CN102916061B - Micro-crystalline germanium and non-crystalline germanium heterogeneous absorption layer material with narrow band gap and application thereof - Google Patents
Micro-crystalline germanium and non-crystalline germanium heterogeneous absorption layer material with narrow band gap and application thereof Download PDFInfo
- Publication number
- CN102916061B CN102916061B CN201210435814.9A CN201210435814A CN102916061B CN 102916061 B CN102916061 B CN 102916061B CN 201210435814 A CN201210435814 A CN 201210435814A CN 102916061 B CN102916061 B CN 102916061B
- Authority
- CN
- China
- Prior art keywords
- germanium
- film
- microcrystalline
- amorphous
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 229910052732 germanium Inorganic materials 0.000 title claims abstract description 95
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 title claims abstract description 95
- 239000000463 material Substances 0.000 title claims abstract description 80
- 238000010521 absorption reaction Methods 0.000 title claims abstract description 29
- 239000010409 thin film Substances 0.000 claims abstract description 41
- 239000010408 film Substances 0.000 claims abstract description 23
- 238000001228 spectrum Methods 0.000 claims abstract description 23
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 16
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 16
- 239000010703 silicon Substances 0.000 claims abstract description 16
- 238000000151 deposition Methods 0.000 claims abstract description 9
- 239000000126 substance Substances 0.000 claims abstract description 5
- 238000000137 annealing Methods 0.000 claims abstract description 4
- 238000009832 plasma treatment Methods 0.000 claims abstract description 4
- 229910021417 amorphous silicon Inorganic materials 0.000 claims description 21
- 239000002131 composite material Substances 0.000 claims description 19
- 229910021424 microcrystalline silicon Inorganic materials 0.000 claims description 11
- LEVVHYCKPQWKOP-UHFFFAOYSA-N [Si].[Ge] Chemical compound [Si].[Ge] LEVVHYCKPQWKOP-UHFFFAOYSA-N 0.000 claims description 10
- 239000002184 metal Substances 0.000 claims description 7
- 239000006096 absorbing agent Substances 0.000 claims description 5
- 239000000203 mixture Substances 0.000 claims description 4
- 239000000758 substrate Substances 0.000 claims description 4
- 238000002834 transmittance Methods 0.000 claims description 3
- 238000006243 chemical reaction Methods 0.000 abstract description 10
- 230000003595 spectral effect Effects 0.000 abstract description 6
- 230000008901 benefit Effects 0.000 abstract description 5
- 230000004044 response Effects 0.000 abstract description 5
- 238000005516 engineering process Methods 0.000 description 7
- 230000007547 defect Effects 0.000 description 5
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 3
- 229910000078 germane Inorganic materials 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000000737 periodic effect Effects 0.000 description 2
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 229910000979 O alloy Inorganic materials 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 229910000577 Silicon-germanium Inorganic materials 0.000 description 1
- OBNDGIHQAIXEAO-UHFFFAOYSA-N [O].[Si] Chemical compound [O].[Si] OBNDGIHQAIXEAO-UHFFFAOYSA-N 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 238000002161 passivation Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000012495 reaction gas Substances 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- 229910021483 silicon-carbon alloy Inorganic materials 0.000 description 1
- 238000002230 thermal chemical vapour deposition Methods 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/547—Monocrystalline silicon PV cells
Landscapes
- Photovoltaic Devices (AREA)
Abstract
一种窄带隙微晶锗-非晶锗异质吸收层材料,是采用层递式循环沉积方法制备的由微晶锗薄膜和非晶锗薄膜交替生长的多层材料,微晶锗薄膜的厚度为20-50nm,非晶锗薄膜的厚度为1-10nm,然后进行等离子体处理或化学退火处理,如此循环沉积微晶锗薄膜和非晶锗薄膜,直至形成总厚度为50-1500nm的微晶锗-非晶锗异质薄膜;该窄带隙微晶锗-非晶锗异质吸收层材料可用于基于Ⅳ族薄膜材料的宽光谱四端叠层硅基薄膜太阳电池。本发明的优点是:可将薄膜太阳电池的光谱响应范围拓展至1800nm,在不增加设备成本的前提下便可获得基于Ⅳ族薄膜材料的新型宽光谱叠层太阳电池,更加充分地利用了太阳光谱,提高了电池的光电转换效率。
A narrow-bandgap microcrystalline germanium-amorphous germanium heterogeneous absorption layer material is a multi-layer material prepared by a layer-by-layer cycle deposition method by alternately growing microcrystalline germanium films and amorphous germanium films. The thickness of the microcrystalline germanium film is The thickness of the amorphous germanium film is 20-50nm, and the thickness of the amorphous germanium film is 1-10nm, and then undergoes plasma treatment or chemical annealing treatment, so that the microcrystalline germanium film and the amorphous germanium film are deposited cyclically until a microcrystalline film with a total thickness of 50-1500nm is formed Germanium-amorphous germanium heterogeneous thin film; the narrow bandgap microcrystalline germanium-amorphous germanium heterogeneous absorption layer material can be used for wide-spectrum four-terminal stacked silicon-based thin film solar cells based on group IV thin film materials. The advantages of the present invention are: the spectral response range of thin-film solar cells can be extended to 1800nm, and a new type of wide-spectrum laminated solar cell based on Group IV thin-film materials can be obtained without increasing equipment costs, making full use of the solar energy. Spectrum, improve the photoelectric conversion efficiency of the battery.
Description
【技术领域】【Technical field】
本发明涉及硅基薄膜太阳能电池技术领域,特别涉及一种窄带隙微晶锗-非晶锗异质吸收层材料及其应用。The invention relates to the technical field of silicon-based thin-film solar cells, in particular to a narrow-bandgap microcrystalline germanium-amorphous germanium heterogeneous absorption layer material and its application.
【技术背景】【technical background】
在太阳电池领域中,硅基薄膜太阳电池是受到广泛认可的低成本技术路线。传统意义上讲,硅基薄膜太阳电池是指以非晶硅、微晶硅、硅锗合金、硅碳合金、硅氧合金等薄膜材料为本征吸收层的太阳电池,普遍具有原材料消耗量低、易于大面积制备,制造成本、能耗低,且制造过程无毒、无污染等优势,目前已逐步走向产业化。In the field of solar cells, silicon-based thin-film solar cells are a widely recognized low-cost technical route. Traditionally speaking, silicon-based thin-film solar cells refer to solar cells with thin-film materials such as amorphous silicon, microcrystalline silicon, silicon-germanium alloys, silicon-carbon alloys, and silicon-oxygen alloys as intrinsic absorbing layers, which generally have low raw material consumption. , Easy to prepare in a large area, low manufacturing cost and energy consumption, and the manufacturing process is non-toxic and pollution-free, and has gradually moved towards industrialization.
采用不同带隙的吸收层材料制成多结叠层电池,是提高硅基薄膜太阳电池稳定效率的有效途径。目前,最为常见的叠层电池结构为非晶硅-微晶硅双结叠层、非晶硅-非晶硅锗-非晶硅锗和非晶硅-非晶硅锗-微晶硅三结叠层结构等。在上述结构中,首层、第二层和后续层具有递减的带隙,每一层吸收的太阳光谱波长则不断递增。It is an effective way to improve the stable efficiency of silicon-based thin film solar cells by using absorbing layer materials with different band gaps to make multi-junction laminated cells. At present, the most common stack cell structure is amorphous silicon-microcrystalline silicon double junction stack, amorphous silicon-amorphous silicon germanium-amorphous silicon germanium and amorphous silicon-amorphous silicon germanium-microcrystalline silicon triple junction laminated structure, etc. In the above structure, the first layer, the second layer and the subsequent layers have decreasing band gaps, and each layer absorbs increasing wavelengths of the solar spectrum.
但是,无论哪种电池结构,最底层电池的理论带隙均不低于1.1eV,从而将太阳电池的长波光谱吸收限制在1100nm,仅能利用AM1.5标准太阳光谱总辐射量的约80%,造成一定的光损失。因此,拓展光谱吸收范围,成为进一步提高硅基薄膜太阳电池效率的关键。However, regardless of the cell structure, the theoretical bandgap of the bottom cell is not lower than 1.1eV, thus limiting the long-wave spectrum absorption of the solar cell to 1100nm, which can only utilize about 80% of the total radiation of the AM1.5 standard solar spectrum , resulting in a certain loss of light. Therefore, expanding the spectral absorption range has become the key to further improving the efficiency of silicon-based thin film solar cells.
【发明内容】【Content of invention】
本发明的目的是针对上述存在问题,提供一种窄带隙微晶锗-非晶锗异质吸收层材料及其应用,该材料可吸收大于1100nm波长,应用于基于Ⅳ族薄膜材料的四端叠层太阳电池,结构新颖,能够拓展近红外区域的太阳电池光谱响应,最大限度地利用太阳光谱。The purpose of the present invention is to address the above existing problems, to provide a narrow-bandgap microcrystalline germanium-amorphous germanium heterogeneous absorption layer material and its application, the material can absorb wavelengths greater than 1100nm, and is applied to four-terminal stacks based on group IV thin film materials The multi-layer solar cell has a novel structure, which can expand the spectral response of the solar cell in the near-infrared region and maximize the use of the solar spectrum.
本发明的技术方案:Technical scheme of the present invention:
一种窄带隙微晶锗-非晶锗异质吸收层材料,是采用层递式循环沉积方法制备的由微晶锗薄膜和非晶锗薄膜交替生长的多层材料,微晶锗薄膜的厚度为20-50nm,其内部结晶成分占全部材料的体积百分比为40-80%,晶粒尺寸为15-40nm,之后沉积非晶锗薄膜的厚度为1-10nm,然后进行等离子体处理或化学退火处理,如此循环沉积微晶锗薄膜和非晶锗薄膜,直至形成总厚度为50-1500nm的微晶锗-非晶锗异质薄膜,即为窄带隙微晶锗-非晶锗异质吸收层材料。A narrow-bandgap microcrystalline germanium-amorphous germanium heterogeneous absorption layer material is a multi-layer material prepared by a layer-by-layer cycle deposition method by alternately growing microcrystalline germanium films and amorphous germanium films. The thickness of the microcrystalline germanium film is It is 20-50nm, and its internal crystalline composition accounts for 40-80% of the volume of the total material, and the grain size is 15-40nm. After that, the thickness of the amorphous germanium film is 1-10nm, and then plasma treatment or chemical annealing treatment, so that the microcrystalline germanium thin film and amorphous germanium thin film are deposited cyclically until a microcrystalline germanium-amorphous germanium heterogeneous thin film with a total thickness of 50-1500nm is formed, which is a narrow bandgap microcrystalline germanium-amorphous germanium heterogeneous absorption layer Material.
一种所述窄带隙微晶锗-非晶锗异质吸收层材料的应用,用于基于Ⅳ族薄膜材料的宽光谱四端叠层硅基薄膜太阳电池,该太阳电池由衬底、金属电极、透明导电电极、底端电池的n型掺杂层、微晶锗-非晶锗异质吸收层、底端电池的p型掺杂层、透明导电与栅线复合电极、中间透明绝缘层、透明导电与栅线复合电极、微晶硅电池、非晶硅锗电池、非晶硅电池和透明导电与栅线复合电极叠加构成,其中金属电极、透明导电电极、底端电池的n型掺杂层、微晶锗-非晶锗异质吸收层、底端电池的p型掺杂层和透明导电与栅线复合电极构成以微晶锗-非晶锗异质材料为吸收层的薄膜太阳电池的底端电池,用于吸收1100-1800nm波段的长波太阳光谱,透明导电与栅线复合电极、微晶硅电池、非晶硅锗电池、非晶硅电池和透明导电与栅线复合电极构成传统的硅基薄膜叠层顶端电池,用于吸收300-1100nm波段的太阳光谱,底端电池和顶端电池各有电池两极并设有四个引出端,底端电池和顶端电池之间以透明绝缘层相连,其电阻率高于1010Ωcm、1100-1800nm波段透过率高于60%、折射率为1.5-3.0。An application of the narrow-bandgap microcrystalline germanium-amorphous germanium heterogeneous absorption layer material for a wide-spectrum four-terminal stacked silicon-based thin-film solar cell based on group IV thin-film materials, the solar cell consists of a substrate, a metal electrode , transparent conductive electrode, n-type doped layer of the bottom cell, microcrystalline germanium-amorphous germanium heterogeneous absorption layer, p-type doped layer of the bottom cell, transparent conductive and gate line compound electrode, intermediate transparent insulating layer, Transparent conduction and gate line composite electrode, microcrystalline silicon battery, amorphous silicon germanium battery, amorphous silicon battery and transparent conduction and gate line composite electrode are superimposed, in which the n-type doping of the metal electrode, transparent conductive electrode, and bottom cell layer, microcrystalline germanium-amorphous germanium heterogeneous absorption layer, p-type doped layer of the bottom cell, and transparent conductive and gate line composite electrode constitute a thin-film solar cell with microcrystalline germanium-amorphous germanium heterogeneous material as the absorption layer The bottom end of the battery is used to absorb the long-wave solar spectrum in the 1100-1800nm band. Transparent conductive and grid line composite electrodes, microcrystalline silicon cells, amorphous silicon germanium cells, amorphous silicon cells, and transparent conductive and grid line composite electrodes constitute the traditional The silicon-based thin-film laminated top battery is used to absorb the solar spectrum in the 300-1100nm band. The bottom battery and the top battery each have battery poles and four lead-out terminals. There is a transparent insulating layer between the bottom battery and the top battery. Connected, the resistivity is higher than 1010Ωcm, the transmittance in the 1100-1800nm band is higher than 60%, and the refractive index is 1.5-3.0.
本发明的工作原理:Working principle of the present invention:
采用层递式沉积方法制备的新型微晶锗-非晶锗异质吸收层材料,具有优异的光电转换能力。这是因为,具有单一成分的微晶锗材料,在生长过程中随着厚度的增加而不断累积晶界缺陷,缺陷态密度的大幅增加使载流子输运特性变差,进而使材料失去吸收光子并将其转换成电子的能力。采用层递式沉积方法,在沉积一定厚度的微晶锗材料后,沉积一层非晶锗薄层,并结合一定的等离子体处理或者化学退火处理技术,可以有效减缓因晶粒长大、交联而形成的晶界缺陷,达到钝化晶界缺陷的目的。另外,周期性的微晶锗-非晶锗异质结构是一种多量子阱材料,带隙为1.1eV的非晶锗材料构成电子和空穴的势垒,通过改变非晶锗层的厚度,可以调节微晶锗-非晶锗异质吸收层材料的带隙,使之在0.70-1.10eV之间变化,达到拓展电池近红外区域光谱响应的目的。A novel microcrystalline germanium-amorphous germanium heterogeneous absorption layer material prepared by a layer-by-layer deposition method has excellent photoelectric conversion capability. This is because the microcrystalline germanium material with a single composition accumulates grain boundary defects as the thickness increases during the growth process, and the large increase in the defect state density makes the carrier transport characteristics worse, and the material loses absorption. The ability to convert photons into electrons. Using the layer-by-layer deposition method, after depositing a certain thickness of microcrystalline germanium material, a thin layer of amorphous germanium is deposited, combined with a certain plasma treatment or chemical annealing treatment technology, which can effectively slow down the growth of grains and crossover. The grain boundary defects formed by the combination can achieve the purpose of passivating the grain boundary defects. In addition, the periodic microcrystalline germanium-amorphous germanium heterostructure is a multi-quantum well material. The amorphous germanium material with a band gap of 1.1eV constitutes a barrier for electrons and holes. By changing the thickness of the amorphous germanium layer , the band gap of the microcrystalline germanium-amorphous germanium heterogeneous absorption layer material can be adjusted to change between 0.70-1.10eV, so as to achieve the purpose of expanding the spectral response of the near-infrared region of the battery.
为了充分发挥微晶锗-非晶锗异质吸收层材料的窄带隙优势,提高电池转换效率,我们提出一种新颖的四端叠层电池结构设计。硅基薄膜叠层太阳电池的传统结构是,带隙由宽到窄的不同子电池分别吸收由短波到长波的太阳光谱,各个子电池之间以隧穿结的形式串联结合,实现电流的输运。然而,若将窄带隙微晶锗-非晶锗异质吸收层材料直接用于传统结构的硅基薄膜叠层太阳电池中,由于受到叠层电池电流匹配原则的限制,在开路电压相对较低的前提下无法真正提高叠层电池的转换效率。采用新颖的四端叠层电池结构,以绝缘性透明中间层材料代替传统的n/p隧穿结,实现顶端电池与底端电池的物理连接以及电学分隔,使顶端电池与底端电池可以分别吸收300-1100nm和1100-1800nm波段的太阳光谱,在电学上互不影响,摆脱了叠层电池电流匹配原则的限制;另一方面,低折射率的透明氧化物绝缘层,具有光管理的功能,起到中间反射层的作用,对入射光进行选择性再分配,将适合的短波长光反射回到顶端电池,同时保证适合底端电池利用的光能够有效地透射,最终使微晶锗-非晶锗异质吸收层材料的窄带隙优势得到充分发挥。In order to give full play to the narrow bandgap advantage of the microcrystalline germanium-amorphous germanium heterogeneous absorber material and improve the conversion efficiency of the battery, we propose a novel four-terminal stacked battery structure design. The traditional structure of silicon-based thin-film stacked solar cells is that different sub-cells with band gaps ranging from wide to narrow absorb the solar spectrum from short-wave to long-wave respectively, and the sub-cells are connected in series in the form of tunnel junctions to realize current transmission. transport. However, if the narrow-bandgap microcrystalline germanium-amorphous germanium hetero-absorption layer material is directly used in a silicon-based thin-film stacked solar cell with a traditional structure, due to the limitation of the current matching principle of the stacked cell, the open circuit voltage is relatively low. It is impossible to really improve the conversion efficiency of the laminated battery under the premise. A novel four-terminal laminated battery structure is adopted, and the traditional n/p tunnel junction is replaced by an insulating transparent intermediate layer material to realize the physical connection and electrical separation of the top battery and the bottom battery, so that the top battery and the bottom battery can be separated. Absorbing the solar spectrum in the 300-1100nm and 1100-1800nm bands does not affect each other electrically and gets rid of the limitation of the current matching principle of laminated batteries; on the other hand, the transparent oxide insulating layer with low refractive index has the function of light management , plays the role of the middle reflective layer, selectively redistributes the incident light, reflects the suitable short-wavelength light back to the top cell, and at the same time ensures that the light suitable for the bottom cell can be effectively transmitted, and finally makes microcrystalline germanium- The advantage of the narrow bandgap of the amorphous germanium heterogeneous absorption layer material has been fully utilized.
本发明的优点和有益效果是:研发制备出一种用于薄膜太阳电池的新型吸收层材料,即基于晶界钝化技术的周期性窄带隙微晶锗-非晶锗异质吸收层材料,该材料具有低缺陷态密度的特征,并且带隙可在0.70-1.10eV之间连续可调,可将薄膜太阳电池的光谱响应范围拓展至1800nm,实现宽光谱吸收,可有效利用AM1.5太阳光谱总辐射量的95%;该材料用于基于Ⅳ族薄膜材料的宽光谱四端叠层电池,可充分发挥窄带隙微晶锗-非晶锗异质吸收层材料在拓展光谱响应范围方面的优势,并且与传统的硅基薄膜叠层电池技术相兼容,使两者有机结合,在不增加设备成本的前提下便可获得基于Ⅳ族薄膜材料的新型宽光谱太阳电池,更加充分地利用了太阳光谱,提高了电池的光电转换效率。The advantages and beneficial effects of the present invention are: research and development and preparation of a new type of absorber material for thin film solar cells, that is, a periodic narrow-bandgap microcrystalline germanium-amorphous germanium heterogeneous absorber material based on grain boundary passivation technology, The material has the characteristics of low defect state density, and the bandgap can be continuously adjusted between 0.70-1.10eV, which can extend the spectral response range of thin-film solar cells to 1800nm, realize broad-spectrum absorption, and can effectively utilize AM1.5 solar energy 95% of the total radiation of the spectrum; this material is used in a wide-spectrum four-terminal laminated battery based on group IV thin film materials, which can give full play to the narrow bandgap microcrystalline germanium-amorphous germanium heterogeneous absorption layer material in expanding the spectral response range advantages, and is compatible with the traditional silicon-based thin-film stack cell technology, so that the two can be organically combined, and a new wide-spectrum solar cell based on group IV thin-film materials can be obtained without increasing equipment costs, making full use of The solar spectrum improves the photoelectric conversion efficiency of the battery.
【附图说明】【Description of drawings】
图1为窄带隙微晶锗-非晶锗异质吸收层材料结构示意图。Fig. 1 is a schematic diagram of the structure of a narrow-bandgap microcrystalline germanium-amorphous germanium heterogeneous absorption layer material.
图中:1.微晶锗材料i1 2.非晶锗材料i2In the picture: 1. Microcrystalline germanium material i1 2. Amorphous germanium material i2
3.微晶锗材料i1 4.非晶锗材料i23. Microcrystalline germanium material i1 4. Amorphous germanium material i2
5.微晶锗材料i1 6.非晶锗材料i25. Microcrystalline germanium material i1 6. Amorphous germanium material i2
7.微晶锗材料i1 8.非晶锗材料i27. Microcrystalline germanium material i1 8. Amorphous germanium material i2
9.微晶锗材料i1 10.非晶锗材料i29. Microcrystalline germanium material i1 10. Amorphous germanium material i2
11.微晶锗材料i1 12.非晶锗材料i211. Microcrystalline germanium material i1 12. Amorphous germanium material i2
13.微晶锗材料i1 14.非晶锗材料i213. Microcrystalline germanium material i1 14. Amorphous germanium material i2
15.微晶锗材料i1 16.非晶锗材料i215. Microcrystalline germanium material i1 16. Amorphous germanium material i2
17.微晶锗材料i1 18.非晶锗材料i217. Microcrystalline germanium material i1 18. Amorphous germanium material i2
19.微晶锗材料i1 20.非晶锗材料i219. Microcrystalline germanium material i1 20. Amorphous germanium material i2
21.微晶锗材料i1 22.非晶锗材料i221. Microcrystalline germanium material i1 22. Amorphous germanium material i2
23.微晶锗材料i1 24.非晶锗材料i223. Microcrystalline germanium material i1 24. Amorphous germanium material i2
25.微晶锗材料i1 26.非晶锗材料i225. Microcrystalline germanium material i1 26. Amorphous germanium material i2
图2是基于Ⅳ族薄膜材料的宽光谱四端叠层电池结构示意图。Fig. 2 is a schematic diagram of the structure of a wide-spectrum four-terminal laminate battery based on group IV thin film materials.
图中:27.衬底 28.金属电极 29.透明导电电极 30.底端电池的n型掺杂层31.窄带隙微晶锗-非晶锗异质吸收层 32.底端电池的p型掺杂层33.透明导电与栅线复合电极 34.透明绝缘层 35.透明导电与栅线复合电极36.微晶硅电池 37.非晶硅锗电池 38.非晶硅电池 39.透明导电与栅线复合电极In the figure: 27. Substrate 28. Metal electrode 29. Transparent conductive electrode 30. N-type doped layer of bottom cell 31. Narrow band gap microcrystalline germanium-amorphous germanium heterogeneous absorption layer 32. P-type bottom cell Doped layer 33. Transparent conductive and grid line composite electrode 34. Transparent insulating layer 35. Transparent conductive and grid line composite electrode 36. Microcrystalline silicon battery 37. Amorphous silicon germanium battery 38. Amorphous silicon battery 39. Transparent conductive and grid compound electrode
【具体实施方式】【Detailed ways】
实施例:Example:
一种窄带隙微晶锗-非晶锗异质吸收层材料,如图1所示,是采用层递式循环沉积方法制备的由微晶锗薄膜和非晶锗薄膜交替生长的多层材料,其中微晶锗薄膜1、3、5、7、9、11、13、15、17、19、21、23、25采用等离子辅助反应热CVD技术制备,即通过锗烷和氢气的化学反应在沉积温度为250-350℃下制备,气体体积流量百分比是:锗烷占0.1-2%、氢气为余量,微晶锗薄膜的厚度为45nm,其内部结晶成分占全部材料的体积百分比为60%,晶粒尺寸为30nm,带隙为0.7-0.8eV;非晶锗薄膜2、4、6、8、10、12、14、16、18、20、22、24、26采用等离子体增强化学气相沉积技术制备,反应气体为纯锗烷,反应温度为250-300℃,薄膜厚度为5nm;微晶锗-非晶锗异质薄膜的总厚度为650nm。A narrow-bandgap microcrystalline germanium-amorphous germanium heterogeneous absorption layer material, as shown in Figure 1, is a multi-layer material that is alternately grown by microcrystalline germanium thin films and amorphous germanium thin films prepared by a layer-by-layer cyclic deposition method, Among them, the microcrystalline germanium films 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, and 25 were prepared by plasma-assisted reactive thermal CVD technology, that is, the chemical reaction between germane and hydrogen was deposited on the The temperature is 250-350°C, the gas volume flow percentage is: germane accounts for 0.1-2%, hydrogen is the balance, the thickness of the microcrystalline germanium film is 45nm, and its internal crystal composition accounts for 60% of the volume of the whole material. , with a grain size of 30nm and a band gap of 0.7-0.8eV; amorphous germanium films 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, and 26 use plasma-enhanced chemical vapor phase Prepared by deposition technology, the reaction gas is pure germane, the reaction temperature is 250-300°C, the film thickness is 5nm; the total thickness of the microcrystalline germanium-amorphous germanium heterogeneous film is 650nm.
将该窄带隙微晶锗-非晶锗异质吸收层材料用于基于Ⅳ族薄膜材料的宽光谱四端叠层硅基薄膜太阳电池,该太阳电池由衬底27、金属电极28、透明导电电极29、底端电池的n型掺杂层30、微晶锗-非晶锗异质吸收层31、底端电池的p型掺杂层32、透明导电与栅线复合电极33、透明绝缘层34、透明导电与栅线复合电极35、微晶硅电池36、非晶硅锗电池37、非晶硅电池38和透明导电与栅线复合电极39叠加构成,其中金属电极28、透明导电电极29、底端电池的n型掺杂层30、微晶锗-非晶锗异质吸收层31、底端电池的p型掺杂层32和透明导电与栅线复合电极33构成以微晶锗-非晶锗异质材料为吸收层的薄膜太阳电池的底端电池,用于吸收1100-1800nm波段的长波太阳光谱,透明导电与栅线复合电极35、微晶硅电池36、非晶硅锗电池37、非晶硅电池38和透明导电与栅线复合电极39构成传统的硅基薄膜叠层顶端电池,用于吸收300-1100nm波段的太阳光谱,底端电池和顶端电池各有电池两极并设有四个引出端28、33、35、39,底端电池和顶端电池之间以透明绝缘层34相连,其电阻率高于1010Ωcm、1100-1800nm波段透过率高于60%、折射率为1.5-3.0。The narrow-bandgap microcrystalline germanium-amorphous germanium heterogeneous absorption layer material is used in a wide-spectrum four-terminal stacked silicon-based thin-film solar cell based on group IV thin-film materials. The solar cell consists of a substrate 27, a metal electrode 28, a transparent conductive Electrode 29, n-type doped layer 30 of the bottom cell, microcrystalline germanium-amorphous germanium heterogeneous absorption layer 31, p-type doped layer 32 of the bottom cell, transparent conductive and gate line composite electrode 33, transparent insulating layer 34. Transparent conductive and gate line composite electrode 35, microcrystalline silicon battery 36, amorphous silicon germanium battery 37, amorphous silicon battery 38 and transparent conductive and grid line composite electrode 39 are superimposed to form, wherein metal electrode 28, transparent conductive electrode 29 , the n-type doped layer 30 of the bottom cell, the microcrystalline germanium-amorphous germanium heterogeneous absorption layer 31, the p-type doped layer 32 of the bottom cell, and the transparent conductive and gate line composite electrode 33 are composed of microcrystalline germanium-amorphous germanium The bottom cell of the thin-film solar cell with amorphous germanium heterogeneous material as the absorbing layer is used to absorb the long-wave solar spectrum in the 1100-1800nm band, transparent conductive and gate line composite electrode 35, microcrystalline silicon cell 36, amorphous silicon germanium cell 37. Amorphous silicon battery 38 and transparent conduction and gate line composite electrode 39 constitute a traditional silicon-based thin film laminated top battery, which is used to absorb the solar spectrum in the 300-1100nm band. The bottom battery and the top battery each have battery poles and are arranged There are four lead-out terminals 28, 33, 35, 39, the bottom cell and the top cell are connected by a transparent insulating layer 34, the resistivity is higher than 1010 Ωcm, the transmittance in the 1100-1800nm band is higher than 60%, and the refraction The rate is 1.5-3.0.
该实施例中涉及的中间透明绝缘层材料为氢化非晶硅氧材料,采用等离子体增强化学气相沉积技术制备,即通过硅烷、二氧化碳和氢气的化学反应在沉积温度为200℃下制备,厚度为500nm,折射率为2.0-2.5。微晶硅电池37、非晶硅锗电池38和非晶硅电池39采用等离子体增强化学气相沉积技术制备,其串联得到的传统叠层硅基薄膜太阳电池可以达到12-13%的转换效率,与底端电池相结合,可以使基于Ⅳ族薄膜材料的四端叠层电池转换效率达到13-14%。The material of the intermediate transparent insulating layer involved in this embodiment is a hydrogenated amorphous silicon oxide material, which is prepared by plasma-enhanced chemical vapor deposition technology, that is, it is prepared by the chemical reaction of silane, carbon dioxide and hydrogen at a deposition temperature of 200°C, with a thickness of 500nm, the refractive index is 2.0-2.5. The microcrystalline silicon cell 37, the amorphous silicon germanium cell 38 and the amorphous silicon cell 39 are prepared by plasma-enhanced chemical vapor deposition technology, and the traditional stacked silicon-based thin-film solar cells obtained in series can achieve a conversion efficiency of 12-13%. Combined with the bottom cell, the conversion efficiency of the four-terminal stacked cell based on group IV thin film materials can reach 13-14%.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210435814.9A CN102916061B (en) | 2012-11-05 | 2012-11-05 | Micro-crystalline germanium and non-crystalline germanium heterogeneous absorption layer material with narrow band gap and application thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210435814.9A CN102916061B (en) | 2012-11-05 | 2012-11-05 | Micro-crystalline germanium and non-crystalline germanium heterogeneous absorption layer material with narrow band gap and application thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102916061A CN102916061A (en) | 2013-02-06 |
CN102916061B true CN102916061B (en) | 2014-12-03 |
Family
ID=47614365
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201210435814.9A Expired - Fee Related CN102916061B (en) | 2012-11-05 | 2012-11-05 | Micro-crystalline germanium and non-crystalline germanium heterogeneous absorption layer material with narrow band gap and application thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102916061B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105304751B (en) * | 2015-09-18 | 2018-01-02 | 新奥光伏能源有限公司 | A kind of heterojunction solar battery and preparation method thereof, surface passivation method |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101931017A (en) * | 2010-08-24 | 2010-12-29 | 江苏绿洲新能源有限公司 | Solar battery with intermediate band and method for generating quantum dot structure absorbing layer |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11261102A (en) * | 1998-03-10 | 1999-09-24 | Canon Inc | Photovoltaic device |
JP2004335733A (en) * | 2003-05-07 | 2004-11-25 | National Institute Of Advanced Industrial & Technology | Thin film solar cell |
JP5222434B2 (en) * | 2010-02-24 | 2013-06-26 | 株式会社カネカ | Thin film photoelectric conversion device and manufacturing method thereof |
-
2012
- 2012-11-05 CN CN201210435814.9A patent/CN102916061B/en not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101931017A (en) * | 2010-08-24 | 2010-12-29 | 江苏绿洲新能源有限公司 | Solar battery with intermediate band and method for generating quantum dot structure absorbing layer |
Non-Patent Citations (2)
Title |
---|
JP特开2004-335733A 2004.11.25 * |
JP特开平11-261102A 1999.09.24 * |
Also Published As
Publication number | Publication date |
---|---|
CN102916061A (en) | 2013-02-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
GB2559800B (en) | Multijunction photovoltaic device | |
CN207320169U (en) | A kind of perovskite battery of graded bandgap | |
CN101872793B (en) | Laminated solar cell and manufacturing method thereof | |
CN103077980B (en) | A kind of copper-indium-galliun-selenium film solar cell and preparation method thereof | |
CN104979474A (en) | Laminated solar battery based on perovskite battery and HIT battery and manufacturing method | |
CN105895746A (en) | Crystalline silicon heterojunction solar cell with lamination anti-reflection performance and preparation method thereof | |
CN107507928A (en) | A kind of regulation and control perovskite/silicon laminated cell Zhong Ding, the method for bottom cell light currents match | |
CN102341919B (en) | Solar cell | |
CN101237000A (en) | Nanocrystalline silicon and amorphous germanium mixed absorption layer of multi-junction photovoltaic device based on thin-film silicon | |
CN100580959C (en) | Amorphous thin-film solar cells with visible-infrared absorption | |
CN106409961B (en) | n-Si/CdSSe laminated solar cell and preparation method thereof | |
CN103219413A (en) | Graphene radial heterojunction solar cell and preparation method thereof | |
CN103872167B (en) | Silicon-based thin-film solar battery and preparation method thereof | |
CN102117860B (en) | Three-laminated-layer thin film solar cell and preparation method thereof | |
WO2023077763A1 (en) | Metal oxide doped layer and preparation method therefor, and solar cell and preparation method therefor | |
CN106684179A (en) | Antimony selenide double-junction thin-film solar cell and preparation method thereof | |
CN103137768B (en) | Photovoltaic device in double-absorption-layer PIN structure and manufacture method thereof | |
CN104867997A (en) | Laminated solar cell and preparation method thereof | |
CN107681020A (en) | A method to improve the long-wavelength photoresponse of planar silicon heterojunction solar cells | |
CN101393942A (en) | Polycrystalline silicon-silicon carbide stacked thin film solar cells | |
CN102916061B (en) | Micro-crystalline germanium and non-crystalline germanium heterogeneous absorption layer material with narrow band gap and application thereof | |
CN102938430B (en) | Comprise the silica-based many knot stacked solar cell, cascade solar cells of flexible substrate and the manufacture method thereof in intermediate layer | |
CN107195714A (en) | A kind of lamination solar cell containing graphical optical isolation layer | |
CN102157596A (en) | Barrier type silicon-based thin film semi-laminated solar cell | |
CN217182188U (en) | A perovskite/perovskite/silicon-germanium-based triple junction solar cell |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20141203 Termination date: 20151105 |
|
EXPY | Termination of patent right or utility model |