[go: up one dir, main page]

CN102931272A - Ultraviolet detector structure with gain and preparation method thereof - Google Patents

Ultraviolet detector structure with gain and preparation method thereof Download PDF

Info

Publication number
CN102931272A
CN102931272A CN201210483359XA CN201210483359A CN102931272A CN 102931272 A CN102931272 A CN 102931272A CN 201210483359X A CN201210483359X A CN 201210483359XA CN 201210483359 A CN201210483359 A CN 201210483359A CN 102931272 A CN102931272 A CN 102931272A
Authority
CN
China
Prior art keywords
epitaxial layer
sic epitaxial
type
type sic
sic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201210483359XA
Other languages
Chinese (zh)
Inventor
白云
申华军
汤益丹
王弋宇
韩林超
刘新宇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Microelectronics of CAS
Original Assignee
Institute of Microelectronics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Microelectronics of CAS filed Critical Institute of Microelectronics of CAS
Priority to CN201210483359XA priority Critical patent/CN102931272A/en
Publication of CN102931272A publication Critical patent/CN102931272A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Light Receiving Elements (AREA)
  • Junction Field-Effect Transistors (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

本发明公开了一种基于SiC的具有增益的紫外探测器及其制备方法,该紫外探测器包括:半绝缘SiC衬底;在该半绝缘SiC衬底上外延生长的p型缓冲SiC外延层;在该p型缓冲SiC外延层上外延生长的n型SiC外延层;在该n型SiC外延层上外延生长的n+型SiC外延层;部分刻蚀该n+型SiC外延层至露出该n型SiC外延层从而在该n型SiC外延层表面形成的条状凹栅区;在该条状凹栅区两侧未被刻蚀的该n+型SiC外延层上形成的源漏区欧姆接触源极和漏极;在该条状凹栅区上形成的透明肖特基势垒栅极;以及在欧姆接触源极、漏极与透明肖特基势垒栅极之间形成的钝化介质层。本发明提出的SiC紫外探测器结构,不需加高的偏置电压就可以获得较高的增益,并能够避免由于雪崩引起的额外噪声。

Figure 201210483359

The invention discloses a SiC-based ultraviolet detector with gain and a preparation method thereof. The ultraviolet detector comprises: a semi-insulating SiC substrate; a p-type buffer SiC epitaxial layer epitaxially grown on the semi-insulating SiC substrate; An n-type SiC epitaxial layer epitaxially grown on the p-type buffer SiC epitaxial layer; an n + -type SiC epitaxial layer epitaxially grown on the n-type SiC epitaxial layer; partially etching the n + -type SiC epitaxial layer to expose the n type SiC epitaxial layer, thereby forming a strip-shaped concave gate region on the surface of the n-type SiC epitaxial layer; source-drain region ohmic contacts formed on the n + -type SiC epitaxial layer that are not etched on both sides of the strip-shaped concave gate region a source and a drain; a transparent Schottky barrier gate formed on the strip-shaped concave gate region; and a passivation dielectric formed between the ohmic contact source, drain and the transparent Schottky barrier gate layer. The SiC ultraviolet detector structure proposed by the present invention can obtain higher gain without increasing bias voltage, and can avoid extra noise caused by avalanche.

Figure 201210483359

Description

一种具有增益的紫外探测器结构及其制备方法A kind of ultraviolet detector structure with gain and its preparation method

技术领域technical field

本发明涉及半导体器件技术领域,特别涉及一种基于SiC的具有增益的紫外探测器结构及其制备方法。The invention relates to the technical field of semiconductor devices, in particular to a SiC-based ultraviolet detector structure with gain and a preparation method thereof.

背景技术Background technique

紫外探测技术是近50年来新发展起来的一项技术,在军事和民用等领域具有广泛而重要的应用,因而成为国内外研究开发的重点课题。对于军事方面,紫外探测器在紫外对抗与反对抗技术、紫外制导及预警系统、紫外保密通讯等领域发挥了重要应用;对于民事方面,紫外探测器可用于如火焰探测、刑事侦查、天文观测、医疗保健等日常生产、生活等众多领域。Ultraviolet detection technology is a newly developed technology in the past 50 years. It has extensive and important applications in military and civilian fields, so it has become a key topic of research and development at home and abroad. For the military, ultraviolet detectors have played an important role in the fields of ultraviolet confrontation and anti-anti-resistance technology, ultraviolet guidance and early warning systems, ultraviolet secure communication; for civil affairs, ultraviolet detectors can be used for flame detection, criminal investigation, astronomical observation, Medical care and other daily production, life and many other fields.

宽禁带半导体材料碳化硅(SiC)、氮化镓(GaN)、金钢石(C)等,由于其较宽的带隙,能够在很强的可见及红外线背景下检测200~380nm波段的紫外光,同时具有耐高温及高效、高可靠性的特点,是理想的制备紫外光电探测器的材料。目前,用来制备紫外探测器较为成熟的材料是GaN、SiC。其中,SiC材料作为光电探测器的优势包括:(1)SiC材料自身有衬底,且随着SiC材料在功率器件方面的快速发展和应用,其材料质量相对较高,其缺陷密度远低于GaN的缺陷密度,因而有利于制备大面积光电器件。(2)SiC是可以在其上直接热氧生成高质量的SiO2的化合物半导体材料,其热氧形成的SiO2作为钝化层,可降低器件表面的漏电流。(3)由于SiC材料在功率器件方面巨大的应用前景,SiC器件的相关制备工艺发展较快。这些因素为SiC作为制备紫外光电探测器的材料提供了良好的基础。Wide bandgap semiconductor materials such as silicon carbide (SiC), gallium nitride (GaN), diamond (C), etc., can detect 200-380nm bands under strong visible and infrared background due to their wide bandgap. Ultraviolet light, which has the characteristics of high temperature resistance, high efficiency and high reliability, is an ideal material for preparing ultraviolet photodetectors. At present, GaN and SiC are relatively mature materials used to prepare ultraviolet detectors. Among them, the advantages of SiC material as a photodetector include: (1) SiC material itself has a substrate, and with the rapid development and application of SiC material in power devices, its material quality is relatively high, and its defect density is much lower than that of The defect density of GaN is beneficial to the preparation of large-area optoelectronic devices. (2) SiC is a compound semiconductor material on which high-quality SiO 2 can be directly generated by thermal oxygen, and the SiO 2 formed by thermal oxygen can be used as a passivation layer to reduce the leakage current on the surface of the device. (3) Due to the huge application prospects of SiC materials in power devices, the related preparation technology of SiC devices has developed rapidly. These factors provide a good basis for SiC as a material for the preparation of ultraviolet photodetectors.

目前,SiC材料的研究主要集中在带隙较宽的4H-SiC材料上。基于SiC的紫外探测器,常见的结构有肖特基(Schootky)光电二极管、p-i-n光电二极管、金属-半导体-金属(MSM)光电探测器和雪崩光电二极管(APD)等。其中,Schottky、p-i-n和MSM结构的SiC光电探测器,其制备工艺相对简单,具有较低的工作偏压,但都没有内部增益,对微弱光信号的响应度很低,无法满足对微弱紫外光信号的探测需求,使其应用受到一定的限制。At present, the research on SiC materials mainly focuses on 4H-SiC materials with wide band gaps. Common structures of SiC-based ultraviolet detectors include Schottky photodiodes, p-i-n photodiodes, metal-semiconductor-metal (MSM) photodetectors, and avalanche photodiodes (APDs). Among them, SiC photodetectors with Schottky, p-i-n and MSM structures have relatively simple fabrication processes and low working bias voltages, but they have no internal gain and have low responsivity to weak light signals, which cannot meet the requirements for weak ultraviolet light. The detection requirements of the signal make its application subject to certain restrictions.

与其它结构的探测器相比,4H-SiC紫外APD器件,利用雪崩倍增机制实现内部增益和光电流放大,灵敏度高、响应速度快,适合进行紫外微弱信号的探测。4H-SiC材料的APD紫外探测器的特点是,在工作中能够实现高的增益,但在使用时需加高的偏置电压,这会给器件带来较高的噪声,降低器件的信噪比;并且为了提高器件的击穿电压,往往需要在器件结构中加入结终端设计,这增加了器件的制备工艺难度。Compared with detectors with other structures, the 4H-SiC ultraviolet APD device uses the avalanche multiplication mechanism to achieve internal gain and photocurrent amplification, with high sensitivity and fast response speed, and is suitable for the detection of weak ultraviolet signals. The APD ultraviolet detector of 4H-SiC material is characterized in that it can achieve high gain in operation, but it needs to increase the bias voltage when in use, which will bring higher noise to the device and reduce the signal noise of the device Ratio; and in order to improve the breakdown voltage of the device, it is often necessary to add a junction terminal design to the device structure, which increases the difficulty of the device's fabrication process.

发明内容Contents of the invention

(一)要解决的技术问题(1) Technical problems to be solved

有鉴于此,本发明的主要目的在于提供一种紫外光探测器及其制备方法,以在不需要高的偏置电压下实现光增益,并避免器件中较高的雪崩噪声。In view of this, the main purpose of the present invention is to provide an ultraviolet photodetector and its preparation method, so as to realize optical gain without high bias voltage and avoid relatively high avalanche noise in the device.

(二)技术方案(2) Technical solution

为达到上述目的,本发明提供了一种基于SiC的具有增益的紫外探测器,该紫外探测器包括:半绝缘SiC衬底;在该半绝缘SiC衬底上外延生长的p型缓冲SiC外延层;在该p型缓冲SiC外延层上外延生长的n型SiC外延层;在该n型SiC外延层上外延生长的n+型SiC外延层;部分刻蚀该n+型SiC外延层至露出该n型SiC外延层从而在该n型SiC外延层表面形成的条状凹栅区;在该条状凹栅区两侧未被刻蚀的该n+型SiC外延层上形成的源漏区欧姆接触源极和漏极;在该条状凹栅区上形成的透明肖特基势垒栅极;以及在欧姆接触源极、漏极与透明肖特基势垒栅极之间形成的钝化介质层。To achieve the above object, the present invention provides a SiC-based ultraviolet detector with gain, which includes: a semi-insulating SiC substrate; a p-type buffer SiC epitaxial layer grown epitaxially on the semi-insulating SiC substrate ; an n-type SiC epitaxial layer epitaxially grown on the p-type buffer SiC epitaxial layer; an n + -type SiC epitaxial layer epitaxially grown on the n-type SiC epitaxial layer; partially etching the n + -type SiC epitaxial layer to expose the The n-type SiC epitaxial layer thus forms a strip-shaped concave gate region on the surface of the n-type SiC epitaxial layer; the source-drain region ohms formed on the n + -type SiC epitaxial layer that is not etched on both sides of the strip-shaped concave gate region contact source and drain; a transparent Schottky barrier gate formed on the strip-shaped recessed gate region; and a passivation formed between the ohmic contacts source, drain and transparent Schottky barrier gate medium layer.

上述方案中,所述半绝缘SiC衬底厚度为300~400nm;所述p型缓冲SiC外延层厚度为0.5~2μm;所述n型SiC外延层厚度为0.2~0.4μm;所述n+型SiC外延层厚度为0.1~0.2μm。In the above solution, the thickness of the semi-insulating SiC substrate is 300-400 nm; the thickness of the p-type buffer SiC epitaxial layer is 0.5-2 μm; the thickness of the n-type SiC epitaxial layer is 0.2-0.4 μm; the n + type The thickness of the SiC epitaxial layer is 0.1-0.2 μm.

上述方案中,所述p型缓冲SiC外延层,掺杂浓度为1×1015~5×1015cm-3;所述n型SiC外延层,掺杂浓度为1×1017~3.5×1017cm-3;所述n+型SiC外延层,掺杂浓度为大于1×1019cm-3In the above solution, the p-type buffer SiC epitaxial layer has a doping concentration of 1×10 15 to 5×10 15 cm -3 ; the n-type SiC epitaxial layer has a doping concentration of 1×10 17 to 3.5×10 17 cm -3 ; the doping concentration of the n + -type SiC epitaxial layer is greater than 1×10 19 cm -3 .

为达到上述目的,本发明还提供了一种基于SiC的具有增益的紫外探测器的制备方法,该方法包括:To achieve the above object, the present invention also provides a method for preparing a SiC-based ultraviolet detector with gain, the method comprising:

步骤10、在半绝缘SiC衬底上依次生长p型缓冲SiC外延层、n型SiC外延层和n+型SiC外延层;Step 10, sequentially growing a p-type buffer SiC epitaxial layer, an n-type SiC epitaxial layer and an n + -type SiC epitaxial layer on the semi-insulating SiC substrate;

步骤20、利用SiC的ICP刻蚀工艺,对器件进行隔离;Step 20, using the ICP etching process of SiC to isolate the device;

步骤30、利用SiC的ICP刻蚀工艺,部分刻蚀该n+型SiC外延层至露出该n型SiC外延层,从而在该n型SiC外延层表面形成条状凹栅区;Step 30, using the ICP etching process of SiC, partially etching the n + -type SiC epitaxial layer to expose the n-type SiC epitaxial layer, thereby forming a strip-shaped concave gate region on the surface of the n-type SiC epitaxial layer;

步骤40、在该条状凹栅区两侧未被刻蚀的该n+型SiC外延层上形成源漏区的欧姆接触源极和漏极;Step 40, forming an ohmic contact source and drain of the source and drain regions on the n + -type SiC epitaxial layer that has not been etched on both sides of the strip-shaped recessed gate region;

步骤50、通过PECVD的方法,在器件表面淀积钝化层SiN;Step 50, depositing a passivation layer SiN on the surface of the device by PECVD;

步骤60、在n型SiC外延层的凹栅区表面制备透明肖特基金属栅;Step 60, preparing a transparent Schottky metal gate on the surface of the concave gate region of the n-type SiC epitaxial layer;

步骤70、对器件电极进行加厚。Step 70, thickening the device electrodes.

上述方案中,所述步骤10包括:In the above scheme, the step 10 includes:

步骤101、在厚度为300~400nm的半绝缘SiC衬底正面利用CVD方法外延生长p型缓冲SiC外延层,该p型缓冲SiC外延层的掺杂浓度为1×1015~5×1015cm-3,厚度为0.5~2μm;Step 101. Using CVD to epitaxially grow a p-type buffer SiC epitaxial layer on the front side of a semi-insulating SiC substrate with a thickness of 300-400 nm. The doping concentration of the p-type buffer SiC epitaxial layer is 1×10 15 to 5×10 15 cm -3 , the thickness is 0.5~2μm;

步骤102、在p型缓冲SiC外延层上生长n型SiC外延层,该n型SiC外延层的掺杂浓度为1×1017~3.5×1017cm-3,厚度为0.2~0.4μm;Step 102, growing an n-type SiC epitaxial layer on the p-type buffer SiC epitaxial layer, the doping concentration of the n-type SiC epitaxial layer is 1×10 17 to 3.5×10 17 cm −3 , and the thickness is 0.2 to 0.4 μm;

步骤103、在n型SiC外延层上生长n+型SiC外延层,该n+型SiC外延层的掺杂大于1×1019cm-3,厚度为0.1~0.2μm。Step 103 , growing an n + -type SiC epitaxial layer on the n-type SiC epitaxial layer, the doping of the n + -type SiC epitaxial layer is greater than 1×10 19 cm -3 , and the thickness is 0.1-0.2 μm.

上述方案中,所述步骤20包括:In the above scheme, the step 20 includes:

步骤201、使用正胶9920光刻胶制作刻蚀掩膜层,厚度2μm;Step 201, using positive resist 9920 photoresist to make an etching mask layer with a thickness of 2 μm;

步骤202、利用ICP刻蚀机刻蚀SiC外延层至p型SiC外延层。Step 202, using an ICP etching machine to etch the SiC epitaxial layer to the p-type SiC epitaxial layer.

上述方案中,步骤202中所述利用ICP刻蚀机刻蚀n+型SiC外延层,刻蚀工艺条件为:RF:50W,LF:300W,CHF3:20sccm,C2H4:3sccm,压强:10mTorr,刻蚀时间约6分钟。In the above scheme, the n + -type SiC epitaxial layer is etched using an ICP etching machine as described in step 202. The etching process conditions are: RF: 50W, LF: 300W, CHF 3 : 20 sccm, C 2 H 4 : 3 sccm, pressure : 10mTorr, etching time is about 6 minutes.

上述方案中,所述步骤30包括:In the above scheme, the step 30 includes:

步骤301、使用正胶9920光刻胶制作刻蚀掩膜层,厚度2μm;Step 301, using positive resist 9920 photoresist to make an etching mask layer with a thickness of 2 μm;

步骤302、利用ICP刻蚀机刻蚀n+型SiC外延层,直至露出该n型SiC外延层,在该n型SiC外延层表面形成条状凹栅区。Step 302 , using an ICP etching machine to etch the n + -type SiC epitaxial layer until the n-type SiC epitaxial layer is exposed, and forming strip-shaped concave gate regions on the surface of the n-type SiC epitaxial layer.

上述方案中,步骤302中所述利用ICP刻蚀机刻蚀n+型SiC外延层,刻蚀工艺条件为:RF:50W,LF:300W,CHF3:20sccm,C2H4:3sccm,压强:10mTorr,刻蚀时间40秒~80秒。In the above solution, the n + -type SiC epitaxial layer is etched by an ICP etching machine in step 302, and the etching process conditions are: RF: 50W, LF: 300W, CHF 3 : 20 sccm, C 2 H 4 : 3 sccm, pressure : 10 mTorr, etching time 40 seconds to 80 seconds.

上述方案中,所述步骤40包括:In the above scheme, the step 40 includes:

步骤401、在器件表面旋涂光刻胶,通过光刻形成源、漏区欧姆接触图形;Step 401, spin coating photoresist on the surface of the device, and form source and drain region ohmic contact patterns by photolithography;

步骤402、利用磁控溅射技术生长Ni金属,剥离形成源、漏区金属;Step 402, using magnetron sputtering technology to grow Ni metal, stripping to form source and drain region metal;

步骤403、在900℃至1000℃温度范围内,在真空环境或惰性气体氛围中对源、漏区金属进行快速热退火,形成n+型SiC层上源、漏区的欧姆接触源极和漏极。Step 403, performing rapid thermal annealing on the source and drain region metals in a vacuum environment or an inert gas atmosphere within a temperature range of 900° C. to 1000° C. to form ohmic contact sources and drains for the source and drain regions on the n + type SiC layer pole.

上述方案中,所述步骤60包括:In the above scheme, the step 60 includes:

步骤601、在器件表面旋涂光刻胶,通过光刻形成肖特基金属栅图形,利用ICP刻蚀技术开SiN窗口;Step 601, spin-coat photoresist on the device surface, form a Schottky metal gate pattern by photolithography, and use ICP etching technology to open a SiN window;

步骤602、采用电子束蒸发生长透明Ni金属,剥离后,在n型SiC外延层的凹栅区形成肖特基金属栅。Step 602 , growing transparent Ni metal by electron beam evaporation, and forming a Schottky metal grid in the concave grid region of the n-type SiC epitaxial layer after stripping.

上述方案中,所述步骤70包括:In the above scheme, the step 70 includes:

步骤701、在器件表面旋涂光刻胶,通过光刻形成电极加厚图形,利用ICP刻蚀技术开SiN窗口;Step 701, spin coating photoresist on the surface of the device, form an electrode thickening pattern by photolithography, and open a SiN window by using ICP etching technology;

步骤702、采用电子束蒸发生长Ti/Al,剥离后,完成器件电极加厚。Step 702 , using electron beam evaporation to grow Ti/Al, and after peeling off, complete device electrode thickening.

(三)有益效果(3) Beneficial effects

从上述技术方案可以看出,本发明具有以下有益效果:As can be seen from the foregoing technical solutions, the present invention has the following beneficial effects:

1、本发明提供的这种基于SiC的紫外光探测器结构,当紫外光辐射在肖特基结时,由于光照作用形成的光生电子-空穴对在肖特基结的电场作用下移动,形成光生电压,调制了源、漏极之间的电导,从而实现对紫外光信号的进行探测和放大。因此,本发明提供的紫外探测器结构,可以在不需加高偏压的情况下,实现信号增益,同时能够避免APD结构的器件中较高的雪崩噪声。1. In the SiC-based ultraviolet detector structure provided by the present invention, when the ultraviolet light is irradiated at the Schottky junction, the photogenerated electron-hole pairs formed due to the action of light move under the action of the electric field of the Schottky junction, The photo-generated voltage is formed, and the conductance between the source and the drain is modulated, so as to realize the detection and amplification of the ultraviolet light signal. Therefore, the ultraviolet detector structure provided by the present invention can realize signal gain without increasing the bias voltage, and can avoid relatively high avalanche noise in devices with an APD structure.

2、本发明提供的这种基于SiC紫外光探测器的制备方法,能够充分利用SiC材料在MESFET功率器件方面的成熟的工艺基础,降低本发明器件的制备工艺难度。2. The preparation method based on the SiC ultraviolet light detector provided by the present invention can make full use of the mature process foundation of SiC materials in MESFET power devices, and reduce the difficulty of the preparation process of the device of the present invention.

附图说明Description of drawings

图1为依照本发明实施例的基于SiC的具有增益的紫外探测器的结构示意图;1 is a schematic structural view of a SiC-based ultraviolet detector with gain according to an embodiment of the present invention;

图2为依照本发明实施例的基于SiC的具有增益的紫外探测器的制备方法流程图。FIG. 2 is a flowchart of a method for fabricating a SiC-based ultraviolet detector with gain according to an embodiment of the present invention.

具体实施方式Detailed ways

为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本发明进一步详细说明。In order to make the object, technical solution and advantages of the present invention clearer, the present invention will be described in further detail below in conjunction with specific embodiments and with reference to the accompanying drawings.

如图1所示,图1为依照本发明实施例的基于SiC的具有增益的紫外探测器的结构示意图,该紫外探测器包括:半绝缘SiC衬底;在该半绝缘SiC衬底上外延生长的p型缓冲SiC外延层;在该p型缓冲SiC外延层上外延生长的n型SiC外延层;在该n型SiC外延层上外延生长的n+型SiC外延层;部分刻蚀该n+型SiC外延层至露出该n型SiC外延层从而在该n型SiC外延层表面形成的条状凹栅区;在该条状凹栅区两侧未被刻蚀的该n+型SiC外延层上形成的源漏区欧姆接触源极和漏极;在该条状凹栅区上形成的透明肖特基势垒栅极;以及在欧姆接触源极、漏极与透明肖特基势垒栅极之间形成的钝化介质层。As shown in Figure 1, Figure 1 is a schematic structural view of a UV detector with gain based on SiC according to an embodiment of the present invention, the UV detector includes: a semi-insulating SiC substrate; epitaxial growth on the semi-insulating SiC substrate The p-type buffer SiC epitaxial layer; the n-type SiC epitaxial layer epitaxially grown on the p-type buffer SiC epitaxial layer; the n + type SiC epitaxial layer epitaxially grown on the n-type SiC epitaxial layer; the n + type SiC epitaxial layer is partially etched type SiC epitaxial layer to expose the n-type SiC epitaxial layer to form a strip-shaped recessed gate region on the surface of the n-type SiC epitaxial layer; the n + -type SiC epitaxial layer that is not etched on both sides of the strip-shaped recessed gate region The source and drain regions formed on the ohmic contact source and drain; the transparent Schottky barrier gate formed on the strip-shaped concave gate region; and the ohmic contact source, drain and transparent Schottky barrier gate The passivation dielectric layer formed between the poles.

其中,所述肖特基势垒栅极形成于所述n型SiC外延层上的条状凹栅区中,源极和漏极分别形成于所述n+型SiC外延层上,且各电极之间进一步设有钝化介质层。当紫外光辐射在器件的肖特基结表面上时,由于光照的作用形成的光生电子-空穴对在肖特基结内的电场的作用移动,形成光生电压,其效果等效于在栅极的肖特基结上施加了偏压,从而对源、漏电极之间的电导产生调制作用,完成对紫外光信号的探测及放大作用。Wherein, the Schottky barrier gate is formed in the strip-shaped concave gate region on the n-type SiC epitaxial layer, the source and drain are respectively formed on the n + type SiC epitaxial layer, and each electrode A passivation medium layer is further provided between them. When ultraviolet light is radiated on the surface of the Schottky junction of the device, the photogenerated electron-hole pairs formed due to the action of light will move under the action of the electric field in the Schottky junction to form a photogenerated voltage, and its effect is equivalent to that in the gate A bias voltage is applied to the Schottky junction of the electrode, thereby modulating the conductance between the source and drain electrodes, and completing the detection and amplification of the ultraviolet light signal.

所述半绝缘SiC衬底厚度为300~400nm;所述p型缓冲SiC外延层厚度为0.5~2μm;所述n型SiC外延层厚度为0.2~0.4μm;所述n+型SiC外延层厚度为0.1~0.2μm。所述p型缓冲SiC外延层,掺杂浓度为1×1015~5×1015cm-3;所述n型SiC外延层,掺杂浓度为1×1017~3.5×1017cm-3;所述n+型SiC外延层,掺杂浓度为大于1×1019cm-3The thickness of the semi-insulating SiC substrate is 300-400 nm; the thickness of the p-type buffer SiC epitaxial layer is 0.5-2 μm; the thickness of the n-type SiC epitaxial layer is 0.2-0.4 μm; the thickness of the n + type SiC epitaxial layer is 0.1 to 0.2 μm. The p-type buffer SiC epitaxial layer has a doping concentration of 1×10 15 to 5×10 15 cm -3 ; the n-type SiC epitaxial layer has a doping concentration of 1×10 17 to 3.5×10 17 cm -3 ; The doping concentration of the n + -type SiC epitaxial layer is greater than 1×10 19 cm -3 .

图2为本发明实施例基于SiC具有增益的紫外探测器的制备方法流程图。该方法可制作图1所示的SiC紫外探测器,包括以下步骤:FIG. 2 is a flow chart of a method for fabricating a SiC-based ultraviolet detector with gain according to an embodiment of the present invention. This method can make the SiC ultraviolet detector shown in Figure 1, including the following steps:

步骤10、在半绝缘SiC衬底上依次生长p型缓冲SiC外延层、n型SiC外延层和n+型SiC外延层;该步骤具体如下:Step 10, sequentially growing a p-type buffer SiC epitaxial layer, an n-type SiC epitaxial layer and an n + -type SiC epitaxial layer on the semi-insulating SiC substrate; the steps are as follows:

步骤101、在厚度为300~400nm的半绝缘SiC衬底正面利用CVD方法外延生长p型缓冲SiC外延层,该p型缓冲SiC外延层的掺杂浓度为1×1015~5×1015cm-3,厚度为0.5~2μm;Step 101. Using CVD to epitaxially grow a p-type buffer SiC epitaxial layer on the front side of a semi-insulating SiC substrate with a thickness of 300-400 nm. The doping concentration of the p-type buffer SiC epitaxial layer is 1×10 15 to 5×10 15 cm -3 , the thickness is 0.5~2μm;

步骤102、在p型缓冲SiC外延层上生长n型SiC外延层,该n型SiC外延层的掺杂浓度为1×1017~3.5×1017cm-3,厚度为0.2~0.4μm;Step 102, growing an n-type SiC epitaxial layer on the p-type buffer SiC epitaxial layer, the doping concentration of the n-type SiC epitaxial layer is 1×10 17 to 3.5×10 17 cm −3 , and the thickness is 0.2 to 0.4 μm;

步骤103、在n型SiC外延层上生长n+型SiC外延层,该n+型SiC外延层的掺杂大于1×1019cm-3,厚度为0.1~0.2μm。Step 103 , growing an n + -type SiC epitaxial layer on the n-type SiC epitaxial layer, the doping of the n + -type SiC epitaxial layer is greater than 1×10 19 cm -3 , and the thickness is 0.1-0.2 μm.

步骤20、利用SiC的ICP刻蚀工艺,对器件进行隔离;该步骤具体如下:Step 20, using the ICP etching process of SiC to isolate the device; the details of this step are as follows:

步骤201、使用正胶9920光刻胶制作刻蚀掩膜层。厚度2μm;Step 201, using positive resist 9920 photoresist to make an etching mask layer. Thickness 2μm;

步骤202、利用ICP刻蚀机刻蚀SiC外延层至p型SiC外延层。刻蚀工艺条件为:RF:50W,LF:300W,CHF3:20sccm,C2H4:3sccm压强:10mTorr,刻蚀时间约6分钟。Step 202, using an ICP etching machine to etch the SiC epitaxial layer to the p-type SiC epitaxial layer. The etching process conditions are: RF: 50W, LF: 300W, CHF 3 : 20 sccm, C 2 H 4 : 3 sccm, pressure: 10 mTorr, and the etching time is about 6 minutes.

步骤30、利用SiC的ICP刻蚀工艺,部分刻蚀该n+型SiC外延层至露出该n型SiC外延层,从而在该n型SiC外延层表面形成条状凹栅区;该步骤具体如下:Step 30. Using the ICP etching process of SiC, partially etch the n + -type SiC epitaxial layer to expose the n-type SiC epitaxial layer, thereby forming a strip-shaped concave gate region on the surface of the n-type SiC epitaxial layer; the step is as follows :

步骤301、使用正胶9920光刻胶制作刻蚀掩膜层,厚度2μm;Step 301, using positive resist 9920 photoresist to make an etching mask layer with a thickness of 2 μm;

步骤302、利用ICP刻蚀机刻蚀n+型SiC外延层,刻蚀工艺条件为:RF:50W,LF:300W,CHF3:20sccm,C2H4:3sccm,压强:10mTorr,刻蚀时间40秒~80秒,直至露出该n型SiC外延层,在该n型SiC外延层表面形成条状凹栅区。Step 302, using an ICP etching machine to etch the n + type SiC epitaxial layer, the etching process conditions are: RF: 50W, LF: 300W, CHF 3 : 20sccm, C 2 H 4 : 3sccm, pressure: 10mTorr, etching time 40 seconds to 80 seconds, until the n-type SiC epitaxial layer is exposed, and strip-shaped concave gate regions are formed on the surface of the n-type SiC epitaxial layer.

步骤40、在该条状凹栅区两侧未被刻蚀的该n+型SiC外延层上形成源漏区的欧姆接触源极和漏极;该步骤具体如下:Step 40, forming the ohmic contact source and drain of the source and drain regions on the n + -type SiC epitaxial layer that has not been etched on both sides of the strip-shaped concave gate region; this step is specifically as follows:

步骤401、在器件表面旋涂光刻胶,通过光刻形成源、漏区欧姆接触图形;Step 401, spin coating photoresist on the surface of the device, and form source and drain region ohmic contact patterns by photolithography;

步骤402、利用磁控溅射技术生长Ni金属,剥离形成源、漏区金属;Step 402, using magnetron sputtering technology to grow Ni metal, stripping to form source and drain region metal;

步骤403、在900℃~1000℃温度范围内,在真空环境或惰性气体氛围中对源、漏区金属进行快速热退火,形成n+型SiC层上源、漏区的欧姆接触源极和漏极。Step 403, within the temperature range of 900°C to 1000°C, perform rapid thermal annealing on the metal of the source and drain regions in a vacuum environment or an inert gas atmosphere to form ohmic contact sources and drains of the source and drain regions on the n + type SiC layer pole.

步骤50、通过PECVD的方法,在器件表面淀积钝化层SiN;Step 50, depositing a passivation layer SiN on the surface of the device by PECVD;

步骤60、在n型SiC外延层的凹栅区表面制备透明肖特基金属栅;该步骤具体如下:Step 60, preparing a transparent Schottky metal grid on the surface of the concave grid region of the n-type SiC epitaxial layer; the steps are as follows:

步骤601、在器件表面旋涂光刻胶,通过光刻形成肖特基金属栅图形,利用ICP刻蚀技术开SiN窗口;Step 601, spin-coat photoresist on the device surface, form a Schottky metal gate pattern by photolithography, and use ICP etching technology to open a SiN window;

步骤602、采用电子束蒸发生长透明Ni金属,剥离后,在n型SiC外延层的凹栅区形成肖特基金属栅。Step 602 , growing transparent Ni metal by electron beam evaporation, and forming a Schottky metal grid in the concave grid region of the n-type SiC epitaxial layer after stripping.

步骤70、对器件电极进行加厚。该步骤具体如下:Step 70, thickening the device electrodes. The steps are as follows:

步骤701、在器件表面旋涂光刻胶,通过光刻形成电极加厚图形,利用ICP刻蚀技术开SiN窗口;Step 701, spin coating photoresist on the surface of the device, form an electrode thickening pattern by photolithography, and open a SiN window by using ICP etching technology;

步骤702、采用电子束蒸发生长Ti/Al,剥离后,完成器件电极加厚。Step 702 , using electron beam evaporation to grow Ti/Al, and after peeling off, complete device electrode thickening.

以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The specific embodiments described above have further described the purpose, technical solutions and beneficial effects of the present invention in detail. It should be understood that the above descriptions are only specific embodiments of the present invention and are not intended to limit the present invention. Any modifications, equivalent replacements, improvements, etc. made within the spirit and principles of the present invention shall be included within the protection scope of the present invention.

Claims (12)

1.一种基于SiC的具有增益的紫外探测器,其特征在于,该紫外探测器包括:1. A kind of ultraviolet detector with gain based on SiC, it is characterized in that, this ultraviolet detector comprises: 半绝缘SiC衬底;Semi-insulating SiC substrate; 在该半绝缘SiC衬底上外延生长的p型缓冲SiC外延层;A p-type buffer SiC epitaxial layer epitaxially grown on the semi-insulating SiC substrate; 在该p型缓冲SiC外延层上外延生长的n型SiC外延层;An n-type SiC epitaxial layer epitaxially grown on the p-type buffer SiC epitaxial layer; 在该n型SiC外延层上外延生长的n+型SiC外延层;An n + -type SiC epitaxial layer epitaxially grown on the n - type SiC epitaxial layer; 部分刻蚀该n+型SiC外延层至露出该n型SiC外延层从而在该n型SiC外延层表面形成的条状凹栅区;Partially etching the n + -type SiC epitaxial layer to expose the n-type SiC epitaxial layer so as to form a strip-shaped concave gate region on the surface of the n-type SiC epitaxial layer; 在该条状凹栅区两侧未被刻蚀的该n+型SiC外延层上形成的源漏区欧姆接触源极和漏极;The source and drain regions formed on the unetched n + -type SiC epitaxial layer on both sides of the strip-shaped concave gate region are in ohmic contact with the source and drain; 在该条状凹栅区上形成的透明肖特基势垒栅极;以及a transparent Schottky barrier gate formed on the strip-shaped concave gate region; and 在欧姆接触源极、漏极与透明肖特基势垒栅极之间形成的钝化介质层。A passivation dielectric layer formed between the ohmic contacts source, drain and transparent Schottky barrier gate. 2.根据权利要求1所述的基于SiC的具有增益的紫外探测器,其特征在于,所述半绝缘SiC衬底厚度为300~400nm;所述p型缓冲SiC外延层厚度为0.5~2μm;所述n型SiC外延层厚度为0.2~0.4μm;所述n+型SiC外延层厚度为0.1~0.2μm。2. The ultraviolet detector with gain based on SiC according to claim 1, characterized in that, the thickness of the semi-insulating SiC substrate is 300-400 nm; the thickness of the p-type buffer SiC epitaxial layer is 0.5-2 μm; The thickness of the n-type SiC epitaxial layer is 0.2-0.4 μm; the thickness of the n + -type SiC epitaxial layer is 0.1-0.2 μm. 3.根据权利要求1所述的基于SiC的具有增益的紫外探测器,其特征在于,所述p型缓冲SiC外延层,掺杂浓度为1×1015~5×1015cm-3;所述n型SiC外延层,掺杂浓度为1×1017~3.5×1017cm-3;所述n+型SiC外延层,掺杂浓度为大于1×1019cm-33. The SiC-based ultraviolet detector with gain according to claim 1, characterized in that the p-type buffer SiC epitaxial layer has a doping concentration of 1×10 15 to 5×10 15 cm -3 ; The n-type SiC epitaxial layer has a doping concentration of 1×10 17 to 3.5×10 17 cm -3 ; the n + type SiC epitaxial layer has a doping concentration greater than 1×10 19 cm -3 . 4.一种基于SiC的具有增益的紫外探测器的制备方法,其特征在于,该方法包括:4. A method for preparing an ultraviolet detector with gain based on SiC, characterized in that the method comprises: 步骤10、在半绝缘SiC衬底上依次生长p型缓冲SiC外延层、n型SiC外延层和n+型SiC外延层;Step 10, sequentially growing a p-type buffer SiC epitaxial layer, an n-type SiC epitaxial layer and an n + -type SiC epitaxial layer on the semi-insulating SiC substrate; 步骤20、利用SiC的ICP刻蚀工艺,对器件进行隔离;Step 20, using the ICP etching process of SiC to isolate the device; 步骤30、利用SiC的ICP刻蚀工艺,部分刻蚀该n+型SiC外延层至露出该n型SiC外延层,从而在该n型SiC外延层表面形成条状凹栅区;Step 30, using the ICP etching process of SiC, partially etching the n + -type SiC epitaxial layer to expose the n-type SiC epitaxial layer, thereby forming a strip-shaped concave gate region on the surface of the n-type SiC epitaxial layer; 步骤40、在该条状凹栅区两侧未被刻蚀的该n+型SiC外延层上形成源漏区的欧姆接触源极和漏极;Step 40, forming an ohmic contact source and drain of the source and drain regions on the n + -type SiC epitaxial layer that has not been etched on both sides of the strip-shaped recessed gate region; 步骤50、通过PECVD的方法,在器件表面淀积钝化层SiN;Step 50, depositing a passivation layer SiN on the surface of the device by PECVD; 步骤60、在n型SiC外延层的凹栅区表面制备透明肖特基金属栅;Step 60, preparing a transparent Schottky metal gate on the surface of the concave gate region of the n-type SiC epitaxial layer; 步骤70、对器件电极进行加厚。Step 70, thickening the device electrodes. 5.根据权利要求4所述的基于SiC的具有增益的紫外探测器的制备方法,其特征在于,所述步骤10包括:5. the preparation method of the ultraviolet detector with gain based on SiC according to claim 4, is characterized in that, described step 10 comprises: 步骤101、在厚度为300~400nm的半绝缘SiC衬底正面利用CVD方法外延生长p型缓冲SiC外延层,该p型缓冲SiC外延层的掺杂浓度为1×1015~5×1015cm-3,厚度为0.5~2μm;Step 101. Using CVD to epitaxially grow a p-type buffer SiC epitaxial layer on the front side of a semi-insulating SiC substrate with a thickness of 300-400 nm. The doping concentration of the p-type buffer SiC epitaxial layer is 1×10 15 to 5×10 15 cm -3 , the thickness is 0.5~2μm; 步骤102、在p型缓冲SiC外延层上生长n型SiC外延层,该n型SiC外延层的掺杂浓度为1×1017~3.5×1017cm-3,厚度为0.2~0.4μm;Step 102, growing an n-type SiC epitaxial layer on the p-type buffer SiC epitaxial layer, the doping concentration of the n-type SiC epitaxial layer is 1×10 17 to 3.5×10 17 cm −3 , and the thickness is 0.2 to 0.4 μm; 步骤103、在n型SiC外延层上生长n+型SiC外延层,该n+型SiC外延层的掺杂大于1×1019cm-3,厚度为0.1~0.2μm。Step 103 , growing an n + -type SiC epitaxial layer on the n-type SiC epitaxial layer, the doping of the n + -type SiC epitaxial layer is greater than 1×10 19 cm -3 , and the thickness is 0.1-0.2 μm. 6.根据权利要求4所述的基于SiC的具有增益的紫外探测器的制备方法,其特征在于,所述步骤20包括:6. the preparation method of the ultraviolet detector with gain based on SiC according to claim 4, is characterized in that, described step 20 comprises: 步骤201、使用正胶9920光刻胶制作刻蚀掩膜层,厚度2μm;Step 201, using positive resist 9920 photoresist to make an etching mask layer with a thickness of 2 μm; 步骤202、利用ICP刻蚀机刻蚀SiC外延层至p型SiC外延层。Step 202, using an ICP etching machine to etch the SiC epitaxial layer to the p-type SiC epitaxial layer. 7.根据权利要求6所述的基于SiC的具有增益的紫外探测器的制备方法,其特征在于,步骤202中所述利用ICP刻蚀机刻蚀SiC外延层,刻蚀工艺条件为:RF:50W,LF:300W,CHF3:20sccm,C2H4:3sccm,压强:10mTorr,刻蚀时间6分钟。7. The method for preparing an ultraviolet detector with gain based on SiC according to claim 6, characterized in that, the SiC epitaxial layer is etched using an ICP etching machine as described in step 202, and the etching process conditions are: RF: 50W, LF: 300W, CHF 3 : 20 sccm, C 2 H 4 : 3 sccm, pressure: 10 mTorr, etching time 6 minutes. 8.根据权利要求4所述的基于SiC的具有增益的紫外探测器的制备方法,其特征在于,所述步骤30包括:8. the preparation method of the ultraviolet detector with gain based on SiC according to claim 4, is characterized in that, described step 30 comprises: 步骤301、使用正胶9920光刻胶制作刻蚀掩膜层,厚度2μm;Step 301, using positive resist 9920 photoresist to make an etching mask layer with a thickness of 2 μm; 步骤302、利用ICP刻蚀机刻蚀n+型SiC外延层,直至露出该n型SiC外延层,在该n型SiC外延层表面形成条状凹栅区。Step 302 , using an ICP etching machine to etch the n + -type SiC epitaxial layer until the n-type SiC epitaxial layer is exposed, and forming strip-shaped concave gate regions on the surface of the n-type SiC epitaxial layer. 9.根据权利要求8所述的基于SiC的具有增益的紫外探测器的制备方法,其特征在于,步骤302中所述利用ICP刻蚀机刻蚀n+型SiC外延层,刻蚀工艺条件为:RF:50W,LF:300W,CHF3:20sccm,C2H4:3sccm,压强:10mTorr,刻蚀时间40秒~80秒。9. The method for preparing a SiC-based ultraviolet detector with gain according to claim 8, wherein, in step 302, an ICP etching machine is used to etch the n + type SiC epitaxial layer, and the etching process condition is : RF: 50W, LF: 300W, CHF 3 : 20 sccm, C 2 H 4 : 3 sccm, pressure: 10 mTorr, etching time 40 seconds to 80 seconds. 10.根据权利要求4所述的基于SiC的具有增益的紫外探测器的制备方法,其特征在于,所述步骤40包括:10. the preparation method of the ultraviolet detector with gain based on SiC according to claim 4, is characterized in that, described step 40 comprises: 步骤401、在器件表面旋涂光刻胶,通过光刻形成源、漏区欧姆接触图形;Step 401, spin coating photoresist on the surface of the device, and form source and drain region ohmic contact patterns by photolithography; 步骤402、利用磁控溅射技术生长Ni金属,剥离形成源、漏区金属;Step 402, using magnetron sputtering technology to grow Ni metal, stripping to form source and drain region metal; 步骤403、在900℃至1000℃温度范围内,在真空环境或惰性气体氛围中对源、漏区金属进行快速热退火,形成n+型SiC层上源、漏区的欧姆接触源极和漏极。Step 403, performing rapid thermal annealing on the source and drain region metals in a vacuum environment or an inert gas atmosphere within a temperature range of 900° C. to 1000° C. to form ohmic contact sources and drains for the source and drain regions on the n + type SiC layer pole. 11.根据权利要求4所述的基于SiC的具有增益的紫外探测器的制备方法,其特征在于,所述步骤60包括:11. the preparation method of the ultraviolet detector with gain based on SiC according to claim 4, is characterized in that, described step 60 comprises: 步骤601、在器件表面旋涂光刻胶,通过光刻形成肖特基金属栅图形,利用ICP刻蚀技术开SiN窗口;Step 601, spin-coat photoresist on the device surface, form a Schottky metal gate pattern by photolithography, and use ICP etching technology to open a SiN window; 步骤602、采用电子束蒸发生长透明Ni金属,剥离后,在n型SiC外延层的凹栅区形成肖特基金属栅。Step 602 , growing transparent Ni metal by electron beam evaporation, and forming a Schottky metal grid in the concave grid region of the n-type SiC epitaxial layer after stripping. 12.根据权利要求4所述的基于SiC的具有增益的紫外探测器的制备方法,其特征在于,所述步骤70包括:12. The method for preparing a SiC-based ultraviolet detector with gain according to claim 4, wherein the step 70 comprises: 步骤701、在器件表面旋涂光刻胶,通过光刻形成电极加厚图形,利用ICP刻蚀技术开SiN窗口;Step 701, spin coating photoresist on the surface of the device, form an electrode thickening pattern by photolithography, and open a SiN window by using ICP etching technology; 步骤702、采用电子束蒸发生长Ti/Al,剥离后,完成器件电极加厚。Step 702 , using electron beam evaporation to grow Ti/Al, and after peeling off, complete device electrode thickening.
CN201210483359XA 2012-11-23 2012-11-23 Ultraviolet detector structure with gain and preparation method thereof Pending CN102931272A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210483359XA CN102931272A (en) 2012-11-23 2012-11-23 Ultraviolet detector structure with gain and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210483359XA CN102931272A (en) 2012-11-23 2012-11-23 Ultraviolet detector structure with gain and preparation method thereof

Publications (1)

Publication Number Publication Date
CN102931272A true CN102931272A (en) 2013-02-13

Family

ID=47646030

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210483359XA Pending CN102931272A (en) 2012-11-23 2012-11-23 Ultraviolet detector structure with gain and preparation method thereof

Country Status (1)

Country Link
CN (1) CN102931272A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105006521A (en) * 2015-05-29 2015-10-28 金康康 Ultraviolet photoelectric detector based on PFH/n-SiC organic-inorganic heterostructure
CN108321256A (en) * 2018-03-29 2018-07-24 中山大学 A kind of preparation method based on p-type transparent grid electrode GaN base ultraviolet detector
CN110544731A (en) * 2019-09-05 2019-12-06 中国电子科技集团公司第十三研究所 A kind of ultraviolet detector and preparation method thereof
CN110676327A (en) * 2019-09-05 2020-01-10 中国电子科技集团公司第十三研究所 Ultraviolet detector integrated with antireflection film layer and preparation method thereof
CN111180547A (en) * 2020-01-06 2020-05-19 深圳第三代半导体研究院 Novel two-end grating press structure SiC photodetector and preparation method thereof
CN113299789A (en) * 2021-05-18 2021-08-24 中国科学院宁波材料技术与工程研究所 Solar blind ultraviolet photoelectric detector and application thereof
CN114678429A (en) * 2022-05-30 2022-06-28 陕西半导体先导技术中心有限公司 MISIM type 4H-SiC ultraviolet detector with composite structure and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0518683A1 (en) * 1991-06-14 1992-12-16 Cree Research, Inc. High power, high frequency metal-semiconductor field-effect transistor formed in silicon carbide
CN1441965A (en) * 2000-05-10 2003-09-10 克里公司 Silicon carbide metal-semiconductor field effect transistors and methods of fabricating silicon carbide metal-semiconductor field effect transistors
CN2703329Y (en) * 2003-12-31 2005-06-01 中国科学技术大学 Sic Schottky ultraviolet detector
CN102074610A (en) * 2010-09-09 2011-05-25 西安电子科技大学 Beta-radiation detector based on field effect tube structure of silicon carbide metal semiconductor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0518683A1 (en) * 1991-06-14 1992-12-16 Cree Research, Inc. High power, high frequency metal-semiconductor field-effect transistor formed in silicon carbide
CN1441965A (en) * 2000-05-10 2003-09-10 克里公司 Silicon carbide metal-semiconductor field effect transistors and methods of fabricating silicon carbide metal-semiconductor field effect transistors
CN2703329Y (en) * 2003-12-31 2005-06-01 中国科学技术大学 Sic Schottky ultraviolet detector
CN102074610A (en) * 2010-09-09 2011-05-25 西安电子科技大学 Beta-radiation detector based on field effect tube structure of silicon carbide metal semiconductor

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105006521A (en) * 2015-05-29 2015-10-28 金康康 Ultraviolet photoelectric detector based on PFH/n-SiC organic-inorganic heterostructure
CN105006521B (en) * 2015-05-29 2017-08-11 孙王淇 A kind of UV photodetector part based on PFH/n SiC organic-inorganic heterostructures structures
CN108321256A (en) * 2018-03-29 2018-07-24 中山大学 A kind of preparation method based on p-type transparent grid electrode GaN base ultraviolet detector
CN110544731A (en) * 2019-09-05 2019-12-06 中国电子科技集团公司第十三研究所 A kind of ultraviolet detector and preparation method thereof
CN110676327A (en) * 2019-09-05 2020-01-10 中国电子科技集团公司第十三研究所 Ultraviolet detector integrated with antireflection film layer and preparation method thereof
WO2021042626A1 (en) * 2019-09-05 2021-03-11 中国电子科技集团公司第十三研究所 Ultraviolet detector and preparation method therefor
US12268035B2 (en) 2019-09-05 2025-04-01 The 13Th Research Institute Of China Electronics Technology Group Corporation Ultraviolet detector and preparation method therefor
CN111180547A (en) * 2020-01-06 2020-05-19 深圳第三代半导体研究院 Novel two-end grating press structure SiC photodetector and preparation method thereof
CN111180547B (en) * 2020-01-06 2022-04-05 深圳第三代半导体研究院 A new type of SiC photodetector with two-end grating pressure structure and its preparation method
CN113299789A (en) * 2021-05-18 2021-08-24 中国科学院宁波材料技术与工程研究所 Solar blind ultraviolet photoelectric detector and application thereof
CN114678429A (en) * 2022-05-30 2022-06-28 陕西半导体先导技术中心有限公司 MISIM type 4H-SiC ultraviolet detector with composite structure and preparation method thereof
CN114678429B (en) * 2022-05-30 2022-08-26 陕西半导体先导技术中心有限公司 A kind of MISIM type 4H-SiC ultraviolet detector with composite structure and preparation method thereof

Similar Documents

Publication Publication Date Title
US10629766B2 (en) Method for manufacturing ultraviolet photodetector based on Ga2O3 material
CN102800717B (en) PIN structural ultraviolet photoelectric detector for avalanche and preparation method thereof
CN100514680C (en) Theta-doped 4H-SiC avalanche ultraviolet photoelectric detector and its production
CN102931272A (en) Ultraviolet detector structure with gain and preparation method thereof
CN101527308B (en) Plane-structure InGaAs array infrared detector
CN100438083C (en) Ultraviolet photoelectric detector delta doped 4H-SiC PIN structure
CN104576805A (en) Short wave/medium wave/long wave infrared detector based on InAs/GaSb class II-type superlattice materials
CN112382688B (en) Photoelectric detector based on flexible gallium oxide/gallium nitride structure and preparation method
CN104157720B (en) A kind of silica-based avalanche photodetector of Graphene and preparation method of mixed structure
CN104167458A (en) UV detector and preparation method thereof
CN105655437A (en) Ultraviolet avalanche photo-detector
WO2021249344A1 (en) Photoelectric detector and preparation method therefor
CN111490112B (en) A new type of silicon carbide Schottky junction extreme deep ultraviolet detector and preparation method thereof
CN114267747B (en) Ga with metal gate structure 2 O 3 AlGaN/GaN solar blind ultraviolet detector and preparation method thereof
CN106024922A (en) Photoelectric transistor based on GeSn materials and manufacturing method thereof
CN110676272A (en) Semiconductor ultraviolet photoelectric detector
CN114530519B (en) A self-driven MSM ultraviolet detector and its preparation method
CN109545883A (en) A kind of low-dark current mesa snowslide single-photon detector and preparation method
CN109301007A (en) Ultraviolet detector and preparation method thereof
CN108400196A (en) One kind having superlattice structure gallium nitride base ultraviolet light electric explorer and preparation method thereof
CN113964238B (en) A kind of preparation method of avalanche photoelectric detector
CN111211196B (en) A high-sensitivity and high-linearity detector
CN114678439A (en) A kind of 2DEG ultraviolet detector with symmetrical interdigital structure and preparation method
CN107359220A (en) A kind of AlGaN ultraviolet detectors with two-dimensional electron gas denoising shading ring
CN114695430A (en) Bipolar response bicolor detector, and preparation method and application thereof

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C05 Deemed withdrawal (patent law before 1993)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20130213