[go: up one dir, main page]

CN102916626A - Three-phase chopper control soft starter - Google Patents

Three-phase chopper control soft starter Download PDF

Info

Publication number
CN102916626A
CN102916626A CN2012104376861A CN201210437686A CN102916626A CN 102916626 A CN102916626 A CN 102916626A CN 2012104376861 A CN2012104376861 A CN 2012104376861A CN 201210437686 A CN201210437686 A CN 201210437686A CN 102916626 A CN102916626 A CN 102916626A
Authority
CN
China
Prior art keywords
phase
chopping
diode
alternating current
voltage regulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2012104376861A
Other languages
Chinese (zh)
Inventor
谢仕宏
孟彦京
李林涛
陈景文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shaanxi University of Science and Technology
Original Assignee
Shaanxi University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shaanxi University of Science and Technology filed Critical Shaanxi University of Science and Technology
Priority to CN2012104376861A priority Critical patent/CN102916626A/en
Publication of CN102916626A publication Critical patent/CN102916626A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Motor And Converter Starters (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

The invention relates to a three-phase chopper control soft starter. A first path of a three-phase alternating-current supply of the three-phase chopper control soft starter is connected with an A phase of a three-phase alternating current asynchronous motor via an A-phase alternating current chopper voltage regulator circuit; a second path is connected with a B phase of the three-phase alternating current asynchronous motor via a B-phase alternating current chopper voltage regulator circuit; a third path is connected with a C phase of the three-phase alternating current asynchronous motor via a C-phase alternating current chopper voltage regulator circuit; the output of a single chip is connected with the A-phase alternating current chopper voltage regulator circuit, the B-phase alternating current chopper voltage regulator circuit and the C-phase alternating current chopper voltage regulator circuit at the same time; the second path is connected with an insulated gate bipolar transistor connected with a direct current side of a three-phase uncontrolled rectifier bridge; and the three-phase uncontrolled rectifier bridge is respectively connected between the A-phase alternating current chopper voltage regulator circuit and the A phase of the three-phase alternating current asynchronous motor, between the B-phase alternating current chopper voltage regulator circuit and the B phase of the three-phase alternating current asynchronous motor, and between the three-phase alternating-current supply and the C phase of the three-phase alternating current asynchronous motor. The three-phase chopper control soft starter can continuously start; a torque ripple component is also greatly reduced, and the start is more stable.

Description

三相斩波调压软起动器Three-phase chopping and voltage regulating soft starter

技术领域 technical field

本发明涉及一种三相交流斩波调压软起动器。 The invention relates to a three-phase AC chopping and voltage regulating soft starter.

背景技术 Background technique

目前,普通软起动器主要采用三相晶闸管降压启动,它在电路结构上采用每相串接反并联的两只晶闸管或双向晶闸管,通过改变每相电压的导通时间来实现降压起动。该方法存在两个重要缺点。其一,起动转矩小,三相交流异步电动机起动转矩正比于起动电压的平方,当电压降低时,转矩以起动电压降低的平方倍数降低;其二,电流断续,因为晶闸管属于半控型器件,只有当它的正向导通电流下降到零时才能关断,所以用晶闸管降压软起动,电流必然断续,存在较大的脉动转矩。 At present, ordinary soft starters mainly use three-phase thyristor step-down start. It uses two thyristors or bidirectional thyristors connected in series and anti-parallel in each phase in the circuit structure, and realizes step-down start by changing the conduction time of each phase voltage. This method has two important disadvantages. First, the starting torque is small, and the starting torque of the three-phase AC asynchronous motor is proportional to the square of the starting voltage. When the voltage decreases, the torque decreases with the square multiple of the starting voltage decrease; Controlled devices can only be turned off when their forward conduction current drops to zero, so the thyristor step-down soft start, the current must be intermittent, and there is a large pulsating torque.

变频器也有被用作软起动器的,虽然效果较好,但变频器在技术上属于交-直-交结构。它首先将三相工频电源进行三相桥式不可控整流,然后对整流输出直流电压进行滤波,最后采用脉冲宽度调制(PWM)技术输出电压频率都可调的可控交流电压。变频器结构、技术复杂,成本较高,不易于在交流电机软起动领域普及推广。 The frequency converter is also used as a soft starter. Although the effect is better, the frequency converter is technically an AC-DC-AC structure. It first performs three-phase bridge uncontrolled rectification of the three-phase power frequency power supply, then filters the rectified output DC voltage, and finally uses pulse width modulation (PWM) technology to output a controllable AC voltage with adjustable voltage and frequency. The structure and technology of the frequency converter are complicated, and the cost is high, so it is not easy to popularize and promote in the field of soft starting of AC motors.

目前还存在着一种离散变频调压软起动技术,它利用晶闸管的半控特性,对三相工频交流电源,有选择的导通,从而形成50/nHz的电压(n=1,2,3...)波形。这种技术有三个重要缺点,第一,离散变频软起动器只能提供50Hz、25Hz、16.7Hz/3、12.5Hz等离散频率点的电压,属于分级离散变频软起动,每两级之间的切换依然存在冲击电流较大的情况,第二,离散变频软起动所提供电源谐波含量大,三相电压不平衡,实际上难以用于软起动,第三,离散变频软起动也存在着电流断续的缺点。 At present, there is still a discrete frequency variable voltage regulation soft start technology, which uses the semi-controlled characteristics of the thyristor to selectively conduct the three-phase power frequency AC power supply, thereby forming a 50/nHz voltage (n=1,2, 3...) Waveform. This technology has three important disadvantages. First, the discrete variable frequency soft starter can only provide voltages at discrete frequency points such as 50Hz, 25Hz, 16.7Hz/3, and 12.5Hz. It is a graded discrete variable frequency soft starter. Switching still has a large inrush current. Second, the power supply provided by the discrete frequency conversion soft start has a large harmonic content and unbalanced three-phase voltage. It is actually difficult to use it for soft start. Third, there is also a current Intermittent shortcomings.

综上所述,目前软起动技术普遍采用半控型器件晶闸管来实现降压软起动,存在着电流断续、脉动转矩分量较大、启动转矩低的特点。 To sum up, the current soft start technology generally uses semi-controlled device thyristors to achieve step-down soft start, which has the characteristics of intermittent current, large pulsating torque component, and low starting torque.

发明内容 Contents of the invention

本发明所解决的技术问题是提供一种交流电机起动电流连续,起动转矩脉动分量也大大减小,起动也更加平稳的三相交流斩波调压软起动器。 The technical problem solved by the present invention is to provide a three-phase AC chopper voltage-regulated soft starter with continuous starting current, greatly reduced starting torque ripple component and more stable starting.

为解决上述的技术问题,本发明采取的技术方案: For solving above-mentioned technical problem, the technical scheme that the present invention takes:

一种三相交流斩波调压软起动器,其特殊之处在于:包括三相交流电源、单片机、A相交流斩波调压电路、B相交流斩波调压电路、C相交流斩波调压电路、三相不可控整流桥、三相交流异步电动机,三相交流电源的第一路经A相交流斩波调压电路与三相交流异步电动机的A相连接,第二路经B相交流斩波调压电路与三相交流异步电动机的B相连接,第三路经C相交流斩波调压电路与三相交流异步电动机的C相连接;单片机的输出分三路连接,第一路同时与A相交流斩波调压电路、B相交流斩波调压电路、C相交流斩波调压电路连接,第二路与三相不可控整流桥直流侧接的绝缘栅极双极性晶体管连接,第三路与设置在A相交流斩波调压电路与三相交流异步电动机之间的电流互感器连接;三相不可控整流桥分三路分别连接在A相交流斩波调压电路与三相交流异步电动机的A相之间、B相交流斩波调压电路与三相交流异步电动机的B相之间、三相交流电源与三相交流异步电动机的的C相之间。 A three-phase AC chopper voltage-regulating soft starter, which is special in that it includes a three-phase AC power supply, a single-chip microcomputer, an A-phase AC chopper voltage-regulating circuit, a B-phase AC chopper voltage-regulating circuit, and a C-phase AC chopper Voltage regulating circuit, three-phase uncontrollable rectifier bridge, three-phase AC asynchronous motor, the first path of the three-phase AC power supply is connected to the A-phase of the three-phase AC asynchronous motor through the A-phase AC chopper voltage regulating circuit, and the second path is connected to the B-phase AC asynchronous motor. The phase AC chopper voltage regulating circuit is connected to the B phase of the three-phase AC asynchronous motor, and the third circuit is connected to the C phase of the three-phase AC asynchronous motor through the C-phase AC chopper voltage regulating circuit; the output of the single-chip microcomputer is connected in three ways. One path is simultaneously connected to the A-phase AC chopping and voltage-regulating circuit, the B-phase AC chopping and voltage-regulating circuit, and the C-phase AC chopping and voltage-regulating circuit; The polarity transistor is connected, and the third circuit is connected with the current transformer set between the A-phase AC chopper voltage regulating circuit and the three-phase AC asynchronous motor; the three-phase uncontrollable rectifier bridge is divided into three circuits and respectively connected to the A-phase AC chopper Between the voltage regulating circuit and the A phase of the three-phase AC asynchronous motor, between the B-phase AC chopper voltage regulating circuit and the B phase of the three-phase AC asynchronous motor, between the three-phase AC power supply and the C phase of the three-phase AC asynchronous motor between.

上述的单片机的输出与设置在A相交流斩波调压电路3与三相交流异步电动机之间的电流互感器连接。 The output of the above-mentioned single-chip microcomputer is connected with the current transformer arranged between the A-phase AC chopper voltage regulating circuit 3 and the three-phase AC asynchronous motor.

上述的A相交流斩波调压电路由绝缘栅双极性晶体管IGBT1、绝缘栅双极性晶体管IGBT2反并联构成。 The above-mentioned A-phase AC chopper voltage regulating circuit is composed of an insulated gate bipolar transistor IGBT1 and an insulated gate bipolar transistor IGBT2 connected in antiparallel.

上述的B相交流斩波调压电路由绝缘栅双极性晶体管IGBT3、绝缘栅双极性晶体管IGBT4反并联构成。 The above-mentioned B-phase AC chopper voltage regulating circuit is composed of an insulated gate bipolar transistor IGBT3 and an insulated gate bipolar transistor IGBT4 connected in antiparallel.

上述的C相交流斩波调压电路由绝缘栅双极性晶体管IGBT5、绝缘栅双极性晶体管IGBT6反并联构成。 The above-mentioned C-phase AC chopper voltage regulating circuit is composed of an insulated gate bipolar transistor IGBT5 and an insulated gate bipolar transistor IGBT6 connected in antiparallel.

上述的绝缘栅双极性晶体管IGBT1、绝缘栅双极性晶体管IGBT2、绝缘栅双极性晶体管IGBT3、绝缘栅双极性晶体管IGBT4、绝缘栅双极性晶体管IGBT5、绝缘栅双极性晶体管IGBT6的触发脉冲相同。 The above insulated gate bipolar transistor IGBT1, IGBT2, IGBT3, IGBT4, IGBT5, IGBT6 The trigger pulse is the same.

上述的三相不可控整流桥包括二极管D1、二极管D2、二极管D3、二极管D4、二极管D5、二极管D6,二极管D1和二极管D2串联构成第一级二极管,二极管D3和二极管D4串联构成第二级二极管,二极管D5和二极管D6串联构成第三级二极管,三级二极管并联构成三相不可控整流桥。 The above-mentioned three-phase uncontrollable rectifier bridge includes diode D1, diode D2, diode D3, diode D4, diode D5, and diode D6. Diode D1 and diode D2 are connected in series to form a first-stage diode, and diode D3 and diode D4 are connected in series to form a second-stage diode. , the diode D5 and the diode D6 are connected in series to form a third-stage diode, and the three-stage diodes are connected in parallel to form a three-phase uncontrollable rectifier bridge.

上述的A相交流斩波调压电路上连接有并联保护电路。 A parallel protection circuit is connected to the above-mentioned A-phase AC chopper voltage regulating circuit.

上述的B相交流斩波调压电路上连接有并联保护电路。 A parallel protection circuit is connected to the B-phase AC chopper voltage regulating circuit.

上述的C相交流斩波调压电路上连接有并联保护电路。 A parallel protection circuit is connected to the above-mentioned C-phase AC chopper voltage regulating circuit.

与现有技术相比,本发明的有益效果: Compared with prior art, the beneficial effect of the present invention:

本发明采用全控型器件绝缘栅极双极性晶体管(IGBT)来实现交流斩波调压技术。因为IGBT的触发脉冲周期远小于工频周期,交流电机起动电流虽然仍有较小的脉动,但是可以连续,起动转矩脉动分量也大大减小,起动也更加平稳。 The invention adopts the fully-controlled device insulated gate bipolar transistor (IGBT) to realize the AC chopping voltage regulation technology. Because the trigger pulse period of the IGBT is much smaller than the power frequency period, although the starting current of the AC motor still has small pulsations, it can be continuous, the starting torque pulsation component is also greatly reduced, and the starting is more stable.

附图说明 Description of drawings

图1为本发明的电路图。 Fig. 1 is the circuit diagram of the present invention.

具体实施方式 Detailed ways

  下面结合附图和具体实施方式对本发明进行详细说明。 Below in conjunction with accompanying drawing and specific embodiment the present invention is described in detail.

参见图1,本发明包括三相交流电源1、单片机2、A相交流斩波调压电路3、B相交流斩波调压电路4、C相交流斩波调压电路5、三相不可控整流桥6、三相交流异步电动机10,三相交流电源1的第一路经A相交流斩波调压电路3与三相交流异步电动机10的A相连接,第二路经B相交流斩波调压电路4与三相交流异步电动机10的B相连接,第三路经C相交流斩波调压电路5与三相交流异步电动机10的C相连接;单片机2的输出分三路连接,第一路同时与A相交流斩波调压电路3、B相交流斩波调压电路4、C相交流斩波调压电路5连接,第二路与三相不可控整流桥5直流侧接的绝缘栅极双极性晶体管6连接,第三路与设置在A相交流斩波调压电路3与三相交流异步电动机9之间的电流互感器8连接;三相不可控整流桥6分三路分别连接在A相交流斩波调压电路3与三相交流异步电动机10的A相之间、B相交流斩波调压电路4与三相交流异步电动机10的B相之间、C相交流斩波调压电路5与三相交流异步电动机10的的C相之间。 Referring to Fig. 1, the present invention includes a three-phase AC power supply 1, a single-chip microcomputer 2, an A-phase AC chopping voltage regulating circuit 3, a B-phase AC chopping voltage regulating circuit 4, a C-phase AC chopping voltage regulating circuit 5, and a three-phase uncontrollable The rectifier bridge 6, the three-phase AC asynchronous motor 10, the first path of the three-phase AC power supply 1 is connected to the A-phase of the three-phase AC asynchronous motor 10 through the A-phase AC chopper voltage regulating circuit 3, and the second path is connected to the B-phase AC chopper The wave voltage regulating circuit 4 is connected with the B phase of the three-phase AC asynchronous motor 10, and the third circuit is connected with the C phase of the three-phase AC asynchronous motor 10 through the C-phase AC chopper voltage regulating circuit 5; the output of the single-chip microcomputer 2 is connected in three ways , the first road is simultaneously connected with the A-phase AC chopping and voltage-regulating circuit 3, the B-phase AC chopping and voltage-regulating circuit 4, and the C-phase AC chopping and voltage-regulating circuit 5, and the second road is connected with the DC side of the three-phase uncontrollable rectifier bridge 5 connected to the insulated gate bipolar transistor 6, and the third circuit is connected to the current transformer 8 arranged between the A-phase AC chopper voltage regulator circuit 3 and the three-phase AC asynchronous motor 9; the three-phase uncontrollable rectifier bridge 6 Divided into three circuits, respectively connected between the A-phase AC chopper voltage regulator circuit 3 and the A phase of the three-phase AC asynchronous motor 10, between the B-phase AC chopper voltage regulator circuit 4 and the B phase of the three-phase AC asynchronous motor 10, Between the C-phase AC chopper voltage regulator circuit 5 and the C-phase of the three-phase AC asynchronous motor 10 .

上述的单片机2的输出与设置在A相交流斩波调压电路3与三相交流异步电动机10之间的电流互感器9连接。 The output of the above-mentioned single-chip microcomputer 2 is connected with the current transformer 9 arranged between the A-phase AC chopper voltage regulator circuit 3 and the three-phase AC asynchronous motor 10 .

上述的A相交流斩波调压电路3由绝缘栅双极性晶体管IGBT1、绝缘栅双极性晶体管IGBT2反并联构成。 The above-mentioned A-phase AC chopper voltage regulating circuit 3 is composed of an insulated gate bipolar transistor IGBT1 and an insulated gate bipolar transistor IGBT2 connected in antiparallel.

上述的B相交流斩波调压电路4由绝缘栅双极性晶体管IGBT3、绝缘栅双极性晶体管IGBT4反并联构成。 The above-mentioned B-phase AC chopper voltage regulator circuit 4 is composed of an insulated gate bipolar transistor IGBT3 and an insulated gate bipolar transistor IGBT4 connected in antiparallel.

上述的C相交流斩波调压电路5由绝缘栅双极性晶体管IGBT5、绝缘栅双极性晶体管IGBT6反并联构成。 The above-mentioned C-phase AC chopper voltage regulating circuit 5 is composed of an insulated gate bipolar transistor IGBT5 and an insulated gate bipolar transistor IGBT6 connected in antiparallel.

上述的绝缘栅双极性晶体管IGBT1、绝缘栅双极性晶体管IGBT2、绝缘栅双极性晶体管IGBT3、绝缘栅双极性晶体管IGBT4、绝缘栅双极性晶体管IGBT5、绝缘栅双极性晶体管IGBT6的触发脉冲相同。 The above insulated gate bipolar transistor IGBT1, IGBT2, IGBT3, IGBT4, IGBT5, IGBT6 The trigger pulse is the same.

上述的三相不可控整流桥6包括二极管D1、二极管D2、二极管D3、二极管D4、二极管D5、二极管D6,二极管D1和二极管D2串联构成第一级二极管,二极管D3和二极管D4串联构成第二级二极管,二极管D5和二极管D6串联构成第三级二极管,三级二极管并联构成三相不可控整流桥6。 The above-mentioned three-phase uncontrollable rectifier bridge 6 includes diode D1, diode D2, diode D3, diode D4, diode D5, and diode D6. Diode D1 and diode D2 are connected in series to form the first stage diode, and diode D3 and diode D4 are connected in series to form the second stage. The diodes, the diode D5 and the diode D6 are connected in series to form a third-stage diode, and the three-stage diodes are connected in parallel to form a three-phase uncontrollable rectifier bridge 6 .

上述的A相交流斩波调压电路3上连接有并联保护电路8。 A parallel protection circuit 8 is connected to the above-mentioned A-phase AC chopper voltage regulating circuit 3 .

上述的B相交流斩波调压电路4上连接有并联保护电路8。 A parallel protection circuit 8 is connected to the above-mentioned B-phase AC chopper voltage regulating circuit 4 .

上述的C相交流斩波调压电路5上连接有并联保护电路8。 A parallel protection circuit 8 is connected to the above-mentioned C-phase AC chopper voltage regulator circuit 5 .

在主电路结构上,采用六只绝缘栅极双极性晶体管,每两只反并联连接,构成三组A相交流斩波调压电路3、B相交流斩波调压电路4、C相交流斩波调压电路5,分别串接在三相交流电源1与三相交流异步电动机10的A相、B相、C相定子绕组之间。另用六只二极管,构成三相桥式不可控整流桥6,将三相不可控整流桥的交流侧连接在交流调压电路和三相交流异步电动机定子绕组之间,三相不可控整流桥的直流侧接一个绝缘栅极双极性晶体管7。为了保护绝缘栅极双极性晶体管,每个绝缘栅极双极性晶体管都并联有RC串联保护电路。为了检测并控制起动电流,在三相交流异步电动机侧的A相电源线上设置一个电流互感器9,电流互感器检测的电流信号送入单片机2。 In the structure of the main circuit, six insulated gate bipolar transistors are used, and each two are connected in anti-parallel to form three groups of A-phase AC chopping and voltage regulating circuit 3, B-phase AC chopping and voltage-regulating circuit 4, and C-phase AC The chopper voltage regulating circuit 5 is respectively connected in series between the three-phase AC power supply 1 and the A-phase, B-phase and C-phase stator windings of the three-phase AC asynchronous motor 10 . Another six diodes are used to form a three-phase bridge-type uncontrollable rectifier bridge 6, and the AC side of the three-phase uncontrollable rectifier bridge is connected between the AC voltage regulating circuit and the stator winding of the three-phase AC asynchronous motor, and the three-phase uncontrollable rectifier bridge The direct current side is connected with an insulated gate bipolar transistor 7. In order to protect the IGBTs, each IGBT is connected in parallel with an RC series protection circuit. In order to detect and control the starting current, a current transformer 9 is installed on the A-phase power line of the three-phase AC asynchronous motor side, and the current signal detected by the current transformer is sent to the single-chip microcomputer 2 .

在主电路控制上,单片机系统产生的控制脉冲有两路,一路脉冲触发A相交流斩波调压电路3、B相交流斩波调压电路4、C相交流斩波调压电路5三组组交流斩波调压装置,另一路脉冲触发三相不可控整流桥直流侧的绝缘栅极双极性晶体管7,两路脉冲正负完全相反,脉冲频率为1KHz。这样,在A相交流斩波调压电路3、B相交流斩波调压电路4、C相交流斩波调压电路5触发导通时刻,绝缘栅极双极性晶体管7关断,三相交流电源1给三相交流异步电动机供电,在A相交流斩波调压电路3、B相交流斩波调压电路4、C相交流斩波调压电路5关断时,绝缘栅极双极性晶体管7触发导通,三相交流异步电动机定子电流通过三相不可控整流桥6续流。 In the control of the main circuit, there are two control pulses generated by the single-chip microcomputer system, and one pulse triggers three groups of A-phase AC chopping and voltage-regulating circuit 3, B-phase AC chopping and voltage-regulating circuit 4, and C-phase AC chopping and voltage-regulating circuit 5 A set of AC chopper voltage regulating device, another pulse triggers the insulated gate bipolar transistor 7 on the DC side of the three-phase uncontrollable rectifier bridge, the positive and negative of the two pulses are completely opposite, and the pulse frequency is 1KHz. In this way, at the moment when the A-phase AC chopper voltage regulator circuit 3, the B-phase AC chopper voltage regulator circuit 4, and the C-phase AC chopper voltage regulator circuit 5 are turned on, the insulated gate bipolar transistor 7 is turned off, and the three-phase The AC power supply 1 supplies power to the three-phase AC asynchronous motor. When the A-phase AC chopping and voltage-regulating circuit 3, the B-phase AC chopping and voltage-regulating circuit 4, and the C-phase AC chopping and voltage-regulating circuit 5 are turned off, the insulating grid bipolar The transistor 7 is triggered and turned on, and the stator current of the three-phase AC asynchronous motor continues to flow through the three-phase uncontrollable rectifier bridge 6 .

在控制算法上,为了实现对三相交流异步电动机的软起动控制或软停车控制。具体有两种控制方式。其一,按预设曲线完成斜坡电压启动。也就是一种开环控制方式,这种情况可不设置电流互感器9,根据事先计算的最小电压Umin和起动时间,线性调节斩波调制脉冲的占空比α,直到α为100%,输出电压为三相交流电压的全额电压。此时,可通过另设的旁路三相交流接触器,将三相交流异步电动机切换到三相交流电源上。完成三相交流异步电动机的斜坡电压软起动。其二,恒流软起动。在单片机里预设最大允许起动电流Imax,通过电流互感器9检测当前实际电流I,在单片机系统内设置一个带限幅输出的数字PID控制器,PID控制器的输入为最大允许起动电流Imax与实际电流I的偏差,PID控制器的输出为斩波调制脉冲的占空比α,PID控制器的输出上限为100%,下限为0%。 In the control algorithm, in order to realize the soft start control or soft stop control of the three-phase AC asynchronous motor. Specifically, there are two control methods. First, ramp voltage startup is completed according to a preset curve. It is an open-loop control method. In this case, the current transformer 9 may not be installed. According to the pre-calculated minimum voltage Umin and the starting time, the duty ratio α of the chopping modulation pulse is linearly adjusted until α is 100%. The output voltage It is the full voltage of the three-phase AC voltage. At this time, the three-phase AC asynchronous motor can be switched to the three-phase AC power supply through an additional bypass three-phase AC contactor. Complete the ramp voltage soft start of the three-phase AC asynchronous motor. Second, constant current soft start. The maximum allowable starting current Imax is preset in the single-chip microcomputer, and the current actual current I is detected by the current transformer 9. A digital PID controller with a limiter output is set in the single-chip microcomputer system. The input of the PID controller is the maximum allowable starting current Imax and The deviation of the actual current I, the output of the PID controller is the duty cycle α of the chopping modulation pulse, the upper limit of the output of the PID controller is 100%, and the lower limit is 0%.

Figure 2012104376861100002DEST_PATH_IMAGE002
Figure 2012104376861100002DEST_PATH_IMAGE002

式中,T为电流采样周期,k为第k个采样周期,Ti为PID控制器积分时间常数,Td为PID控制器微分时间常数。 In the formula, T is the current sampling period, k is the kth sampling period, Ti is the integral time constant of the PID controller, and Td is the differential time constant of the PID controller.

如果实现三相交流异步电动机的软停车功能,可按斜坡电压软起动的相反方向调节斩波调制脉冲的占空比α,使α由100%逐步减小,此时输出交流电压的有效值逐步降低,直到实现软停车。 If the soft stop function of the three-phase AC asynchronous motor is realized, the duty cycle α of the chopper modulation pulse can be adjusted in the opposite direction of the slope voltage soft start, so that α gradually decreases from 100%, and the effective value of the output AC voltage gradually decreases. Lower until a soft stop is achieved.

将本发明与三相晶闸管调压软起动技术作仿真实验对比,实验对象选择额定功率15KW、额定电压400V、额定频率50Hz的三相交流异步电动机,电机负载取15Nm,实验环境,MatlabR2008a。 The present invention is compared with the three-phase thyristor voltage regulating soft start technology in the simulation experiment. The experimental object is a three-phase AC asynchronous motor with a rated power of 15KW, a rated voltage of 400V, and a rated frequency of 50Hz. The motor load is 15Nm. The experimental environment is MatlabR2008a.

对比1:相同输出基波电压有效值,相同负载。 Comparison 1: The same output fundamental voltage RMS, the same load.

三相晶闸管调压软起动,晶闸管触发角设置为90度,对称三相纯电阻负载时,输出线电压基波有效值为175.4V,总谐波含量:60.85%,起动电流150A。 Three-phase thyristor voltage regulation soft start, the thyristor trigger angle is set to 90 degrees, when the symmetrical three-phase pure resistance load is used, the effective value of the fundamental wave of the output line voltage is 175.4V, the total harmonic content: 60.85%, and the starting current is 150A.

三相斩波调压软起动,触发脉冲占空比取46%,输出线基波电压有效值175.4V,总谐波含量101%,起动电流130A。 Three-phase chopper voltage regulation soft start, the duty cycle of the trigger pulse is 46%, the effective value of the fundamental wave voltage of the output line is 175.4V, the total harmonic content is 101%, and the starting current is 130A.

由上面数据可以看出,在相同基波电压有效值下,两相斩波调制软起动的起动电流较小。虽然两相斩波调制软起动的谐波含量较大,但是其谐波主要为高次谐波(19次、21次、49次、51次等),产生的交流电流较小,对电机影响较小。 It can be seen from the above data that under the same effective value of the fundamental voltage, the starting current of the two-phase chopper modulation soft start is small. Although the harmonic content of the two-phase chopping modulation soft start is relatively large, its harmonics are mainly high-order harmonics (19th, 21st, 49th, 51st, etc.), and the generated AC current is small, which affects the motor. smaller.

对比2:在允许最大起动电流(5倍额定电流,150A)相同情况下,三相斩波调压软起动能起动最大负载为95Nm,而三相晶闸管调压软起动能起动最大负载为85Nm。 Comparison 2: Under the same maximum allowable starting current (5 times the rated current, 150A), the maximum load that the three-phase chopper voltage regulation soft start can start is 95Nm, while the three-phase thyristor voltage regulation soft start can start the maximum load is 85Nm.

Claims (10)

1. three-phase alternating current chopper control soft starter, it is characterized in that: comprise three-phase alternating-current supply (1), single-chip microcomputer (2), A cross streams voltage regulation circuit of chopping (3), B cross streams voltage regulation circuit of chopping (4), C cross streams voltage regulation circuit of chopping (5), the uncontrollable rectifier bridge of three-phase (6), three-phase AC asynchronous motor (10), the first via of three-phase alternating-current supply (1) is connected through the A of A cross streams voltage regulation circuit of chopping (3) with three-phase AC asynchronous motor (10), the second the tunnel is connected through the B of B cross streams voltage regulation circuit of chopping (4) with three-phase AC asynchronous motor (10), and Third Road is connected through the C of C cross streams voltage regulation circuit of chopping (5) with three-phase AC asynchronous motor (10); The output of single-chip microcomputer (2) divides three the tunnel to connect, the first via is connected with A cross streams voltage regulation circuit of chopping (3), B cross streams voltage regulation circuit of chopping (4), C cross streams voltage regulation circuit of chopping (5) simultaneously, the second the tunnel is connected with the insulated gate bipolar transistor (6) of the uncontrollable rectifier bridge of three-phase (5) direct current side joint, Third Road be arranged on A cross streams voltage regulation circuit of chopping (3) and be connected with current transformer (8) between the three-phase AC asynchronous motor (9); The A that the uncontrollable rectifier bridge of three-phase (6) Fen Sanlu is connected to A cross streams voltage regulation circuit of chopping (3) and three-phase AC asynchronous motor (10) mutually between, the B of B cross streams voltage regulation circuit of chopping (4) and three-phase AC asynchronous motor (10) mutually between, three-phase alternating-current supply (1) and three-phase AC asynchronous motor (10) the C phase between.
2. three-phase alternating current chopper control soft starter according to claim 1 is characterized in that: the output of described single-chip microcomputer (2) be arranged on A cross streams voltage regulation circuit of chopping (3) and be connected with current transformer (9) between the three-phase AC asynchronous motor (10).
3. three-phase alternating current chopper control soft starter according to claim 1 and 2, it is characterized in that: described A cross streams voltage regulation circuit of chopping (3) is made of insulated gate bipolar transistor IGBT1, insulated gate bipolar transistor IGBT2 inverse parallel.
4. three-phase alternating current chopper control soft starter according to claim 3, it is characterized in that: described B cross streams voltage regulation circuit of chopping (4) is made of insulated gate bipolar transistor IGBT3, insulated gate bipolar transistor IGBT4 inverse parallel.
5. three-phase alternating current chopper control soft starter according to claim 4, it is characterized in that: described C cross streams voltage regulation circuit of chopping (5) is made of insulated gate bipolar transistor IGBT5, insulated gate bipolar transistor IGBT6 inverse parallel.
6. three-phase alternating current chopper control soft starter according to claim 5, it is characterized in that: the trigger impulse of described insulated gate bipolar transistor IGBT1, insulated gate bipolar transistor IGBT2, insulated gate bipolar transistor IGBT3, insulated gate bipolar transistor IGBT4, insulated gate bipolar transistor IGBT5, insulated gate bipolar transistor IGBT6 is identical.
7. three-phase alternating current chopper control soft starter according to claim 6, it is characterized in that: the uncontrollable rectifier bridge of described three-phase (6) comprises diode D1, diode D2, diode D3, diode D4, diode D5, diode D6, diode D1 and diode D2 series connection consist of first order diode, diode D3 and diode D4 series connection consist of second level diode, diode D5 and diode D6 series connection consist of third level diode, and three grades of diodes in parallels consist of the uncontrollable rectifier bridge of three-phase (6).
8. three-phase alternating current chopper control soft starter according to claim 7 is characterized in that: be connected with parallel connection protection circuit (8) on the described A cross streams voltage regulation circuit of chopping (3).
9. three-phase alternating current chopper control soft starter according to claim 8 is characterized in that: be connected with parallel connection protection circuit (8) on the described B cross streams voltage regulation circuit of chopping (4).
10. three-phase alternating current chopper control soft starter according to claim 9 is characterized in that: be connected with parallel connection protection circuit (8) on the described C cross streams voltage regulation circuit of chopping (5).
CN2012104376861A 2012-11-06 2012-11-06 Three-phase chopper control soft starter Pending CN102916626A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2012104376861A CN102916626A (en) 2012-11-06 2012-11-06 Three-phase chopper control soft starter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2012104376861A CN102916626A (en) 2012-11-06 2012-11-06 Three-phase chopper control soft starter

Publications (1)

Publication Number Publication Date
CN102916626A true CN102916626A (en) 2013-02-06

Family

ID=47614885

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2012104376861A Pending CN102916626A (en) 2012-11-06 2012-11-06 Three-phase chopper control soft starter

Country Status (1)

Country Link
CN (1) CN102916626A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103633910A (en) * 2013-11-07 2014-03-12 陕西科技大学 Voltage space vector control device and control method for soft start
CN105099329A (en) * 2014-05-19 2015-11-25 洛克威尔自动控制技术股份有限公司 Quasi variable frequency motor controller
RU200924U1 (en) * 2020-07-28 2020-11-19 федеральное государственное бюджетное образовательное учреждение высшего образования "Алтайский государственный технический университет им. И.И. Ползунова" (АлтГТУ) Universal semiconductor switch for starting and speed control of low power three-phase electric motor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003056693A1 (en) * 2001-12-14 2003-07-10 Aarno Ahola Control apparatus for the starting of a three-phase high-voltage alternating-current motor
CN2681448Y (en) * 2004-02-12 2005-02-23 吴加林 A chopped mode soft starter for high-voltage motor
CN2768306Y (en) * 2004-06-16 2006-03-29 上海雷诺尔电气有限公司 Motor soft starter using silicon controlled ACVV
CN202889263U (en) * 2012-11-06 2013-04-17 陕西科技大学 Two-phase chopping voltage-regulating soft starter

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003056693A1 (en) * 2001-12-14 2003-07-10 Aarno Ahola Control apparatus for the starting of a three-phase high-voltage alternating-current motor
CN2681448Y (en) * 2004-02-12 2005-02-23 吴加林 A chopped mode soft starter for high-voltage motor
CN2768306Y (en) * 2004-06-16 2006-03-29 上海雷诺尔电气有限公司 Motor soft starter using silicon controlled ACVV
CN202889263U (en) * 2012-11-06 2013-04-17 陕西科技大学 Two-phase chopping voltage-regulating soft starter

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103633910A (en) * 2013-11-07 2014-03-12 陕西科技大学 Voltage space vector control device and control method for soft start
CN103633910B (en) * 2013-11-07 2019-08-23 陕西科技大学 A kind of space vector of voltage control device and its control method for soft start
CN105099329A (en) * 2014-05-19 2015-11-25 洛克威尔自动控制技术股份有限公司 Quasi variable frequency motor controller
CN105099329B (en) * 2014-05-19 2018-04-06 罗克韦尔自动化技术公司 Quasi- variable frequency motor controller
RU200924U1 (en) * 2020-07-28 2020-11-19 федеральное государственное бюджетное образовательное учреждение высшего образования "Алтайский государственный технический университет им. И.И. Ползунова" (АлтГТУ) Universal semiconductor switch for starting and speed control of low power three-phase electric motor

Similar Documents

Publication Publication Date Title
CN102232265B (en) Alternating current-direct current converting apparatus and apparatus for driving electric machinery
US20130176753A1 (en) Three Phase Active Rectifier System
US9252681B2 (en) Power converter with a first string having controllable semiconductor switches and a second string having switching modules
CN102255550B (en) Power supply splitting phase device based on three-phase bridge inverter circuit and control method thereof
Chen et al. A solid state variable capacitor with minimum capacitor
CN104734484A (en) Simple starting method for clamp double sub-module modular multilevel converter
Shu et al. Diode-clamped three-level multi-module cascaded converter based power electronic traction transformer
Itoh et al. A novel five-level three-phase PWM rectifier with reduced switch count
CN102684518B (en) High-frequency redundancy PWM (pulse-width modulation) rectifier device and method based on instantaneous current feedforward control
Tuan et al. Design and control of a three-phase T-type inverter using reverse-blocking IGBTs
CN104052314A (en) A Direct Power Control Method for Three-phase Voltage Type PWM Rectifier
CN102916626A (en) Three-phase chopper control soft starter
CN104734481B (en) A kind of voltage-source type PWM rectifier starts impact suppressing method
CN202889263U (en) Two-phase chopping voltage-regulating soft starter
CN106655263B (en) Control method of three-phase current source unit power factor PWM grid-connected inverter
CN205792314U (en) A kind of soft starter of continuous frequency conversion
CN202889262U (en) Complementary pulse two-phase voltage-regulating soft starter
CN102946217B (en) Two-phase chopper control soft starter
CN102916625B (en) Complementary pulse two-phase voltage regulation soft starter
CN202889264U (en) Two-phase chopping voltage-regulating soft starter
WO2002063755A1 (en) A waveform converting method and apparatus
Chelladurai et al. Performance evaluation of three phase scalar controlled PWM rectifier using different carrier and modulating signal
Babaei et al. A new structure of buck-boost Z-source converter based on ZH converter
Ambhorkar et al. Single phase AC-AC converter with improved power factor for efficient control of fan motors
CN103346683B (en) Parallel connection PWM rectifier zero sequence circulation control method

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20130206