CN102930764A - Ion source negative hydrogen ion beam leading-out experiment table for neutron tube - Google Patents
Ion source negative hydrogen ion beam leading-out experiment table for neutron tube Download PDFInfo
- Publication number
- CN102930764A CN102930764A CN2012104288540A CN201210428854A CN102930764A CN 102930764 A CN102930764 A CN 102930764A CN 2012104288540 A CN2012104288540 A CN 2012104288540A CN 201210428854 A CN201210428854 A CN 201210428854A CN 102930764 A CN102930764 A CN 102930764A
- Authority
- CN
- China
- Prior art keywords
- ion source
- penning
- negative
- negative hydrogen
- hydrogen ion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- GPRLSGONYQIRFK-UHFFFAOYSA-N hydron Chemical compound [H+] GPRLSGONYQIRFK-UHFFFAOYSA-N 0.000 title claims abstract description 33
- 238000010884 ion-beam technique Methods 0.000 title claims abstract description 32
- 238000002474 experimental method Methods 0.000 title claims description 8
- 150000002500 ions Chemical class 0.000 claims abstract description 90
- 238000000605 extraction Methods 0.000 claims abstract description 40
- 239000011521 glass Substances 0.000 claims abstract description 26
- 238000012360 testing method Methods 0.000 claims abstract description 19
- 229910052805 deuterium Inorganic materials 0.000 claims abstract description 6
- 241000271510 Agkistrodon contortrix Species 0.000 claims description 12
- 239000007789 gas Substances 0.000 claims description 8
- 230000001133 acceleration Effects 0.000 claims description 5
- 239000000463 material Substances 0.000 claims description 4
- YZCKVEUIGOORGS-OUBTZVSYSA-N Deuterium Chemical compound [2H] YZCKVEUIGOORGS-OUBTZVSYSA-N 0.000 claims description 3
- 229910052722 tritium Inorganic materials 0.000 claims description 3
- -1 tritium ions Chemical class 0.000 claims 1
- 238000011161 development Methods 0.000 abstract description 8
- 238000013461 design Methods 0.000 abstract description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 abstract description 3
- 150000001793 charged compounds Chemical class 0.000 abstract description 3
- 229910052739 hydrogen Inorganic materials 0.000 abstract description 3
- 239000001257 hydrogen Substances 0.000 abstract description 3
- 238000004088 simulation Methods 0.000 abstract description 3
- 238000010494 dissociation reaction Methods 0.000 abstract description 2
- 230000005593 dissociations Effects 0.000 abstract description 2
- 238000001179 sorption measurement Methods 0.000 abstract description 2
- 239000000306 component Substances 0.000 description 3
- 229910000831 Steel Inorganic materials 0.000 description 2
- YZCKVEUIGOORGS-NJFSPNSNSA-N Tritium Chemical compound [3H] YZCKVEUIGOORGS-NJFSPNSNSA-N 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000005355 lead glass Substances 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 239000008358 core component Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 238000003197 gene knockdown Methods 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000004091 panning Methods 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
Images
Landscapes
- Electron Sources, Ion Sources (AREA)
- Particle Accelerators (AREA)
Abstract
本发明属于中子管的实验设备,具体涉及潘宁中子管离子源负氢离子束引出实验台,是研究设计长寿命、高稳定性中子管的关键实验设备,带有高压电极的玻璃钟罩为实验空间,微调阀通入氢气并能调节真空度以模拟中子管内部的工作气压。实验台上潘宁离子源中D、T负离子的产生,主要是通过离解吸附方式,不存在负的分子离子和负的三原子离子,引出束流都是单原子负离子。中子管中离子源的引出束流与多种因素有密切的关系。通过该实验台可以很方便的调整离子源系统的各个参数,研究各个参数对引出束流的影响,在加速电极上得到好的束流品质。另外,利用该实验台可以做中子管的模拟实验,检验和修正中子管的设计,能够大大缩短研制周期,节省开发资金。
The invention belongs to neutron tube experimental equipment, in particular to a penning neutron tube ion source negative hydrogen ion beam extraction test bench, which is the key experimental equipment for researching and designing long-life and high-stability neutron tubes, and a glass bell jar with high-voltage electrodes For the experimental space, the fine-tuning valve feeds hydrogen and can adjust the vacuum degree to simulate the working pressure inside the neutron tube. The generation of D and T negative ions in the Penning ion source on the test bench is mainly through dissociation and adsorption. There are no negative molecular ions and negative triatomic ions, and the extracted beams are all monatomic negative ions. The extraction beam current of the ion source in the neutron tube is closely related to many factors. Through this experimental platform, various parameters of the ion source system can be adjusted conveniently, the influence of each parameter on the extraction beam can be studied, and good beam quality can be obtained on the accelerating electrode. In addition, the simulation experiment of the neutron tube can be done by using the test bench, and the design of the neutron tube can be checked and corrected, which can greatly shorten the development cycle and save development funds.
Description
技术领域 technical field
本发明属于中子管的实验设备,具体涉及潘宁(PIG)中子管离子源负氢离子束引出实验台。 The invention belongs to experimental equipment for neutron tubes, in particular to an experimental platform for extracting negative hydrogen ion beams from a Penning (PIG) neutron tube ion source.
the
背景技术 Background technique
中子管和以它为核心的中子发生器是一项实验性很强的科学技术,在很多领域都有着重要的应用。中子管把离子源、加速聚焦电极、靶和气压调节系统密封在一个绝缘的真空外壳里面,组成一个小型加速器。中子管中的离子源是决定中子管的产额、寿命和稳定性的核心部件之一。潘宁离子源(简称PIG离子源)由于其结构简单、工作稳定、寿命长、供电系统简单及能在低气压下工作等特点,被广泛应用于中子管等小型加速器中。 The neutron tube and the neutron generator with it as the core is a highly experimental science and technology, which has important applications in many fields. The neutron tube seals the ion source, accelerating focusing electrode, target and air pressure regulation system in an insulating vacuum envelope, forming a small accelerator. The ion source in the neutron tube is one of the core components that determine the output, life and stability of the neutron tube. Penning ion source (referred to as PIG ion source) is widely used in small accelerators such as neutron tubes due to its simple structure, stable operation, long life, simple power supply system, and ability to work under low pressure.
随着中子管、中子发生器应用领域的不断拓展,急需研制各种不同参数和特性的中子管。而中子管中离子源的引出束流与加速间隙的选择、引出孔径的尺寸、离子源的结构、各部件的尺寸和材料、电子温度以及引出电极结构、管内气压等均有密切的关系。因此,中子管的研制是以大量的实验为基础的。所以以离子源引出束流为核心,建设一种能够测量引出束流特性参数,模拟中子管工作状态的实验装置对中子管的研制是非常必要的。它可以做中子管的模拟实验,检验和修正中子管的设计,大大缩短研制周期,节省开发资金。 With the continuous expansion of the application fields of neutron tubes and neutron generators, it is urgent to develop neutron tubes with various parameters and characteristics. The extraction beam current of the ion source in the neutron tube is closely related to the selection of the acceleration gap, the size of the extraction aperture, the structure of the ion source, the size and material of each component, the electron temperature, the structure of the extraction electrode, and the air pressure in the tube. Therefore, the development of neutron tubes is based on a large number of experiments. Therefore, it is very necessary for the development of the neutron tube to build an experimental device that can measure the characteristic parameters of the extracted beam and simulate the working state of the neutron tube, taking the extracted beam of the ion source as the core. It can do simulation experiments of neutron tubes, check and correct the design of neutron tubes, greatly shorten the development cycle and save development funds.
目前国内生产的中子管都是采用引出正离子的PIG离子源,在靶端加-60KV~-120KV的负高压将离子源产生的氘(D)离子和氚(T)离子加速,并在靶上发生核反应产生中子。这种结构的中子管存在,引出束流利用率低,靶上会产生二次电子,法拉第圆筒表面容易形成电子的场致发射点,靶的溅射损伤大等缺点。采用PIG型负离子源,产生氘(D)、氚(T)的负离子。靶上加正高压,在去除引出束流中电子的情况下,引出束流都是单原子负离子,产生中子的束流利用率可以达到100%,能够克服上述的缺点。 At present, the neutron tubes produced in China all use the PIG ion source that extracts positive ions, and a negative high voltage of -60KV ~ -120KV is added to the target end to accelerate the deuterium (D) ions and tritium (T) ions generated by the ion source, and A nuclear reaction on the target produces neutrons. The neutron tube with this structure has the disadvantages of low utilization rate of the extracted beam, secondary electrons will be generated on the target, field emission points of electrons are easily formed on the surface of the Faraday cylinder, and the sputtering damage of the target is large. Adopt PIG type negative ion source to generate deuterium (D) and tritium (T) negative ions. Positive high voltage is added to the target. In the case of removing electrons in the extracted beam, the extracted beam is all monatomic negative ions, and the beam utilization rate of neutrons can reach 100%, which can overcome the above-mentioned shortcomings.
发明内容 Contents of the invention
为了提高研制不同用途中子管的成功率和效率,提高中子管的寿命和稳定性,本发明的目的是提供一种潘宁(PIG)中子管离子源负氢离子束引出实验台。 In order to improve the success rate and efficiency of developing neutron tubes for different purposes, and improve the life and stability of neutron tubes, the purpose of this invention is to provide a negative hydrogen ion beam extraction test platform for Penning (PIG) neutron tube ion sources.
潘宁中子管离子源负氢离子束引出实验台是由潘宁离子源负氢离子束引出部分和真空系统与环境部分组成。 Penning neutron tube ion source negative hydrogen ion beam extraction test bench is composed of Penning ion source negative hydrogen ion beam extraction part, vacuum system and environment part.
实验台上带有高压电极的玻璃钟罩为实验空间,经真空法兰与分子泵机组连通。可以做离子源束流引出实验和中子管整体工作状态的模拟实验,或者检验某一元件的设计尺寸及材料和磁场的选择。真空法兰带有绝缘电极用以引入离子源电压和收集电压。玻璃钟罩上的圆形高压电极引入加速高压。微调阀通入氢气并能调节真空度以模拟中子管内部的工作气压。实验台前面放置铅玻璃用来阻挡实验时产生的X射线。透过铅玻璃可直接观察离子源的放电情况和引出束流的形状。该实验台上的PIG离子源中D、T负离子的产生,主要是通过离解吸附方式,反应式为H2+e →H2 -→H1 -+H1,不存在负的分子离子(负的分子离子不稳定,寿命约为10-15s―10-13s)和负的三原子离子,引出束流都是单原子负离子,产生中子的束流利用率可以达到100%.而且,由于束流利用率高,未来封装成中子管时产生相同产额中子所需的D、T负离子的量比较小,对靶的溅射损伤非常小,靶的寿命可以得到显著延长。靶上加正高压的另一个优点是,负离子打倒靶上产生的二次电子会立即返回到靶上,因此,无需考虑抑制二次电子的措施。但是,在从PIG型负离子源引出负离子的同时,也引出了一部分电子,如果让它们打倒靶上,将占加速电流的大部分,增加加速高压电源的负荷,因此,必须把这部分电子从引出束流中分离出来。这里我们采用在束流的路径上精心设置相应的横向偏转磁场和收集电极来实现。 The glass bell jar with high-voltage electrodes on the test bench is the test space, which is connected to the molecular pump unit through the vacuum flange. It can be used to conduct ion source beam extraction experiments and simulation experiments of the overall working state of the neutron tube, or to check the design size of a certain component and the selection of materials and magnetic fields. The vacuum flange has insulated electrodes to introduce ion source voltage and collection voltage. A round high voltage electrode on a glass bell introduces the accelerating high voltage. The trimmer valve feeds hydrogen and can adjust the degree of vacuum to simulate the working pressure inside the neutron tube. Lead glass is placed in front of the experimental table to block the X-rays generated during the experiment. The discharge of the ion source and the shape of the extracted beam can be directly observed through the lead glass. The generation of D and T negative ions in the PIG ion source on the test bench is mainly through dissociation and adsorption. The reaction formula is H 2 +e →H 2 - →H 1 - +H 1 , and there is no negative molecular ion (negative Molecular ions are unstable and have a lifetime of about 10 -15 s-10 -13 s) and negative triatomic ions, the extracted beams are all monatomic negative ions, and the beam utilization rate of neutrons can reach 100%. Moreover, due to the high beam utilization rate, the amount of D and T negative ions required to produce neutrons with the same yield in the future when packaged into a neutron tube is relatively small, the sputtering damage to the target is very small, and the life of the target can be significantly extended . Another advantage of adding a positive high voltage to the target is that the secondary electrons generated by the negative ions knocking down the target will immediately return to the target, so there is no need to consider measures to suppress the secondary electrons. However, when negative ions are extracted from the PIG type negative ion source, some electrons are also drawn out. If they are allowed to knock down the target, they will account for most of the accelerating current and increase the load of the accelerating high-voltage power supply. Therefore, this part of electrons must be extracted from the separated from the stream. Here we adopt the careful setting of the corresponding transverse deflection magnetic field and collecting electrodes on the path of the beam to realize it.
本发明解决其技术问题所采用的技术方案是: The technical solution adopted by the present invention to solve its technical problems is:
潘宁中子管离子源负氢离子束引出实验台是由潘宁离子源负氢离子束引出部分和真空系统与环境部分组成。 Penning neutron tube ion source negative hydrogen ion beam extraction test bench is composed of Penning ion source negative hydrogen ion beam extraction part, vacuum system and environment part.
实验空间被限制在带有高压电极的玻璃钟罩内部,玻璃钟罩下部是法兰盘,在法兰盘上设有绝缘电极、地电极、真空规管、温度计、进气管、连接分子泵的导管等。电极用于提供实验所需的阳极电压、收集电压、加速电压;真空规管用于测量玻璃钟罩内部的真空镀;进气管用于向玻璃钟罩内部充入工作气体,并能实现微调。位于玻璃钟罩内部的负氢离子源的束流引出采用偏心引出方式,在偏心引出时,阳极筒的中心轴和铜头、对阴极、引出阴极的中心轴重合,偏离离子源轴心区域负离子的密度最大。收集电极和加速极板加正高压,加速电压高于收集电压,引出束流中包括负离子和电子,负离子全部是单原子负离子。由于引出束流中的电子对中子的产生没有贡献,而且会增加高压电源的负荷,因此必须去除。我们采用一组横向偏转磁场加上收集电极来实现,或者采用两组互成900的横向偏转磁场加上收集电极来实现,磁场沿束流轴线方向的厚度大于电子的回转半径。理论计算表明磁场强度几百Gs,收集电压几千伏即可。收集电极内嵌于两组磁钢中,同时收集电极兼作引出电极。两组磁场的配置既能保证电子的充分去除,又能保证引出束流的轴对称形状。 The experimental space is limited inside the glass bell jar with high-voltage electrodes. The lower part of the glass bell jar is a flange plate, and an insulating electrode, a ground electrode, a vacuum gauge, a thermometer, an air inlet pipe, and a connection to the molecular pump are arranged on the flange plate. Catheter etc. The electrodes are used to provide the anode voltage, collection voltage, and acceleration voltage required for the experiment; the vacuum gauge is used to measure the vacuum plating inside the glass bell jar; the air inlet tube is used to fill the glass bell jar with working gas, and can realize fine adjustment. The beam extraction of the negative hydrogen ion source located inside the glass bell jar adopts the eccentric extraction method. During the eccentric extraction, the central axis of the anode cylinder coincides with the central axis of the copper head, the counter cathode, and the extraction cathode, and the negative ions in the area deviated from the axis of the ion source of the highest density. Positive high voltage is applied to the collecting electrode and the accelerating plate, the accelerating voltage is higher than the collecting voltage, and the extracted beam includes negative ions and electrons, and the negative ions are all monatomic negative ions. Since electrons in the extracted beam do not contribute to neutron production and would increase the load on the high voltage power supply, they must be removed. We use a set of transverse deflection magnetic fields plus collecting electrodes, or two sets of transverse deflection magnetic fields with a mutual angle of 90 ° plus collecting electrodes. The thickness of the magnetic field along the axis of the beam is greater than the radius of gyration of the electrons. Theoretical calculations show that the magnetic field strength is hundreds of Gs, and the collection voltage is several thousand volts. The collecting electrodes are embedded in two sets of magnetic steels, and the collecting electrodes are also used as extraction electrodes. The configuration of the two sets of magnetic fields can not only ensure the sufficient removal of electrons, but also ensure the axisymmetric shape of the extracted beam.
本发明的有益效果是,作为实验和测试平台,潘宁中子管离子源负氢离子束引出实验台可以很方便地对各参数进行优化组合,在靶及加速电极板上得到最佳的束流品质。通过对部件的改进,使潘宁离子源工作在最佳状态,其结果可用于各种不同用途中子管的研究和设计。能够大幅度缩短研制周期,节省开发资金。 The beneficial effect of the present invention is that, as an experiment and test platform, the Penning neutron tube ion source negative hydrogen ion beam extraction test platform can conveniently optimize and combine various parameters, and obtain the best beam current quality on the target and accelerating electrode plates . Through the improvement of components, the Penning ion source works in the best state, and the results can be used in the research and design of neutron tubes for various purposes. The development cycle can be greatly shortened and development funds can be saved.
附图说明 Description of drawings
附图1是潘宁中子管离子源负氢离子束引出实验台潘宁离子源负氢离子束引出部分结构示意图。 Accompanying drawing 1 is the schematic diagram of the negative hydrogen ion beam extraction part structure of the Penning neutron tube ion source negative hydrogen ion beam extraction test bench of the Penning ion source.
其中1.离子源磁钢, 2.引出阴极, 3.对阴极, 4.阳极筒, 5.离子源罩, 6.收集电极, 7.偏转磁钢,8.玻璃管,9.靶及加速电极板,10.阳极接线柱,11.地电极接线柱, 12.上面罩, 13.铜头。 Among them 1. Ion source magnet, 2. Leading out cathode, 3. Counter cathode, 4. Anode cylinder, 5. Ion source cover, 6. Collecting electrode, 7. Deflection magnet, 8. Glass tube, 9. Target and acceleration Electrode plate, 10. Anode terminal, 11. Ground electrode terminal, 12. Upper mask, 13. Copper head.
附图2 是潘宁中子管离子源负氢离子束引出实验台真空系统与环境部分结构示意图。 Attached Figure 2 is a schematic diagram of the structure of the vacuum system and the environment of the negative hydrogen ion beam extraction test bench of the Penning neutron tube ion source.
其中14.加速高压电极, 15. 潘宁离子源负氢离子束引出部分, 16.绝缘支架, 17.玻璃钟罩, 18.离子源电极, 19.地电极, 20.真空计, 21.收集电极, 22.温度计, 23.抽气管, 24.手动阀门, 25. 微调阀门, 26. 工作气体输送管, 27.分子泵机组, 28.法兰盘。 14. Accelerating high voltage electrode, 15. Negative hydrogen ion beam extraction part of Penning ion source, 16. Insulation support, 17. Glass bell jar, 18. Ion source electrode, 19. Ground electrode, 20. Vacuum gauge, 21. Collection Electrode, 22. Thermometer, 23. Exhaust pipe, 24. Manual valve, 25. Fine-tuning valve, 26. Working gas delivery pipe, 27. Molecular pump unit, 28. Flange.
下面结合附图对本发明进一步说明。 The present invention will be further described below in conjunction with the accompanying drawings.
具体实施方式 Detailed ways
本发明潘宁中子管离子源负氢离子束引出实验台是由潘宁离子源负氢离子束引出部分和真空系统与环境部分组成。采用圆柱形轴对称结构,它把离子源、加速电极、收集电极、偏转磁钢、气压调节系统等全部放置于玻璃钟罩内,构成一个结构紧凑、使用方便的离子源束流引出实验装置,其结构和位置关系如附图1和附图2所示。 The penning neutron tube ion source negative hydrogen ion beam extraction test bench of the present invention is composed of the negative hydrogen ion beam extraction part of the Penning ion source, a vacuum system and an environment part. Adopting a cylindrical axisymmetric structure, it puts the ion source, accelerating electrode, collecting electrode, deflection magnet, air pressure adjustment system, etc. in the glass bell jar to form a compact and easy-to-use ion source beam extraction experimental device. Its structure and position relationship are shown in accompanying drawing 1 and accompanying drawing 2.
潘宁离子源负氢离子束引出部分:如附图1中,将各个部件清洗干净,由下至上安装好。首先将对阴极3放入铜头13中,再将离子源磁钢1放入铜头13中,引出阴极2和离子源罩5焊接在一起,并置于铜头13上方。在离子源罩5内部,装有通过阳极接线柱10连接的阳极筒4. 用上面罩12套住铜头13,并保持与离子源罩5接触良好。在上面罩上放置一段玻璃管8,玻璃管8中放置一对偏转磁钢7,偏转磁钢7的外部包裹一层可阀材料作为收集电极6. 在玻璃管8的上端放置一个靶及加速电极板9,地电极接线柱11与电源负极连接。 以上是实验台的核心部分即潘宁离子源负氢离子束引出部分,该部分所有零部件必须保持同轴,同轴度允差不大于0.02mm。 Negative hydrogen ion beam extraction part of Penning ion source: As shown in Figure 1, clean all parts and install them from bottom to top. First put the counter cathode 3 into the copper head 13, then put the ion source magnetic steel 1 into the copper head 13, draw the cathode 2 and the ion source cover 5 and weld them together, and place them on the copper head 13. Inside the ion source cover 5, the anode cylinder 4 connected by the anode terminal 10 is housed. Cover the copper head 13 with the upper cover 12, and keep in good contact with the ion source cover 5. Place a section of glass tube 8 on the upper cover, place a pair of deflection magnets 7 in the glass tube 8, and wrap a layer of valveable material on the outside of the deflection magnets 7 as the collecting electrode 6. Place a target and acceleration on the upper end of the glass tube 8 The electrode plate 9 and the ground electrode terminal 11 are connected to the negative pole of the power supply. The above is the core part of the test bench, which is the negative hydrogen ion beam extraction part of the Penning ion source. All parts in this part must be coaxial, and the coaxiality tolerance is not greater than 0.02mm.
真空系统与环境部分,如附图2所示, 首先将潘宁离子源负氢离子束引出部分15放置于绝缘支架16上,将离子源电极18、地电极19、收集电极21,分别和潘宁离子源负氢离子束引出部分15的相应电极相连,将玻璃钟罩17扣在法兰盘28上,并将PIG离子源负氢离子束引出部分15的靶及加速电极板连接到加速高压电极14上。接着连接好各路供电电源,连接真空计20,并打开。连接温度计22,并打开。开启分子泵机组27,打开手动阀门24,通过抽气管23对玻璃钟罩17内部空间,抽真空,当真空度达到10-4Pa以上时,缓慢开启微调阀门25,通过工作气体输送管26导入工作气体,这里我们选择氢气作为工作气体。微调阀门25控制工作气体的导入量,由真空计测量玻璃钟罩17内部的真空度。然后,依次打开离子源电源、收集极电源、加速高压电源。此时实验台进入工作状态,可以进行实验、测量和观察。
Vacuum system and environment part, as shown in accompanying drawing 2, first place the lead-out
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210428854.0A CN102930764B (en) | 2012-11-01 | 2012-11-01 | Ion source negative hydrogen ion beam leading-out experiment table for neutron tube |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210428854.0A CN102930764B (en) | 2012-11-01 | 2012-11-01 | Ion source negative hydrogen ion beam leading-out experiment table for neutron tube |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102930764A true CN102930764A (en) | 2013-02-13 |
CN102930764B CN102930764B (en) | 2015-02-11 |
Family
ID=47645551
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201210428854.0A Expired - Fee Related CN102930764B (en) | 2012-11-01 | 2012-11-01 | Ion source negative hydrogen ion beam leading-out experiment table for neutron tube |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102930764B (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104966448A (en) * | 2015-07-09 | 2015-10-07 | 东北师范大学 | Radio frequency neutron tube ion source beam extraction desktop experiment table |
CN107318213A (en) * | 2017-07-06 | 2017-11-03 | 复旦大学 | The experimental provision of high electric conduction |
CN109041397A (en) * | 2018-09-14 | 2018-12-18 | 珠海市纽创科技有限公司 | A kind of microminiature neutron tube |
CN110975964A (en) * | 2019-10-25 | 2020-04-10 | 散裂中子源科学中心 | Design method and application of magnetic device |
CN112164644A (en) * | 2020-10-26 | 2021-01-01 | 大连交通大学 | Penning ion source |
CN113097036A (en) * | 2021-04-02 | 2021-07-09 | 西京学院 | Neutron tube structure capable of leading penning ion source out in two directions |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4093858A (en) * | 1977-06-06 | 1978-06-06 | The United States Of America As Represented By The United States Department Of Energy | Cesium injection system for negative ion duoplasmatrons |
US4996017A (en) * | 1982-03-01 | 1991-02-26 | Halliburton Logging Services Inc. | Neutron generator tube |
CN1329461A (en) * | 2001-04-20 | 2002-01-02 | 清华大学 | Miniature neutron tube and its production method |
CN201638582U (en) * | 2010-01-12 | 2010-11-17 | 西安思坦仪器股份有限公司 | Ultra-small-diameter penning ion source device for controllable neutron source |
CN102711355A (en) * | 2012-06-14 | 2012-10-03 | 东北师范大学 | Penning anion source ceramic neutron tube |
-
2012
- 2012-11-01 CN CN201210428854.0A patent/CN102930764B/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4093858A (en) * | 1977-06-06 | 1978-06-06 | The United States Of America As Represented By The United States Department Of Energy | Cesium injection system for negative ion duoplasmatrons |
US4996017A (en) * | 1982-03-01 | 1991-02-26 | Halliburton Logging Services Inc. | Neutron generator tube |
CN1329461A (en) * | 2001-04-20 | 2002-01-02 | 清华大学 | Miniature neutron tube and its production method |
CN201638582U (en) * | 2010-01-12 | 2010-11-17 | 西安思坦仪器股份有限公司 | Ultra-small-diameter penning ion source device for controllable neutron source |
CN102711355A (en) * | 2012-06-14 | 2012-10-03 | 东北师范大学 | Penning anion source ceramic neutron tube |
Non-Patent Citations (5)
Title |
---|
刘伟波等: "NT50型中子管离子源放电特性研究", 《真空电子技术》, no. 03, 30 June 2006 (2006-06-30) * |
李文杰,董艾平,王强,陈宝玖: "中子管桌面实验台及其应用", 《东北师大学报(自然科学版)》, no. 03, 23 September 1995 (1995-09-23) * |
桑海峰等: "强流中子管微波离子源不同等离子体离子腔的对比研究", 《东北师大学报(自然科学版)》, no. 02, 23 June 2001 (2001-06-23) * |
王耿介: "强流离子源的发展", 《核聚变与等离子体物理》, no. 02, 30 June 1981 (1981-06-30) * |
陈苗荪等: "15cm双潘宁离子源", 《强激光与粒子束》, no. 03, 15 August 1993 (1993-08-15) * |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104966448A (en) * | 2015-07-09 | 2015-10-07 | 东北师范大学 | Radio frequency neutron tube ion source beam extraction desktop experiment table |
CN104966448B (en) * | 2015-07-09 | 2018-04-27 | 东北师范大学 | Radio frequency neutron tube ion gun line draws tabletop experiments platform |
CN107318213A (en) * | 2017-07-06 | 2017-11-03 | 复旦大学 | The experimental provision of high electric conduction |
CN109041397A (en) * | 2018-09-14 | 2018-12-18 | 珠海市纽创科技有限公司 | A kind of microminiature neutron tube |
CN109041397B (en) * | 2018-09-14 | 2019-07-26 | 珠海市纽创科技有限公司 | A kind of microminiature neutron tube |
CN110975964A (en) * | 2019-10-25 | 2020-04-10 | 散裂中子源科学中心 | Design method and application of magnetic device |
CN110975964B (en) * | 2019-10-25 | 2021-10-26 | 散裂中子源科学中心 | Design method and application of magnetic device |
CN112164644A (en) * | 2020-10-26 | 2021-01-01 | 大连交通大学 | Penning ion source |
CN113097036A (en) * | 2021-04-02 | 2021-07-09 | 西京学院 | Neutron tube structure capable of leading penning ion source out in two directions |
CN113097036B (en) * | 2021-04-02 | 2023-10-31 | 西京学院 | A neutron tube structure for bidirectional extraction of Penning ion source |
Also Published As
Publication number | Publication date |
---|---|
CN102930764B (en) | 2015-02-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102930764B (en) | Ion source negative hydrogen ion beam leading-out experiment table for neutron tube | |
CN102711355B (en) | Penning anion source ceramic neutron tube | |
CN105407621B (en) | A kind of compact D D accelerators for neutron production | |
CN101916607B (en) | Small neutron source adopting windowless gas target | |
CN205124106U (en) | Compact D -D neutron generator | |
CN111755317B (en) | Radio frequency negative ion source for secondary ion mass spectrometer | |
CN104918403A (en) | A pulsed neutron generator | |
CN204168591U (en) | A kind of air forces down isothermal plasma generation device | |
CN104363693B (en) | Plane radio-frequency ion source setl-target neutron tube | |
CN104966448B (en) | Radio frequency neutron tube ion gun line draws tabletop experiments platform | |
CN102709140B (en) | Gas discharging type ion source for neutron pipe | |
CN201134408Y (en) | An ion beam source device that can be integrally implanted in a vacuum chamber | |
CN103095268A (en) | Large current high voltage trigger switch with controllable air intake | |
CN103971779B (en) | A kind of small neutron source and preparation method thereof | |
CN207783240U (en) | A kind of double-plasma ion source | |
CN210467753U (en) | Radio frequency ion source device | |
CN108112153A (en) | A kind of double-plasma ion source | |
CN108878249A (en) | A kind of pulse Penning discharge plasma producing apparatus | |
CN105744714A (en) | Long-lifetime neutron tube with ceramic-head ion source | |
CN202721106U (en) | A Gas Discharge Ion Source for Neutron Tubes | |
CN204697382U (en) | A kind of pulsed neutron generator | |
CN115839795B (en) | Ionization vacuum gauge based on punctiform carbon nanotube cathode | |
CN107591301A (en) | Novel plasma cathode solid electron gun | |
CN102933020B (en) | A kind of cyclotron ion source system of improvement | |
CN202652679U (en) | Vacuum chamber high voltage insulation electron gun |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20150211 Termination date: 20151101 |
|
EXPY | Termination of patent right or utility model |