CN102913399A - Plasma flow control method for reducing the wake loss of a wind turbine - Google Patents
Plasma flow control method for reducing the wake loss of a wind turbine Download PDFInfo
- Publication number
- CN102913399A CN102913399A CN201210438570XA CN201210438570A CN102913399A CN 102913399 A CN102913399 A CN 102913399A CN 201210438570X A CN201210438570X A CN 201210438570XA CN 201210438570 A CN201210438570 A CN 201210438570A CN 102913399 A CN102913399 A CN 102913399A
- Authority
- CN
- China
- Prior art keywords
- plasma
- wind turbine
- control method
- flow control
- reducing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 29
- 229910052751 metal Inorganic materials 0.000 claims abstract description 26
- 239000002184 metal Substances 0.000 claims abstract description 26
- 230000005284 excitation Effects 0.000 claims abstract description 25
- 239000011810 insulating material Substances 0.000 claims abstract description 17
- 150000002500 ions Chemical class 0.000 claims abstract description 4
- 230000007935 neutral effect Effects 0.000 claims abstract description 4
- 230000003068 static effect Effects 0.000 claims abstract description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 3
- 229910052802 copper Inorganic materials 0.000 claims description 3
- 239000010949 copper Substances 0.000 claims description 3
- -1 polytetrafluoroethylene Polymers 0.000 claims description 3
- 229920001343 polytetrafluoroethylene Polymers 0.000 claims description 3
- 239000004810 polytetrafluoroethylene Substances 0.000 claims description 3
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 2
- 229910000831 Steel Inorganic materials 0.000 claims description 2
- 239000000919 ceramic Substances 0.000 claims description 2
- 238000009434 installation Methods 0.000 claims description 2
- 229910052750 molybdenum Inorganic materials 0.000 claims description 2
- 239000011733 molybdenum Substances 0.000 claims description 2
- 239000010959 steel Substances 0.000 claims description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 2
- 229910052721 tungsten Inorganic materials 0.000 claims description 2
- 239000010937 tungsten Substances 0.000 claims description 2
- 238000000926 separation method Methods 0.000 claims 1
- 238000010586 diagram Methods 0.000 description 5
- 230000005611 electricity Effects 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 3
- 238000010248 power generation Methods 0.000 description 3
- 230000009471 action Effects 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 230000000630 rising effect Effects 0.000 description 2
- 239000002028 Biomass Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000004083 survival effect Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- Y02E10/722—
Landscapes
- Plasma Technology (AREA)
Abstract
一种减小风力机尾迹损失的等离子体流动控制方法:在绝缘材料两侧非对称地布置两块金属电极,其中一块金属电极裸露在空气中,另一块金属电极嵌在绝缘材料里,组成一组等离子体激励器,该等离子体激励器安装在风力机叶片吸力面的尾缘处,安装方式须使等离子体诱导流动方向与主流方向相同;等离子体激励器的两个金属电极上施加等离子体激励电压,在嵌入绝缘材料内的金属电极上方生成弱电离的低温等离子体,通过离子与中性气体分子的碰撞向边界层输送能量,使周围空气形成静流量为零的水平方向射流,加速附面层内的气流流动。本发明可以减小风力机的尾迹损失,并减小尾迹对下游风力机的干扰,提高整个风电场总的输出功率。
A plasma flow control method to reduce the wake loss of wind turbines: asymmetrically arrange two metal electrodes on both sides of the insulating material, one of which is exposed in the air, and the other metal electrode is embedded in the insulating material, forming a A set of plasma exciters, which are installed at the trailing edge of the suction surface of the wind turbine blades, in such a way that the induced flow direction of the plasma is the same as the main flow direction; plasma exciters are applied to the two metal electrodes of the plasma exciter The excitation voltage generates a weakly ionized low-temperature plasma above the metal electrode embedded in the insulating material, and transmits energy to the boundary layer through the collision of ions and neutral gas molecules, so that the surrounding air forms a horizontal jet with a static flow of zero and accelerates the surrounding air. Air flow within the facing. The invention can reduce the wake loss of the wind turbine, reduce the interference of the wake to the downstream wind turbine, and improve the total output power of the whole wind farm.
Description
技术领域technical field
本发明涉及能源技术领域,用于风力发电行业,具体地涉及一种减小风力机尾迹损失、提高风力机发电效率的新方法,更具体地涉及一种减小风力机尾迹损失的等离子体流动控制方法。The invention relates to the field of energy technology and is used in the wind power generation industry, in particular to a new method for reducing the wake loss of a wind turbine and improving the power generation efficiency of a wind turbine, and more specifically to a plasma flow for reducing the wake loss of a wind turbine Control Method.
技术背景technical background
能源是国民经济重要的物质基础,也是人类赖以生存的基本条件,国民经济发展的速度和人民生活水平的提高都有赖于提供能源的多少。传统化石能源的逐步耗竭,以及对环境的污染,使能源危机已明显逼近。我国已成为世界能源生产和消费大国,随着经济和社会的不断发展,我国能源需求将持续增长,能源的短缺已成为制约经济发展的一个关键问题。开发可再生的绿色能源是社会可持续发展的必由之路。因此,可再生新能源的开发和利用越来越引起人们的关注。可再生能源包括水能、生物质能、风能、太阳能、地热能和海洋能等。这些资源潜力大,环境污染低,可持续利用,是有利于人与自然和谐发展的重要能源。自上世纪70年代以来,可持续发展思想逐步成为国际社会共识,可再生能源开发利用受到世界各国高度重视,许多国家将开发利用可再生能源作为能源战略的重要组成部分,提出了明确的可再生能源发展目标,制定了鼓励可再生能源发展的法律和政策,可再生能源得到迅速发展。近年来,在开发研究的绿色能源中,风能已成为世界上发展最迅速的能源之一,预计今后10年内其年增长率将达到20%。风能被称为“未来的能源”,它与传统能源如煤、石油和原子能不同,既不会对环境造成污染,也不会枯竭。在生活水平逐渐上升的发展中国家,风能是一种安装简便而有效的能源,而且常常是可向偏远地区供电的唯一方式。在工业化国家,风能不失为一种兼顾能量增容和环保要求的新型能源。Energy is an important material foundation of the national economy and a basic condition for human survival. The speed of national economic development and the improvement of people's living standards all depend on the amount of energy provided. The gradual depletion of traditional fossil energy and the pollution of the environment have made the energy crisis approaching. my country has become a major energy producer and consumer in the world. With the continuous development of economy and society, my country's energy demand will continue to grow, and energy shortage has become a key issue restricting economic development. The development of renewable green energy is the only way for the sustainable development of society. Therefore, the development and utilization of renewable new energy has attracted more and more attention. Renewable energy includes water energy, biomass energy, wind energy, solar energy, geothermal energy and ocean energy. These resources have great potential, low environmental pollution, sustainable utilization, and are important energy sources that are conducive to the harmonious development of man and nature. Since the 1970s, the idea of sustainable development has gradually become the consensus of the international community. The development and utilization of renewable energy has been highly valued by countries all over the world. Many countries regard the development and utilization of renewable energy as an important part of their energy strategy and put forward a clear The goal of energy development has formulated laws and policies to encourage the development of renewable energy, and renewable energy has developed rapidly. In recent years, among the green energy developed and researched, wind energy has become one of the fastest-growing energy sources in the world, and its annual growth rate is expected to reach 20% in the next 10 years. Wind energy is called "the energy of the future". Unlike traditional energy sources such as coal, oil and atomic energy, it will neither pollute the environment nor be exhausted. In developing countries where living standards are rising, wind energy is an easily installed and efficient source of energy, and is often the only means of delivering electricity to remote areas. In industrialized countries, wind energy is a new type of energy that takes both energy capacity expansion and environmental protection into consideration.
与大多数能源的成本在上涨不同,随着技术的进步,风能的成本却下降,风能的经济性在不断提高。比如,丹麦的一座大风力发电站的发电成本近10多年来降低了约三分之二。本发明正是针对降低风电成本、提高风电经济性而提出的。风电场中许多风力机布置在一起,一些风力机将处于另一些风力机的尾迹中,使风力机的性能受到影响,功率输出减小,影响整个风电场总的功率输出。本发明通过改善风力机的尾迹,可以提高整个风电场总的输出功率。Unlike the rising cost of most energy sources, the cost of wind energy has fallen as technology has improved, and the economics of wind energy have continued to improve. For example, the cost of electricity generated by a large wind power station in Denmark has been reduced by about two-thirds over the past 10 years. The invention is proposed aiming at reducing the cost of wind power and improving the economy of wind power. Many wind turbines are arranged together in a wind farm, and some wind turbines will be in the wake of other wind turbines, which will affect the performance of the wind turbines, reduce the power output, and affect the total power output of the entire wind farm. The invention can improve the total output power of the whole wind farm by improving the wake of the wind turbine.
发明内容Contents of the invention
本发明的目的在于提出一种减小风力机尾迹损失的等离子体流动控制方法,采用本发明的方法一方面可以减小风力机的尾迹损失,另一方面可以减小尾迹对下游风力机的干扰,进而可以提高整个风电场总的输出功率。The purpose of the present invention is to propose a plasma flow control method that reduces the wake loss of a wind turbine. The method of the present invention can reduce the wake loss of the wind turbine on the one hand, and can reduce the interference of the wake to the downstream wind turbine on the other hand. , which in turn can increase the total output power of the entire wind farm.
为实现上述目的,本发明提供的减小风力机尾迹损失的等离子体流动控制方法是:In order to achieve the above object, the plasma flow control method for reducing the wake loss of the wind turbine provided by the present invention is:
在绝缘材料两侧非对称地布置两块金属电极,其中一块金属电极裸露在空气中,另一块金属电极嵌在绝缘材料里,组成一组等离子体激励器,该等离子体激励器安装在风力机叶片吸力面的尾缘处,安装方式须使等离子体诱导流动方向与主流方向相同;等离子体激励器的两个金属电极上施加等离子体激励电压,在嵌入绝缘材料内的金属电极上方生成弱电离的低温等离子体,通过离子与中性气体分子的碰撞向边界层输送能量,使周围空气形成静流量为零的水平方向射流,加速附面层内的气流流动。Two metal electrodes are arranged asymmetrically on both sides of the insulating material, one of the metal electrodes is exposed in the air, and the other metal electrode is embedded in the insulating material to form a set of plasma exciter, which is installed in the wind turbine At the trailing edge of the suction surface of the blade, the installation method must make the plasma-induced flow direction the same as the main flow direction; the plasma excitation voltage is applied to the two metal electrodes of the plasma actuator, and weak ionization is generated above the metal electrodes embedded in the insulating material. The low-temperature plasma transmits energy to the boundary layer through the collision of ions and neutral gas molecules, so that the surrounding air forms a horizontal jet with zero static flow, and accelerates the air flow in the boundary layer.
所述减小风力机尾迹损失的等离子体流动控制方法,其中,等离子体激励器距离叶片尾缘1-1000mm。The plasma flow control method for reducing the wake loss of the wind turbine, wherein the plasma actuator is 1-1000mm away from the trailing edge of the blade.
所述减小风力机尾迹损失的等离子体流动控制方法,其中,等离子体激励电压为1-100kV、等离子体激励电压的频率为1-1000kHz的交流电。The plasma flow control method for reducing the wake loss of the wind turbine, wherein, the plasma excitation voltage is 1-100kV, and the frequency of the plasma excitation voltage is an alternating current of 1-1000kHz.
所述减小风力机尾迹损失的等离子体流动控制方法,其中,所述的等离子体激励器的绝缘材料为聚四氟乙烯、陶瓷或石英玻璃。The plasma flow control method for reducing the wake loss of the wind turbine, wherein, the insulating material of the plasma actuator is polytetrafluoroethylene, ceramics or quartz glass.
所述减小风力机尾迹损失的等离子体流动控制方法,其中,所述的等离子体激励器的绝缘材料厚度为0.01-100mm。The plasma flow control method for reducing the wake loss of the wind turbine, wherein, the thickness of the insulating material of the plasma actuator is 0.01-100mm.
所述减小风力机尾迹损失的等离子体流动控制方法,其中,所述的等离子体激励器的金属电极的材料为钨、钼、钢或铜。The plasma flow control method for reducing the wake loss of the wind turbine, wherein, the material of the metal electrode of the plasma actuator is tungsten, molybdenum, steel or copper.
所述减小风力机尾迹损失的等离子体流动控制方法,其中,所述的等离子体激励器的金属电极形状为长方形。The plasma flow control method for reducing the wake loss of the wind turbine, wherein, the shape of the metal electrode of the plasma actuator is rectangular.
所述减小风力机尾迹损失的等离子体流动控制方法,其中,所述的等离子体激励器的金属电极宽度为0.1-100mm。The plasma flow control method for reducing the wake loss of the wind turbine, wherein, the metal electrode width of the plasma actuator is 0.1-100mm.
本发明在减小风力机尾迹损失方面与公知技术有很大的区别:等离子体流动控制是一种基于等离子体气动激励的流动控制技术,等离子体激励以等离子体为载体,对流场施加一种可控的扰动。本发明的创新点体现在:The present invention is very different from the known technology in reducing the wake loss of wind turbines: plasma flow control is a flow control technology based on plasma aerodynamic excitation, and plasma excitation uses plasma as a carrier to apply a a controllable disturbance. The innovation of the present invention is reflected in:
1)将等离子体流动控制方法应用于减小风力机尾迹损失;1) Apply plasma flow control method to reduce wind turbine wake loss;
2)等离子体激励是电激励,没有运动部件;2) Plasma excitation is electrical excitation without moving parts;
3)结构简单、功耗低、激励参数容易调节;3) Simple structure, low power consumption, and easy adjustment of excitation parameters;
4)激励作用频带宽和、响应迅速。4) The excitation frequency is wide and the response is quick.
附图说明Description of drawings
图1是本发明采用的等离子体激励器的结构示意图;Fig. 1 is the structural representation of the plasma exciter that the present invention adopts;
图2是实现本发明方法的结构示意图。Fig. 2 is a structural schematic diagram for realizing the method of the present invention.
图3是公知风力机叶片尾迹示意图;Fig. 3 is a schematic diagram of known wind turbine blade wake;
图4是本发明等离子体激励减小风力机尾迹示意图。Fig. 4 is a schematic diagram of reducing the wake of a wind turbine by plasma excitation according to the present invention.
具体实施方式Detailed ways
本发明提供的减小风力机尾迹损失的等离子体流动控制方法,用于风力发电系统,本发明方法包括以下几部分:The plasma flow control method for reducing the wake loss of the wind turbine provided by the invention is used in a wind power generation system. The method of the invention includes the following parts:
风力机叶片,起到带动发电机发电的作用,同时也是等离子体激励器的载体;The blades of the wind turbine play the role of driving the generator to generate electricity, and are also the carrier of the plasma exciter;
等离子体激励器,接通高压电后产生等离子体,加速附近空气;Plasma exciter, which generates plasma after being connected to high-voltage electricity, and accelerates the nearby air;
等离子体激励电压(高压交流电源),为等离子体激励器提供电源。Plasma excitation voltage (high voltage AC power supply), which provides power for the plasma exciter.
本发明从流体机械气动热力学和等离子体物理学的角度出发,采用适用于风力机尾迹流动控制的等离子体激励方法,使风力机尾迹损失一直处在较低水平。From the perspectives of fluid mechanical aerodynamic thermodynamics and plasma physics, the invention adopts a plasma excitation method suitable for flow control of the wind turbine wake, so that the wind turbine wake loss is kept at a low level.
本发明在风力机叶片固定位置处布置等离子体激励器,施加适当强度和频率的等离子体激励,一方面可以起到减小风力机尾迹损失的作用,另一方面可以减小尾迹对下游风力机的干扰。The present invention arranges the plasma exciter at the fixed position of the blade of the wind turbine, and applies the plasma excitation of appropriate intensity and frequency. On the one hand, it can reduce the wake loss of the wind turbine, and on the other hand, it can reduce the impact of the wake on the downstream wind turbine. interference.
为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本发明进一步详细说明。In order to make the object, technical solution and advantages of the present invention clearer, the present invention will be described in further detail below in conjunction with specific embodiments and with reference to the accompanying drawings.
图1是本发明的等离子体激励器1的结构示意图,在绝缘材料10两侧非对称(交错)地布置两块金属电极11、12,一块金属电极11裸露在周围的空气中(以下称为裸露电极11),另一块金属电极12嵌在绝缘材料10里(以下称为掩埋电极12)形成一组等离子体激励器1,金属电极11、12的宽度可以为0.1-100mm。实际上一组等离子体激励器中可以有多对裸露电极11和掩埋电极12,并且均为交错布置,裸露电极11和掩埋电极12两个金属电极之间的交错间距可以为0-5mm。本发明可以采用但不限于比如铜材料制成的长方形的金属电极,绝缘材料可以采用但不限于比如聚四氟乙烯或石英玻璃等,绝缘材料厚度为0.01-100mm。在激励电压13(电压1-100kV,频率1-1000kHz的高压交流电)的作用下,可在掩埋电极12上方生成弱电离的低温等离子体20,通过离子与中性气体分子的碰撞向边界层输送能量,使周围空气形成静流量为零的水平方向射流,加速附面层内的气流流动,产生了如图1中的诱导流动。Fig. 1 is the schematic structural view of the plasma exciter 1 of the present invention, two
图2是本发明结构示意图,等离子体激励器1布置在风力机叶片14的吸力面15的尾缘,等离子体激励器1(掩埋电极12的边缘)距风力机叶片的尾缘保留有1-1000mm的距离。等离子激励器的裸露电极11与激励电压13的高压端相连,等离子激励器的掩埋电极12与激励电压13的接地端相连,在风力机运行过程中一直开启激励电压13,施加等离子体激励,这样就可以减小风力机叶片尾迹损失,同时减小对下游风力机的干扰。Fig. 2 is a structural representation of the present invention, and the plasma exciter 1 is arranged on the trailing edge of the suction surface 15 of the
图3给出了公知风力机叶片绕流示意图,由图可见来流经过风力机叶片后形成了尾迹,尾迹中充满不规则的漩涡,不断消耗气流的能量,并形成压差阻力和气动噪声。Figure 3 shows a schematic diagram of the flow around the blades of a known wind turbine. It can be seen from the figure that the incoming flow forms a wake after passing through the blades of the wind turbine. The wake is filled with irregular vortices, which continuously consumes the energy of the airflow, and forms pressure resistance and aerodynamic noise.
图4给出了本发明利用等离子体激励减小尾迹宽度示意图,由图可见在等离子体激励作用下,与图3中不施加等离子体激励相比,风力机叶片后的尾迹宽度减小,这样可以减小尾迹损失,同时减小对下游风力机的干扰。Fig. 4 has provided the present invention and utilizes the plasma excitation to reduce the wake width schematic diagram, as seen from the figure under the action of the plasma excitation, compared with not applying the plasma excitation in Fig. 3, the wake width behind the wind turbine blade decreases, like this The wake loss can be reduced, and the disturbance to the downstream wind turbine can be reduced at the same time.
以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The specific embodiments described above have further described the purpose, technical solutions and beneficial effects of the present invention in detail. It should be understood that the above descriptions are only specific embodiments of the present invention and are not intended to limit the present invention. Any modifications, equivalent replacements, improvements, etc. made within the spirit and principles of the present invention shall be included within the protection scope of the present invention.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210438570XA CN102913399A (en) | 2012-11-06 | 2012-11-06 | Plasma flow control method for reducing the wake loss of a wind turbine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210438570XA CN102913399A (en) | 2012-11-06 | 2012-11-06 | Plasma flow control method for reducing the wake loss of a wind turbine |
Publications (1)
Publication Number | Publication Date |
---|---|
CN102913399A true CN102913399A (en) | 2013-02-06 |
Family
ID=47611918
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201210438570XA Pending CN102913399A (en) | 2012-11-06 | 2012-11-06 | Plasma flow control method for reducing the wake loss of a wind turbine |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102913399A (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103925152A (en) * | 2014-04-23 | 2014-07-16 | 哈尔滨工业大学 | Wind turbine blade based on dielectric barrier discharging plasma excitation |
CN105134496A (en) * | 2014-05-29 | 2015-12-09 | 株式会社东芝 | Wind power generation system and wind power generation method |
JP2016070085A (en) * | 2014-09-26 | 2016-05-09 | 株式会社東芝 | Wind farm |
JP2016098787A (en) * | 2014-11-26 | 2016-05-30 | 株式会社東芝 | Wind farm and wind power generation system |
US9551322B2 (en) | 2014-04-29 | 2017-01-24 | General Electric Company | Systems and methods for optimizing operation of a wind farm |
CN107061153A (en) * | 2017-04-13 | 2017-08-18 | 上海理工大学 | Vertical axis windmill based on plasma flow control |
CN107631854A (en) * | 2017-10-30 | 2018-01-26 | 吉林大学 | A kind of model wind tunnel test floor plasma boundary layer active control device and its control method |
US10024304B2 (en) | 2015-05-21 | 2018-07-17 | General Electric Company | System and methods for controlling noise propagation of wind turbines |
CN109779948A (en) * | 2019-01-17 | 2019-05-21 | 沈阳航空航天大学 | A plasma tip clearance sealing method for improving the performance of an axial flow fan |
US10385829B2 (en) | 2016-05-11 | 2019-08-20 | General Electric Company | System and method for validating optimization of a wind farm |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101666343A (en) * | 2008-09-03 | 2010-03-10 | 中国科学院工程热物理研究所 | Control system and control method for plasma excitation for cascade internal flow |
CN102595758A (en) * | 2011-01-12 | 2012-07-18 | 中国科学院工程热物理研究所 | Dielectric barrier discharge (DBD) plasma trailing edge jetting device and method |
JP2012189215A (en) * | 2006-04-28 | 2012-10-04 | Toshiba Corp | Wing, airflow generation device, heat exchanger, micro machine, and gas treatment device |
JP2012193678A (en) * | 2011-03-17 | 2012-10-11 | Toshiba Corp | Airflow generation device, and insulating film for the same |
-
2012
- 2012-11-06 CN CN201210438570XA patent/CN102913399A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012189215A (en) * | 2006-04-28 | 2012-10-04 | Toshiba Corp | Wing, airflow generation device, heat exchanger, micro machine, and gas treatment device |
CN101666343A (en) * | 2008-09-03 | 2010-03-10 | 中国科学院工程热物理研究所 | Control system and control method for plasma excitation for cascade internal flow |
CN102595758A (en) * | 2011-01-12 | 2012-07-18 | 中国科学院工程热物理研究所 | Dielectric barrier discharge (DBD) plasma trailing edge jetting device and method |
JP2012193678A (en) * | 2011-03-17 | 2012-10-11 | Toshiba Corp | Airflow generation device, and insulating film for the same |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103925152A (en) * | 2014-04-23 | 2014-07-16 | 哈尔滨工业大学 | Wind turbine blade based on dielectric barrier discharging plasma excitation |
US9551322B2 (en) | 2014-04-29 | 2017-01-24 | General Electric Company | Systems and methods for optimizing operation of a wind farm |
CN105134496A (en) * | 2014-05-29 | 2015-12-09 | 株式会社东芝 | Wind power generation system and wind power generation method |
CN105134496B (en) * | 2014-05-29 | 2018-10-19 | 株式会社东芝 | Wind generator system and wind power generation method |
JP2016070085A (en) * | 2014-09-26 | 2016-05-09 | 株式会社東芝 | Wind farm |
JP2016098787A (en) * | 2014-11-26 | 2016-05-30 | 株式会社東芝 | Wind farm and wind power generation system |
EP3026261A1 (en) * | 2014-11-26 | 2016-06-01 | Kabushiki Kaisha Toshiba | Wind farm, wind power generation system |
US10024304B2 (en) | 2015-05-21 | 2018-07-17 | General Electric Company | System and methods for controlling noise propagation of wind turbines |
US10385829B2 (en) | 2016-05-11 | 2019-08-20 | General Electric Company | System and method for validating optimization of a wind farm |
CN107061153A (en) * | 2017-04-13 | 2017-08-18 | 上海理工大学 | Vertical axis windmill based on plasma flow control |
CN107631854A (en) * | 2017-10-30 | 2018-01-26 | 吉林大学 | A kind of model wind tunnel test floor plasma boundary layer active control device and its control method |
CN107631854B (en) * | 2017-10-30 | 2023-06-06 | 吉林大学 | A model wind tunnel test floor plasma boundary layer active control device and control method thereof |
CN109779948A (en) * | 2019-01-17 | 2019-05-21 | 沈阳航空航天大学 | A plasma tip clearance sealing method for improving the performance of an axial flow fan |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102913399A (en) | Plasma flow control method for reducing the wake loss of a wind turbine | |
CN204961170U (en) | Wind energy-tidal current energy power generation device | |
Fortaleza et al. | IoT-based pico-hydro power generation system using Pelton turbine | |
NO331113B1 (en) | Variable electric generator | |
CN102913386A (en) | Plasma flow control method for suppressing flow separation of suction surface of wind turbine blade | |
Yelguntwar et al. | Design, fabrication & testing of a waterwheel for power generation in an open channel flow | |
Bisoyi et al. | Adapting green technology for optimal deployment of renewable energy resources and to generate power for future sustainability | |
CN103835888B (en) | The Apparatus and system of wind energy conversion system brake | |
CN207945047U (en) | Wind energy-wave energy integrated power generation system based on single pile | |
CN202832951U (en) | Wave power generating device | |
CN102235308A (en) | A variety of clean energy combined power generators | |
CN105065183B (en) | A kind of hybrid wave energy generating set of Pneumatic hydraulic | |
CN105099339A (en) | Wind energy solar energy and ocean energy integrated power generation system | |
CN204572342U (en) | A kind of Novel wind accumulation of energy hydrogen-generator | |
CN115585095A (en) | A coupled power generation system and method for improving gate flow-induced vibration characteristics | |
Nazri et al. | Estimation of energy potential and power generation from tidal basin in coastal area of malaysia | |
CN107725261A (en) | One kind vibration hydrofoil tidal current energy generating equipment and electricity-generating method | |
CN205047356U (en) | Pneumatic hydraulic hybrid wave energy power generation facility | |
CN105441971A (en) | Device for transforming and collecting clean energy hydrogen | |
CN218325094U (en) | A coupled power generation device that improves the characteristics of gate flow-induced vibration | |
Usama et al. | Power generation from canal system using adjustable Twisted Blade Turbine | |
CN103715857B (en) | Flutter wing wind power generation plant | |
CN202280995U (en) | Petroleum transportation pipeline with wall temperature increasing device based on wind power generation | |
NWAOKOCHA et al. | Ocean wave energy–An option for Nigerian power situation | |
CN202082036U (en) | Surfing type wave generating set |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20130206 |