontal axis) and the EIT signal intensity (vertical axis) of a 2-light wave resonance light pair satisfying the conditions for generating EIT. In areas where the light intensity is very weak, the EIT signal intensity maintains a proportional relationship with the light intensity and changes approximately linearly. However, when the light intensity exceeds a certain point (P0), even if the light intensity is increased, the EIT signal intensity does not change significantly (saturation region). Taking this into consideration, focusing on the ensemble with a specific velocity (as mentioned above, referring to the velocity component parallel to the incident light) among the alkali metal atoms in the gas cell, it is hoped that the incident light The light intensity was set to the maximum light intensity P0 (maximum light intensity in a region where the intensity increases linearly) at which the EIT signal intensity does not reach saturation with respect to the incident light intensity.

作为EIT产生区域的气室内的碱金属原子(例如铯,Cs)团具有图12(b)所示的速度分布(曲线),该曲线随压力和温度等环境因素而变化,但如果仅关注某个固定方向上的速度分量的分布,则如图12(a)所示,基本呈高斯分布。当向该系统入射2光波的共振光对来产生EIT时,因该速度分布而产生能量的多普勒扩展,因此与产生EIT的频率区域的中心频率对应的EIT信号强度分布也呈高斯分布(典型情况下,经频率换算而具有1[GHz]左右的扩展)。因此,关注上述光利用效率,当设定为使得多个共振光对各自的光强度处于P0附近时,希望其分布为图14(b)所示那样,呈接近原子的速度分布即高斯分布的形状。The clusters of alkali metal atoms (such as cesium, Cs) in the gas chamber as the EIT generation region have the velocity distribution (curve) shown in Fig. 12(b), which varies with environmental factors such as pressure and temperature, but if only one The distribution of velocity components in a fixed direction is basically Gaussian distribution as shown in Fig. 12(a). When a resonant light pair of two light waves is incident on this system to generate EIT, Doppler spread of energy is generated due to the velocity distribution, so the EIT signal intensity distribution corresponding to the center frequency of the frequency region where EIT is generated also exhibits a Gaussian distribution ( Typically, it has an extension of about 1 [GHz] after frequency conversion). Therefore, focusing on the above-mentioned light utilization efficiency, when the light intensity of each of the multiple resonant light pairs is set to be near P0, it is desirable that the distribution is as shown in Fig. 14(b), which is close to the Gaussian distribution of the velocity distribution of atoms shape.

半导体激光器等当被施加直流电流时,发出与其电流值(Ivias)对应的频率(波长)的单色光(相干光)。如果把中心波长设为大约852[nm]并对Ivias施加4.6[GHz]的「调制」时(Imod(1)=4.6[GHz]),在中心波长的两侧形成二者间隔为(4.6×2=9.2[GHz])的边带,当该2光波作为共振光对入射到气室内的Cs原子时,发生量子干涉而产生EIT现象。这里,结合前面的多普勒扩展可知,对于2光波的共振光对(1对)而言,对EIT现象有贡献的气室内的Cs原子数量非常少。即,以往EIT产生效率差。A semiconductor laser or the like emits monochromatic light (coherent light) of a frequency (wavelength) corresponding to the current value (Ivias) when a direct current is applied thereto. If the central wavelength is set to about 852 [nm] and a "modulation" of 4.6 [GHz] is applied to Ivias (Imod (1) = 4.6 [GHz]), the distance between the two on both sides of the central wavelength is (4.6× 2=9.2[GHz]), when the 2 light waves enter the Cs atoms in the gas cell as resonant light, quantum interference occurs and the EIT phenomenon occurs. Here, it can be seen from the previous Doppler expansion that, for the resonant light pair (1 pair) of 2 light waves, the number of Cs atoms in the gas cell that contributes to the EIT phenomenon is very small. That is, conventional EIT generation efficiency is poor.

下面使用附图详细地说明驱动半导体激光器的施加电流的状态和激光器的频率分布。图16是示出在对中心波长为大约852[nm]的单色半导体激光器实施频率调制时观测到的频率分布的图。为了将碱金属原子(Cs)作为对象原子来产生EIT,将Ivias(直流偏置电流)设定成使得中心波长成为与Cs激发能量相当的852[nm]左右,然后可以对Ivias实施4.6[GHz]的频率调制Imod(1),或者经由EOM(电子光学调制元件)产生边带,由此产生1对彼此的频率差为9.2GHz的2光波的共振光对。当对其进一步重叠任意频率(例如15[MHz])的调制Imod(2)(重叠调制)时,2光波分别由重叠频率15[MHz]进行调制,产生具有重叠频率15[MHz]的间隔的梳(Comb)齿状的频率分布。具有这种梳齿状的频率分布的各个原来的2光波可以被看作多对共振光对,因此,只要使其与气室内的Cs原子发生作用,即可与以不同速度运动的Cs原子团同时产生EIT,EIT产生效率进一步提高(本发明)。The state of the applied current for driving the semiconductor laser and the frequency distribution of the laser will be described in detail below using the drawings. FIG. 16 is a graph showing a frequency distribution observed when frequency modulation is performed on a monochromatic semiconductor laser having a center wavelength of about 852 [nm]. In order to generate EIT using an alkali metal atom (Cs) as the target atom, Ivias (DC bias current) is set so that the central wavelength becomes about 852 [nm] which is equivalent to the excitation energy of Cs, and then 4.6 [GHz] can be performed on Ivias ]’s frequency modulation Imod (1), or generate sidebands via EOM (Electron Optical Modulation Element), thereby generating a pair of resonant light pairs of 2 light waves with a frequency difference of 9.2 GHz. When the modulation Imod (2) (overlap modulation) of an arbitrary frequency (for example, 15 [MHz]) is further superimposed on it, the 2 light waves are respectively modulated by the superposition frequency 15 [MHz] to generate the Comb (Comb) tooth-shaped frequency distribution. Each of the original 2 light waves with this comb-shaped frequency distribution can be regarded as multiple pairs of resonant light pairs. Therefore, as long as they interact with the Cs atoms in the gas chamber, they can simultaneously interact with the Cs atomic groups moving at different speeds. EIT is generated, and the efficiency of EIT generation is further improved (the present invention).

图16(a)是以往那样未进行重叠调制的2光波中的1个。(b)、(c)是用正弦波来重叠Imod(2)时的频谱。经调制的频率均等于15[MHz],但(b)、(c)的调制的振幅条件不同。二者均呈现梳齿状的频率分布,并且可知,与调制振幅为0.2[V]的(b)相比,1.0[V]的(c)的频率扩展范围更大。FIG. 16( a ) shows one of two light waves that are not superimposed and modulated as in the past. (b) and (c) are the frequency spectrum when the sine wave is used to overlap Imod (2). The modulated frequencies are all equal to 15 [MHz], but the modulation amplitude conditions of (b) and (c) are different. Both exhibit a comb-shaped frequency distribution, and it can be seen that (c) with a modulation amplitude of 0.2 [V] has a wider frequency expansion range than (b) with a modulation amplitude of 0.2 [V].

图17是将Cs的EIT信号的强度(纵轴)和线宽(横轴)之间的关系与现有方法进行比较的图,上述关系是通过利用考虑了本发明的重叠调制Imod(2)的激光驱动来照射多个共振光对而得到的,通过改变照射到Cs的激光功率而得到数据。图17的(a)、(b)、(c)分别与图16的(a)、(b)、(c)对应。可知与以往相比,在相同线宽的情况下,本发明的EIT信号强度远远大于以往,先前定义的“性能指数”(=Q×(S/N))提高。在本发明方法中,还能够理解到,与(b)相比,(c)的EIT信号强度更大是因为:根据图16所示的各个激光频谱分布可知,通过捕捉气室内的速度分布更多的Cs原子,与共振光对之间相互作用的效率提高,这对产生EIT有贡献。并且确认到:在现有方法(a)中,由于无法得到EIT信号强度,因此很难实现120[kHz]以下的EIT线宽,很难提高Q值(EIT信号线宽的倒数),但在本发明(b)、(c)中,能够进一步细化线宽,因此能够大幅提高性能指数。Fig. 17 is a graph comparing the relationship between the intensity (vertical axis) and line width (horizontal axis) of the EIT signal of Cs by using the overlapping modulation Imod(2) in consideration of the present invention with the existing method The laser is driven to irradiate multiple resonant light pairs, and the data is obtained by changing the laser power irradiated to Cs. (a), (b), and (c) of FIG. 17 correspond to (a), (b), and (c) of FIG. 16 , respectively. It can be seen that compared with the past, under the same line width, the EIT signal strength of the present invention is far greater than that of the past, and the previously defined "performance index" (=Q×(S/N)) is improved. In the method of the present invention, it can also be understood that, compared with (b), the EIT signal intensity of (c) is greater because: according to the distribution of each laser spectrum shown in Fig. With more Cs atoms, the efficiency of the interaction with the resonant light pair increases, which contributes to the generation of EIT. It was also confirmed that in the conventional method (a), since the EIT signal strength cannot be obtained, it is difficult to achieve an EIT linewidth below 120 [kHz], and it is difficult to improve the Q value (the reciprocal of the EIT signal linewidth), but in In (b) and (c) of the present invention, the line width can be further refined, so the performance index can be greatly improved.

图18是对半值全宽(线宽)为127[kHz]下的各个EIT信号进行比较的图。确认到:与现有方法(a)相比,在本发明的(c)中,EIT信号强度大约比其大14倍。FIG. 18 is a diagram comparing individual EIT signals at a full width at half maximum (line width) of 127 [kHz]. It was confirmed that in (c) of the present invention, the EIT signal intensity is about 14 times larger than that of the conventional method (a).

对到此为止的结果进行总结,可明确以下结论。当要细化功率展宽的线宽时,如果降低激光功率(图15(a)),则EIT信号强度与其成比例地减弱(图15(b)),在现有方法中,在A点处EIT信号强度变成0。即,无法得到比A点处的信号线宽更窄的信号线宽。Summarizing the results so far, the following conclusions can be clarified. When the line width of power broadening is to be refined, if the laser power is reduced (Fig. 15(a)), the EIT signal intensity is proportionally weakened (Fig. 15(b)), and in the existing method, at point A The EIT signal strength becomes 0. That is, a signal line width narrower than that at point A cannot be obtained.

但是,在本发明的方法中,对产生EIT信号有贡献的气室内的原子数量(密度)大幅增加,因此,在现有方法中信号强度已消失的EIT信号宽度下,能够得到充分的信号强度(B点)。即,用B点处的EIT信号强度除以A点处的EIT信号强度而得到的值表示本发明的方法相对于现有方法的最大放大率,是S/N的改善效果的指标。如果S/N得到改善,则性能指数提高,因此可与其大小成比例地提高利用了EIT现象的各种器件的性能。很明显,例如在利用了EIT现象的原子振荡器中,频率稳定度与S/N成比例地提高,如果将其应用于磁传感器(利用EIT原子振荡器的频率对外部磁场敏感地做出反应而发生变化的性质)等量子干涉传感器中,则能够产生高灵敏度等的效果。另外,在本发明中,与S/N得到改善相应地,即使减小引发EIT现象的上述气室的大小,也能够得到与以往相同的信号强度,因此,具有能够实现器件的进一步的小型化等的效果。However, in the method of the present invention, the number of atoms (density) in the gas cell that contributes to the generation of the EIT signal is greatly increased, so sufficient signal strength can be obtained at the EIT signal width where the signal strength has disappeared in the conventional method (point B). That is, the value obtained by dividing the EIT signal strength at point B by the EIT signal strength at point A represents the maximum amplification ratio of the method of the present invention relative to the conventional method, and is an index of the improvement effect of S/N. If the S/N is improved, the performance index is improved, so that the performance of various devices utilizing the EIT phenomenon can be improved in proportion to their size. It is clear that, for example, in an atomic oscillator utilizing the EIT phenomenon, the frequency stability increases proportionally to S/N, and if it is applied to a magnetic sensor (the frequency of the atomic oscillator utilizing the EIT responds sensitively to an external magnetic field In quantum interference sensors such as the nature of the change), it can produce effects such as high sensitivity. In addition, in the present invention, even if the size of the air cell causing the EIT phenomenon is reduced in accordance with the improvement in S/N, the same signal strength as in the past can be obtained, so that further miniaturization of the device can be realized. and so on.

另外,如图15(b)所示,如果在B点处得到了充分的EIT信号强度,则可通过进一步降低激光强度来进一步细化信号线宽(排除功率展宽的影响)。例如,用点划线表示作为目标的最低信号强度线,对于本发明的方法而言,能够实现C点处的信号线宽。与先前的关于S/N的讨论相同,线宽值越小,Q值越大,因此性能指数的值变大,从而能够提高利用了EIT现象的各种器件的性能。例如,在利用了EIT现象的原子振荡器中,通过EIT信号的细线化,频率稳定度提高,如果将其应用于磁传感器(利用EIT原子振荡器的频率对外部磁场敏感地做出反应而发生变化的性质)等量子干涉传感器,则带来高精度化等效果。In addition, as shown in Figure 15(b), if sufficient EIT signal intensity is obtained at point B, the signal linewidth can be further refined by further reducing the laser intensity (excluding the influence of power broadening). For example, the minimum signal strength line as the target is represented by a dotted line, and the signal line width at point C can be realized for the method of the present invention. As in the previous discussion about S/N, the smaller the line width value, the larger the Q value, and therefore the larger the value of the performance index, which can improve the performance of various devices using the EIT phenomenon. For example, in an atomic oscillator using the EIT phenomenon, the frequency stability is improved by thinning the EIT signal, and if it is applied to a magnetic sensor (the frequency of the atomic oscillator using EIT responds sensitively to an external magnetic field and Quantum interference sensors such as the nature of the change) bring effects such as high precision.

通过以上讨论可知,根据本发明,通过适当地选择激光的调制方法,能够得到现有方法所无法实现的EIT信号强度和EIT线宽,因此具有这样的优点:能够大范围地确定与应用目的相符的EIT信号曲线。利用该优点,例如在EIT器件设计、制造阶段中,如果利用激光驱动电路IC等一体地独立设置能够控制上述激光调制参数(调制波形、强度等,还包括调制开启/关闭)的单元,并将相当数量的其它结构要素作为通用部件,则能够容易地分开制造专用目的的EIT器件,具有降低成本等的效果。另外,也可以预先设置这样的单元,即:产品用户自己可利用该单元,根据使用环境等适当地控制、设定上述激光调制参数。From the above discussion, it can be seen that according to the present invention, by properly selecting the laser modulation method, EIT signal strength and EIT linewidth that cannot be achieved by existing methods can be obtained. The EIT signal curve. Taking advantage of this advantage, for example, in the EIT device design and manufacturing stages, if a laser drive circuit IC is used to independently set up a unit capable of controlling the above-mentioned laser modulation parameters (modulation waveform, intensity, etc., including modulation on/off), and A considerable number of other structural elements can be used as common components, and special-purpose EIT devices can be easily separately manufactured, which has the effect of reducing costs and the like. In addition, it is also possible to pre-install such a unit, that is, the product user can use this unit to properly control and set the above-mentioned laser modulation parameters according to the use environment and the like.

图13示出了激光的调制方法与傅立叶分量之间的关系。(a)是用正弦波进行振幅调制(AM)时的傅立叶分量,(b)是用矩形波进行振幅调制(AM)时的傅立叶分量,(c)是用三角波进行振幅调制(AM)时的傅立叶分量。横轴是频率。矩形波调制与三角波调制相比,存在更高次的傅立叶分量。如果用频率调制(FM)或相位调制(PM)对这些合成波进一步进行重叠调制,并对激光进行作为Imod(2)的重叠调制,则能够得到任意的调制波形,并能够高自由度地控制多个共振光对的强度分布和相邻的频率间隔。由此,能够得到如下等效果:容易实现每种用途所要求的器件性能需要的EIT信号制御,精度也得到提高。FIG. 13 shows the relationship between the modulation method of laser light and Fourier components. (a) is the Fourier component when performing amplitude modulation (AM) with a sine wave, (b) is the Fourier component when performing amplitude modulation (AM) with a rectangular wave, and (c) is when performing amplitude modulation (AM) with a triangular wave Fourier components. The horizontal axis is frequency. Rectangular wave modulation has higher-order Fourier components than triangular wave modulation. If these synthesized waves are further overlap-modulated by frequency modulation (FM) or phase modulation (PM), and the laser beam is overlap-modulated as Imod (2), arbitrary modulation waveforms can be obtained and can be controlled with a high degree of freedom Intensity distribution and adjacent frequency spacing of multiple resonant light pairs. As a result, it is possible to obtain the effects that the EIT signal control required for device performance required for each application can be easily realized, and the accuracy can also be improved.

图19是示出本发明的实验系统的结构的图。其是这样的例子,即:不用Imod(1)对激光进行调制,而是利用了EOM(电子光学调制元件)。Fig. 19 is a diagram showing the configuration of an experimental system of the present invention. It is an example where instead of modulating the laser light with Imod(1), EOM (Electron Optical Modulation Element) is used.

图20是碱金属的电子状态的能量图。图20(a)是激发能级为P3/2、即与所谓的D2线对应的能量图,图20(b)是激发能级为P1/2、即与所谓的D1线对应的能量图。图20(c)表示以往的基于2光波的1对共振光对或本发明的多对共振光对与考虑了多普勒扩展的碱金属原子之间的相互作用,是满足了产生EIT现象的条件时的激发能级附近的能量图。Fig. 20 is an energy diagram of electron states of alkali metals. Fig. 20(a) is an energy diagram corresponding to the excitation level P3/2, that is, the so-called D2 line, and Fig. 20(b) is an energy diagram corresponding to the so-called D1 line at the excitation level P1/2. Figure 20(c) shows the interaction between a conventional resonant light pair based on two light waves or multiple resonant light pairs of the present invention and an alkali metal atom in consideration of Doppler spread, which satisfies the requirement to generate the EIT phenomenon The energy diagram around the excitation level for the condition.

激发能级P3/2由超精细结构构成,在利用了EIT现象的器件的通常使用温度范围内,涉及EIT产生的F’=I+1/2、I-1/2的能量因多普勒扩展而重合(图20(c))。另外,在温度高的区域中,即使是激发能级P1/2的超精细结构,有时也会因多普勒扩展而发生能量重合。对激光中心频率(中心波长)进行设定,使得本发明的多个共振光对中的尽量多的共振光对的激发目标能量Eend进入该重合区域。即,如图20(c)所示,使得满足E1<Eend<E2。这里,所述F’表示超精细结构的量子数,所述I表示核自旋量子数。The excitation energy level P3/2 is composed of a hyperfine structure, and within the normal operating temperature range of a device utilizing the EIT phenomenon, the energy related to the EIT generation F'=I+1/2, I-1/2 is reduced by the Doppler spread coincident (Fig. 20(c)). In addition, in a high-temperature region, even in a hyperfine structure with an excitation level P1/2, energy overlapping may occur due to Doppler spreading. The laser center frequency (central wavelength) is set so that the excitation target energy Eend of as many resonant light pairs as possible among the multiple resonant light pairs in the present invention enters the overlapping region. That is, as shown in FIG. 20( c ), E1<Eend<E2 is satisfied. Here, the F' represents the quantum number of the hyperfine structure, and the I represents the nuclear spin quantum number.

入射到该能量重合区域的1对共振光对引起与不同的F’(超精细结构的量子数)对应的2种碱金属原子的EIT现象。即,针对具有彼此相反方向的速度分量的2种不同的速度群(ensemble:原子团)的碱金属原子,同时产生EIT。当满足这样的条件时,共振光对的光强度(光子数)被分散到各个原子团中,因此EIT信号强度不容易达到饱和,能够照射更强的激光,S/N提高。尤其是,当气室小型化而需要增强EIT信号强度时,效果更好。另外,如果所照射的总的光强度不变,则在该重合区域中,光子数以如上所述地使得不同的2种速度群的碱金属原子与光子发生相互作用的方式分散,因此其结果是,对于一方的速度群,抑制了功率展宽,细化了EIT信号的线宽(Q值增大)。即,能够提高性能指数。A pair of resonant light beams incident on this energy overlapping region causes the EIT phenomenon of two kinds of alkali metal atoms corresponding to different F' (quantum number of hyperfine structure). That is, EIT is simultaneously generated for alkali metal atoms of two different velocity groups (ensembles: atomic groups) having velocity components in opposite directions. When such conditions are satisfied, the light intensity (number of photons) of the resonant light pair is dispersed in each atomic group, so the EIT signal intensity is less likely to be saturated, and stronger laser light can be irradiated, improving S/N. Especially, the effect is better when the miniaturization of the air chamber needs to enhance the EIT signal strength. In addition, if the total irradiated light intensity is constant, the number of photons in the overlapping region is dispersed in such a manner that the alkali metal atoms of the two different velocity groups interact with the photons as described above, so the result Yes, for one speed group, the power broadening is suppressed, and the line width of the EIT signal is refined (the Q value is increased). That is, performance index can be improved.

图21是典型的P1/2能级的能量图。一般情况下,D1线的超精细结构能量分裂宽度比D2线大(典型为0.5~1GHz),多普勒扩展的2种能带不重合。如上所述,在D2線(激发目标能级为P3/2)的情况下,由于超精细结构的能量分裂宽度小,因此,因多普勒扩展而产生能带重合,能够使多对共振光对与同一原子同时发生相互作用。在该情况下,发生4光波混合,纯粹的3能级系统Λ型跃迁出现问题,EIT效率降低。但是,一般情况下,D1线的超精细结构能量分裂宽度比D2线大(典型为0.5~1GHz),多普勒扩展的2种能带不重合。因此,如果使用D1线,则能够在保持纯粹的3能级系统Λ型跃迁的同时,实现基于多对共振光对的EIT,因此,能够增大基于重叠效应的EIT信号的增强效果。在该情况下,存在E11<EENd<E12(图21(a))和E21<Eend<E22(图21(b))这2种方法。Figure 21 is an energy diagram of a typical P1/2 level. In general, the hyperfine structure energy splitting width of the D1 line is larger than that of the D2 line (typically 0.5-1 GHz), and the two energy bands of Doppler expansion do not overlap. As mentioned above, in the case of the D2 line (the excitation target energy level is P3/2), since the energy splitting width of the hyperfine structure is small, the energy band overlap occurs due to Doppler expansion, and it is possible to make multiple pairs of resonant light Pairs interact with the same atom at the same time. In this case, 4-wave mixing occurs, and the Λ-type transition of the pure 3-level system suffers from problems, and the EIT efficiency decreases. However, in general, the hyperfine structure energy splitting width of the D1 line is larger than that of the D2 line (typically 0.5 to 1 GHz), and the two energy bands of the Doppler extension do not overlap. Therefore, if the D1 line is used, it is possible to realize EIT based on multiple pairs of resonant light pairs while maintaining a pure 3-level system Λ-type transition, thus increasing the enhancement effect of the EIT signal based on the superposition effect. In this case, there are two methods of E11<EENd<E12 ( FIG. 21( a )) and E21<Eend<E22 ( FIG. 21( b )).

图22(c)是示出本发明的第6实施方式的封入了碱金属原子的气室、光源、光路以及检测器的配置结构的图。这里,由激光光源发出的光入射到气室,与碱金属原子产生EIT现象,之后,通过反射等手段而折返的光向反方向前进,由此再次与气室内的碱金属原子产生EIT现象,然后被导入到光检测器中。这是所谓的反射型。此时,如图22(a)、(b)所示,当把未考虑多普勒宽度的激发能级的能量设为E10时,如果以上述光源的单色光的激发目标能量Eend0与E10不相等(E10<Eend0或Eend0<E10)的方式进行选择,则能够使1对共振光在去路和回路上,分别在气室内与具有相反方向的速度分量的碱金属原子群产生EIT。因此,在这样的条件下由多个共振光对产生EIT时,与非反射型的情况相比,利用一半数量的共振光对或一半的光调制宽度,即可得到相同的本发明的效果。因此,根据本结构,激光驱动器等生成多对共振光对的机构的设计变得更容易,器件驱动时的功耗减少,有利用节能。FIG. 22( c ) is a diagram showing an arrangement structure of a gas cell in which alkali metal atoms are enclosed, a light source, an optical path, and a detector according to a sixth embodiment of the present invention. Here, the light emitted by the laser light source enters the gas cell, and the EIT phenomenon occurs with the alkali metal atoms, and then the light returned by means of reflection travels in the opposite direction, thereby generating the EIT phenomenon with the alkali metal atoms in the gas cell again, It is then directed into a photodetector. This is the so-called reflective type. At this time, as shown in Figure 22 (a) and (b), when the energy of the excitation level without considering the Doppler width is set as E10, if the excitation target energy Eend0 and E10 of the monochromatic light of the above light source are If the mode of unequal (E10<Eend0 or Eend0<E10) is selected, then a pair of resonant light can generate EIT with the alkali metal atomic group with the velocity component in the opposite direction in the gas chamber on the outgoing path and the return path respectively. Therefore, when EIT is generated by a plurality of resonant light pairs under such conditions, the same effect of the present invention can be obtained with half the number of resonant light pairs or half the light modulation width compared to the case of the non-reflective type. Therefore, according to this configuration, the design of a mechanism for generating a plurality of resonant light pairs such as a laser driver becomes easier, power consumption during device driving is reduced, and energy saving is utilized.

图23(c)是示出本发明的第7实施方式的封入了碱金属原子的气室、光源、光路以及检测器的配置结构的图。这里,从激光光源发出的光入射到气室,与碱金属原子产生EIT现象,之后,通过反射等手段,使光多次通过气室内,每当引起了EIT现象后被导入到光检测器中。这是所谓的多重反射型。此时,如图23(a)、(b)所示,如果以能够引起EIT现象的多个共振光对的所有的激发目标能量Eend只满足Eend<E10或E10<Eend中的任意一个条件的方式进行选择,则能够使1对共振光在去路和回路上分别在气室内与具有相反方向的速度分量的碱金属原子群产生EIT。另外,通过采用多重反射型,光路长度变得更长,从而相干时间增大,EIT信号强度更强,线宽更细。这有利于提高性能指数。另外,当把光的反射次数设为奇数次且光的去路与回路的光路长度大致相等时,在彼此不同的速度群中,对EIT有贡献的原子的数量几乎相等,因此,从EIT产生效率的角度来看是有利的。因此,在该条件下由多个共振光对引起EIT的情况下,与非反射型的情况相比,利用一半数量的共振光对或一半的光调制宽度,即可得到相同的效果。因此,根据本结构,激光驱动器等生成多对共振光对的机构的设计变得更容易,器件驱动时的功耗减少,有利于节能。FIG. 23( c ) is a diagram showing an arrangement structure of a gas cell in which alkali metal atoms are enclosed, a light source, an optical path, and a detector according to a seventh embodiment of the present invention. Here, the light emitted from the laser light source enters the gas cell, and the EIT phenomenon occurs with the alkali metal atoms. After that, the light passes through the gas cell many times by reflection or other means, and is introduced into the photodetector every time the EIT phenomenon is caused. . This is the so-called multiple reflection type. At this time, as shown in Figure 23(a) and (b), if all the excitation target energies Eend of multiple resonant light pairs that can cause the EIT phenomenon only satisfy any one of the conditions of Eend<E10 or E10<Eend If the method is selected, a pair of resonant light can generate EIT with the alkali metal atom group with the velocity component in the opposite direction in the gas chamber on the outgoing path and the return path respectively. In addition, by adopting the multiple reflection type, the optical path length becomes longer, so that the coherence time is increased, the EIT signal strength is stronger, and the line width is thinner. This is beneficial to improve the performance index. In addition, when the number of reflections of light is set to an odd number and the optical path lengths of the outgoing path and the return path of light are approximately equal, the number of atoms that contribute to EIT is approximately equal in the different velocity groups, and therefore, the generation efficiency from EIT It is beneficial from the point of view. Therefore, when EIT is caused by a plurality of resonant light pairs under this condition, the same effect can be obtained with half the number of resonant light pairs or half the light modulation width compared to the case of the non-reflective type. Therefore, according to this configuration, the design of a mechanism for generating multiple pairs of resonant light, such as a laser driver, becomes easier, and power consumption during device driving is reduced, which contributes to energy saving.

Claims (18)

1.一种量子干涉装置,该量子干涉装置具有:1. A quantum interference device, the quantum interference device has: 气态的碱金属原子;以及gaseous alkali metal atoms; and 光源,其用于产生不同频率的共振光对,该共振光对保持与该碱金属原子的2个基态之间的能量差相应的频率差,a light source for generating resonant light pairs of different frequencies that maintain a frequency difference corresponding to the energy difference between the 2 ground states of the alkali metal atom, 使所述碱金属原子与所述共振光对相互作用,产生电磁诱导透明现象,causing said alkali metal atoms to interact with said resonant light pair to produce electromagnetically induced transparency, 该量子干涉装置的特征在于,The quantum interference device is characterized in that, 所述共振光对的数量为多对,各个共振光对的中心频率彼此不同。There are multiple resonant light pairs, and the center frequencies of the resonant light pairs are different from each other. 2.根据权利要求1所述的量子干涉装置,其特征在于,2. The quantum interference device according to claim 1, characterized in that, 与所述碱金属原子相互作用的共振光对为线偏振光。The resonant light pair interacting with the alkali metal atom is linearly polarized light. 3.根据权利要求1所述的量子干涉装置,其特征在于,3. The quantum interference device according to claim 1, characterized in that, 与所述碱金属原子相互作用的所述共振光对为圆偏振光。The resonant light pair interacting with the alkali metal atom is circularly polarized light. 4.根据权利要求1所述的量子干涉装置,其特征在于,4. The quantum interference device according to claim 1, characterized in that, 与所述碱金属原子相互作用的所述共振光对为楕圆偏振光。The resonant light pair interacting with the alkali metal atom is elliptically polarized light. 5.根据权利要求1所述的量子干涉装置,其特征在于,5. The quantum interference device according to claim 1, characterized in that, 在所述光源与封入了所述碱金属原子的气室之间的光路上设有波长板。A wavelength plate is provided on an optical path between the light source and the gas cell enclosing the alkali metal atoms. 6.根据权利要求1至5中任意一项所述的量子干涉装置,其特征在于,6. The quantum interference device according to any one of claims 1 to 5, characterized in that, 所述多对共振光对满足电磁诱导透明现象的产生条件,各个共振光对的光强度处于EIT信号强度线性增大的区域中的最大值P0附近。The multiple pairs of resonant light pairs meet the conditions for the electromagnetically induced transparency phenomenon, and the light intensity of each resonant light pair is near the maximum value P0 in the region where the EIT signal intensity increases linearly. 7.根据权利要求1至5中任意一项所述的量子干涉装置,其特征在于,7. The quantum interference device according to any one of claims 1 to 5, characterized in that, 所述多对共振光对的强度分布相对于各个对的中心频率呈高斯分布,且与最大的光强度对应的共振光对满足与该光方向的速度分量为0附近的所述碱金属的原子团对应的电磁诱导透明现象的产生条件,其强度是线性区域中的最大值P0。The intensity distribution of the multiple pairs of resonant light pairs is a Gaussian distribution relative to the center frequency of each pair, and the resonant light pair corresponding to the maximum light intensity satisfies the atomic group of the alkali metal whose velocity component in the light direction is near 0 Corresponding to the generation condition of the electromagnetically induced transparency phenomenon, its intensity is the maximum value P0 in the linear region. 8.根据权利要求1所述的量子干涉装置,其特征在于,8. The quantum interference device according to claim 1, characterized in that, 通过振幅调制与频率调制或相位调制的合成来生成所述多对共振光对。The multiple pairs of resonant light pairs are generated by combining amplitude modulation and frequency modulation or phase modulation. 9.根据权利要求1所述的量子干涉装置,其特征在于,9. The quantum interference device according to claim 1, characterized in that, 通过具有正弦波、三角波、锯齿波、矩形波中的任意一个波形的信号的调制,来生成所述多对共振光对。The multiple pairs of resonant light pairs are generated by modulation of a signal having any one of a sine wave, a triangular wave, a sawtooth wave, and a rectangular wave. 10.根据权利要求1至9中任意一项所述的量子干涉装置,其特征在于,10. The quantum interference device according to any one of claims 1 to 9, characterized in that, 该量子干涉装置具有用于对所述光源进行调制的驱动电路部,该驱动电路部与其它结构部件分离,在制造过程中或在产品化后的状态下,能够任意地控制、设定所述驱动电路部的常数。The quantum interference device has a drive circuit part for modulating the light source, the drive circuit part is separated from other structural components, and the drive circuit part can be arbitrarily controlled and set during the manufacturing process or in the state after commercialization. Constants of the drive circuit section. 11.根据权利要求1至10中任意一项所述的量子干涉装置,其特征在于,11. The quantum interference device according to any one of claims 1 to 10, characterized in that, 当设所述碱金属原子的核自旋量子数为I、所述碱金属原子的P1/2激发能级或P3/2激发能级中的超精细结构的量子数为F’、考虑了F’=I-1/2以及F’=I+1/2的多普勒扩展的两个能量的范围彼此重合的区域内的最小能量为E1、最大能量为E2时,引起所述电磁诱导透明现象的多对共振光对中的任意一对的激发目标能量Eend满足E1<Eend<E2。When the nuclear spin quantum number of the alkali metal atom is assumed to be I, and the quantum number of the hyperfine structure in the P1/2 excitation level or P3/2 excitation level of the alkali metal atom is F', considering F When the minimum energy is E1 and the maximum energy is E2 in the area where the two energy ranges of the Doppler extension of '=I-1/2 and F'=I+1/2 overlap with each other, the electromagnetically induced transparency phenomenon is caused The excitation target energy Eend of any one of the multiple pairs of resonant light pairs satisfies E1<Eend<E2. 12.根据权利要求1至10中任意一项所述的量子干涉装置,其特征在于,12. The quantum interference device according to any one of claims 1 to 10, characterized in that, 设所述碱金属原子的核自旋量子数为I、所述碱金属原子的激发能级的超精细结构的量子数为F’,则在考虑了F’=I-1/2以及F’=I+1/2的多普勒扩展的两个能量的范围彼此不重合的状态下,当设考虑了所述多普勒扩展的所述F’=I-1/2的能量的范围为从E11到E12、考虑了所述多普勒扩展的所述F’=I+1/2的能量的范围为从E21到E22、且E11<E12、E21<E22时,引起所述电磁诱导透明现象的多对共振光对中的任意一对的激发目标能量Eend只满足E11<Eend<E12或E21<Eend<E22中的某一方的条件。Assuming that the nuclear spin quantum number of the alkali metal atom is I, and the quantum number of the hyperfine structure of the excited energy level of the alkali metal atom is F', then considering F'=I-1/2 and F' In the state where the two energy ranges of the Doppler spread of =I+1/2 do not overlap with each other, when the range of energy of the F'=I-1/2 of the Doppler spread is considered to be from E11 To E12, when the energy range of F'=I+1/2 considering the Doppler spread is from E21 to E22, and E11<E12, E21<E22, the multiple pairs that cause the electromagnetically induced transparency phenomenon The excitation target energy Eend of any one of the resonant light pairs only satisfies one of the conditions of E11<Eend<E12 or E21<Eend<E22. 13.根据权利要求1至12中任意一项所述的量子干涉装置,该量子干涉装置使多对共振光对1次或多次地折返通过所述碱金属原子,从所述碱金属原子检测所述电磁诱导透明现象,该量子干涉装置的特征在于,13. The quantum interference device according to any one of claims 1 to 12, wherein the quantum interference device makes multiple pairs of resonant light pairs pass through the alkali metal atom one or more times, and detects from the alkali metal atom The electromagnetically induced transparency phenomenon, the quantum interference device is characterized in that, 当设未考虑多普勒宽度的激发能级的能量为E10、所述多对共振光对的激发目标能量为Eend0时,所述Eend0满足E10<Eend0或Eend0<E10。When the energy of the excitation level without considering the Doppler width is E10, and the excitation target energy of the multiple resonant light pairs is Eend0, the Eend0 satisfies E10<Eend0 or Eend0<E10. 14.根据权利要求1至12中任意一项所述的量子干涉装置,该量子干涉装置使多对共振光对1次或多次地折返通过所述碱金属原子,从所述碱金属原子检测所述电磁诱导透明现象,该量子干涉装置的特征在于,14. The quantum interference device according to any one of claims 1 to 12, wherein the quantum interference device makes multiple pairs of resonant light pairs pass through the alkali metal atom once or more times, and detects from the alkali metal atom The electromagnetically induced transparency phenomenon, the quantum interference device is characterized in that, 当设引起所述电磁诱导透明现象的多对共振光对中的任意一对的激发目标能量为Eend时,所述Eend只满足Eend<E10或E10<Eend中的某一方的条件。When the excitation target energy of any one of the multiple pairs of resonant light pairs causing the electromagnetically induced transparency phenomenon is set as Eend, the Eend only satisfies the condition of Eend<E10 or E10<Eend. 15.根据权利要求13或14所述的量子干涉装置,其特征在于,15. The quantum interference device according to claim 13 or 14, characterized in that, 所述折返次数为奇数次。The number of turns is an odd number. 16.一种原子振荡器,其特征在于,该原子振荡器具有权利要求1至15中任意一项所述的量子干涉装置。16. An atomic oscillator, characterized in that the atomic oscillator has the quantum interference device according to any one of claims 1 to 15. 17.一种磁传感器,其特征在于,该磁传感器具有权利要求1至15中任意一项所述的量子干涉装置。17. A magnetic sensor, characterized in that the magnetic sensor has the quantum interference device according to any one of claims 1-15. 18.一种量子干涉传感器,其特征在于,该量子干涉传感器具有权利要求1至15中任意一项所述的量子干涉装置。18. A quantum interference sensor, characterized in that the quantum interference sensor has the quantum interference device according to any one of claims 1-15.
CN201210454371.8A 2009-02-06 2010-02-05 Quantum interference device, atomic oscillator and magnetic sensor Active CN102931987B (en)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
JP2009025652 2009-02-06
JP2009-025652 2009-02-06
JP2009-153402 2009-06-29
JP2009153402A JP5381400B2 (en) 2009-02-06 2009-06-29 Quantum interferometers, atomic oscillators, and magnetic sensors
JP2009-201329 2009-09-01
JP2009201329A JP5540607B2 (en) 2009-02-06 2009-09-01 Quantum interference device, atomic oscillator, magnetic sensor, and quantum interference sensor
CN201010113602XA CN101800545B (en) 2009-02-06 2010-02-05 Quantum interference device, atomic oscillator, and magnetic sensor

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN201010113602XA Division CN101800545B (en) 2009-02-06 2010-02-05 Quantum interference device, atomic oscillator, and magnetic sensor

Publications (2)

Publication Number Publication Date
CN102931987A true CN102931987A (en) 2013-02-13
CN102931987B CN102931987B (en) 2015-10-14

Family

ID=42967314

Family Applications (3)

Application Number Title Priority Date Filing Date
CN201210403436.6A Active CN102882521B (en) 2009-02-06 2010-02-05 Quantum interference device, atomic oscillator and magnetic sensor
CN201210454371.8A Active CN102931987B (en) 2009-02-06 2010-02-05 Quantum interference device, atomic oscillator and magnetic sensor
CN201210405065.5A Active CN102882522B (en) 2009-02-06 2010-02-05 Quantum interference device, atomic oscillator and magnetic sensor

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN201210403436.6A Active CN102882521B (en) 2009-02-06 2010-02-05 Quantum interference device, atomic oscillator and magnetic sensor

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN201210405065.5A Active CN102882522B (en) 2009-02-06 2010-02-05 Quantum interference device, atomic oscillator and magnetic sensor

Country Status (2)

Country Link
JP (4) JP5381400B2 (en)
CN (3) CN102882521B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105515580A (en) * 2014-10-14 2016-04-20 精工爱普生株式会社 Quantum interference device, atomic oscillator, electronic device, and moving object
CN107800432A (en) * 2016-09-07 2018-03-13 精工爱普生株式会社 Atomic oscillator and electronic equipment

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001028345A (en) * 1999-07-15 2001-01-30 Sony Corp Manufacture of semiconductor device
JP5381400B2 (en) * 2009-02-06 2014-01-08 セイコーエプソン株式会社 Quantum interferometers, atomic oscillators, and magnetic sensors
US8237514B2 (en) 2009-02-06 2012-08-07 Seiko Epson Corporation Quantum interference device, atomic oscillator, and magnetic sensor
JP5880807B2 (en) * 2011-03-09 2016-03-09 セイコーエプソン株式会社 Coherent light source
JP5818000B2 (en) 2011-12-09 2015-11-18 セイコーエプソン株式会社 Atomic oscillator, control method of atomic oscillator, and quantum interference device
EP2639277A1 (en) 2012-03-13 2013-09-18 Nitto Denko Corporation Heat-resistant pressure-sensitive adhesive tape for production of semiconductor device and method for producing semiconductor device using the tape
JP6136110B2 (en) * 2012-05-16 2017-05-31 セイコーエプソン株式会社 Quantum interference device, atomic oscillator and electronic equipment
JP6069886B2 (en) * 2012-05-16 2017-02-01 セイコーエプソン株式会社 Quantum interference device, atomic oscillator, electronic device, and quantum interference method
JP2014022667A (en) * 2012-07-20 2014-02-03 Ricoh Co Ltd Vertical cavity surface emitting laser element, and atomic oscillator
JP6124536B2 (en) 2012-08-30 2017-05-10 株式会社リコー Atomic oscillator and CPT resonance excitation method
JP6142989B2 (en) * 2013-03-29 2017-06-07 セイコーエプソン株式会社 Quantum interference device, atomic oscillator, magnetic sensor, and method of manufacturing quantum interference device
JP6094750B2 (en) * 2013-03-29 2017-03-15 セイコーエプソン株式会社 Quantum interference device, atomic oscillator, magnetic sensor, and method of manufacturing quantum interference device
JP2015089055A (en) * 2013-11-01 2015-05-07 セイコーエプソン株式会社 Optical module and atomic oscillator
US9726494B2 (en) 2014-05-15 2017-08-08 Northrop Grumman Systems Corporation Atomic sensor system
JP6529230B2 (en) * 2014-08-28 2019-06-12 ニッカ電測株式会社 Metal detection device
JP6544132B2 (en) 2015-08-17 2019-07-17 セイコーエプソン株式会社 Quantum interference device, atomic oscillator, and electronic device
CN110265854B (en) * 2019-06-18 2020-07-10 中国人民解放军国防科技大学 Light guide self-adaptive narrow-spectrum microwave generation method based on high-energy pulse cluster laser
CN110908130A (en) * 2019-10-31 2020-03-24 同济大学 Method for realizing full-light, broadband and low-noise polarization revolving door
JP7443862B2 (en) 2020-03-23 2024-03-06 セイコーエプソン株式会社 Resonance generation method and atomic oscillator
CN112083358B (en) * 2020-08-28 2023-03-14 之江实验室 Laser frequency stabilization system for SERF ultrahigh sensitive magnetic field measuring device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5751193A (en) * 1995-06-09 1998-05-12 Fujitsu Limited Rubidium atomic oscillator with laser diode wavelength adjustment
US6359916B1 (en) * 2000-06-05 2002-03-19 Agilent Technologies, Inc. Coherent population trapping-based frequency standard and method for generating a frequency standard incorporating a quantum absorber that generates the CPT state with high frequency
US6710663B1 (en) * 2002-10-25 2004-03-23 Rockwell Collins Temperature compensation of a rubidium frequency standard
US20050068115A1 (en) * 2003-09-29 2005-03-31 Ken Atsumi Atomic oscillator
WO2005054907A2 (en) * 2003-11-26 2005-06-16 Kernco, Inc. Improved optically excited atomic frequency standard
US20080042761A1 (en) * 2004-02-18 2008-02-21 William Happer Method and system for operating a laser self-modulated at alkali-metal atom hyperfine frequency

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2567897B2 (en) * 1988-02-16 1996-12-25 富士通株式会社 Semiconductor laser device
JP3172776B2 (en) * 1992-05-19 2001-06-04 アンリツ株式会社 Atomic oscillator
WO2000038512A1 (en) * 1998-12-24 2000-07-06 University Of Southampton Method and apparatus for dispersing a volatile composition
US6320472B1 (en) * 1999-01-26 2001-11-20 Kernco, Inc. Atomic frequency standard
US6201821B1 (en) * 2000-06-05 2001-03-13 Agilent Technologies, Inc. Coherent population trapping-based frequency standard having a reduced magnitude of total a.c. stark shift
AU2003224911A1 (en) * 2002-04-09 2003-10-27 California Institute Of Technology Atomic clock based on an opto-electronic oscillator
JP3755001B2 (en) * 2002-08-30 2006-03-15 独立行政法人情報通信研究機構 Atomic oscillation acquisition device and atomic clock
US6927636B2 (en) * 2003-09-03 2005-08-09 Symmetricom, Inc. Light stabilization for an optically excitable atomic medium
US7102451B2 (en) * 2004-02-18 2006-09-05 Princeton University, Office Of Technology, Licensing & Intellectual Property Method and system for operating an atomic clock with alternating-polarization light
US7345553B2 (en) * 2004-03-18 2008-03-18 Agilent Technologies, Inc. Method and apparatus for reducing errors due to line asymmetry in devices utilizing coherent population trapping
FR2868558B1 (en) * 2004-03-30 2006-06-30 Centre Nat Rech Scient Cnrse METHOD FOR GENERATING AN ATOMIC CLOCK SIGNAL WITH COHERENT POPULATION TRAPPING AND CORRESPONDING ATOMIC CLOCK
US7202751B2 (en) * 2004-10-18 2007-04-10 Agilent Inc. Optically pumped frequency standard with reduces AC stark shift
JP2008522411A (en) * 2004-11-22 2008-06-26 プリンストン ユニバーシティ Method and system for operating a self-modulated laser with hyperfine vibrations of alkali metal atoms
JP2006351086A (en) * 2005-06-14 2006-12-28 Epson Toyocom Corp Optical path correction device and optical pickup using the same
JP5132951B2 (en) * 2007-02-28 2013-01-30 アンリツ株式会社 Gas cell type atomic oscillator
JP5381400B2 (en) * 2009-02-06 2014-01-08 セイコーエプソン株式会社 Quantum interferometers, atomic oscillators, and magnetic sensors

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5751193A (en) * 1995-06-09 1998-05-12 Fujitsu Limited Rubidium atomic oscillator with laser diode wavelength adjustment
US6359916B1 (en) * 2000-06-05 2002-03-19 Agilent Technologies, Inc. Coherent population trapping-based frequency standard and method for generating a frequency standard incorporating a quantum absorber that generates the CPT state with high frequency
US6710663B1 (en) * 2002-10-25 2004-03-23 Rockwell Collins Temperature compensation of a rubidium frequency standard
US20050068115A1 (en) * 2003-09-29 2005-03-31 Ken Atsumi Atomic oscillator
WO2005054907A2 (en) * 2003-11-26 2005-06-16 Kernco, Inc. Improved optically excited atomic frequency standard
US20080042761A1 (en) * 2004-02-18 2008-02-21 William Happer Method and system for operating a laser self-modulated at alkali-metal atom hyperfine frequency

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
郭文阁等: "相干布居囚禁原子钟技术及其进展", 《时间频率学报》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105515580A (en) * 2014-10-14 2016-04-20 精工爱普生株式会社 Quantum interference device, atomic oscillator, electronic device, and moving object
CN107800432A (en) * 2016-09-07 2018-03-13 精工爱普生株式会社 Atomic oscillator and electronic equipment

Also Published As

Publication number Publication date
JP5720740B2 (en) 2015-05-20
CN102931987B (en) 2015-10-14
JP2014017824A (en) 2014-01-30
CN102882522B (en) 2015-08-05
JP2010206767A (en) 2010-09-16
JP2010206160A (en) 2010-09-16
JP2015167355A (en) 2015-09-24
CN102882522A (en) 2013-01-16
JP5954457B2 (en) 2016-07-20
CN102882521A (en) 2013-01-16
CN102882521B (en) 2015-09-09
JP5381400B2 (en) 2014-01-08
JP5540607B2 (en) 2014-07-02

Similar Documents

Publication Publication Date Title
CN102931987B (en) Quantum interference device, atomic oscillator and magnetic sensor
CN101800545B (en) Quantum interference device, atomic oscillator, and magnetic sensor
CN103023496B (en) Quantum interference device, atomic oscillator and magnetic sensor
US4912526A (en) Optical frequency synthesizer/sweeper
US8803618B2 (en) Optical module for atomic oscillator and atomic oscillator
CN103454902A (en) Atomic clock
JP6511298B2 (en) CPT resonance generation method, CPT resonance detection method, CPT resonance generator, atomic oscillator, magnetic sensor
US20150116046A1 (en) Optical module and atomic oscillator
JP5045478B2 (en) Atomic oscillator
CN102195647A (en) Atomic oscillator
TW200421681A (en) Method and apparatus for exciting resonance
CN104617952A (en) Optical module and atomic oscillator
JP3613575B2 (en) Atomic frequency standard
US12181842B2 (en) Ramsey spectrometer, optical lattice clock, and Ramsey spectroscopic method
JP2025012026A (en) Frequency stabilization device and atomic clock device
Nie Semiconductor laser dynamics induced by optical feedback for photonic microwave sensing
JPS63224520A (en) Laser beam exciting type atomic beam oscillator
JP2015079886A (en) Optical module and atomic oscillator

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant