[go: up one dir, main page]

CN102924020A - Piezoresistive/piezoelectric composite material and manufacturing method thereof, sensor adopting piezoresistive/piezoelectric composite material and manufacturing method thereof - Google Patents

Piezoresistive/piezoelectric composite material and manufacturing method thereof, sensor adopting piezoresistive/piezoelectric composite material and manufacturing method thereof Download PDF

Info

Publication number
CN102924020A
CN102924020A CN2012104176969A CN201210417696A CN102924020A CN 102924020 A CN102924020 A CN 102924020A CN 2012104176969 A CN2012104176969 A CN 2012104176969A CN 201210417696 A CN201210417696 A CN 201210417696A CN 102924020 A CN102924020 A CN 102924020A
Authority
CN
China
Prior art keywords
piezoresistive
water
parts
cement
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2012104176969A
Other languages
Chinese (zh)
Other versions
CN102924020B (en
Inventor
罗健林
李秋义
赵铁军
高嵩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao University of Technology
Original Assignee
Qingdao University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao University of Technology filed Critical Qingdao University of Technology
Priority to CN201210417696.9A priority Critical patent/CN102924020B/en
Publication of CN102924020A publication Critical patent/CN102924020A/en
Application granted granted Critical
Publication of CN102924020B publication Critical patent/CN102924020B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

本发明涉及一种压阻/压电材料系统及其生产应用方法。本发明的压阻/压电复合材料,包括如下按重量配比的组分:100份水泥、105-500份微/纳米级压电陶瓷粉体、10-30份粉煤灰、15-50份水、0.01-2份超塑化剂、0.1-10份韧性纤维、0.01-15份导电填料。本发明采用所述材料的传感器,包括压阻/压电复合材料层,压阻/压电复合材料层的上下表面各设置一个电极,压阻/压电复合材料层和电极皆包裹在封装外壳内,上下两电极之间通过贯穿封装外壳的电磁屏蔽导线相连,传感器设置在支座与支撑的桥面单元之间或嵌在桥面单元内。本发明具有本征结构韧性以及涵盖全频域的静/动态交通与结构参数的同步监测能力。

Figure 201210417696

The invention relates to a piezoresistive/piezoelectric material system and a production and application method thereof. The piezoresistive/piezoelectric composite material of the present invention includes the following components by weight ratio: 100 parts of cement, 105-500 parts of micro/nano-scale piezoelectric ceramic powder, 10-30 parts of fly ash, 15-50 parts 1 part of water, 0.01-2 parts of superplasticizer, 0.1-10 parts of tough fiber, 0.01-15 parts of conductive filler. The sensor adopting the material in the present invention includes a piezoresistive/piezoelectric composite material layer, an electrode is respectively arranged on the upper and lower surfaces of the piezoresistive/piezoelectric composite material layer, and both the piezoresistive/piezoelectric composite material layer and the electrodes are wrapped in a packaging shell Inside, the upper and lower electrodes are connected through an electromagnetic shielding wire that runs through the package shell, and the sensor is arranged between the support and the supported bridge deck unit or embedded in the bridge deck unit. The invention has intrinsic structural toughness and the synchronous monitoring ability of static/dynamic traffic and structural parameters covering the whole frequency domain.

Figure 201210417696

Description

压阻/压电复合材料及制法及采用该材料的传感器及制法Piezoresistive/piezoelectric composite material and its manufacturing method, sensor using the same and its manufacturing method

技术领域 technical field

本发明涉及一种自供能交通与结构参数的同步监测传感器用的自供能压阻/压电复合型传感器系统及其生产应用方法。The invention relates to a self-powered piezoresistive/piezoelectric composite sensor system for a self-powered traffic and structural parameter synchronous monitoring sensor and a production and application method thereof.

背景技术 Background technique

近年来,随着国民经济的快速发展,我国车辆保有量高速增长,高速公路、过江(跨海)桥梁、城市高架/立交桥不断兴建。这些交通结构一旦发生交通事故或结构坍塌,易导致整个交通系统拥堵与人员伤亡,且在短期内难以修复,造成交通运力的大幅度下降,其损失不可估量。因而,对这些枢纽区域和关键路段的交通结构进行交通控制与结构健康监测显得尤为必要。与此同时,这些交通结构(尤其是结构拼接缝处)在行车荷载作用下常处于微幅振动,相应机械振动能量若能有效收集,并供给给相应传感监测网络、甚至两侧照明系统,在当今节能环保时代具有重要意义。In recent years, with the rapid development of the national economy, the number of vehicles in my country has increased rapidly, and expressways, river (cross-sea) bridges, and urban viaducts/overpasses have been continuously built. Once a traffic accident or structural collapse occurs in these traffic structures, it will easily lead to congestion and casualties in the entire traffic system, and it will be difficult to repair in a short period of time, resulting in a significant drop in traffic capacity and immeasurable losses. Therefore, it is particularly necessary to carry out traffic control and structural health monitoring on the traffic structure of these hub areas and key road sections. At the same time, these traffic structures (especially the structural joints) are often in slight vibration under the action of driving loads. If the corresponding mechanical vibration energy can be effectively collected and supplied to the corresponding sensor monitoring network, or even the lighting systems on both sides , which is of great significance in today's era of energy conservation and environmental protection.

作为与交通结构声阻抗与匹配相容性好、相近服役寿命的各类水泥基传感器在过去几十年里取得了长足的发展,可以说,各种交通结构监测系统的成功很大程度归功于这些智能传感器提供精确而稳定的桥梁交通与结构数据,如精确的速度信号、触发分类信息、动力性能、位移变形等信息以及长期反馈交通信息统计数据等。如中国专利号为ZL02132967.2的技术,利用掺加各类导电功能组分(碳黑、镍粉、碳纤维、碳纳米管等)的水泥基体材料的电学性能会随外荷载/变形变化而变化的压阻效应形成的压阻型传感器对(准)静态信号敏感,而对动态振动信号不敏感,传感精度低。如中国专利号为ZL201010523624.3的技术,利用掺加微细压电陶瓷(PZT)粉体的水泥基体材料或直接用树脂混凝土封装PZT薄片的块材电极两端的电荷密度会随着外荷载/变形变化而变化的(逆)压电效应形成的压电型传感器主要对动态振动信号敏感,对(准)静态信号不敏感,存在本征结构韧性较低,易受到混凝土路面收缩开裂、路基下沉等自然环境的影响等缺陷。同时,也没有涉及利用相应压电型传感器的逆压电效应对行车机械振动能量的有效收集、储存与各种电路供能系统。Various cement-based sensors, which have good compatibility with traffic structure acoustic impedance and matching, and have similar service life, have made great progress in the past few decades. It can be said that the success of various traffic structure monitoring systems is largely attributed to These smart sensors provide accurate and stable bridge traffic and structural data, such as accurate speed signals, trigger classification information, dynamic performance, displacement and deformation information, and long-term feedback traffic information statistics. For example, the technology of Chinese Patent No. ZL02132967.2, the electrical properties of cement matrix materials mixed with various conductive functional components (carbon black, nickel powder, carbon fiber, carbon nanotubes, etc.) will change with the change of external load/deformation The piezoresistive sensor formed by the piezoresistive effect is sensitive to (quasi) static signals, but not sensitive to dynamic vibration signals, and has low sensing accuracy. For example, the Chinese patent No. ZL201010523624.3 technology, using the cement matrix material mixed with fine piezoelectric ceramic (PZT) powder or directly encapsulating the PZT sheet with resin concrete, the charge density at both ends of the block electrode will change with the external load/deformation The piezoelectric sensor formed by the changing (inverse) piezoelectric effect is mainly sensitive to dynamic vibration signals and insensitive to (quasi) static signals. It has low intrinsic structural toughness and is susceptible to shrinkage cracking of concrete pavement and subsidence of roadbed. Defects such as the influence of the natural environment. At the same time, it does not involve the use of the inverse piezoelectric effect of the corresponding piezoelectric sensor to effectively collect and store the vibration energy of the driving machine and various circuit energy supply systems.

发明内容 Contents of the invention

本发明的技术效果能够克服上述缺陷,提供一种压阻/压电复合材料,其将(准)静态压阻效应与动态压电效应有机结合起来,并辅以韧性纤维柔性增韧,进而提供一种在保证与混凝土结构相容性佳、服役寿命长等特点之外,同时拥有本征结构韧性高、涵盖全频域的静/动态交通结构监测以及振动自供能等多元性能于一体的智能复合材料。The technical effects of the present invention can overcome the above-mentioned defects, and provide a piezoresistive/piezoelectric composite material, which organically combines (quasi) static piezoresistive effect and dynamic piezoelectric effect, and is supplemented with flexible and toughened tough fibers, and then provides In addition to ensuring good compatibility with concrete structures and long service life, it also has multiple performances such as high intrinsic structural toughness, static/dynamic traffic structure monitoring covering the entire frequency range, and vibration self-supply. composite material.

为实现上述目的,本发明采用如下技术方案:其包括如下按重量配比的组分:100份水泥、105-500份微/纳米级压电陶瓷粉体、10-30份粉煤灰、15-50份水、0.01-2份超塑化剂、0.1-10份韧性纤维、0.01-15份导电填料。In order to achieve the above object, the present invention adopts the following technical scheme: it includes the following components by weight ratio: 100 parts of cement, 105-500 parts of micro/nano-scale piezoelectric ceramic powder, 10-30 parts of fly ash, 15 - 50 parts of water, 0.01-2 parts of superplasticizer, 0.1-10 parts of ductile fiber, 0.01-15 parts of conductive filler.

本发明的另一个目的是提供一种压阻/压电复合材料的制法,包括如下步骤:Another object of the present invention is to provide a method for preparing a piezoresistive/piezoelectric composite material, comprising the steps of:

(1)微/纳米级压电陶瓷粉体制备;(1) Preparation of micro/nano piezoelectric ceramic powder;

微/纳米级锆钛酸铅或铌镁锆钛酸铅压电陶瓷粉体可以采用本领域技术人员熟知的任一种方法来合成,如溶胶-凝胶法、水热法或溶胶-水热复合法。其中溶胶-凝胶法制备过程如下:以醋酸铅、钛酸四丁酯、硝酸锆为原料(确保原料配比中铅、锆、钛的原子比为1:0.52-0.56:0.44-0.48),先硝酸锆、钛酸四丁酯分别溶于水、乙二醇中,然后在105-110℃下加热搅拌0.5-1小时后先后加入醋酸铅、乙二醇,继续在105-110℃加热并回流1.5-3小时,可得到压电陶瓷溶胶,干燥后在800-850℃下煅烧2-4小时即得。Micro/nano lead zirconate titanate or lead niobium magnesium zirconate titanate piezoelectric ceramic powder can be synthesized by any method known to those skilled in the art, such as sol-gel method, hydrothermal method or sol-hydrothermal composite method. The preparation process of the sol-gel method is as follows: lead acetate, tetrabutyl titanate, and zirconium nitrate are used as raw materials (to ensure that the atomic ratio of lead, zirconium, and titanium in the raw material ratio is 1:0.52-0.56:0.44-0.48), first Dissolve zirconium nitrate and tetrabutyl titanate in water and ethylene glycol respectively, then heat and stir at 105-110°C for 0.5-1 hour, then add lead acetate and ethylene glycol successively, continue heating at 105-110°C and reflux for 1.5 -3 hours, the piezoelectric ceramic sol can be obtained, and after drying, it is calcined at 800-850° C. for 2-4 hours.

(2)以丙酮作助磨剂,将100份水泥、10-30份在填料与基体间起润滑与桥联作用的粉煤灰干拌球磨5-10分钟,然后与105-500份步骤(1)所制得的压电陶瓷粉体球磨10-20分钟,然后先后加入导电填料、韧性纤维,再球磨混合30-60分钟;(2) Using acetone as a grinding aid, dry-mix 100 parts of cement and 10-30 parts of fly ash that acts as a lubricant and bridge between the filler and the matrix for 5-10 minutes, and then mix with 105-500 parts of the step ( 1) The prepared piezoelectric ceramic powder is ball milled for 10-20 minutes, then conductive filler and tough fiber are added successively, and then ball milled and mixed for 30-60 minutes;

(3)将步骤(2)获得的混合料在丙酮介质中进一步超声分散处理30-60分钟,挥发 干燥得混合粉体;(3) further ultrasonically disperse the mixture obtained in step (2) in an acetone medium for 30-60 minutes, volatilize and dry to obtain a mixed powder;

(4)向步骤(3)所得的混合粉体中加入溶有0.01-2份超塑化剂的15-50份水,混匀后采用压制成型法压制成据实际需求的形状和尺寸的薄片试样;(4) Add 15-50 parts of water dissolved with 0.01-2 parts of superplasticizer to the mixed powder obtained in step (3), and after mixing, use compression molding to press into flakes of the shape and size according to actual needs sample;

5)将步骤(4)所得薄片试样置于水泥蒸汽养护箱,蒸汽45℃、相对湿度RH100%条件下养护三天后,干燥并清洁需要涂电极的上下表面;5) Place the thin slice sample obtained in step (4) in a cement steam curing box, and after curing for three days under the condition of steam at 45°C and relative humidity RH100%, dry and clean the upper and lower surfaces to be coated with electrodes;

(6)将步骤(5)所得的薄片试样涂上电极,干燥后,室温条件下,在硅油浴锅中用高压直流电源极化1-12小时,老化后即得一种用压阻/压电复合材料制备的感应元件。(6) Coat the thin slice sample obtained in step (5) with an electrode, and after drying, polarize it with a high-voltage DC power supply in a silicone oil bath for 1-12 hours at room temperature, and obtain a piezoresistive/ Sensing elements made of piezoelectric composite materials.

上述的感应元件中,所述电极布置方式为全覆盖式、格栅式、交叉指形式或交叉栅式中的一种;电极材料为导电银胶电极、银电极或镍电极中的一种。In the above sensing element, the electrode arrangement is one of full coverage, grid, interdigitated or cross grid; the electrode material is one of conductive silver gel electrode, silver electrode or nickel electrode.

水性树脂(与/或配套水性固化剂)是把树脂以微粒或液滴的形式分散于以水为连续相介质中而配得的稳定树脂乳液,能较好地与水泥基材料混合使用,在潮湿环境中黏结固化,提高硬化后水泥基材料的密实防水性、抗冲击韧性等性能。水性树脂混凝土用作传感器的封装材料既有良好的密实防水性,又与混凝土材料具有良好的声阻抗与匹配相容性及工作寿命。Water-based resin (and/or supporting water-based curing agent) is a stable resin emulsion prepared by dispersing resin in the form of particles or droplets in water as the continuous phase medium. It can be better mixed with cement-based materials. Bonding and curing in a humid environment improves the compactness, water resistance, impact toughness and other properties of the hardened cement-based material. The water-based resin concrete used as the packaging material of the sensor not only has good compact waterproof performance, but also has good acoustic impedance, matching compatibility and working life with concrete materials.

本发明的另一个目的是提供一种采用上述材料的传感器,包括压阻/压电复合材料层,压阻/压电复合材料层的上下表面各设置一个电极,压阻/压电复合材料层和电极皆包裹在封装外壳内,上下两电极之间通过贯穿封装外壳的电磁屏蔽导线相连。Another object of the present invention is to provide a kind of sensor that adopts above-mentioned material, comprise piezoresistive/piezoelectric composite material layer, the upper and lower surface of piezoresistive/piezoelectric composite material layer respectively is provided with an electrode, piezoresistive/piezoelectric composite material layer Both the electrode and the electrodes are wrapped in the package shell, and the upper and lower electrodes are connected through electromagnetic shielding wires penetrating the package shell.

电极布置方式为全覆盖式或格栅式或交叉指形式或交叉栅式。电极采用导电银胶电极或银电极或镍电极。The electrodes are arranged in the form of full coverage or grid or interdigitated or cross grid. The electrodes are conductive silver gel electrodes or silver electrodes or nickel electrodes.

封装外壳是由水泥、粉煤灰、水性树脂、水性固化剂、韧性纤维按1:0.1-0.3:0.4-0.8:0.4-0.6:0.01-0.1的重量比混合而成的一种纤维增强树脂混凝土。The package shell is a kind of fiber reinforced resin concrete mixed with cement, fly ash, water-based resin, water-based curing agent and tough fiber according to the weight ratio of 1:0.1-0.3:0.4-0.8:0.4-0.6:0.01-0.1 .

上述压阻/压电感应元件利用纤维增强树脂混凝土封装成压阻/压电复合型传感器的制备方法,包括以下步骤:按照比例先将韧性纤维通过高速搅拌分散在水性树脂中,然后加入相应固化剂混匀,再加入水泥与粉煤灰干拌混合料,搅拌均匀;将压阻/压电感应元件固定在模具中(上下电极通过电磁屏蔽导线引出,并接上屏蔽接头),然后将上述纤维增强树脂混凝土混合物浇入模具中,在水泥终凝前,将模具移至真空干燥箱中进行抽真空除泡(以进一步提高封装材料的致密度和绝缘性能);最后用水性树脂和对应的固化剂混合稀释液表面覆盖养护至28天龄期,即得本发明的自供能压阻/压电复合型传感器。传感器的大小可根据实际需求调整。The above-mentioned piezoresistive/piezoelectric sensing element is packaged into a piezoresistive/piezoelectric composite sensor by fiber-reinforced resin concrete. The preparation method includes the following steps: firstly disperse the tough fiber in the water-based resin by high-speed stirring according to the proportion, and then add the corresponding curing agent. Then add cement and fly ash dry mixture, and stir evenly; fix the piezoresistive/piezoelectric sensing element in the mold (the upper and lower electrodes are drawn out through electromagnetic shielding wires and connected to shielding connectors), and then the above The fiber-reinforced resin concrete mixture is poured into the mold, and before the final setting of the cement, the mold is moved to a vacuum drying oven for vacuuming and defoaming (to further improve the density and insulation performance of the packaging material); finally, the water-based resin and the corresponding The surface of the mixed diluent of the curing agent is covered and cured until the age of 28 days, and the self-powered piezoresistive/piezoelectric composite sensor of the present invention is obtained. The size of the sensor can be adjusted according to actual needs.

上述的自供能压阻/压电复合型传感器中,所述水泥为硅酸盐水泥,普通硅酸盐水泥、硫铝酸盐水泥中的一种。In the aforementioned self-powered piezoresistive/piezoelectric composite sensor, the cement is one of Portland cement, ordinary Portland cement, and sulphoaluminate cement.

上述的自供能压阻/压电复合型传感器中,所述粉煤灰为《用于水泥和混凝土中的粉煤灰》(GB/T1596-2005)中规定的I级粉煤灰。In the aforementioned self-powered piezoresistive/piezoelectric composite sensor, the fly ash is Class I fly ash specified in "Fly Ash Used in Cement and Concrete" (GB/T1596-2005).

上述的自供能压阻/压电复合型传感器中,所述水为市售蒸馏水、去离子水中的一种。In the aforementioned self-powered piezoresistive/piezoelectric composite sensor, the water is one of commercially available distilled water and deionized water.

上述的自供能压阻/压电复合型传感器中,所述超塑化剂为聚羧酸盐系高效减水剂、脂肪族高效减水剂、氨基磺酸盐系高效减水剂、蜜胺树脂系高效减水剂、萘系高效减水剂中的一种或几种组合。In the above-mentioned self-powered piezoresistive/piezoelectric composite sensor, the superplasticizer is polycarboxylate-based superplasticizer, aliphatic superplasticizer, sulfamate-based superplasticizer, melamine One or more combinations of resin-based superplasticizers and naphthalene-based superplasticizers.

上述的自供能压阻/压电复合型传感器中,所述韧性纤维为聚乙烯醇纤维、聚丙烯纤维、聚酰亚胺纤维中的一种。In the above self-powered piezoresistive/piezoelectric composite sensor, the tough fiber is one of polyvinyl alcohol fiber, polypropylene fiber, and polyimide fiber.

上述的自供能压阻/压电复合型传感器中,所述导电填料为微/纳米级碳黑、微/纳米级镍粉、碳纤维、碳纳米纤维、碳纳米管、石墨烯、氧化石墨烯接枝碳纤维、氧化石墨烯接枝碳纳米纤维中的一种或其中几种的混合。In the above-mentioned self-powered piezoresistive/piezoelectric composite sensor, the conductive filler is micro/nano-scale carbon black, micro/nano-scale nickel powder, carbon fiber, carbon nanofiber, carbon nanotube, graphene, graphene oxide bonded branched carbon fiber, graphene oxide grafted carbon nanofiber or a mixture of several of them.

上述的自供能压阻/压电复合型传感器中,所述水性树脂为水性环氧树脂、水性酚醛树脂、水性脲醛树脂、水性密胺-甲醛树脂、水性聚氨酯树脂、水溶性聚酰亚胺树脂中的一种;所述水性固化剂为各水性树脂对应的专用固化剂。In the above self-powered piezoresistive/piezoelectric composite sensor, the water-based resin is water-based epoxy resin, water-based phenolic resin, water-based urea-formaldehyde resin, water-based melamine-formaldehyde resin, water-based polyurethane resin, water-soluble polyimide resin One of them; the water-based curing agent is a special curing agent corresponding to each water-based resin.

上述的自供能压阻/压电复合型传感器,还可通过本领域技术人员熟知的一俘能/放电控制电路将车辆碾压上述传感器时在逆压电效应下转化、并有效储存的瞬间电能并反哺,实现传感器信号采集系统的自供能。The above-mentioned self-powered piezoresistive/piezoelectric composite sensor can also use an energy harvesting/discharging control circuit well-known to those skilled in the art to convert and effectively store the instantaneous electric energy under the inverse piezoelectric effect when the vehicle rolls over the above-mentioned sensor And feed back to realize the self-supply of sensor signal acquisition system.

本发明的自供能压阻/压电复合型传感器嵌入或粘贴到交通结构体系中后(即传感器设置在支座与支撑的桥面单元之间或嵌于桥面单元内),除了具有界面与阻抗匹配性良好、频率响应高、耐久性高外,还具有更好的本征结构韧性以及涵盖全频域的静/动态交通与结构参数的同步监测能力,并能实现行车机械振动能量的有效收集、储存与各种电路供能。因此,该自供能复合型传感器具有良好的应用前景。After the self-powered piezoresistive/piezoelectric composite sensor of the present invention is embedded or pasted into the traffic structure system (that is, the sensor is arranged between the support and the supported bridge deck unit or embedded in the bridge deck unit), in addition to the interface and impedance In addition to good matching, high frequency response, and high durability, it also has better intrinsic structural toughness and the ability to simultaneously monitor static/dynamic traffic and structural parameters covering the full frequency domain, and can effectively collect vibration energy of driving machinery , Storage and energy supply for various circuits. Therefore, the self-powered composite sensor has a good application prospect.

附图说明 Description of drawings

图1为本发明的实施例1自供能压阻/压电传感器静/动态信号同步采集系统;Fig. 1 is embodiment 1 of the present invention self-powered piezoresistive/piezoelectric sensor static/dynamic signal synchronous acquisition system;

图2为本发明的传感器放大示意图。Fig. 2 is an enlarged schematic diagram of the sensor of the present invention.

图3为本发明的实施例2自供能压阻/压电传感器静/动态信号同步采集系统的布置方式。Fig. 3 is the layout of the static/dynamic signal synchronous acquisition system of the self-powered piezoresistive/piezoelectric sensor in Embodiment 2 of the present invention.

图中:1.压阻/压电复合材料层;2.电极;3.封装外壳;4.电磁屏蔽导线;5.桥面单元;6.支座;7.动态信号采集系统;8.(准)静态信号采集系统。In the figure: 1. piezoresistive/piezoelectric composite material layer; 2. electrode; 3. packaging shell; 4. electromagnetic shielding wire; 5. bridge deck unit; 6. support; 7. dynamic signal acquisition system; 8. ( quasi) static signal acquisition system.

具体实施方式 Detailed ways

实施例1Example 1

如图1、图2所示,本发明所述支座6支撑的桥面单元5之间的自供能压阻/压电复合型传感器系统,包括感应元件、封装外壳以及动态信号采集系统7、(准)静态信号采集系统8。所述感应元件包括压阻/压电复合材料层1和位于压阻/压电复合材料上下表面的一对电极2,在感应元件外部包覆有封装外壳3,压阻/压电复合材料上的一对电极通过贯穿封装外壳的电磁屏蔽导线4相连。电磁屏蔽导线4通过屏蔽接头与传感信号采集处理系统相连。As shown in Figure 1 and Figure 2, the self-powered piezoresistive/piezoelectric composite sensor system between the bridge deck unit 5 supported by the support 6 of the present invention includes an inductive element, a packaging shell and a dynamic signal acquisition system 7, (quasi) static signal acquisition system8. The inductive element includes a piezoresistive/piezoelectric composite material layer 1 and a pair of electrodes 2 located on the upper and lower surfaces of the piezoresistive/piezoelectric composite material. A pair of electrodes are connected through the electromagnetic shielding wire 4 that runs through the package shell. The electromagnetic shielding wire 4 is connected to the sensing signal acquisition and processing system through the shielding joint.

所用压阻/压电复合材料制备步骤如下:The preparation steps of the piezoresistive/piezoelectric composite material used are as follows:

(1)微/纳米压电陶瓷粉体的制备(1) Preparation of micro/nano piezoelectric ceramic powder

分别量取250g醋酸铅、130g钛酸四丁酯、120g硝酸锆为原料,先硝酸锆、钛酸四丁酯分别溶于500mL水、500mL乙二醇中,然后在105-110℃下加热搅拌1小时后先后加入醋酸铅、250mL乙二醇,继续在105-110℃加热并回流2小时,可得到锆钛酸铅压电陶瓷溶胶,干燥后在820℃下煅烧3小时,获得粒径为300-450nm压电陶瓷粉体。Measure 250g of lead acetate, 130g of tetrabutyl titanate, and 120g of zirconium nitrate as raw materials, firstly dissolve zirconium nitrate and tetrabutyl titanate in 500mL of water and 500mL of ethylene glycol respectively, and then heat and stir at 105-110°C for 1 Add lead acetate and 250mL ethylene glycol one hour later, continue heating at 105-110°C and reflux for 2 hours to obtain lead zirconate titanate piezoelectric ceramic sol, dry and calcinate at 820°C for 3 hours to obtain a particle size of 300- 450nm piezoelectric ceramic powder.

(2)在行星式球磨机内装入500mL丙酮,将100g标号425硫铝酸盐水泥、15g I级粉煤灰干拌球磨5分钟,然后与150g步骤(1)所制得的压电陶瓷粉体球磨15分钟,然后先后加入1.0g外直径20-40nm,长度5-15μm、CVD工艺制得的多壁碳纳米管,1.5g直径20μm、长度8mm的聚乙烯醇纤维,再球磨混合60分钟。(2) Put 500mL of acetone into the planetary ball mill, dry-mix 100g of 425 sulfoaluminate cement and 15g of Class I fly ash for 5 minutes, and mix with 150g of the piezoelectric ceramic powder prepared in step (1) Ball mill for 15 minutes, then add 1.0g of multi-walled carbon nanotubes with an outer diameter of 20-40nm and a length of 5-15μm produced by CVD process, and 1.5g of polyvinyl alcohol fibers with a diameter of 20μm and a length of 8mm, and then ball mill and mix for 60 minutes.

(3)将步骤(2)获得的混合料在丙酮介质中进一步超声分散处理45分钟,挥发干燥得混合粉体。(3) The mixture obtained in step (2) was further ultrasonically dispersed in an acetone medium for 45 minutes, and volatilized and dried to obtain a mixed powder.

(4)向步骤(3)所得的混合粉体中加入溶有0.5g的羧酸聚醚酯嵌段共聚物系高效减水剂MPEG的30g蒸馏水,混匀后装入带有聚四氟乙烯膜的不锈钢模具中,用万能试验机在100MPa压力下压制成Φ30mm×5mm圆盘式薄片试样。(4) To the mixed powder obtained in step (3), add 30 g of distilled water dissolved with 0.5 g of carboxylate polyether ester block copolymer-based high-efficiency water reducer MPEG, mix well and load it with polytetrafluoroethylene In the stainless steel mold of the membrane, a Φ30mm×5mm disc-shaped thin slice sample was pressed with a universal testing machine under a pressure of 100MPa.

(5)将步骤(4)所得薄片试样置于水泥蒸汽养护箱(蒸汽45℃、相对湿度RH 100%)中养护3天后,干燥并清洁需要涂电极的上下表面。(5) Place the thin slice sample obtained in step (4) in a cement steam curing box (steam 45°C, relative humidity RH 100%) for 3 days, then dry and clean the upper and lower surfaces to be coated with electrodes.

(6)将步骤(5)所得的薄片试样涂上全覆盖式的银浆电极,干燥后,室温条件下,在硅油浴锅中在8kV/cm的直流电压下极化1小时。将极化后的圆盘式薄片用锡纸包覆,挪至60℃烘箱中烘12h进行老化。(6) Coat the thin sheet sample obtained in step (5) with a fully covered silver paste electrode, and after drying, polarize it in a silicone oil bath at a DC voltage of 8kV/cm for 1 hour at room temperature. Wrap the polarized disk-shaped sheet with tin foil, and move it to an oven at 60°C for 12 hours for aging.

所用封装外壳是由水泥、粉煤灰、水性树脂、水性固化剂、韧性纤维按1:0.15:0.4:0.6:0.05的重量比混合而得的一种纤维增强树脂混凝土。封装外壳制备步骤如下:按照比例先将1.0g直径10-20μm、长度8mm的聚乙烯醇纤维通过高速搅拌分散在8g水性缩水甘油醚类环氧树脂中,然后加入12g水性三乙醇胺固化剂混匀,再加入20g标号425硫铝酸盐水泥与3g I级粉煤灰干拌混合料,搅拌均匀;将压阻/压电感应元件固定在带有聚四氟乙烯膜的不锈钢模具中(上下电极通过屏蔽导线引出,并接上屏蔽接头),然后将上述纤维增强树脂混凝土混合物浇入模具中,并将模具移至真空干燥箱中进行抽真空30分钟;最后用水性缩水甘油醚类环氧树脂/水性三乙醇胺固化剂混合5倍稀释液表面覆盖养护至28天龄期,即得本发明的自供能压阻/压电复合型传感器。如图1所示,传感器设置在简支桥面单元5与支座6之间。The packaging shell used is a fiber reinforced resin concrete obtained by mixing cement, fly ash, water-based resin, water-based curing agent, and tough fiber in a weight ratio of 1:0.15:0.4:0.6:0.05. The preparation steps of the package shell are as follows: according to the proportion, 1.0g of polyvinyl alcohol fibers with a diameter of 10-20μm and a length of 8mm are dispersed in 8g of water-based glycidyl ether epoxy resin by high-speed stirring, and then 12g of water-based triethanolamine curing agent is added and mixed. , then add 20g of grade 425 sulfoaluminate cement and 3g of grade I fly ash dry mix, and stir evenly; fix the piezoresistive/piezoelectric sensing element in a stainless steel mold with a polytetrafluoroethylene film (upper and lower electrodes Lead out through the shielding wire and connect the shielding joint), then pour the above fiber reinforced resin concrete mixture into the mold, and move the mold to a vacuum drying oven for 30 minutes of vacuuming; finally use water-based glycidyl ether epoxy resin /Water-based triethanolamine curing agent mixed with 5-fold dilution solution to cover and maintain the surface until the age of 28 days to obtain the self-powered piezoresistive/piezoelectric composite sensor of the present invention. As shown in FIG. 1 , the sensor is arranged between the simply supported bridge deck unit 5 and the support 6 .

用ASTM C1018韧度指数法、LCR数字电桥、准静态测量仪、阻抗分析仪测所得到的碳纳米管/聚乙烯醇纤维/锆钛酸铅/水泥基压阻/压电复合型传感器的断裂韧度为1.037MPa/m-1/2、DC电阻率为14.9kΩ.cm、压电常数为76.2pC/N、介电损耗为0.41、机电耦合系数为12.8%。The carbon nanotube/polyvinyl alcohol fiber/lead zirconate titanate/cement-based piezoresistive/piezoelectric composite sensor was measured by ASTM C1018 toughness index method, LCR digital bridge, quasi-static measuring instrument, and impedance analyzer. The fracture toughness is 1.037MPa/m -1/2 , the DC resistivity is 14.9kΩ.cm, the piezoelectric constant is 76.2pC/N, the dielectric loss is 0.41, and the electromechanical coupling coefficient is 12.8%.

在交通工程结构荷载频率(0.1-50Hz)范围内,对于荷载频率小于1Hz的,一般可认为是静态或准静态的荷载,如高速公路入口收费站、地磅、停车区域监控等,这时通过测试导线连接的(准)静态信号采集系统8电桥一对角线两端上的不平衡输出电压(ΔU12)(如图1所示),获得具有相同阻值的自供能压阻/压电复合型传感器系统的电导参数变化特征,再通过本领域技术人员所熟知的环境因素引起的噪声信号剔除技术,就可以实现相应准静态交通与结构参数的准确提取;而对于频率大于1Hz的动态荷载(包括周期循环、脉冲、随机荷载形式),如高速公路、跨江(海)大桥上快速行驶车辆的车型识别、车速、车流量及相应产生的结构应力、变形的检测等。为了有效测定自供能压阻/压电复合型传感器系统压电效应产生的微弱电荷量,并防止电荷泄漏,这时可通过屏蔽接头连接到动态信号采集系统7(包括前置电荷/电压放大器、A/D模数转换器、带通滤波器、电压放大器与存储/显示器等)(如图1所示),来测试本发明自供能压阻/压电复合型传感器系统的对动态信号敏感的压电参数变化情况,再通过本领域技术人员所熟知的信号传感与噪声信号剔除技术实现相应动态感知信号的准确提取。Within the range of load frequency (0.1-50Hz) of traffic engineering structures, for load frequency less than 1Hz, it can generally be considered as static or quasi-static load, such as highway entrance toll stations, weighbridges, parking area monitoring, etc., at this time passed the test Unbalanced output voltage (ΔU 12 ) on both ends of the diagonal of a wire-connected (quasi-)static signal acquisition system 8-bridge (as shown in Figure 1) to obtain a self-powered piezoresistive/piezoelectric The conductance parameter change characteristics of the composite sensor system, and then through the noise signal elimination technology caused by environmental factors well known to those skilled in the art, can realize the accurate extraction of corresponding quasi-static traffic and structural parameters; and for dynamic loads with a frequency greater than 1Hz (Including cyclical, pulse, random load forms), such as vehicle model identification, vehicle speed, traffic flow and corresponding structural stress and deformation detection of fast-moving vehicles on expressways and cross-river (sea) bridges. In order to effectively measure the weak charge generated by the piezoelectric effect of the self-powered piezoresistive/piezoelectric composite sensor system and prevent charge leakage, it can be connected to the dynamic signal acquisition system 7 (including pre-charge/voltage amplifier, A/D analog-to-digital converter, band-pass filter, voltage amplifier and storage/display, etc.) (as shown in Figure 1), to test the self-powered piezoresistive/piezoelectric composite sensor system of the present invention sensitive to dynamic signals The change of the piezoelectric parameters, and then through the signal sensing and noise signal elimination technology well known to those skilled in the art, the accurate extraction of the corresponding dynamic sensing signal is realized.

静/动态信号采集系统7、8中的电源可通过一俘能/放电控制电路将在交通监测间歇期车辆碾压上述传感器时在逆压电效应下转化、进而有效储存的瞬间电能并反哺,实现监测系统的自供能。The power supplies in the static/dynamic signal acquisition systems 7 and 8 can be converted under the inverse piezoelectric effect when the vehicle rolls over the above-mentioned sensors during the traffic monitoring interval through an energy harvesting/discharging control circuit, and then the instantaneous electric energy that is effectively stored can be fed back, Realize the self-supply of monitoring system.

本发明还提供了该自供能压阻/压电复合型传感器系统的应用:布设位置、方式和数量。具体方法为:以压阻/压电复合型传感器动态信号中的峰值个数计算车辆数,以传感器的响应之和计算车重/车型,并以间隔一定距离的两道平行传感器响应的时间差计算车速;以传感器(准)静态信号加载前后幅值大小除以面积计算应力,用(负)幅值除以弹性模量计算压(拉)应变,以传感器响应(负)幅值超过混凝土抗压(抗拉)强度比例极限时表征相应结构发生损伤或裂缝。进而实现对暴露环境下在不同交通状况下、不同行车荷载形式下交通参数(如车流量、车速、车型和车重等)和结构参数(轴向应力、拉/压应变、弯曲应变、裂缝和损伤等)实时检测与损伤评估。The invention also provides the application of the self-powered piezoresistive/piezoelectric composite sensor system: layout position, manner and quantity. The specific method is: calculate the number of vehicles with the peak number of the dynamic signal of the piezoresistive/piezoelectric composite sensor, calculate the vehicle weight/model with the sum of the responses of the sensors, and calculate with the time difference between the responses of two parallel sensors at a certain distance Vehicle speed; divide the amplitude of the sensor (quasi) static signal before and after loading by the area to calculate the stress, divide the (negative) amplitude by the elastic modulus to calculate the compressive (tensile) strain, and use the sensor response (negative) amplitude to exceed the concrete compressive strength The limit of the (tensile) strength ratio indicates that the corresponding structure is damaged or cracked. Then realize the traffic parameters (such as traffic volume, vehicle speed, vehicle type and vehicle weight, etc.) and structural parameters (axial stress, tensile/compressive strain, bending strain, crack and damage, etc.) real-time detection and damage assessment.

当然,本发明的自供能压阻/压电复合型传感器系统也完全可以埋置于钢筋混凝土梁的两端(相应钢筋混凝土梁可采用本领域技术人员熟知的方法配筋和混凝土浇筑),以便更准确的测量来往车辆的车速。Of course, the self-powered piezoresistive/piezoelectric composite sensor system of the present invention can also be fully embedded in the two ends of the reinforced concrete beam (the corresponding reinforced concrete beam can be reinforced and concreted by methods well known to those skilled in the art), so that More accurate measurement of the speed of passing vehicles.

实施例2Example 2

如图3所示,传感器系统嵌于悬臂桥面单元5内部。As shown in FIG. 3 , the sensor system is embedded inside the cantilever deck unit 5 .

其它同实施例1。Others are with embodiment 1.

实施例3Example 3

自供能压阻/压电复合型传感器制备过程及结构同实施例1。不同的是:所用的水泥为P.O.42.5R普通硅酸盐水泥,微/纳米级压电陶瓷粉体为水热法制得粒径为400-1100nm的锆钛酸铅粉体,导电填料为用直径500nm氧化石墨烯接枝直径60-100nm,长度6-30μm的碳纳米纤维,韧性纤维为直径5-20μm、长度8mm的聚酰亚胺纤维,水性树脂及相应固化剂为水性酚醛树脂及配套水性固化剂,超塑化剂为萘系磺酸盐甲醛缩合物系FDN,所用电极为格栅式的银电极。The preparation process and structure of the self-powered piezoresistive/piezoelectric composite sensor are the same as in Example 1. The difference is: the cement used is P.O.42.5R ordinary Portland cement, the micro/nano-scale piezoelectric ceramic powder is lead zirconate titanate powder with a particle size of 400-1100nm prepared by hydrothermal method, and the conductive filler is a diameter of 500nm graphene oxide is grafted with carbon nanofibers with a diameter of 60-100nm and a length of 6-30μm. The tough fiber is a polyimide fiber with a diameter of 5-20μm and a length of 8mm. The water-based resin and corresponding curing agent are water-based phenolic resin and supporting water-based Curing agent and superplasticizer are naphthalene sulfonate formaldehyde condensate series FDN, and the electrodes used are grid-type silver electrodes.

用ASTM C1018韧度指数法、LCR数字电桥、准静态测量仪、阻抗分析仪测所得到的氧化石墨烯接枝碳纳米纤维/聚酰亚胺纤维/锆钛酸铅/水泥基压阻/压电复合型传感器的断裂韧度为0.914MPa/m-1/2、DC电阻率为23.7kΩ.cm、压电常数为55.8pC/N、介电损耗为0.40、机电耦合系数为11.6%。The obtained graphene oxide grafted carbon nanofiber/polyimide fiber/lead zirconate titanate/cement-based piezoresistive/ The fracture toughness of the piezoelectric composite sensor is 0.914MPa/m -1/2 , the DC resistivity is 23.7kΩ.cm, the piezoelectric constant is 55.8pC/N, the dielectric loss is 0.40, and the electromechanical coupling coefficient is 11.6%.

实施例4Example 4

自供能压阻/压电复合型传感器制备过程及结构同实施例1。不同的是:微/纳米级压电陶瓷粉体为溶胶-水热法制得粒径为300-600nm的铌镁锆钛酸铅陶瓷粉体,导电填料为-200目微米级羰基镍粉,韧性纤维为直径50μm、长度10mm的聚丙烯纤维,水性树脂及相应固化剂为水性密胺-甲醛树脂及配套水性固化剂,超塑化剂为磺化三聚氰胺甲醛树脂系SMF,所用电极为交叉格栅式的镍电极。The preparation process and structure of the self-powered piezoresistive/piezoelectric composite sensor are the same as in Example 1. The difference is: the micro/nano piezoelectric ceramic powder is niobium magnesium lead zirconate titanate ceramic powder with a particle size of 300-600nm obtained by the sol-hydrothermal method, and the conductive filler is -200 mesh micron carbonyl nickel powder. The fiber is polypropylene fiber with a diameter of 50 μm and a length of 10 mm. The water-based resin and corresponding curing agent are water-based melamine-formaldehyde resin and supporting water-based curing agent. The superplasticizer is sulfonated melamine-formaldehyde resin-based SMF. The electrodes used are cross grid Gridded nickel electrodes.

用ASTM C1018韧度指数法、LCR数字电桥、准静态测量仪、阻抗分析仪测所得到的镍粉/聚丙烯纤维/铌镁锆钛酸铅/水泥基压阻/压电复合型传感器的断裂韧度为0.891MPa/m-1/2、DC电阻率为21.3k Ω.cm、压电常数为51.6pC/N、介电损耗为0.43、机电耦合系数为14.7%。Using the ASTM C1018 toughness index method, LCR digital bridge, quasi-static measuring instrument, and impedance analyzer to measure the obtained nickel powder/polypropylene fiber/lead niobium magnesium zirconate titanate/cement-based piezoresistive/piezoelectric composite sensor The fracture toughness is 0.891MPa/m -1/2 , the DC resistivity is 21.3k Ω.cm, the piezoelectric constant is 51.6pC/N, the dielectric loss is 0.43, and the electromechanical coupling coefficient is 14.7%.

实施例5Example 5

自供能压阻/压电复合型传感器制备过程及结构同实施例1。不同的是:所用的水泥为P I型425硅酸盐水泥,导电填料为60-80nm的纳米级碳黑,韧性纤维为直径50μm、长度10mm的聚丙烯纤维。The preparation process and structure of the self-powered piezoresistive/piezoelectric composite sensor are the same as in Example 1. The difference is that the cement used is P I type 425 Portland cement, the conductive filler is nano-scale carbon black of 60-80nm, and the tough fiber is polypropylene fiber with a diameter of 50μm and a length of 10mm.

用ASTM C1018韧度指数法、LCR数字电桥、准静态测量仪、阻抗分析仪测所得到的碳黑/聚丙烯纤维/锆钛酸铅/水泥基压阻/压电复合型传感器的断裂韧度为0.924MPa/m-1/2、DC电阻率为13.7kΩ.cm、压电常数为40.5pC/N、介电损耗为0.39、机电耦合系数为12.6%。The fracture toughness of the obtained carbon black/polypropylene fiber/lead zirconate titanate/cement-based piezoresistive/piezoelectric composite sensor was measured by ASTM C1018 toughness index method, LCR digital bridge, quasi-static measuring instrument, and impedance analyzer The density is 0.924MPa/m -1/2 , the DC resistivity is 13.7kΩ.cm, the piezoelectric constant is 40.5pC/N, the dielectric loss is 0.39, and the electromechanical coupling coefficient is 12.6%.

Claims (9)

1.一种压阻/压电复合材料,其特征在于,包括如下按重量配比的组分:100份水泥、105-500份微/纳米级压电陶瓷粉体、10-30份粉煤灰、15-50份水、0.01-2份超塑化剂、0.1-10份韧性纤维、0.01-15份导电填料。1. A piezoresistive/piezoelectric composite material, characterized in that it comprises the following components by weight ratio: 100 parts of cement, 105-500 parts of micro/nano piezoelectric ceramic powder, 10-30 parts of pulverized coal Ash, 15-50 parts of water, 0.01-2 parts of superplasticizer, 0.1-10 parts of tough fiber, 0.01-15 parts of conductive filler. 2.根据权利要求1所述的压阻/压电复合材料,其特征在于,所述水泥为硅酸盐水泥或普通硅酸盐水泥或硫铝酸盐水泥;所述粉煤灰为Ⅰ级粉煤灰;所述水为蒸馏水或去离子水;所述超塑化剂为聚羧酸盐系高效减水剂、脂肪族高效减水剂、氨基磺酸盐系高效减水剂、蜜胺树脂系高效减水剂、萘系高效减水剂中的一种或几种组合;所述韧性纤维为聚乙烯醇纤维或聚丙烯纤维或聚酰亚胺纤维;所述导电填料为微/纳米级碳黑、微/纳米级镍粉、碳纤维、碳纳米纤维、碳纳米管、石墨烯、氧化石墨烯接枝碳纤维、氧化石墨烯接枝碳纳米纤维中的一种或其中几种的混合。2. The piezoresistive/piezoelectric composite material according to claim 1, wherein the cement is Portland cement or ordinary Portland cement or sulphoaluminate cement; the fly ash is Class I Fly ash; the water is distilled water or deionized water; the superplasticizer is polycarboxylate superplasticizer, aliphatic superplasticizer, sulfamate superplasticizer, melamine One or more combinations of resin-based superplasticizers and naphthalene-based superplasticizers; the tough fiber is polyvinyl alcohol fiber or polypropylene fiber or polyimide fiber; the conductive filler is micro/nano Grade carbon black, micro/nano nickel powder, carbon fiber, carbon nanofiber, carbon nanotube, graphene, graphene oxide grafted carbon fiber, graphene oxide grafted carbon nanofiber or a mixture of several of them. 3.一种权利要求1所述的压阻/压电复合材料的制法,其特征在于,包括如下步骤:3. a method for preparing piezoresistive/piezoelectric composite material according to claim 1, is characterized in that, comprises the steps: (1)微/纳米级压电陶瓷粉体制备;(1) Preparation of micro/nano piezoelectric ceramic powder; (2)以丙酮作助磨剂,将100份水泥、10-30份在填料与基体间起润滑与桥联作用的粉煤灰干拌球磨5-10分钟,然后与105-500份步骤(1)所制得的压电陶瓷粉体球磨10-20分钟,然后先后加入导电填料、韧性纤维,再球磨柔和混合30-60分钟;(2) Using acetone as a grinding aid, dry-mix 100 parts of cement and 10-30 parts of fly ash that acts as a lubricant and bridge between the filler and the matrix for 5-10 minutes, and then mix with 105-500 parts of the step ( 1) The prepared piezoelectric ceramic powder was ball-milled for 10-20 minutes, then conductive fillers and tough fibers were added successively, and then ball-milled and mixed gently for 30-60 minutes; (3)将步骤(2)获得的混合料在丙酮介质中进一步超声分散处理30-60分钟,挥发干燥得混合粉体;(3) Further ultrasonically disperse the mixture obtained in step (2) in an acetone medium for 30-60 minutes, and volatilize and dry to obtain a mixed powder; (4)向步骤(3)所得的混合粉体中加入溶有0.01-2份超塑化剂的15-50份水,混匀后采用压制成型法压制成实际需求的形状和尺寸的薄片试样;(4) Add 15-50 parts of water with 0.01-2 parts of superplasticizer dissolved in the mixed powder obtained in step (3), and after mixing, use compression molding to press into thin slices of the actual required shape and size. Sample; (5)将步骤(4)所得薄片试样置于水泥蒸汽养护箱,蒸汽45℃、相对湿度RH100%条件下养护三天后,干燥并清洁需要涂电极的上下表面;(5) Place the thin slice sample obtained in step (4) in a cement steam curing box, and after curing for three days under the condition of steam at 45°C and relative humidity RH100%, dry and clean the upper and lower surfaces to be coated with electrodes; (6)将步骤(5)所得的薄片试样涂上电极,干燥后,室温条件下,在硅油浴锅中用高压直流电源极化1-12小时,老化后即得一种用压阻/压电复合材料制备的感应元件。(6) Coat the thin slice sample obtained in step (5) with an electrode, and after drying, polarize it with a high-voltage DC power supply in a silicone oil bath for 1-12 hours at room temperature, and obtain a piezoresistive/ Sensing elements made of piezoelectric composite materials. 4.一种采用权利要求1所述材料的传感器,其特征在于,包括压阻/压电复合材料层(1),压阻/压电复合材料层(1)的上下表面各设置一个电极(2),压阻/压电复合材料层(1)和电极(2)皆包裹在封装外壳(3)内,上下两电极之间通过贯穿封装外壳的电磁屏蔽导线(4)相连,传感器设置在支座(6)与支撑的桥面单元(5)之间或嵌在桥面单元(5)内。4. A sensor using the material according to claim 1, characterized in that it comprises a piezoresistive/piezoelectric composite material layer (1), and an electrode ( 2), the piezoresistive/piezoelectric composite material layer (1) and the electrode (2) are wrapped in the package shell (3), and the upper and lower electrodes are connected through the electromagnetic shielding wire (4) that runs through the package shell, and the sensor is set in Between the support (6) and the supported deck unit (5) or embedded in the deck unit (5). 5.根据权利要求4所述的传感器,其特征在于,电极布置方式为全覆盖式或格栅式或交叉指形式或交叉栅式。5 . The sensor according to claim 4 , wherein the electrodes are arranged in the form of full coverage or grid or interdigitated or cross grid. 6 . 6.根据权利要求4所述的传感器,其特征在于,封装外壳(3)是由水泥、粉煤灰、水性树脂、水性固化剂、韧性纤维按1:0.1-0.3:0.4-0.8:0.4-0.6:_0.01-0.1的重量比混合而成的一种纤维增强树脂混凝土。6. The sensor according to claim 4, characterized in that the encapsulation shell (3) is made of cement, fly ash, water-based resin, water-based curing agent, tough fiber according to 1:0.1-0.3:0.4-0.8:0.4- A fiber-reinforced resin concrete mixed with a weight ratio of 0.6:_0.01-0.1. 7.根据权利要求6所述的传感器,其特征在于,所述水泥为硅酸盐水泥或普通硅酸盐水泥或硫铝酸盐水泥;所述粉煤灰为I级粉煤灰;所述水性树脂为水性环氧树脂或水性酚醛树脂或水性脲醛树脂或水性密胺-甲醛树脂或水性聚氨酯树脂或水溶性聚酰亚胺树脂;所述水性固化剂为各水性树脂对应的专用固化剂;所述韧性纤维为聚乙烯醇纤维或聚丙烯纤维或聚酰亚胺纤维。7. The sensor according to claim 6, wherein the cement is Portland cement or ordinary Portland cement or sulphoaluminate cement; the fly ash is Class I fly ash; The water-based resin is water-based epoxy resin or water-based phenolic resin or water-based urea-formaldehyde resin or water-based melamine-formaldehyde resin or water-based polyurethane resin or water-soluble polyimide resin; the water-based curing agent is a special curing agent corresponding to each water-based resin; The tough fiber is polyvinyl alcohol fiber or polypropylene fiber or polyimide fiber. 8.根据权利要求4所述的传感器,其特征在于,电极(2)采用导电银胶电极或银电极或镍电极。8. The sensor according to claim 4, characterized in that the electrode (2) is a conductive silver glue electrode or a silver electrode or a nickel electrode. 9.一种权利要求4-8所述传感器的制法,其特征在于,包括以下步骤:按照比例先将韧性纤维通过高速搅拌分散在水性树脂中,然后加入相应固化剂混匀,再加入水泥与粉煤灰干拌混合料,搅拌均匀;将压阻/压电感应元件固定在模具中,然后将上述纤维增强树脂混凝土混合物浇入模具中,在水泥终凝前,将模具移至真空干燥箱中进行抽真空除泡;最后用水性树脂和对应的固化剂混合稀释液表面覆盖养护至28天龄期。9. A method for preparing the sensor according to claim 4-8, characterized in that it comprises the following steps: according to the proportion, the tough fiber is first dispersed in the water-based resin by high-speed stirring, then the corresponding curing agent is added to mix, and then cement is added Dry mix the mixture with fly ash and stir evenly; fix the piezoresistive/piezoelectric sensing element in the mold, then pour the above-mentioned fiber-reinforced resin concrete mixture into the mold, and move the mold to vacuum drying before the final setting of the cement Vacuumize and defoam in the box; finally, cover and maintain the surface with water-based resin and corresponding curing agent mixed diluent until 28 days old.
CN201210417696.9A 2012-10-26 2012-10-26 Method for manufacturing piezoresistive/piezoelectric composite material, sensor using piezoresistive/piezoelectric composite material and manufacturing method Expired - Fee Related CN102924020B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210417696.9A CN102924020B (en) 2012-10-26 2012-10-26 Method for manufacturing piezoresistive/piezoelectric composite material, sensor using piezoresistive/piezoelectric composite material and manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210417696.9A CN102924020B (en) 2012-10-26 2012-10-26 Method for manufacturing piezoresistive/piezoelectric composite material, sensor using piezoresistive/piezoelectric composite material and manufacturing method

Publications (2)

Publication Number Publication Date
CN102924020A true CN102924020A (en) 2013-02-13
CN102924020B CN102924020B (en) 2014-11-26

Family

ID=47638984

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210417696.9A Expired - Fee Related CN102924020B (en) 2012-10-26 2012-10-26 Method for manufacturing piezoresistive/piezoelectric composite material, sensor using piezoresistive/piezoelectric composite material and manufacturing method

Country Status (1)

Country Link
CN (1) CN102924020B (en)

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103232204A (en) * 2013-05-03 2013-08-07 河海大学 Sensing material, preparation method and application thereof
CN103702450A (en) * 2013-12-04 2014-04-02 哈尔滨工业大学 Wireless sensor node with energy supply through concrete battery
CN103803887A (en) * 2014-03-06 2014-05-21 山东建筑大学 Concrete block capable of sensing pressure
CN104133113A (en) * 2014-08-11 2014-11-05 孙炳全 Method for eliminating rest potential to accurately measure concrete specific resistance
CN104446176A (en) * 2014-08-25 2015-03-25 北京建筑大学 Cement-based composite material and pressure sensor made of same
CN105504691A (en) * 2016-01-19 2016-04-20 西南科技大学 Carbon nanotube/epoxy resin composite material torque measuring transducer and manufacturing technique thereof
CN105586581A (en) * 2016-03-04 2016-05-18 济南大学 Method for chemical nickel-plating on surface of cement-based piezoelectric composite
CN105781546A (en) * 2016-04-19 2016-07-20 太原理工大学 Wireless passive coal-rock interface recognition device
CN105801172A (en) * 2016-03-04 2016-07-27 济南大学 Method for preparing cement-based piezoelectric composite material surface nickel electrode
CN105801047A (en) * 2016-02-18 2016-07-27 上海市建筑科学研究院 Graphene cement-based intelligent concrete material and preparation method thereof
CN105837136A (en) * 2016-03-22 2016-08-10 苏州捷德瑞精密机械有限公司 Piezoelectric ceramic composite material and preparation method thereof
CN105953821A (en) * 2016-06-24 2016-09-21 青岛理工大学 Piezoresistive/piezoelectric interlayer material, interlayer type sensor and preparation and use methods
CN106432997A (en) * 2016-10-14 2017-02-22 山东纳鑫电力科技有限公司 Primary frequency regulation device of thermal power generating unit
CN106542787A (en) * 2016-10-13 2017-03-29 武汉轻工大学 Possess the modified cement-based material of graphene nanometer sheet and preparation method of piezoresistive effect
CN108072389A (en) * 2017-11-30 2018-05-25 西安交通大学 A kind of wearable health monitoring sensor manufacturing process of bionical attaching type
CN106592198B (en) * 2016-12-02 2018-08-31 河北科技大学 A kind of two step hydrothermal preparing process of lead zirconate titanate coat carbon fiber
CN108801536A (en) * 2018-05-31 2018-11-13 西安交通大学 A kind of sheet type high sensitivity pressure sensor
WO2018206862A1 (en) * 2017-05-11 2018-11-15 Buendia Jose Hydrometry-thermal stability
CN109273591A (en) * 2018-08-30 2019-01-25 广州大学 Alkali-activated fly ash slag piezoelectric sensor and preparation method thereof
CN110255948A (en) * 2019-07-18 2019-09-20 东莞市冠峰混凝土有限公司 Concrete anticracking self repairing agent and preparation method thereof and cracking resistance self-repair concrete
EP3640223A1 (en) * 2018-10-16 2020-04-22 Graphenano S.L. Graphenic nanomaterials for the improvement of cementitious materials
WO2020158507A1 (en) * 2019-02-01 2020-08-06 日本ゼオン株式会社 Dispersion liquid, conductive film and method for producing same, electrode, and solar cell
CN111562289A (en) * 2020-07-08 2020-08-21 中建四局第三建设有限公司 A kind of mud solidification in-situ test method
CN111721630A (en) * 2020-07-08 2020-09-29 中建四局第三建设有限公司 Piezoelectric solidified soil for in-situ detection of silt solidification and preparation method thereof
CN111778742A (en) * 2020-08-06 2020-10-16 山东鲁普科技有限公司 Tension self-induction type rope based on polymer blend material system
CN111995314A (en) * 2020-08-26 2020-11-27 山东交通学院 Method for bridge detection and monitoring and composite material used in method
CN112284577A (en) * 2020-09-27 2021-01-29 西安交通大学 Piezoelectric resistance composite tactile sensor and preparation method thereof
CN113106628A (en) * 2021-03-23 2021-07-13 浙江大学 Flexible piezoelectric energy conversion device based on lead zirconate titanate/PVDF composite fiber
CN113149526A (en) * 2020-08-10 2021-07-23 河海大学 Composite cement-based material and composite cement-based material sensor
CN114459657A (en) * 2022-04-14 2022-05-10 西南交通大学 Shock load automatic identification method, electronic device and storage medium
WO2022223050A1 (en) * 2021-12-14 2022-10-27 青岛理工大学 Cement-based micro-deformation monitoring coating for strain monitoring of existing buildings and capable of energy storage and protection
CN115925413A (en) * 2022-10-11 2023-04-07 广东奥迪威传感科技股份有限公司 Piezoelectric ceramic material and its preparation method and application

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999058468A1 (en) * 1998-05-14 1999-11-18 Bouygues Concrete comprising organic fibres dispersed in a cement matrix, concrete cement matrix and premixes
CN101239800A (en) * 2008-03-07 2008-08-13 哈尔滨工业大学 Carbon nanotube reinforced cement-based composite material and preparation method thereof
CN101274831A (en) * 2008-05-16 2008-10-01 哈尔滨工业大学 Carbon nanotube fiber cement-based material and preparation method thereof
CN102503282A (en) * 2011-11-09 2012-06-20 武汉理工大学 High-efficiency cement-based piezoelectric material and synthesizing method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999058468A1 (en) * 1998-05-14 1999-11-18 Bouygues Concrete comprising organic fibres dispersed in a cement matrix, concrete cement matrix and premixes
CN101239800A (en) * 2008-03-07 2008-08-13 哈尔滨工业大学 Carbon nanotube reinforced cement-based composite material and preparation method thereof
CN101274831A (en) * 2008-05-16 2008-10-01 哈尔滨工业大学 Carbon nanotube fiber cement-based material and preparation method thereof
CN102503282A (en) * 2011-11-09 2012-06-20 武汉理工大学 High-efficiency cement-based piezoelectric material and synthesizing method thereof

Cited By (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103232204B (en) * 2013-05-03 2015-02-04 河海大学 Sensing material, preparation method and application thereof
CN103232204A (en) * 2013-05-03 2013-08-07 河海大学 Sensing material, preparation method and application thereof
CN103702450A (en) * 2013-12-04 2014-04-02 哈尔滨工业大学 Wireless sensor node with energy supply through concrete battery
CN103803887A (en) * 2014-03-06 2014-05-21 山东建筑大学 Concrete block capable of sensing pressure
CN104133113A (en) * 2014-08-11 2014-11-05 孙炳全 Method for eliminating rest potential to accurately measure concrete specific resistance
CN104133113B (en) * 2014-08-11 2017-02-08 营口富里泥炭科技有限公司 Method for eliminating rest potential to accurately measure concrete specific resistance
CN104446176A (en) * 2014-08-25 2015-03-25 北京建筑大学 Cement-based composite material and pressure sensor made of same
CN104446176B (en) * 2014-08-25 2016-06-15 北京建筑大学 A kind of cement-base composite material and voltage sensitive sensor thereof
CN105504691A (en) * 2016-01-19 2016-04-20 西南科技大学 Carbon nanotube/epoxy resin composite material torque measuring transducer and manufacturing technique thereof
CN105801047A (en) * 2016-02-18 2016-07-27 上海市建筑科学研究院 Graphene cement-based intelligent concrete material and preparation method thereof
CN105586581B (en) * 2016-03-04 2017-12-12 济南大学 A kind of method in cement base piezoelectric composite material chemical nickel plating on surface
CN105801172B (en) * 2016-03-04 2018-01-09 济南大学 A kind of preparation method of cement base piezoelectric composite material surface nickel electrode
CN105586581A (en) * 2016-03-04 2016-05-18 济南大学 Method for chemical nickel-plating on surface of cement-based piezoelectric composite
CN105801172A (en) * 2016-03-04 2016-07-27 济南大学 Method for preparing cement-based piezoelectric composite material surface nickel electrode
CN105837136A (en) * 2016-03-22 2016-08-10 苏州捷德瑞精密机械有限公司 Piezoelectric ceramic composite material and preparation method thereof
CN105781546A (en) * 2016-04-19 2016-07-20 太原理工大学 Wireless passive coal-rock interface recognition device
CN105953821B (en) * 2016-06-24 2018-11-23 青岛理工大学 Preparation method of piezoresistive/piezoelectric interlayer material
CN105953821A (en) * 2016-06-24 2016-09-21 青岛理工大学 Piezoresistive/piezoelectric interlayer material, interlayer type sensor and preparation and use methods
CN106542787A (en) * 2016-10-13 2017-03-29 武汉轻工大学 Possess the modified cement-based material of graphene nanometer sheet and preparation method of piezoresistive effect
CN106542787B (en) * 2016-10-13 2019-07-02 武汉轻工大学 Graphene nanosheet modified cement-based material with piezoresistive effect and preparation method
CN106432997B (en) * 2016-10-14 2017-09-15 山东纳鑫电力科技有限公司 A kind of fired power generating unit primary frequency modulation device
CN106432997A (en) * 2016-10-14 2017-02-22 山东纳鑫电力科技有限公司 Primary frequency regulation device of thermal power generating unit
CN106592198B (en) * 2016-12-02 2018-08-31 河北科技大学 A kind of two step hydrothermal preparing process of lead zirconate titanate coat carbon fiber
WO2018206862A1 (en) * 2017-05-11 2018-11-15 Buendia Jose Hydrometry-thermal stability
CN108072389B (en) * 2017-11-30 2019-09-03 西安交通大学 A kind of bionic attached wearable health monitoring sensor manufacturing method
CN108072389A (en) * 2017-11-30 2018-05-25 西安交通大学 A kind of wearable health monitoring sensor manufacturing process of bionical attaching type
CN108801536B (en) * 2018-05-31 2020-05-15 西安交通大学 A thin-film high-sensitivity pressure sensor
CN108801536A (en) * 2018-05-31 2018-11-13 西安交通大学 A kind of sheet type high sensitivity pressure sensor
CN109273591A (en) * 2018-08-30 2019-01-25 广州大学 Alkali-activated fly ash slag piezoelectric sensor and preparation method thereof
CN109273591B (en) * 2018-08-30 2022-02-18 广州大学 Alkali-excited fly ash slag piezoelectric sensor and preparation method thereof
RU2768920C1 (en) * 2018-10-16 2022-03-25 Грапенано С.Л. Additives based on graphene nanomaterials for improving cementitious compositions, cementing composition, method for producing reinforced concrete, reinforced concrete and its application
EP3640223A1 (en) * 2018-10-16 2020-04-22 Graphenano S.L. Graphenic nanomaterials for the improvement of cementitious materials
WO2020078578A1 (en) 2018-10-16 2020-04-23 Graphenano S.L. Additives of graphene nanomaterials for the improvement of cementitious compositions, cementitious composition, a process for preparing a reinforced concrete, a reinforced concrete and its use
US12215056B2 (en) 2018-10-16 2025-02-04 Graphenano S.L. Additives of graphene nanomaterials for the improvement of cementitious compositions, cementitious composition, a process for preparing a reinforced concrete, a reinforced concrete and its use
JP7604895B2 (en) 2019-02-01 2024-12-24 日本ゼオン株式会社 Dispersion liquid, conductive film and manufacturing method thereof, electrode, and solar cell
WO2020158507A1 (en) * 2019-02-01 2020-08-06 日本ゼオン株式会社 Dispersion liquid, conductive film and method for producing same, electrode, and solar cell
CN110255948A (en) * 2019-07-18 2019-09-20 东莞市冠峰混凝土有限公司 Concrete anticracking self repairing agent and preparation method thereof and cracking resistance self-repair concrete
CN110255948B (en) * 2019-07-18 2021-07-20 东莞市冠峰混凝土有限公司 Anti-cracking self-healing agent for concrete and preparation method thereof and anti-cracking self-healing concrete
CN111721630A (en) * 2020-07-08 2020-09-29 中建四局第三建设有限公司 Piezoelectric solidified soil for in-situ detection of silt solidification and preparation method thereof
CN111721630B (en) * 2020-07-08 2022-07-08 中建四局第三建设有限公司 Piezoelectric solidified soil for in-situ detection of sludge solidification and preparation method thereof
CN111562289B (en) * 2020-07-08 2022-07-08 中建四局第三建设有限公司 A kind of mud solidification in-situ test method
CN111562289A (en) * 2020-07-08 2020-08-21 中建四局第三建设有限公司 A kind of mud solidification in-situ test method
CN111778742A (en) * 2020-08-06 2020-10-16 山东鲁普科技有限公司 Tension self-induction type rope based on polymer blend material system
CN113149526A (en) * 2020-08-10 2021-07-23 河海大学 Composite cement-based material and composite cement-based material sensor
CN111995314A (en) * 2020-08-26 2020-11-27 山东交通学院 Method for bridge detection and monitoring and composite material used in method
CN111995314B (en) * 2020-08-26 2021-12-10 山东交通学院 Method and composite material for bridge inspection and monitoring
CN112284577A (en) * 2020-09-27 2021-01-29 西安交通大学 Piezoelectric resistance composite tactile sensor and preparation method thereof
CN113106628A (en) * 2021-03-23 2021-07-13 浙江大学 Flexible piezoelectric energy conversion device based on lead zirconate titanate/PVDF composite fiber
WO2022223050A1 (en) * 2021-12-14 2022-10-27 青岛理工大学 Cement-based micro-deformation monitoring coating for strain monitoring of existing buildings and capable of energy storage and protection
CN114459657B (en) * 2022-04-14 2022-07-01 西南交通大学 Impact load automatic identification method, electronic device and storage medium
CN114459657A (en) * 2022-04-14 2022-05-10 西南交通大学 Shock load automatic identification method, electronic device and storage medium
CN115925413A (en) * 2022-10-11 2023-04-07 广东奥迪威传感科技股份有限公司 Piezoelectric ceramic material and its preparation method and application

Also Published As

Publication number Publication date
CN102924020B (en) 2014-11-26

Similar Documents

Publication Publication Date Title
CN102924020B (en) Method for manufacturing piezoresistive/piezoelectric composite material, sensor using piezoresistive/piezoelectric composite material and manufacturing method
CN202916004U (en) Piezoresistive/piezoelectric composite sensor and monitoring system based on sensor
CN106673564B (en) GO-enhanced smart concrete, wireless sensor and manufacturing method of CNT-coated sand
US11891335B2 (en) Multi-functional cementitious materials with ultra-high damage tolerance and self-sensing ability
CN105953821B (en) Preparation method of piezoresistive/piezoelectric interlayer material
Wang et al. Experimental study on fatigue degradation of piezoelectric energy harvesters under equivalent traffic load conditions
CN102503282B (en) High-efficiency cement-based piezoelectric material and synthesizing method thereof
CN203705096U (en) Wireless intelligent aggregate health monitoring device used for concrete structure
CN103557989B (en) Piezoelectric strain sensor, method for testing strain sensitivity of piezoelectric strain sensor and application of piezoelectric strain sensor
CN105067164B (en) Conductive cement-based composite material and its preparation method and application
CN109187651A (en) A kind of bituminous pavement self-powered multifunction piezoelectric actuator intelligent aggregate and preparation method thereof
CN102322985B (en) Embedded type concrete rod piece power damage three-dimensional stress sensor
CN104891867A (en) A composite piezoelectric material prepared from piezoceramic powder, carbon black and asphalt and a preparing method thereof
Ra et al. Direct electrospinning of reconstructable PVDF-TrFE nanofibrous mat onto conductive cement nanocomposite for triboelectricity-assisted net zero energy structure
CN103308222A (en) Carbon nano tube (CNT) cement based composite material sensor
Dong et al. Graphene reinforced cement-based triboelectric nanogenerator for efficient energy harvesting in civil infrastructure
Zhang et al. Improved output voltage of 0–3 cementitious piezoelectric composites with basalt fibers
Jiang et al. Properties of novel 0–3 PZT/silicone resin flexible piezoelectric composites for ultrasonic guided wave sensor applications
Sun et al. Sensing mechanism of self-monitoring CNT cementitious composite
Wang et al. Health monitoring of C60 smart concrete based on self-sensing
CN105527013A (en) Implanted piezoelectric acceleration transducer for concrete structure health monitoring/detection as well as manufacturing method and application thereof
CN105060790B (en) Electrostatic self-assembled carbon nanotube/nanocarbon black composite mortar and its preparation method and application
Dong et al. Integrated triboelectric self-powering and piezoresistive self-sensing cementitious composites for intelligent civil infrastructure
CN108871180A (en) A kind of unidirectional responsive type cement base strain transducer
CN205843683U (en) Piezoresistive/piezoelectric interlayer material layer and interlayer type sensor

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20141126

Termination date: 20151026

EXPY Termination of patent right or utility model