[go: up one dir, main page]

CN102930077A - Error-resistant excitation system parameter identification method based on improved target function - Google Patents

Error-resistant excitation system parameter identification method based on improved target function Download PDF

Info

Publication number
CN102930077A
CN102930077A CN2012103698478A CN201210369847A CN102930077A CN 102930077 A CN102930077 A CN 102930077A CN 2012103698478 A CN2012103698478 A CN 2012103698478A CN 201210369847 A CN201210369847 A CN 201210369847A CN 102930077 A CN102930077 A CN 102930077A
Authority
CN
China
Prior art keywords
excitation system
identified
parameter
objective function
excitation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2012103698478A
Other languages
Chinese (zh)
Other versions
CN102930077B (en
Inventor
薛安成
张兆阳
毕天姝
张俊利
章沈潜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
North China Electric Power University
Original Assignee
North China Electric Power University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by North China Electric Power University filed Critical North China Electric Power University
Priority to CN201210369847.8A priority Critical patent/CN102930077B/en
Publication of CN102930077A publication Critical patent/CN102930077A/en
Application granted granted Critical
Publication of CN102930077B publication Critical patent/CN102930077B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

本发明公开了电力系统中的励磁系统参数辨识技术领域的一种基于改进型目标函数的抗差励磁系统参数辨识方法。其技术方案是:首先利用Matlab/Simulink工具箱搭建待辨识励磁系统的可变参数的传递函数模型;其次,将具有抗差能力的改进型目标函数作为励磁系统参数辨识的目标函数;最后,基于Matlab/Simulink的待辨识励磁系统的传递函数模型,利用遗传算法辨识励磁系统的参数。本发明将一种具有较强抗差能力的改进型目标函数作为励磁系统参数辨识的目标函数,并结合适合于非线性系统的遗传算法GA对励磁系统的参数进行辨识。仿真结果表明,本发明提出的具有抗差能力的励磁系统参数辨识方法具有较强的抗差能力。

Figure 201210369847

The invention discloses a parameter identification method of an anti-difference excitation system based on an improved objective function in the technical field of excitation system parameter identification in a power system. The technical solution is: firstly, use the Matlab/Simulink toolbox to build the variable parameter transfer function model of the excitation system to be identified; secondly, use the improved objective function with tolerance ability as the objective function of the excitation system parameter identification; finally, based on The transfer function model of the excitation system to be identified in Matlab/Simulink uses the genetic algorithm to identify the parameters of the excitation system. The invention uses an improved objective function with strong error resistance as the objective function of excitation system parameter identification, and combines the genetic algorithm GA suitable for nonlinear systems to identify the parameters of the excitation system. The simulation results show that the method for identifying the parameters of the excitation system with tolerance to tolerance proposed by the present invention has strong tolerance to tolerance.

Figure 201210369847

Description

一种基于改进型目标函数的抗差励磁系统参数辨识方法A Parameter Identification Method of Robust Excitation System Based on Improved Objective Function

技术领域 technical field

本发明属于电力系统中的励磁系统参数辨识技术领域,尤其涉及一种基于改进型目标函数的抗差励磁系统参数辨识方法。The invention belongs to the technical field of excitation system parameter identification in electric power systems, and in particular relates to an identification method for anti-difference excitation system parameters based on an improved objective function.

背景技术 Background technique

大型发电机的励磁系统对于维持系统正常运行水平与保证系统安全稳定性起着至关重要的作用。提高励磁系统参数的准确性,以获得电网的精确模拟,从而保证电网安全稳定运行,是亟待解决的问题。而制造厂家提供的参数通常是在离线试验的条件下,分别对每个元件进行测试得到该元件的参数,将它们综合在一起得到集成的系统模型参数;将该参数直接用于电力系统的稳定计算仿真,所得结果会与实际情况有差别。因此,基于现场实测数据进行励磁系统的参数辨识已成研究趋势,辨识得到的参数就更符合实际情况。The excitation system of a large generator plays a vital role in maintaining the normal operation level of the system and ensuring the safety and stability of the system. Improving the accuracy of the excitation system parameters to obtain an accurate simulation of the power grid, so as to ensure the safe and stable operation of the power grid, is an urgent problem to be solved. The parameters provided by the manufacturer are usually under the condition of off-line test, each component is tested separately to obtain the parameters of the component, and they are combined to obtain the integrated system model parameters; the parameters are directly used for the stability of the power system Calculation simulation, the results obtained may be different from the actual situation. Therefore, it has become a research trend to identify the parameters of the excitation system based on field measured data, and the identified parameters are more in line with the actual situation.

基于全球定位系统GPS的相量测量单元PMU的出现,为电力系统参数的在线辨识提供了一个新的有力的平台。相量测量单元PMU数据多是来源于对测量数据的计算,电流、电压等均来自测量,含有电流互感器、电压互感器、数字采样、FFT、滤波等各个环节带来的误差,将不可避免的使相量测量单元PMU数据存在误差,且在数据整个处理传输过程中受随机扰动的影响,相量测量单元PMU数据中也会存在坏数据。这些量测误差(细差)和坏数据(粗差)会对参数辨识产生一定的影响。量测误差是无法人为改变的,而且从相量测量单元PMU的海量数据中剔除各种坏数据是很困难的。因此,最有效的方法是使用具有抗差能力的参数辨识方法。The emergence of the GPS-based phasor measurement unit PMU provides a new and powerful platform for the online identification of power system parameters. Most of the PMU data of the phasor measurement unit comes from the calculation of the measurement data. The current and voltage are all from the measurement, including errors caused by current transformers, voltage transformers, digital sampling, FFT, filtering and other links, which will be inevitable. The PMU data of the phasor measurement unit has errors, and is affected by random disturbances during the entire process of data processing and transmission, and there will also be bad data in the PMU data of the phasor measurement unit. These measurement errors (subtle errors) and bad data (gross errors) will have a certain impact on parameter identification. The measurement error cannot be changed artificially, and it is very difficult to eliminate all kinds of bad data from the massive data of the phasor measurement unit PMU. Therefore, the most effective method is to use a parameter identification method with robustness.

励磁系统参数辨识一般以实测励磁电压与励磁模型计算得到的励磁电压的误差平方和为目标函数,这种常规的目标函数不具有抗差能力,一定程度上受量测误差和坏数据的影响很大,使得辨识结果严重失真。The excitation system parameter identification generally uses the sum of squares of the error between the measured excitation voltage and the excitation voltage calculated by the excitation model as the objective function. large, which seriously distorts the identification results.

发明内容 Contents of the invention

针对背景技术中所述的目标函数的计算方法在抗差能力和辨识结果方面存在的问题,提出了一种基于改进型目标函数的抗差励磁系统参数辨识方法。Aiming at the problems in the tolerance and identification results of the calculation method of the objective function described in the background technology, a parameter identification method of the tolerance-resistant excitation system based on the improved objective function is proposed.

一种基于改进型目标函数的抗差励磁系统参数辨识方法,其特征在于,具体包括以下步骤:A method for identifying parameters of a robust excitation system based on an improved objective function, characterized in that it specifically includes the following steps:

步骤1:利用Matlab/Simulink工具箱搭建待辨识励磁系统的可变参数的传递函数模型,以相量测量单元PMU实测的机端电压和电流相量以及励磁电流作为此模型的输入数据;Step 1: Use the Matlab/Simulink toolbox to build a variable parameter transfer function model of the excitation system to be identified, and use the terminal voltage and current phasors measured by the phasor measurement unit PMU as well as the excitation current as the input data of the model;

步骤2:将具有抗差能力的改进型目标函数作为励磁系统参数辨识的目标函数;Step 2: Use the improved objective function with robustness as the objective function for parameter identification of the excitation system;

步骤3:基于Matlab/Simulink的待辨识励磁系统的传递函数模型,利用遗传算法辨识励磁系统的参数。Step 3: Based on the transfer function model of the excitation system to be identified in Matlab/Simulink, use the genetic algorithm to identify the parameters of the excitation system.

步骤2中,所述的具有抗差能力的改进型目标函数的数学形式为:In step 2, the mathematical form of the improved objective function with robustness is:

minmin JJ (( αα )) 11 NN ΣΣ kk == 11 NN ρρ (( ee (( tt kk )) ))

== 11 NN ΣΣ kk == 11 NN ρρ (( EE. fdmfdm (( tt kk )) -- EE. fdcfdc (( tt kk ,, αα )) ))

抗差准则函数ρ(·)为:The robustness criterion function ρ(·) is:

ρρ (( ee (( tt kk )) )) == ee 22 (( tt kk )) || || ee (( tt kk )) || ≤≤ ΔσΔσ ++ (( ΔσΔσ )) 22 || || ee (( tt kk )) || >> ΔσΔσ

其中,α表示待辨识的参数集合;N为采样点总数,tk为采样时刻;Efdm(tk)为第tk时刻的PMU实测励磁电压值,Efdc(tk,α)为第tk时刻的待辨识励磁系统的传递函数模型计算输出的励磁电压值;e(tk)为第tk时刻的计算输出的励磁电压值与实测励磁电压值的误差;Δσ是用来平衡抗差性和有效性的正实数。Among them, α represents the set of parameters to be identified; N is the total number of sampling points, t k is the sampling time; E fdm (t k ) is the PMU measured excitation voltage value at the t kth time, E fdc (t k , α) is the The excitation voltage value calculated and output by the transfer function model of the excitation system to be identified at time t k; e ( t k ) is the error between the calculated output excitation voltage value and the measured excitation voltage value at time t k ; Δσ is used to balance the Positive real numbers for difference and validity.

步骤3中,所述的基于Matlab/Simulink的待辨识励磁系统的传递函数模型利用遗传算法辨识励磁系统的参数过程具体包括以下步骤:In step 3, the described transfer function model of the excitation system to be identified based on Matlab/Simulink utilizes the genetic algorithm to identify the parameter process of the excitation system specifically includes the following steps:

步骤301:利用Matlab/Simulink工具箱搭建待辨识励磁系统的可变参数的传递函数模型,以PMU实测的机端电压和电流相量、励磁电流作为此模型的输入数据;Step 301: using the Matlab/Simulink toolbox to build a variable parameter transfer function model of the excitation system to be identified, using the actual measured terminal voltage and current phasor and excitation current of the PMU as the input data of the model;

步骤302:将待辨识励磁系统的待辨识参数的上下限约束条件作为惩罚项添加到适应度函数中;且此惩罚项的表达式为:Step 302: Add the upper and lower limit constraints of the unidentified parameters of the unidentified excitation system as a penalty item to the fitness function; and the expression of this penalty item is:

PP == Mm ΣΣ ii == 11 NN (( [[ maxmax {{ 00 ,, αα ii -- αα ii MaxMax }} ]] 22 ++ [[ maxmax {{ 00 ,, αα ii MinMin -- αα ii }} ]] 22 ))

其中,αi表示第i个待辨识参数,表示第i个待辨识参数的上限,

Figure BDA00002213025900036
表示第i个待辨识参数的下限;N表示具有上下限约束的参数个数,M是正比例系数。Among them, α i represents the ith parameter to be identified, Indicates the upper limit of the i-th parameter to be identified,
Figure BDA00002213025900036
Indicates the lower limit of the i-th parameter to be identified; N indicates the number of parameters with upper and lower limit constraints, and M is a proportional coefficient.

步骤303:确定遗传算法的最佳个体数n和最大遗传代数g;Step 303: determine the optimal number of individuals n and the maximum genetic algebra g of the genetic algorithm;

步骤304:对待辨识参数变量进行实数编码,形成染色体;Step 304: Encoding the parameter variables to be identified with real numbers to form chromosomes;

步骤305:根据待辨识参数的上下限约束条件确定待辨识参数变量的范围,采用小区间生成法随机生成第一代种群;Step 305: Determine the range of the parameter variables to be identified according to the upper and lower limit constraints of the parameters to be identified, and randomly generate the first-generation population by using the inter-cell generation method;

步骤306:对当前群的每一个个体,将个体编码转换成励磁系统的参数代入到传递函数模型中,仿真得到励磁电压的计算输出值;并根据PMU实测励磁电压值,计算其个体的目标函数值J(α)和适应度函数值Ffitness;适应度函数值的计算公式为:Step 306: For each individual in the current group, convert the individual code into the parameter of the excitation system and put it into the transfer function model, and obtain the calculated output value of the excitation voltage through simulation; and calculate the objective function of the individual according to the measured excitation voltage value of the PMU Value J(α) and fitness function value Ffitness; the calculation formula of fitness function value is:

Ff fitnessfitness == CC DD. ++ JJ (( αα )) ++ PP

其中,C为比例放大系数,D为防止分母为零而设置的一个常数项;C可取1000,D取0.0001。Among them, C is the proportional amplification factor, and D is a constant item set to prevent the denominator from being zero; C can be 1000, and D can be 0.0001.

步骤307:检查目标函数值是否小于设定值或者GA是否达到最大遗传代数;如果不是,则继续;否则,结束。Step 307: Check whether the objective function value is less than the set value or whether the GA has reached the maximum genetic algebra; if not, continue; otherwise, end.

步骤308:采用随机均匀的选择方法、算术交叉方法Heuristic和自适应变异方法Adaptive feasible,生成新一代的种群;并回到步骤6继续。Step 308: Generate a new generation of population by using the random uniform selection method, the arithmetic crossover method Heuristic and the adaptive mutation method Adaptive feasible; and return to step 6 to continue.

本发明提出一种具有较强抗差能力的改进型目标函数作为励磁系统参数辨识的目标函数,并结合工程上广泛应用的适合于非线性系统的遗传算法GA对励磁系统的参数进行辨识。大量的仿真表明,本发明提出的具有抗差能力的励磁系统参数辨识方法具有较强的抗差能力,是十分有效的;这对于基于PMU实测数据在线辨识励磁系统的参数,具有一定的工程应用价值。The invention proposes an improved objective function with strong error tolerance as the objective function of excitation system parameter identification, and combines the genetic algorithm GA which is widely used in engineering and is suitable for nonlinear systems to identify the parameters of the excitation system. A large number of simulations show that the excitation system parameter identification method with tolerance ability proposed by the present invention has strong tolerance ability and is very effective; this has certain engineering application for online identification of excitation system parameters based on PMU measured data value.

附图说明 Description of drawings

图1是本发明提供的一种基于改进型目标函数的抗差励磁系统参数辨识方法的基本原理图;Fig. 1 is a basic principle diagram of a method for identifying parameters of a robust excitation system based on an improved objective function provided by the present invention;

图2是本发明提供的一种基于改进型目标函数的抗差励磁系统参数辨识方法的遗传算法GA流程图;Fig. 2 is a genetic algorithm GA flowchart of a method for identifying parameters of a robust excitation system based on an improved objective function provided by the present invention;

图3是本发明实施例提供的不含过励限制和低励限制的BPA-FV模型示意图;Fig. 3 is a schematic diagram of the BPA-FV model without over-excitation restriction and under-excitation restriction provided by the embodiment of the present invention;

图4是本发明实施例提供的PSCAD仿真得到的含标准差为0.05的高斯噪声且随机出现3个坏数据的实测励磁电压曲线示意图。Fig. 4 is a schematic diagram of the measured excitation voltage curve obtained by the PSCAD simulation provided by the embodiment of the present invention, including Gaussian noise with a standard deviation of 0.05 and three bad data randomly appearing.

具体实施方式 Detailed ways

下面结合附图,对优选实施例作详细说明。应该强调的是下述说明仅仅是示例性的,而不是为了限制本发明的范围及其应用。The preferred embodiments will be described in detail below in conjunction with the accompanying drawings. It should be emphasized that the following description is only exemplary and not intended to limit the scope of the invention and its application.

图1是本发明提供的一种基于改进型目标函数的抗差励磁系统参数辨识方法的基本原理图。图1中,实际励磁系统和其传递函数模型的输入

Figure BDA00002213025900051
为实测的发电机机端电压和电流相量;Efdm为考虑量测误差后的实际励磁系统输出的实测励磁电压;ω(t)为量测误差;Efdc为传递函数模型计算输出的励磁电压。Fig. 1 is a basic schematic diagram of a parameter identification method for a robust excitation system based on an improved objective function provided by the present invention. In Fig. 1, the input of the actual excitation system and its transfer function model
Figure BDA00002213025900051
is the measured generator terminal voltage and current phasor; E fdm is the measured excitation voltage output by the actual excitation system after considering the measurement error; ω(t) is the measurement error; E fdc is the excitation output calculated by the transfer function model Voltage.

励磁系统参数辨识的过程可以简述为:寻找一组最优的参数α,使实际励磁系统输出的励磁电压Efdm曲线和传递函数模型计算输出的励磁电压Efdc曲线拟合的最好,也即使以两者的误差为函数的目标函数最小,数学表达式为:The process of excitation system parameter identification can be briefly described as: find a set of optimal parameters α, so that the excitation voltage E fdm curve output by the actual excitation system and the excitation voltage E fdc curve output by the transfer function model can fit best, and also Even if the objective function with the error of the two as a function is the smallest, the mathematical expression is:

minmin JJ (( αα )) == 11 NN ΣΣ kk == 11 NN [[ EE. fdmfdm (( tt kk )) -- EE. fdcfdc (( tt kk ,, αα )) ]] 22 -- -- -- (( 11 ))

其中,N为采样点总数,tk为采样时刻,Efdm为考虑量测误差后的实际励磁系统输出的实测励磁电压,Efdc为传递函数模型计算输出的励磁电压。Among them, N is the total number of sampling points, t k is the sampling time, E fdm is the measured excitation voltage output by the actual excitation system after considering the measurement error, and E fdc is the excitation voltage calculated by the transfer function model.

在此,将目标函数式(1)称为常规目标函数。这种常规的目标函数不具有抗差能力,一定程度上受量测误差和坏数据的影响很大,使得辨识结果严重失真。Here, the objective function formula (1) is called a conventional objective function. This conventional objective function is not resistant to errors, and is greatly affected by measurement errors and bad data to a certain extent, which seriously distorts the identification results.

本发明采用一种具有抗差能力的改进型目标函数,形式如下:The present invention adopts an improved objective function with robustness, the form is as follows:

minmin JJ (( αα )) 11 NN ΣΣ kk == 11 NN ρρ (( ee (( tt kk )) ))

(2)(2)

== 11 NN ΣΣ kk == 11 NN ρρ (( EE. fdmfdm (( tt kk )) -- EE. fdcfdc (( tt kk ,, αα )) ))

抗差准则函数ρ(·)为:The robustness criterion function ρ(·) is:

ρρ (( ee (( tt kk )) )) == ee 22 (( tt kk )) || || ee (( tt kk )) || ≤≤ ΔσΔσ ++ (( ΔσΔσ )) 22 || || ee (( tt kk )) || >> ΔσΔσ -- -- -- (( 33 ))

其中,Δσ是用来平衡抗差性和有效性的正实数。选取合适的Δσ值,才能保证有较强的抗差性,同时在量测误差不大时,保证辨识结果的有效性。Among them, Δσ is a positive real number used to balance robustness and effectiveness. Only by selecting an appropriate value of Δσ can we ensure a strong tolerance to errors, and at the same time ensure the validity of the identification results when the measurement error is small.

抗差准则函数式(3)表明,当PMU量测误差较小时,此改进型目标函数式(2)即为常规的目标函数式(1),两者等价;而当PMU数据中存在较大的量测误差或坏数据时,ρ(e)为一常数,其对目标函数的贡献固定在(Δσ)2,即抗差准则函数通过定值限制其对目标函数的影响。因此,对较大的量测误差或坏数据,改进型目标函数通过定值消弱其对目标函数的影响,相较于常规目标函数,具有较强的抗差能力。The robustness criterion function formula (3) shows that when the PMU measurement error is small, the improved objective function formula (2) is the conventional objective function formula (1), and the two are equivalent; When there is a large measurement error or bad data, ρ(e) is a constant, and its contribution to the objective function is fixed at (Δσ) 2 , that is, the robustness criterion function limits its influence on the objective function by a fixed value. Therefore, for large measurement errors or bad data, the improved objective function weakens its influence on the objective function by setting a value, which has stronger tolerance to errors than the conventional objective function.

励磁系统为一个非线性系统,含有各种限幅环节、励磁机饱和等非线性环节,传统的频域法和时域法都只能进行线性系统的参数辨识,无法计及非线性环节的作用,而遗传算法GA克服了无法对非线性环节进行参数辨识的问题,并且可以一次性辨识得到所需要的各个环节的参数。因此,本发明采用GA算法对励磁系统的参数进行辨识。The excitation system is a nonlinear system, which contains various limiting links, exciter saturation and other nonlinear links. The traditional frequency domain method and time domain method can only identify the parameters of the linear system, and cannot take into account the role of nonlinear links. , while the genetic algorithm GA overcomes the problem that the parameters of the nonlinear link cannot be identified, and can identify the parameters of each link needed at one time. Therefore, the present invention uses the GA algorithm to identify the parameters of the excitation system.

图2是本发明提供的一种基于改进型目标函数的抗差励磁系统参数辨识方法的遗传算法GA流程图。图2中,具体包括以下步骤:Fig. 2 is a flow chart of a genetic algorithm GA of a method for identifying parameters of a robust excitation system based on an improved objective function provided by the present invention. In Figure 2, it specifically includes the following steps:

步骤201:利用Matlab/Simulink工具箱搭建待辨识励磁系统的可变参数的传递函数模型,以PMU实测的机端电压和电流相量、励磁电流作为此模型的输入数据;Step 201: use the Matlab/Simulink toolbox to build a variable parameter transfer function model of the excitation system to be identified, and use the machine terminal voltage and current phasor and excitation current measured by the PMU as the input data of the model;

步骤202:将待辨识励磁系统的待辨识参数的上下限约束条件作为惩罚项添加到适应度函数中;且此惩罚项的表达式为:Step 202: Add the upper and lower limit constraints of the unidentified parameters of the unidentified excitation system as a penalty item to the fitness function; and the expression of this penalty item is:

PP == Mm ΣΣ ii == 11 NN (( [[ maxmax {{ 00 ,, αα ii -- αα ii MaxMax }} ]] 22 ++ [[ maxmax {{ 00 ,, αα ii MinMin -- αα ii }} ]] 22 ))

其中,αi表示第i个待辨识参数,

Figure BDA00002213025900072
表示第i个待辨识参数的上限,
Figure BDA00002213025900073
表示第i个待辨识参数的下限;N表示具有上下限约束的参数个数,M是正比例系数。Among them, α i represents the i-th parameter to be identified,
Figure BDA00002213025900072
Indicates the upper limit of the i-th parameter to be identified,
Figure BDA00002213025900073
Indicates the lower limit of the i-th parameter to be identified; N indicates the number of parameters with upper and lower limit constraints, and M is a proportional coefficient.

步骤203:确定遗传算法的最佳个体数n和最大遗传代数g;Step 203: determine the optimal number of individuals n and the maximum genetic algebra g of the genetic algorithm;

步骤204:对待辨识参数变量进行实数编码,形成染色体;Step 204: Encoding the parameter variables to be identified with real numbers to form chromosomes;

步骤205:根据待辨识参数的上下限约束条件确定待辨识参数变量的范围,采用小区间生成法随机生成第一代种群;Step 205: Determine the range of the parameter variables to be identified according to the upper and lower limit constraints of the parameters to be identified, and randomly generate the first-generation population by using the inter-cell generation method;

步骤206:对当前群的每一个个体,将个体编码转换成励磁系统的参数代入到传递函数模型中,仿真得到励磁电压的计算输出值;并根据PMU实测励磁电压值,计算其个体的目标函数值和适应度函数值Ffitness;Step 206: For each individual in the current group, convert the individual code into the parameter of the excitation system and put it into the transfer function model, and obtain the calculated output value of the excitation voltage through simulation; and calculate the objective function of the individual according to the excitation voltage value measured by the PMU value and fitness function value Ffitness;

目标函数为:改进型目标函数式(2)的J(α)The objective function is: J(α) of the improved objective function formula (2)

适应度函数为: F fitness = C D + J ( α ) + P The fitness function is: f fitness = C D. + J ( α ) + P

其中,C为比例放大系数,D为防止分母为零而设置的一个常数项;C可取1000,D取0.0001。Among them, C is the proportional amplification factor, and D is a constant item set to prevent the denominator from being zero; C can be 1000, and D can be 0.0001.

步骤207:检查目标函数值是否小于设定值或者GA是否达到最大遗传代数;如果不是,则继续;否则,结束;Step 207: Check whether the objective function value is less than the set value or whether the GA reaches the maximum genetic algebra; if not, continue; otherwise, end;

步骤208:采用随机均匀的选择方法、算术交叉方法Heuristic和自适应变异方法Adaptive feasible,生成新一代的种群;并回到步骤206继续。Step 208: Generate a new generation of population by using the random uniform selection method, the arithmetic crossover method Heuristic and the adaptive mutation method Adaptive feasible; and return to step 206 to continue.

实施例:Example:

图3是本发明实施例提供的不含过励限制和低励限制的BPA-FV模型示意图。励磁系统输入

Figure BDA00002213025900082
为发电机的机端电压和电流相量,输出Efd为发电机的励磁电压,Ifd为发电机的励磁电流,VREF为参考电压。Fig. 3 is a schematic diagram of a BPA-FV model provided by an embodiment of the present invention without over-excitation limitation and under-excitation limitation. Excitation system input
Figure BDA00002213025900082
Is the terminal voltage and current phasor of the generator, the output E fd is the excitation voltage of the generator, I fd is the excitation current of the generator, and V REF is the reference voltage.

仿真数据来自IEEE-3M9BUS系统,励磁模型为BPA-FV模型,仿真得到机端电压电流、励磁电压和励磁电流,数据采样周期为10ms,共3s的数据,作为PMU实测数据。FV模型各参数的设定值如表1:The simulation data comes from the IEEE-3M9BUS system, and the excitation model is the BPA-FV model. The machine terminal voltage and current, excitation voltage and excitation current are simulated. The data sampling period is 10ms, and the data of 3s in total are used as the actual measurement data of the PMU. The setting values of the parameters of the FV model are shown in Table 1:

表1  FV模型的仿真参数值Table 1 Simulation parameter values of FV model

参数 parameter   Rc Rc   Xc Xc   Tr Tr   T1 T1   T2 T2   K K   Kv Kv   T3 T3   T4 T4 设定值 set value   0 0   0 0   0.02 0.02   1.2 1.2   8.57 8.57   1 1   1 1   0.025 0.025   0.025 0.025 参数 parameter   Ka Ka   Ta Ta   Vamax Vamax   Vamin Vamin   Kf Kf   Tf Tf   Kc Kc   Vrmax Vrmax   Vrmin Vrmin 设定值 set value   500 500   0.02 0.02   7.33 7.33   -6.23 -6.23   0 0   1 1   0.08 0.08   7.33 7.33   -6.60 -6.60

在Matlab的Simulink里搭建可变参数的BPA-FV模型,以机端电压电流、励磁电流作为模型输入,以模型计算得到的励磁电压作为输出,利用GA算法对励磁参数进行辨识。A BPA-FV model with variable parameters is built in Matlab's Simulink. The machine terminal voltage and current and excitation current are used as the model input, and the excitation voltage calculated by the model is used as the output. The GA algorithm is used to identify the excitation parameters.

考虑到利用GA算法对励磁系统进行整体辨识,由于参数较多,辨识结果不理想。为了说明问题,本发明只辨识对FV模型影响最大的参数—放大倍数Ka,通过在实测励磁电压数据里叠加不同标准差的高斯噪声及坏数据,以Ka的辨识效果来考察改进型目标函数式(2)与常规目标函数式(1)的抗差能力,同时说明本发明的有效性。Considering the overall identification of the excitation system using the GA algorithm, the identification results are not ideal due to the large number of parameters. In order to illustrate the problem, the present invention only identifies the parameter that has the greatest influence on the FV model—the magnification factor Ka. By superimposing Gaussian noise and bad data with different standard deviations in the measured excitation voltage data, the improved objective function formula is investigated with the identification effect of Ka (2) Comparing with the conventional objective function formula (1), it also illustrates the effectiveness of the present invention.

GA算法中参数的寻优范围为[0.5*αset,1.5*αset],αset为参数的设定值;最佳个体数设置为120,遗传代数设置为25。鉴于本发明的仿真数据,改进型目标函数式(2)的抗差准则函数式(3)中的Δσ=0.1,可保证既有较强的抗差能力,又能保证量测误差不大时辨识结果的有效性。The optimization range of the parameters in the GA algorithm is [0.5*α set , 1.5*α set ], and α set is the set value of the parameter; the optimal number of individuals is set to 120, and the genetic algebra is set to 25. In view of the simulation data of the present invention, the Δσ=0.1 in the tolerance criterion function formula (3) of the improved objective function formula (2) can ensure that there is not only a strong tolerance ability, but also when the measurement error is not large Validity of identification results.

在实测励磁电压数据里叠加不同标准差的高斯噪声,分别以常规目标函数和改进型目标函数为励磁系统参数辨识的目标函数,利用GA算法对参数Ka寻优。不同噪声情况下的辨识结果如表2:The Gaussian noise with different standard deviations is superimposed on the measured excitation voltage data, and the conventional objective function and the improved objective function are respectively used as the objective functions of the excitation system parameter identification, and the parameter Ka is optimized by using the GA algorithm. The identification results under different noise conditions are shown in Table 2:

表2  不同噪声下两种目标函数的辨识结果Table 2 Identification results of two objective functions under different noises

从表2中可见:It can be seen from Table 2:

1)量测噪声不大时,两种目标函数的辨识结果及目标函数值近似一样,且辨识结果的精度很高(GA多次寻优的结果会有所差别,但差别微乎其微)。1) When the measurement noise is not large, the identification results and objective function values of the two objective functions are approximately the same, and the accuracy of the identification results is very high (the results of GA multiple optimizations will be different, but the difference is very small).

2)随着量测噪声的加大,改进型目标函数的辨识结果要优于常规目标函数,因为改进型目标函数能够消弱误差相对较大的数据对目标函数的影响,使辨识结果的精度有所提高。但当量测噪声太大时,两种目标函数的辨识结果都变差。2) With the increase of measurement noise, the identification result of the improved objective function is better than that of the conventional objective function, because the improved objective function can weaken the influence of relatively large error data on the objective function, making the accuracy of the identification result has seen an increase. But when the measurement noise is too large, the identification results of the two objective functions become worse.

图4是本发明实施例提供的PSCAD仿真得到的含标准差为0.05的高斯噪声且随机出现3个坏数据的实测励磁电压曲线示意图。在此假定坏数据为随机出现的、偏离真值25%左右的采样数据。含有不同坏数据个数情况下两种目标函数的辨识结果如表3所示。Fig. 4 is a schematic diagram of a measured excitation voltage curve obtained by PSCAD simulation provided by an embodiment of the present invention, including Gaussian noise with a standard deviation of 0.05 and three bad data randomly appearing. Here, it is assumed that the bad data is random sampling data that deviates from the true value by about 25%. The identification results of the two objective functions with different numbers of bad data are shown in Table 3.

表3  不同坏数据个数下两种目标函数的辨识结果Table 3 Identification results of two objective functions under different numbers of bad data

Figure BDA00002213025900102
Figure BDA00002213025900102

从结果可明显看出,随着坏数据个数的增加,常规目标函数的辨识结果迅速恶化,而改进型目标函数的辨识结果的误差相对很小,受坏数据的影响并不大;这表明改进型目标函数能够限制坏数据引起的误差,消弱坏数据对目标函数的影响,也就相当于剔除掉了坏数据,具有较强的抗差能力。It can be seen from the results that with the increase of the number of bad data, the identification result of the conventional objective function deteriorates rapidly, while the error of the identification result of the improved objective function is relatively small, and is not greatly affected by bad data; this shows that The improved objective function can limit the error caused by bad data and weaken the impact of bad data on the objective function, which is equivalent to eliminating bad data and has a strong ability to resist errors.

仿真结果表明,当PMU数据存在不大的量测噪声时,改进型目标函数的辨识结果较优于常规目标函数;而当PMU数据中存在一定数量的坏数据时,改进型目标函数的辨识结果明显优于常规目标函数,能够限制坏数据的不良影响,具有较强的抗差能力。因此,本发明提出的具有抗差能力的励磁系统参数辨识方法是行之有效的,具有一定的工程应用价值。The simulation results show that when there is little measurement noise in the PMU data, the identification result of the improved objective function is better than that of the conventional objective function; and when there is a certain amount of bad data in the PMU data, the identification result of the improved objective function It is obviously better than the conventional objective function, can limit the adverse effects of bad data, and has a strong ability to resist errors. Therefore, the identification method of the excitation system parameters with tolerance capability proposed by the present invention is effective and has certain engineering application value.

以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求的保护范围为准。The above is only a preferred embodiment of the present invention, but the scope of protection of the present invention is not limited thereto. Any person skilled in the art within the technical scope disclosed in the present invention can easily think of changes or Replacement should be covered within the protection scope of the present invention. Therefore, the protection scope of the present invention should be determined by the protection scope of the claims.

Claims (3)

1. the anti-differential excition magnetic system parameter identification method based on the modified objective function is characterized in that, specifically may further comprise the steps:
Step 1: utilize the Matlab/Simulink tool box to build the transfer function model of the variable element of excitation system to be identified, with the set end voltage of phasor measurement unit PMU actual measurement and electric current phasor and the exciting current input data as this model;
Step 2: will have the modified objective function of robustness as the objective function of Excitation System Parameter Identification of Synchronous;
Step 3: based on the transfer function model of the excitation system to be identified of Matlab/Simulink, utilize the parameter of Identification of Genetic Algorithm excitation system.
2. a kind of anti-differential excition magnetic system parameter identification method based on the modified objective function according to claim 1 is characterized in that in the described step 2, described mathematical form with modified objective function of robustness is:
min J ( α ) 1 N Σ k = 1 N ρ ( e ( t k ) )
= 1 N Σ k = 1 N ρ ( E fdm ( t k ) - E fdc ( t k , α ) )
Anti-poor criterion function ρ () is:
ρ ( e ( t k ) ) = e 2 ( t k ) | | e ( t k ) | ≤ Δσ + ( Δσ ) 2 | | e ( t k ) | > Δσ
Wherein, α represents parameter sets to be identified; N is total number of sample points, t kBe sampling instant; E Fdm(t k) be t kPMU actual measurement field voltage value constantly, E Fdc(t k, α) be t kThe transfer function model of excitation system to be identified constantly calculates the field voltage value of output; E (t k) be t kThe field voltage value of calculating output constantly and the error of actual measurement field voltage value; Δ σ is the arithmetic number of the anti-poor property of balance and validity.
3. a kind of anti-differential excition magnetic system parameter identification method based on the modified objective function according to claim 1, it is characterized in that, in the described step 3, utilize the parametric procedure of Identification of Genetic Algorithm excitation system specifically to may further comprise the steps based on the transfer function model of the excitation system to be identified of Matlab/Simulink:
Step 301: utilize the Matlab/Simulink tool box to build the transfer function model of the variable element of excitation system to be identified, with the set end voltage of PMU actual measurement and electric current phasor, the exciting current input data as this model;
Step 302: the bound constraint condition of the parameter to be identified of excitation system to be identified is added in the fitness function as penalty term; And the expression formula of this penalty term is:
P = M Σ i = 1 N ( [ max { 0 , α i - α i Max } ] 2 + [ max { 0 , α i Min - α i } ] 2 )
Wherein, α iRepresent i parameter to be identified,
Figure FDA00002213025800022
The upper limit that represents i parameter to be identified,
Figure FDA00002213025800023
The lower limit that represents i parameter to be identified; N represents to have the number of parameters of bound, and M is the direct proportion coefficient;
Step 303: the optimized individual of determining genetic algorithm is counted n and maximum genetic algebra g;
Step 304: treat the identified parameters variable and carry out real coding, form chromosome;
Step 305: determine the scope of parametric variable to be identified according to the bound constraint condition of parameter to be identified, adopt Small section method to generate at random first generation population;
Step 306: each individuality to when pre-group, become the parameter of excitation system to be updated in the transfer function model individual code conversion, emulation obtains the calculating output valve of field voltage; And according to PMU actual measurement field voltage value, calculate its individual target function value J (α) and fitness function value Ffitness; The computing formula of fitness function value is:
F fitness = C D + J ( α ) + P
Wherein, C is rate mu-factor, and D prevents that denominator from being zero constant term that arranges; C is desirable 1000, and D gets 0.0001;
Step 307: check whether whether target function value reach maximum genetic algebra less than setting value or GA; If not, then continue; Otherwise, finish;
Step 308: adopt at random uniformly system of selection, arithmetic cross method Heuristic and self-adaptation variation method Adaptive feasible, generate the population of a new generation; And get back to step 306 and continue.
CN201210369847.8A 2012-09-27 2012-09-27 Error-resistant excitation system parameter identification method based on improved target function Expired - Fee Related CN102930077B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210369847.8A CN102930077B (en) 2012-09-27 2012-09-27 Error-resistant excitation system parameter identification method based on improved target function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210369847.8A CN102930077B (en) 2012-09-27 2012-09-27 Error-resistant excitation system parameter identification method based on improved target function

Publications (2)

Publication Number Publication Date
CN102930077A true CN102930077A (en) 2013-02-13
CN102930077B CN102930077B (en) 2014-10-29

Family

ID=47644874

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210369847.8A Expired - Fee Related CN102930077B (en) 2012-09-27 2012-09-27 Error-resistant excitation system parameter identification method based on improved target function

Country Status (1)

Country Link
CN (1) CN102930077B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104866714A (en) * 2015-05-14 2015-08-26 同济大学 Self-adaptive nuclear density robust state estimation method for power system
CN109446720A (en) * 2018-12-24 2019-03-08 江苏方天电力技术有限公司 A kind of large capacity phase modifier Identification of Bus Fed Static Excitation System Parameters method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1489714A1 (en) * 2003-06-21 2004-12-22 Abb Research Ltd. Detecting electromechanical oscillations in power systems
CN101369002A (en) * 2008-10-08 2009-02-18 东北电力大学 A Method of Calibrating Generator Simulation Parameters Using Measured Trajectory and Trajectory Sensitivity
CN101446991A (en) * 2008-08-15 2009-06-03 中国电力科学研究院 Numerical integration method for electric power system full dynamic simulation
CN101599643A (en) * 2009-04-23 2009-12-09 清华大学 A Power System Robust State Estimation Method Based on Exponential Objective Function
CN101794118A (en) * 2010-03-05 2010-08-04 华北电力大学 Excitation system parameter identification method based on system decoupling and sequence-optimization genetic algorithm

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1489714A1 (en) * 2003-06-21 2004-12-22 Abb Research Ltd. Detecting electromechanical oscillations in power systems
CN101446991A (en) * 2008-08-15 2009-06-03 中国电力科学研究院 Numerical integration method for electric power system full dynamic simulation
CN101369002A (en) * 2008-10-08 2009-02-18 东北电力大学 A Method of Calibrating Generator Simulation Parameters Using Measured Trajectory and Trajectory Sensitivity
CN101599643A (en) * 2009-04-23 2009-12-09 清华大学 A Power System Robust State Estimation Method Based on Exponential Objective Function
CN101794118A (en) * 2010-03-05 2010-08-04 华北电力大学 Excitation system parameter identification method based on system decoupling and sequence-optimization genetic algorithm

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104866714A (en) * 2015-05-14 2015-08-26 同济大学 Self-adaptive nuclear density robust state estimation method for power system
CN109446720A (en) * 2018-12-24 2019-03-08 江苏方天电力技术有限公司 A kind of large capacity phase modifier Identification of Bus Fed Static Excitation System Parameters method
CN109446720B (en) * 2018-12-24 2022-06-28 江苏方天电力技术有限公司 A parameter identification method for self-shunt excitation excitation system of large-capacity camera

Also Published As

Publication number Publication date
CN102930077B (en) 2014-10-29

Similar Documents

Publication Publication Date Title
CN104502704B (en) A kind of harmonic contributions computational methods suitable for background harmonic voltage change
CN102904519B (en) Robust excitation system parameter identification method based on exponential-type target function
CN102749521B (en) Method for computing harmonic impedance of power system
CN110162871B (en) Power system dynamic estimation method based on unscented Kalman particle filter
CN103683277B (en) A kind of electric power system transient stability cutting load controls validity evaluation index computational methods
CN105588982A (en) Measurement and calculation method of harmonic impedance of power system
CN101741086A (en) Stable Calculation Model Based on PMU Data and Comprehensive Evaluation Method of Parameter Accuracy
CN102170131B (en) Limit power calculating method of associated electricity transmission cross-section based on parallel calculating model
CN104882884A (en) System harmonic probability evaluating method based on Markov chain Monte Carlo method
Ahmad et al. A heterogeneous relationships between urbanization, energy consumption, economic growth on environmental degradation: Panel study of Malaysia and selected ASEAN+ 3 countries
CN102930077B (en) Error-resistant excitation system parameter identification method based on improved target function
Zou et al. Probabilistic load flow computation using univariate dimension reduction method
CN103853939A (en) Combined forecasting method for monthly load of power system based on social economic factor influence
CN109599866A (en) A kind of power system state estimation method of prediction auxiliary
CN104766142A (en) Transient stability constraint optimal power flow computation method based on EEAC and trace sensitivity
CN101807798A (en) Section data integration method for power system safety and stability online analysis
CN106300338A (en) Receiving end electrical network dynamic frequency security quantification appraisal procedure based on trace sensitivity
Prakaulya et al. Railway passenger forecasting using time series decomposition model
CN106599541A (en) Online structure and parameter identification method for dynamic power load model
CN106356867B (en) Method for determining node reactive voltage sensitivity
Farchioni et al. Quark mass dependence of masses and decay constants of the pseudo-Goldstone bosons in QCD
CN103105778B (en) Estimation method for industrial process simulation mathematical model parameters
Carvalho et al. Analysis of the largest normalized residual test robustness for measurements gross errors processing in the WLS state estimator
CN114662050A (en) Internet of things curve regression polynomial load energy consumption metering method, medium and equipment
CN116165595A (en) Metering device error identification method and system based on multi-model fusion

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20141029

CF01 Termination of patent right due to non-payment of annual fee