[go: up one dir, main page]

CN102907060A - Retuning gaps and scheduling gaps in discontinuous reception - Google Patents

Retuning gaps and scheduling gaps in discontinuous reception Download PDF

Info

Publication number
CN102907060A
CN102907060A CN2011800259468A CN201180025946A CN102907060A CN 102907060 A CN102907060 A CN 102907060A CN 2011800259468 A CN2011800259468 A CN 2011800259468A CN 201180025946 A CN201180025946 A CN 201180025946A CN 102907060 A CN102907060 A CN 102907060A
Authority
CN
China
Prior art keywords
wtru
drx
retuning
gap
period
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2011800259468A
Other languages
Chinese (zh)
Other versions
CN102907060B (en
Inventor
S·E·泰利
G·佩尔蒂埃
P·马里内尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
InterDigital Patent Holdings Inc
Original Assignee
InterDigital Patent Holdings Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=44319897&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=CN102907060(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by InterDigital Patent Holdings Inc filed Critical InterDigital Patent Holdings Inc
Priority to CN201510649328.0A priority Critical patent/CN105306186A/en
Publication of CN102907060A publication Critical patent/CN102907060A/en
Application granted granted Critical
Publication of CN102907060B publication Critical patent/CN102907060B/en
Ceased legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J1/00Frequency-division multiplex systems
    • H04J1/02Details
    • H04J1/04Frequency-transposition arrangements
    • H04J1/045Filters applied to frequency transposition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0025Transmission of mode-switching indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1854Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A) or DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A) or DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Allocation of payload; Allocation of data channels, e.g. PDSCH or PUSCH
    • H04L5/0046Determination of the number of bits transmitted on different sub-channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signalling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signalling for the administration of the divided path, e.g. signalling of configuration information
    • H04L5/0096Indication of changes in allocation
    • H04L5/0098Signalling of the activation or deactivation of component carriers, subcarriers or frequency bands
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. Transmission Power Control [TPC] or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is leader and terminal is follower
    • H04W52/0216Power saving arrangements in terminal devices managed by the network, e.g. network or access point is leader and terminal is follower using a pre-established activity schedule, e.g. traffic indication frame
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. Transmission Power Control [TPC] or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0229Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal where the received signal is a wanted signal
    • H04W52/0232Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal where the received signal is a wanted signal according to average transmission signal activity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/28Discontinuous transmission [DTX]; Discontinuous reception [DRX]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Transceivers (AREA)

Abstract

一种用于由无线发射/接收单元调度重调谐间隙出现时的时间的方法,该方法包括检测重调谐触发事件;在检测到触发事件的情况下,确定重调谐间隙出现时的时间周期;以及在重调谐间隙期间执行无线电频率前端重调谐。

A method for scheduling, by a wireless transmit/receive unit, when a retune gap occurs, the method comprising detecting a retune trigger event; if the trigger event is detected, determining a time period when the retune gap occurs; and Perform radio frequency front-end retuning during retuning gaps.

Description

在不连续接收中重调谐间隙以及调度间隙Retuning gaps and scheduling gaps in discontinuous reception

相关申请的交叉引用Cross References to Related Applications

本申请要求2010年5月25日递交的美国临时申请61/347,997、2010年5月26日递交的美国临时申请61/348,510以及2010年6月18日递交的美国临时申请61/356,359的优先权,所述申请的内容在这里引入作为参考。This application claims priority to U.S. Provisional Application 61/347,997, filed May 25, 2010, U.S. Provisional Application 61/348,510, filed May 26, 2010, and U.S. Provisional Application 61/356,359, filed June 18, 2010 , the content of which application is hereby incorporated by reference.

背景技术 Background technique

第三代合作伙伴计划(3GPP)长期演进(LTE)第8版和第9版中的不连续接收(DRX)过程确定了物理下行链路控制信道(PDCCH)接收的周期。PDCCH接收和所配置的半持久性调度确定下行链路(DL)分量载波(CC)上的物理下行链路共享信道(PDSCH)和上行链路(UL)CC上的物理上行共享信道(PUSCH)传输何时会出现。The Discontinuous Reception (DRX) procedure in 3rd Generation Partnership Project (3GPP) Long Term Evolution (LTE) Release 8 and Release 9 determines the periodicity of Physical Downlink Control Channel (PDCCH) reception. PDCCH reception and configured semi-persistent scheduling determines the Physical Downlink Shared Channel (PDSCH) on the Downlink (DL) Component Carrier (CC) and the Physical Uplink Shared Channel (PUSCH) on the Uplink (UL) CC When the transmission will occur.

在LTE第8/9版(也可应用于LTE第10版)中,网络可为WTRU配置用于不连续接收(DRX)的参数。DRX的功能是允许WTRU不监控或解码PDCCH,目的是降低WTRU的能量损耗。DRX功能依赖于特定规则组,该特定规则组基于许多特定RNTI的PDCCH活动性。这些规则保证网络和WTRU关于何时能使用控制信令到达WTRU而被正确地同步。In LTE Release 8/9 (also applicable to LTE Release 10), the network may configure parameters for discontinuous reception (DRX) for the WTRU. The function of DRX is to allow the WTRU not to monitor or decode the PDCCH in order to reduce the energy consumption of the WTRU. The DRX functionality relies on a specific set of rules based on the PDCCH activity of many specific RNTIs. These rules ensure that the network and the WTRU are properly synchronized as to when control signaling can be used to reach the WTRU.

高级LTE(LTE第10版)是一个演进,目的在于在其他方法之间使用也称作载波聚合(CA)的带宽扩展来提高LTE第8/9版的数据速率。通过使用CA,WTRU可以在多个分量载波(CC)的PUSCH和PDSCH(分别)上同时发送和接收。UL和DL中多达五个CC可被使用,因而支持高达100MHz的灵活带宽分配。LTE-Advanced (LTE Release 10) is an evolution aimed at increasing the data rate of LTE Release 8/9 using bandwidth extension, also known as Carrier Aggregation (CA), among other methods. Using CA, a WTRU may simultaneously transmit and receive on the PUSCH and PDSCH (respectively) of multiple component carriers (CCs). Up to five CCs can be used in UL and DL, thus supporting flexible bandwidth allocation up to 100MHz.

发明内容Contents of the invention

一种用于无线发射/接收单元调度重调谐(retun)间隙出现时的时间的方法,包括:检测重调谐触发事件;在检测到触发事件的情况下,确定重调谐间隙出现时的时间周期;以及在重调谐间隙期间执行无线电频率前端重调谐。A method for scheduling when a retuning (retun) gap occurs for a wireless transmit/receive unit, comprising: detecting a retuning trigger event; in case the triggering event is detected, determining a time period when the retuning gap occurs; And performing radio frequency front-end retuning during the retuning gap.

附图说明 Description of drawings

结合附图给出了示例,根据下面的描述将更详细的理解本发明,其中:Examples are given in conjunction with the accompanying drawings, and the present invention will be understood in more detail from the following description, wherein:

图1A是可以执行一个或多个公开的实施方式的示例性通信系统的系统框图;FIG. 1A is a system block diagram of an exemplary communication system in which one or more disclosed embodiments may be implemented;

图1B是用于图1A中示出的通信系统的示例性无线发射/接收单元(WTRU)的系统框图;FIG. 1B is a system block diagram of an exemplary wireless transmit/receive unit (WTRU) for the communication system shown in FIG. 1A;

图1C是用于图1A中示出的通信系统的示例性无线接入网络和示例性核心网的系统框图;FIG. 1C is a system block diagram of an exemplary radio access network and an exemplary core network for the communication system shown in FIG. 1A;

图2A-2B示出了几个示例性的载波聚合部署情形;Figures 2A-2B illustrate several exemplary carrier aggregation deployment scenarios;

图3是示出了示例性DRX循环的时序图;Figure 3 is a timing diagram illustrating an exemplary DRX cycle;

图4A-4C是基于WTRU的重调谐间隙确定的方法流程图;4A-4C are flowcharts of a method for determining a WTRU-based retuning gap;

图5是多CC DRX循环的时序图;FIG. 5 is a timing diagram of a multi-CC DRX cycle;

图6是激活周期和DRX循环一样长的时序图;以及Figure 6 is a timing diagram in which the activation period is as long as the DRX cycle; and

图7是激活周期和DRX开启持续时间(On Duration)一样长的时序图。Figure 7 is a timing diagram in which the activation period is as long as the DRX on duration (On Duration).

具体实施方式 Detailed ways

图1A是可以在其中实施一个或多个所公开的实施方式的示例通信系统100的系统框图。通信系统100可以是将诸如语音、数据、视频、消息、广播等之类的内容提供给多个无线用户的多接入系统。通信系统100可以通过系统资源(包括无线带宽)的共享使得多个无线用户能够访问这些内容。例如,通信系统100可以使用一种或多种信道接入方法,例如码分多址(CDMA)、时分多址(TDMA)、频分多址(FDMA)、正交FDMA(OFDMA)、单载波FDMA(SC-FDMA)等等。FIG. 1A is a system block diagram of an example communication system 100 in which one or more disclosed embodiments may be implemented. Communication system 100 may be a multiple access system that provides content, such as voice, data, video, messaging, broadcast, etc., to multiple wireless users. The communication system 100 can enable multiple wireless users to access these contents through the sharing of system resources (including wireless bandwidth). For example, communication system 100 may use one or more channel access methods such as Code Division Multiple Access (CDMA), Time Division Multiple Access (TDMA), Frequency Division Multiple Access (FDMA), Orthogonal FDMA (OFDMA), Single Carrier FDMA (SC-FDMA) and more.

如图1A所示,通信系统100可以包括无线发射/接收单元(WTRU)102a,102b,102c,102d、无线电接入网(RAN)104、核心网106、公共交换电话网(PSTN)108、因特网110和其它网络112,但可以理解的是所公开的实施方式可以涵盖任意数量的WTRU、基站、网络和/或网络元件。WTRU102a,102b,102c,102d中的每一个可以是被配置成在无线通信中操作和/或通信的任何类型的装置。作为示例,WTRU 102a,102b,102c,102d可以被配置成传送和/或接收无线信号,并且可以包括用户设备(UE)、移动站、固定或移动用户单元、寻呼机、蜂窝电话、个人数字助理(PDA)、智能电话、膝上型计算机、上网本、个人计算机、无线传感器、消费类电子产品等。As shown in FIG. 1A, a communication system 100 may include wireless transmit/receive units (WTRUs) 102a, 102b, 102c, 102d, a radio access network (RAN) 104, a core network 106, a public switched telephone network (PSTN) 108, the Internet 110 and other networks 112, although it is understood that the disclosed embodiments may encompass any number of WTRUs, base stations, networks, and/or network elements. Each of the WTRUs 102a, 102b, 102c, 102d may be any type of device configured to operate and/or communicate in wireless communications. As examples, WTRUs 102a, 102b, 102c, 102d may be configured to transmit and/or receive wireless signals and may include user equipment (UE), mobile stations, fixed or mobile subscriber units, pagers, cellular telephones, personal digital assistants ( PDA), smart phones, laptop computers, netbooks, personal computers, wireless sensors, consumer electronics, etc.

通信系统100还可以包括基站114a和基站114b,基站114a、114b中的每一个可以是被配置成与WTRU 102a,102b,102c,102d中的至少一者无线交互连接,以便于接入一个或多个通信网络(例如核心网106、因特网110和/或网络112)的任何类型的装置。例如,基站114a、114b可以是基站收发信站(BTS)、节点B、e节点B、家用节点B、家用e节点B、站点控制器、接入点(AP)、无线路由器以及类似装置。尽管基站114a、114b中的每个均被描述为单个元件,但是可以理解的是基站114a、114b可以包括任何数量的互联基站和/或网络元件。The communication system 100 may also include a base station 114a and a base station 114b, each of the base stations 114a, 114b may be configured to wirelessly interact with at least one of the WTRUs 102a, 102b, 102c, 102d to facilitate access to one or more Any type of device for a communication network (eg, core network 106, Internet 110, and/or network 112). For example, base stations 114a, 114b may be base transceiver stations (BTS), Node Bs, eNodeBs, Home NodeBs, Home eNodeBs, site controllers, access points (APs), wireless routers, and the like. Although each of the base stations 114a, 114b is described as a single element, it is understood that the base stations 114a, 114b may include any number of interconnected base stations and/or network elements.

基站114a可以是RAN 104的一部分,该RAN 104还可以包括诸如基站站点控制器(BSC)、无线电网络控制器(RNC)、中继节点之类的其它基站和/或网络元件(未示出)。基站114a和/或基站114b可以被配置成传送和/或接收特定地理区域内的无线信号,该特定地理区域可以被称作小区(未示出)。小区还可以被划分成小区扇区。例如与基站114a相关联的小区可以被划分成三个扇区。由此,在一种实施方式中,基站114a可以包括三个收发信机,即针对所述小区的每个扇区都有一个收发信机。在另一实施方式中,基站114a可以使用多输入多输出(MIMO)技术,并且由此可以针对小区的每个扇区使用多个收发信机。Base station 114a may be part of RAN 104, which may also include other base stations and/or network elements such as base station site controllers (BSCs), radio network controllers (RNCs), relay nodes (not shown) . Base station 114a and/or base station 114b may be configured to transmit and/or receive wireless signals within a particular geographic area, which may be referred to as a cell (not shown). A cell may also be divided into cell sectors. For example, a cell associated with base station 114a may be divided into three sectors. Thus, in one embodiment, base station 114a may include three transceivers, one for each sector of the cell. In another embodiment, the base station 114a may use multiple-input multiple-output (MIMO) technology, and thus may use multiple transceivers for each sector of the cell.

基站114a、114b可以通过空中接口116与WTRU 102a、102b、102c、102d中的一者或多者通信,该空中接口116可以是任何合适的无线通信链路(例如射频(RF)、微波、红外(IR)、紫外(UV)、可见光等)。空中接口116可以使用任何合适的无线电接入技术(RAT)来建立。Base stations 114a, 114b may communicate with one or more of WTRUs 102a, 102b, 102c, 102d over an air interface 116, which may be any suitable wireless communication link (e.g., radio frequency (RF), microwave, infrared (IR), ultraviolet (UV), visible light, etc.). Air interface 116 may be established using any suitable radio access technology (RAT).

更具体地,如前所述,通信系统100可以是多接入系统,并且可以使用一种或多种信道接入方案,例如CDMA、TDMA、FDMA、OFDMA、SC-FDMA以及类似的方案。例如,在RAN 104中的基站114a和WTRU 102a、102b、102c可以实施诸如通用移动电信系统(UMTS)陆地无线电接入(UTRA)之类的无线电技术,其可以使用宽带CDMA(WCDMA)来建立空中接口116。WCDMA可以包括诸如高速分组接入(HSPA)和/或演进型HSPA(HSPA+)。HSPA可以包括高速下行链路分组接入(HSDPA)和/或高速上行链路分组接入(HSUPA)。More specifically, as previously mentioned, the communication system 100 may be a multiple access system, and may use one or more channel access schemes, such as CDMA, TDMA, FDMA, OFDMA, SC-FDMA, and the like. For example, base station 114a and WTRUs 102a, 102b, 102c in RAN 104 may implement a radio technology such as Universal Mobile Telecommunications System (UMTS) Terrestrial Radio Access (UTRA), which may use Wideband CDMA (WCDMA) to establish over-the-air Interface 116. WCDMA may include technologies such as High Speed Packet Access (HSPA) and/or Evolved HSPA (HSPA+). HSPA may include High Speed Downlink Packet Access (HSDPA) and/or High Speed Uplink Packet Access (HSUPA).

在另一实施方式中,基站114a和WTRU 102a、102b、102c可以实施诸如演进型UMTS陆地无线电接入(E-UTRA)之类的无线电技术,其可以使用长期演进(LTE)和/或高级LTE(LTE-A)来建立空中接口116。In another embodiment, the base station 114a and WTRUs 102a, 102b, 102c may implement a radio technology such as Evolved-UMTS Terrestrial Radio Access (E-UTRA), which may use Long Term Evolution (LTE) and/or LTE-Advanced (LTE-A) to establish the air interface 116 .

在其它实施方式中,基站114a和WTRU 102a、102b、102c可以实施诸如IEEE 802.16(即全球微波互通接入(WiMAX))、CDMA2000、CDMA20001x、CDMA2000EV-DO、临时标准2000(IS-2000)、临时标准95(IS-95)、临时标准856(IS-856)、全球移动通信系统(GSM)、用于GSM演进的增强型数据速率(EDGE)、GSM EDGE(GERAN)之类的无线电技术。In other embodiments, the base station 114a and the WTRUs 102a, 102b, 102c may implement protocols such as IEEE 802.16 (ie, Worldwide Interoperability for Microwave Access (WiMAX)), CDMA2000, CDMA20001x, CDMA2000EV-DO, Interim Standard 2000 (IS-2000), Interim Radio technologies such as Standard 95 (IS-95), Interim Standard 856 (IS-856), Global System for Mobile Communications (GSM), Enhanced Data Rates for GSM Evolution (EDGE), GSM EDGE (GERAN).

举例来讲,图1A中的基站114b可以是无线路由器、家用节点B、家用e节点B或者接入点,并且可以使用任何合适的RAT,以用于促进在诸如营业场所、家庭、车辆、校园之类的局部区域中的通信连接。在一种实施方式中,基站114b和WTRU 102c、102d可以实施诸如IEEE 802.11之类的无线电技术以建立无线局域网络(WLAN)。在另一实施方式中,基站114b和WTRU 102c、102d可以实施诸如IEEE 802.15之类的无线电技术以建立无线个人局域网络(WPAN)。在又一实施方式中,基站114b和WTRU 102c、102d可以使用基于蜂窝的RAT(例如WCDMA、CDMA2000、GSM、LTE、LTE-A等)以建立微微小区(picocell)和毫微微小区(femtocell)。如图1A所示,基站114b可以具有至因特网110的直接连接。由此,基站114b不必经由核心网106来接入因特网110。By way of example, base station 114b in FIG. 1A may be a wireless router, a Home NodeB, a Home eNodeB, or an access point, and may use any suitable RAT, for facilitating communication in a network such as a business, home, vehicle, campus, etc. communication links in local areas such as In one embodiment, the base station 114b and WTRUs 102c, 102d may implement a radio technology such as IEEE 802.11 to establish a wireless local area network (WLAN). In another embodiment, the base station 114b and WTRUs 102c, 102d may implement a radio technology such as IEEE 802.15 to establish a wireless personal area network (WPAN). In yet another embodiment, the base station 114b and WTRUs 102c, 102d may use a cellular based RAT (eg, WCDMA, CDMA2000, GSM, LTE, LTE-A, etc.) to establish picocells and femtocells. As shown in FIG. 1A , base station 114b may have a direct connection to the Internet 110 . Thus, the base station 114 b does not have to access the Internet 110 via the core network 106 .

RAN 104可以与核心网106通信,该核心网可以是被配置成将语音、数据、应用程序和/或网际协议上的语音(VoIP)服务提供到WTRU 102a、102b、102c、102d中的一者或多者的任何类型的网络。例如,核心网106可以提供呼叫控制、账单服务、基于移动位置的服务、预付费呼叫、网际互联、视频分配等,和/或执行高级安全性功能,例如用户验证。尽管图1A中未示出,但是需要理解的是RAN 104和/或核心网106可以直接或间接地与其它RAN进行通信,这些其它RAT可以使用与RAT 104相同的RAT或者不同的RAT。例如,除了连接到可以采用E-UTRA无线电技术的RAN 104之外,核心网106也可以与使用GSM无线电技术的其它RAN(未显示)通信。The RAN 104 may be in communication with a core network 106, which may be configured to provide voice, data, application, and/or Voice over Internet Protocol (VoIP) services to one of the WTRUs 102a, 102b, 102c, 102d or more of any type of network. For example, core network 106 may provide call control, billing services, mobile location-based services, prepaid calling, Internet interconnection, video distribution, etc., and/or perform advanced security functions, such as user authentication. Although not shown in FIG. 1A , it should be understood that RAN 104 and/or core network 106 may communicate directly or indirectly with other RANs, and these other RATs may use the same RAT as RAT 104 or a different RAT. For example, in addition to connecting to RAN 104, which may employ E-UTRA radio technology, core network 106 may also communicate with other RANs (not shown) using GSM radio technology.

核心网106也可以用作WTRU 102a、102b、102c、102d接入PSTN 108、因特网110和/或其它网络112的网关。PSTN 108可以包括提供普通老式电话服务(POTS)的电路交换电话网络。因特网110可以包括使用公共通信协议的全球互联计算机网络和设备系统,所述公共通信协议例如传输控制协议(TCP)/网际协议(IP)因特网协议族中的TCP、用户数据报协议(UDP)和IP。网络112可以包括由其它服务提供方拥有和/或操作的有线或无线通信网络。例如,网络112可以包括连接到一个或多个RAN的另一核心网,这些RAN可以使用与RAN 104相同的RAT或者不同的RAT。Core network 106 may also serve as a gateway for WTRUs 102a, 102b, 102c, 102d to access PSTN 108, Internet 110, and/or other networks 112. PSTN 108 may include a circuit-switched telephone network that provides plain old telephone service (POTS). The Internet 110 may include a system of globally interconnected computer networks and devices using common communication protocols such as TCP, User Datagram Protocol (UDP) and IP. Network 112 may include wired or wireless communication networks owned and/or operated by other service providers. For example, network 112 may include another core network connected to one or more RANs, which may use the same RAT as RAN 104 or a different RAT.

通信系统100中的WTRU 102a、102b、102c、102d中的一些或者全部可以包括多模式能力,即WTRU 102a、102b、102c、102d可以包括用于通过多个通信链路与不同的无线网络进行通信的多个收发信机。例如,图1A中显示的WTRU 102c可以被配置成与使用基于蜂窝的无线电技术的基站114a进行通信,并且与使用IEEE 802无线电技术的基站114b进行通信。Some or all of the WTRUs 102a, 102b, 102c, 102d in the communication system 100 may include multi-mode capabilities, i.e., the WTRUs 102a, 102b, 102c, 102d may include devices for communicating with different wireless networks over multiple communication links. multiple transceivers. For example, the WTRU 102c shown in FIG. 1A may be configured to communicate with a base station 114a using cellular-based radio technology and with a base station 114b using IEEE 802 radio technology.

图1B是示例WTRU 102的系统框图。如图1B所示,WTRU 102可以包括处理器118、收发信机120、发射/接收元件122、扬声器/麦克风124、键盘126、显示器/触摸板128、不可移除存储器106、可移除存储器132、电源134、全球定位系统(GPS)芯片组136和其它外围设备138。需要理解的是,在保持与以上实施方式一致的同时,WTRU 102可以包括上述元件的任何子集组合。1B is a system block diagram of an example WTRU 102. As shown in FIG. 1B , WTRU 102 may include processor 118, transceiver 120, transmit/receive element 122, speaker/microphone 124, keypad 126, display/touchpad 128, non-removable memory 106, removable memory 132 , power supply 134 , global positioning system (GPS) chipset 136 and other peripherals 138 . It should be understood that the WTRU 102 may include any subset combination of the elements described above while remaining consistent with the above embodiments.

处理器118可以是通用处理器、专用处理器、常规处理器、数字信号处理器(DSP)、多个微处理器、与DSP核心相关联的一个或多个微处理器、控制器、微控制器、专用集成电路(ASIC)、现场可编程门阵列(FPGA)电路、其它任何类型的集成电路(IC)、状态机等。处理器118可以执行信号编码、数据处理、功率控制、输入/输出处理和/或使得WTRU 102能够在无线环境中运行的其它任何功能。处理器118可以耦合到收发信机120,该收发信机120可以耦合到发射/接收元件122。尽管图1B中将处理器118和收发信机120描述为独立的组件,但是可以理解的是处理器118和收发信机120可以被一起集成到电子封装或者芯片中。Processor 118 may be a general purpose processor, a special purpose processor, a conventional processor, a digital signal processor (DSP), multiple microprocessors, one or more microprocessors associated with a DSP core, a controller, a microcontroller device, application specific integrated circuit (ASIC), field programmable gate array (FPGA) circuit, any other type of integrated circuit (IC), state machine, etc. Processor 118 may perform signal encoding, data processing, power control, input/output processing, and/or any other function that enables WTRU 102 to operate in a wireless environment. Processor 118 may be coupled to transceiver 120 , which may be coupled to transmit/receive element 122 . Although processor 118 and transceiver 120 are depicted in FIG. 1B as separate components, it is understood that processor 118 and transceiver 120 may be integrated together into an electronic package or chip.

发射/接收元件122可以被配置成通过空中接口116将信号传送到基站(例如基站114a),或者从基站(例如基站114a)接收信号。例如,在一种实施方式中,发射/接收元件122可以是被配置成传送和/或接收RF信号的天线。在另一实施方式中,发射/接收元件122可以是被配置成传送和/或接收例如IR、UV或者可见光信号的发射器/检测器。在又一实施方式中,发射/接收元件122可以被配置成传送和/或接收RF信号和光信号两者。需要理解的是发射/接收元件122可以被配置成传送和/或接收无线信号的任意组合。Transmit/receive element 122 may be configured to transmit signals to or receive signals from a base station (eg, base station 114a ) over air interface 116 . For example, in one embodiment, the transmit/receive element 122 may be an antenna configured to transmit and/or receive RF signals. In another embodiment, the transmit/receive element 122 may be an emitter/detector configured to transmit and/or receive, for example, IR, UV or visible light signals. In yet another embodiment, the transmit/receive element 122 may be configured to transmit and/or receive both RF signals and optical signals. It should be understood that the transmit/receive element 122 may be configured to transmit and/or receive any combination of wireless signals.

此外,尽管发射/接收元件122在图1B中被描述为单个元件,但是WTRU102可以包括任何数量的发射/接收元件122。更特别地,WTRU 102可以使用MIMO技术。由此,在一种实施方式中,WTRU 102可以包括两个或更多个发射/接收元件122(例如多个天线)以用于通过空中接口116传送和接收无线信号。Furthermore, although the transmit/receive element 122 is depicted in FIG. 1B as a single element, the WTRU 102 may include any number of transmit/receive elements 122 . More specifically, the WTRU 102 may use MIMO technology. Thus, in one embodiment, the WTRU 102 may include two or more transmit/receive elements 122 (eg, multiple antennas) for transmitting and receiving wireless signals over the air interface 116.

收发信机120可以被配置成对将由发射/接收元件122传送的信号进行调制,并且被配置成对由发射/接收元件122接收的信号进行解调。如上所述,WTRU 102可以具有多模式能力。由此,收发信机120可以包括多个收发信机以用于使得WTRU 102能够经由多种RAT进行通信,例如UTRA和IEEE802.11。Transceiver 120 may be configured to modulate signals to be transmitted by transmit/receive element 122 and to demodulate signals received by transmit/receive element 122 . As noted above, the WTRU 102 may be multi-mode capable. Thus, the transceiver 120 may include multiple transceivers for enabling the WTRU 102 to communicate via various RATs, such as UTRA and IEEE 802.11.

WTRU 102的处理器118可以被耦合到扬声器/麦克风124、键盘126和/或显示器/触摸板128(例如,液晶显示器(LCD)单元或者有机发光二极管(OLED)显示单元),并且可以从上述装置接收用户输入数据。处理器118还可以向扬声器/麦克风124、键盘126和/或显示器/触摸板128输出数据。此外,处理器118可以访问来自任何类型的合适的存储器中的信息,以及向该任何类型的合适的存储器中存储数据,所述存储器例如可以是不可移除存储器106和/或可移除存储器132。不可移除存储器130可以包括随机存取存储器(RAM)、只读存储器(ROM)、硬盘或者任何其它类型的存储器存储装置。可移除存储器132可以包括用户标识模块(SIM)卡、记忆棒、安全数字(SD)存储卡等类似装置。在其它实施方式中,处理器118可以访问来自物理上未位于WTRU 102上而位于服务器或者家用计算机(未示出)上的存储器的信息,并且向上述存储器中存储数据。The processor 118 of the WTRU 102 may be coupled to a speaker/microphone 124, a keyboard 126, and/or a display/touchpad 128 (e.g., a liquid crystal display (LCD) unit or an organic light emitting diode (OLED) display unit), and may Receive user input data. Processor 118 may also output data to speaker/microphone 124 , keyboard 126 and/or display/touchpad 128 . Additionally, processor 118 may access information from, and store data in, any type of suitable memory, such as non-removable memory 106 and/or removable memory 132 . Non-removable memory 130 may include random access memory (RAM), read only memory (ROM), hard disk, or any other type of memory storage device. Removable memory 132 may include a Subscriber Identity Module (SIM) card, a memory stick, a Secure Digital (SD) memory card, and the like. In other embodiments, the processor 118 may access information from and store data in memory not physically located on the WTRU 102 but on a server or home computer (not shown).

处理器118可以从电源134接收电力,并且可以被配置成将电力分配给WTRU 102中的其它组件和/或对到WTRU 102中的其它组件的电力进行控制。电源134可以是任何适用于给WTRU 102供电的装置。例如,电源134可以包括一个或多个干电池(例如镍镉(NiCd)、镍锌(NiZn)、镍氢(NiMH)、锂离子(Li-ion)等)、太阳能电池、燃料电池等。Processor 118 may receive power from power supply 134 and may be configured to distribute power to and/or control power to other components in WTRU 102. Power source 134 may be any device suitable for powering WTRU 102. For example, the power source 134 may include one or more dry cells (eg, nickel cadmium (NiCd), nickel zinc (NiZn), nickel metal hydride (NiMH), lithium ion (Li-ion), etc.), solar cells, fuel cells, and the like.

处理器118还可以耦合到GPS芯片组136,该GPS芯片组136可以被配置成提供关于WTRU 102的当前位置的位置信息(例如经度和纬度)。作为来自GPS芯片组136的信息的补充或者替代,WTRU 102可以通过空中接口116从基站(例如基站114a、114b)接收位置信息,和/或基于从两个或更多个相邻基站接收到的信号的定时来确定其位置。需要理解的是,在保持与实施方式一致的同时,WTRU 102可以通过任何合适的位置确定方法来获取位置信息。The processor 118 may also be coupled to a GPS chipset 136, which may be configured to provide location information (eg, longitude and latitude) regarding the current location of the WTRU 102. In addition to or instead of information from the GPS chipset 136, the WTRU 102 may receive location information from base stations (e.g., base stations 114a, 114b) over the air interface 116 and/or based on information received from two or more neighboring base stations The timing of the signal to determine its position. It should be appreciated that the WTRU 102 may obtain location information by any suitable method of location determination while remaining consistent with the embodiments.

处理器118还可以耦合到其它外围设备138,该外围设备138可以包括提供附加特征、功能性和/或有线或无线连接的一个或多个软件和/或硬件模块。例如,外围设备138可以包括加速度计、电子指南针(e-compass)、卫星收发信机、数码相机(用于照片或者视频)、通用串行总线(USB)端口、振动装置、电视收发信机、免持耳机、蓝

Figure GDA00002465264600081
模块、调频(FM)无线电单元、数字音乐播放器、媒体播放器、视频游戏机模块、因特网浏览器等等。Processor 118 may also be coupled to other peripherals 138, which may include one or more software and/or hardware modules that provide additional features, functionality, and/or wired or wireless connectivity. For example, peripherals 138 may include an accelerometer, an electronic compass (e-compass), a satellite transceiver, a digital camera (for photo or video), a Universal Serial Bus (USB) port, a vibrating device, a television transceiver, Hands-free headset, blue
Figure GDA00002465264600081
modules, FM radio units, digital music players, media players, video game console modules, Internet browsers, and more.

图1C为根据一种实施方式的RAN 104和核心网106的系统框图。如上所述,RAN 104可以使用UTRA无线电技术通过空中接口116与WTRU102a、102b和102c通信。RAN 104还可以与核心网106通信。Figure 1C is a system block diagram of the RAN 104 and the core network 106, according to one embodiment. As noted above, the RAN 104 may communicate with the WTRUs 102a, 102b, and 102c over the air interface 116 using UTRA radio technology. RAN 104 can also communicate with core network 106.

RAN 104可以包含e节点B 140a、140b、140c,但是应该理解的是RAN104可以包含任意数量的e节点B而仍然与实施方式保持一致。e节点B 140a、140b、140c中的每个可以包含一个或多个收发信机,该收发信机通过空中接口116来与WTRU 102a、102b、102c通信。在一个实施方式中,e节点B 140a、140b、140c可以实现MIMO技术。因此,e节点B 140a例如可以使用多个天线来传送无线信号到WTRU 102a,并且从WTRU 102a接收无线信号。The RAN 104 may contain eNodeBs 140a, 140b, 140c, but it should be understood that the RAN 104 may contain any number of eNodeBs while remaining consistent with the embodiments. Each of the eNodeBs 140a, 140b, 140c may contain one or more transceivers that communicate over the air interface 116 with the WTRUs 102a, 102b, 102c. In one embodiment, eNodeBs 140a, 140b, 140c may implement MIMO technology. Thus, eNode B 140a may, for example, use multiple antennas to transmit wireless signals to and receive wireless signals from WTRU 102a.

e节点B 140a、140b、140c中的每个可以与特定小区(未示出)相关联,且可以被配置为处理无线电资源管理决定、切换决定、在上行链路和/或下行链路中调度用户等等。如图1C所示,e节点B 140a、140b、140c可以通过X2接口彼此进行通信。Each of the eNodeBs 140a, 140b, 140c may be associated with a particular cell (not shown) and may be configured to handle radio resource management decisions, handover decisions, scheduling in the uplink and/or downlink user etc. As shown in Figure 1C, the eNodeBs 140a, 140b, 140c can communicate with each other through the X2 interface.

图1C示出的核心网106可以包括移动性管理网关(MME)142、服务网关144以及分组数据网络(PDN)网关146。尽管上述元件中的每个被描述为核心网106的一部分,但是应该理解的是这些元件中的任何一个都可以被除了核心网运营商以外的实体拥有和/或运营。The core network 106 shown in FIG. 1C may include a mobility management gateway (MME) 142 , a serving gateway 144 and a packet data network (PDN) gateway 146 . Although each of the above elements are described as being part of the core network 106, it should be understood that any of these elements may be owned and/or operated by entities other than the core network operator.

MME 142可以通过S1接口被连接到RAN 104中的e节点B 142a、142b、142c中的每个并且可以作为控制节点。例如,MME 142可以负责认证WTRU102a、102b、102c的用户、承载激活/去激活、在WTRU 102a、102b、102c的初始附着期间选择特定服务网关,等等。MME 142也可以为RAN 104与使用其它无线电技术(例如GSM或WCDMA)的RAN(未示出)之间的切换提供控制平面功能。The MME 142 may be connected to each of the eNodeBs 142a, 142b, 142c in the RAN 104 through the S1 interface and may act as a control node. For example, the MME 142 may be responsible for authenticating the user of the WTRU 102a, 102b, 102c, bearer activation/deactivation, selection of a specific serving gateway during initial attach of the WTRU 102a, 102b, 102c, etc. MME 142 may also provide control plane functionality for handover between RAN 104 and a RAN (not shown) using other radio technologies such as GSM or WCDMA.

服务网关144可以通过S1接口被连接到RAN 104中的e节点B 140a、140b、140c中的每个。服务网关144通常可以路由和转发用户数据分组至WTRU 102a、102b、102c,或者路由和转发来自WTRU 102a、102b、102c的用户数据分组。服务网关144也可以执行其它功能,例如在e节点B切换期间锚定用户平面、当下行链路数据可用于WTRU 102a、102b、102c时触发寻呼、管理和存储WTRU 102a、102b、102c的上下文等等。Serving Gateway 144 may be connected to each of eNodeBs 140a, 140b, 140c in RAN 104 through an S1 interface. Serving Gateway 144 may generally route and forward user data packets to and from WTRUs 102a, 102b, 102c. The Serving Gateway 144 may also perform other functions such as anchoring the user plane during eNodeB handover, triggering paging when downlink data is available to the WTRU 102a, 102b, 102c, managing and storing the context of the WTRU 102a, 102b, 102c etc.

服务网关144也可以被连接到PDN网关146,该网关146可以向WTRU102a、102b、102c提供至分组交换网络(例如因特网110)的接入,从而便于WTRU 102a、102b、102c与IP使能设备之间的通信。Serving Gateway 144 may also be connected to PDN Gateway 146, which may provide WTRU 102a, 102b, 102c access to a packet-switched network, such as the Internet 110, thereby facilitating communication between WTRU 102a, 102b, 102c and IP-enabled devices. communication between.

核心网106可以促进与其它网络之间的通信。例如,核心网106可以向WTRU 102a、102b、102c提供至电路交换网络(例如PSTN 108)的接入,从而便于WTRU 102a、102b、102c与传统陆线通信设备之间的通信。例如,核心网106可以包括,或可以与下述元件通信:作为核心网106和PSTN 108之间的接口的IP网关(例如,IP多媒体子系统(IMS)服务器)。另外,核心网106可以向WTRU 102a、102b、102c提供至网络112的接入,该网络112可以包含被其它服务提供商拥有和/或运营的其它有线或无线网络。Core network 106 may facilitate communications with other networks. For example, the core network 106 may provide the WTRUs 102a, 102b, 102c with access to a circuit-switched network, such as the PSTN 108, thereby facilitating communication between the WTRUs 102a, 102b, 102c and traditional landline communication equipment. For example, core network 106 may include, or may be in communication with, an IP gateway (eg, an IP Multimedia Subsystem (IMS) server) that acts as an interface between core network 106 and PSTN 108. Additionally, the core network 106 may provide the WTRUs 102a, 102b, 102c with access to a network 112, which may include other wired or wireless networks owned and/or operated by other service providers.

无线电资源控制(RRC)信令可为无线发射/接收单元(WTRU)配置不连续接收(DRX)功能,所述DRX功能针对以下对象来控制WTRU的PDCCH监控活动性:WTRU的小区无线电网络临时标识符(C-RNTI)、用于发送可应用于物理上行链路控制信道的发射功率控制(TPC)命令的RNTI(TPC-PUCCH-RNTI)、用于发送可应用于PUSCH的TPC命令的RNTI(TPC-PUSCH-RNTI)、以及半持久性调度C-RNTI(如果配置了的话)。Radio resource control (RRC) signaling may configure a wireless transmit/receive unit (WTRU) with discontinuous reception (DRX) functionality that controls the WTRU's PDCCH monitoring activity for: the WTRU's cell radio network temporary identity symbol (C-RNTI), RNTI for sending transmit power control (TPC) commands applicable to the physical uplink control channel (TPC-PUCCH-RNTI), RNTI for sending TPC commands applicable to PUSCH ( TPC-PUSCH-RNTI), and semi-persistent scheduling C-RNTI (if configured).

PDCCH在概念上被划分为两个不同区域。CCE位置组,在该位置上WTRU能够发现能在其上操作的DCI,称作搜索空间(SS)。SS在概念上被分为公共SS(CSS)和WTRU特定SS(UESS)。CSS对于所有监控给定PDCCH的WTRU来说是公共的,而UESS对于每一个WTRU来说是不同的。两种SS在给定的子帧中对于给定的WTRU可能重叠,因为这是随机化功能的用途,并且该重叠对于每一个子帧都是不同的。PDCCH is conceptually divided into two different regions. The set of CCE locations on which the WTRU can discover DCIs to operate on is called a search space (SS). SS is conceptually divided into common SS (CSS) and WTRU specific SS (UESS). The CSS is common to all WTRUs monitoring a given PDCCH, while the UESS is different for each WTRU. The two SSs may overlap for a given WTRU in a given subframe because that is what the randomization function is for, and the overlap is different for every subframe.

依赖于WTRU到网络的连接、性能和支持的特征,WTRU监控一个或多个用于来自eNB的授权、分配和其它控制信息的下述RNTI。Depending on the WTRU's connection to the network, capabilities and supported features, the WTRU monitors one or more of the RNTIs described below for authorization, allocation and other control information from the eNB.

系统信息RNTI(SI-RNTI)是小区特定的,以用于在CSS中指示PDSCH上的系统信息调度。System information RNTI (SI-RNTI) is cell specific to indicate system information scheduling on PDSCH in CSS.

寻呼RNTI(P-RNTI)可分配给多个WTRU,以用于对CSS中的寻呼通知进行解码(主要在空闲模式中)。A paging-RNTI (P-RNTI) may be assigned to multiple WTRUs for decoding paging notifications in CSS (mainly in idle mode).

随机接入RNTI(RA-RNTI)用于指示PDSCH上的随机接入响应的调度,并清楚地识别哪个时频资源被WTRU用来发送随机接入前同步码。The Random Access RNTI (RA-RNTI) is used to indicate the scheduling of the Random Access Response on the PDSCH and clearly identify which time-frequency resource is used by the WTRU to send the Random Access Preamble.

多媒体广播和多播服务(MBMS)RNTI(M-RNTI)是小区特定的,并用于对CSS中的MBMS控制信道(MCCH)上的变化通知进行解码。The Multimedia Broadcast and Multicast Service (MBMS) RNTI (M-RNTI) is cell-specific and is used to decode change notifications on the MBMS Control Channel (MCCH) in the CSS.

小区RNTI(此后称作C-RNTI)是WTRU特定的RNTI,用于对用于无争用授权和分配的PDCCH进行解码;典型地用于UESS中的DCI。The Cell RNTI (hereinafter referred to as C-RNTI) is a WTRU-specific RNTI used to decode PDCCH for contention-free grants and assignments; typically used for DCI in UESS.

临时C-RNTI典型地用于为基于争用的过程对消息4进行解码,和/或在WTRU得到分配的自身的C-RNTI之前使用。The temporary C-RNTI is typically used to decode Message 4 for contention-based procedures, and/or until the WTRU gets its own C-RNTI assigned.

半持久性调度C-RNTI(SPS-C-RNTI)典型地用于在UESS中激活PDSCH上的半持久性DL分配或PUSCH上的UL授权。Semi-persistent scheduling C-RNTI (SPS-C-RNTI) is typically used in UESS to activate semi-persistent DL allocation on PDSCH or UL grant on PUSCH.

当WTRU处于RRC_CONNECTED(RRC连接)模式中,并且如果配置了DRX,那么WTRU可使用DRX操作不连续地监控PDCCH;否则,WTRU持续地监控PDCCH。当使用DRX操作时,WTRU还可以根据其它需求来监控PDCCH。RRC通过配置若干个定时器来控制DRX操作,所述定时器包括:开启持续时间定时器、drx不活动定时器、drx重传定时器(除了广播过程之外,每个DL混合自动重复请求(HARQ)过程中一个定时器)、长DRX循环、drx开始偏移定时器值、以及可选的drx短循环定时器和短DRX循环。还定义了每个DL HARQ进程(除了广播过程)的HARQ往返时间(RTT)定时器。When the WTRU is in RRC_CONNECTED mode, and if DRX is configured, the WTRU may monitor the PDCCH discontinuously using DRX operation; otherwise, the WTRU monitors the PDCCH continuously. When using DRX operation, the WTRU may also monitor the PDCCH according to other requirements. RRC controls DRX operation by configuring several timers, which include: on-duration timer, drx inactivity timer, drx retransmission timer (except for the broadcast process, each DL hybrid automatic repeat request ( HARQ) process), long DRX cycle, drx start offset timer value, and optional drx short cycle timer and short DRX cycle. A HARQ round trip time (RTT) timer for each DL HARQ process (except the broadcast process) is also defined.

当配置了DRX循环时,活动时间包括时间为:持续时间定时器、drx不活动定时器、drx重传定时器或mac争用解决定时器正在运行;调度请求在PUCCH上进行发送,并被挂起(pending);出现了用于挂起HARQ重传的UL授权,并且相应的HARQ缓冲器中有数据;或在成功地接收到没有被WTRU选择的前同步码的随机接入响应之后,没有接收到指示用于WTRU的C-RNTI的新传输的PDCCH。When the DRX cycle is configured, the active time includes the time: the duration timer, drx inactivity timer, drx retransmission timer or mac contention resolution timer is running; the scheduling request is sent on the PUCCH and is suspended pending; a UL grant for pending HARQ retransmissions occurs and there is data in the corresponding HARQ buffer; or after successful reception of a random access response with a preamble not selected by the WTRU, no A PDCCH indicating a new transmission for the WTRU's C-RNTI is received.

在活动时间周期期间,对于PDCCH子帧,如果子帧对于半双工频分双工(FDD)WTRU操作的UL传输不是必需的,并且如果所述子帧不是配置的测量间隙的一部分,那么WTRU可以监控PDCCH。如果监控的PDCCH指示DL传输或如果DL分配已经被配置用于当前子帧,那么WTRU可以启动用于相应HARQ进程的HARQ RTT定时器,并且停止用于相应HARQ进程的drx重传定时器。如果监控的PDCCH指示新的传输(DL或UL),那么WTRU可以启动或重启drx不活动定时器。During the active time period, for a PDCCH subframe, if the subframe is not necessary for UL transmissions for half-duplex Frequency Division Duplex (FDD) WTRU operation, and if the subframe is not part of a configured measurement gap, the WTRU may Monitor PDCCH. If the monitored PDCCH indicates DL transmission or if a DL allocation has been configured for the current subframe, the WTRU may start the HARQ RTT timer for the corresponding HARQ process and stop the drx retransmission timer for the corresponding HARQ process. If the monitored PDCCH indicates a new transmission (DL or UL), the WTRU may start or restart the drx inactivity timer.

在3GPP LTE第10版中,WTRU可经由载波聚合连接到一个或多个UL和/或一个或多个DL CC。当在任何分量载波上启用和/或禁用传输时,WTRU可重调谐无线电频率(RF)前端,以最小化必需的处理和电池消耗。通常,可依赖于业务需求和无线电条件来启用和禁用分量载波。这可以由显式的激活或去激活信令、独立DRX过程或两个过程的一些组合来完成。可以使用从增强型节点B(eNB)到WTRU的显式的激活或去激活信令,该显式的激活或去激活信令可包括层1(PDCCH)信令、层2(MAC控制元素(CE))信令或层3(RRC)信令。In 3GPP LTE Release 10, a WTRU may connect to one or more UL and/or one or more DL CCs via carrier aggregation. When enabling and/or disabling transmission on any component carrier, the WTRU may re-tune the radio frequency (RF) front end to minimize necessary processing and battery consumption. In general, component carriers can be enabled and disabled depending on traffic needs and radio conditions. This can be done by explicit activation or deactivation signaling, a stand-alone DRX procedure or some combination of both procedures. Explicit activation or deactivation signaling from the enhanced Node B (eNB) to the WTRU may be used, which may include layer 1 (PDCCH) signaling, layer 2 (MAC control element ( CE)) signaling or Layer 3 (RRC) signaling.

第8/9版DRX过程也可应用于该情况中。可根据现有的或类似的第8/9版过程为每个CC或不同CC子集独立地确定DRX状态。一个CC或CC子集的DRX状态与其它配置的CC互相排斥。DRX状态在所有配置的CC之间是公共的,从而任何一个CC上的事件都影响所有CC的DRX状态。如果应用了独立DRX,则无论何时CC或CC子集进入或离开DRX,都可以应用用于显式的激活或去激活的相同RF前端重调谐,从而减小处理和功率需求。Release 8/9 DRX procedures may also be applied in this case. The DRX status may be determined independently for each CC or different subsets of CCs according to existing or similar Release 8/9 procedures. The DRX state of a CC or CC subset is mutually exclusive with other configured CCs. The DRX state is common across all configured CCs such that an event on any one CC affects the DRX state of all CCs. If independent DRX is applied, whenever a CC or a subset of CCs enters or leaves DRX, the same RF front-end retuning used for explicit activation or deactivation can be applied, reducing processing and power requirements.

为了在配置载波聚合(CA)时允许合理的WTRU电池消耗,支持次小区(SCell)的DL激活或去激活机制(即,激活或去激活不应用于主小区(PCell))。当SCell被去激活时,WTRU不需要接收相应的PDCCH或PDSCH,也不需要执行CQI测量。相反,当SCell活动时,WTRU可接收PDSCH和PDCCH(如果WTRU被配置为监控来自该SCell的PDCCH),并被期望能够执行CQI测量。但是在UL中,当在相应的PDCCH上被调度时,WTRU能够在任何SCell的PUSCH上进行传送(即,没有UL上SCell的显式激活)。To allow for reasonable WTRU battery consumption when carrier aggregation (CA) is configured, a DL activation or deactivation mechanism for the secondary cell (SCell) is supported (ie, activation or deactivation does not apply to the primary cell (PCell)). When an SCell is deactivated, the WTRU does not need to receive the corresponding PDCCH or PDSCH, nor does it need to perform CQI measurements. Conversely, when an SCell is active, the WTRU may receive PDSCH and PDCCH (if the WTRU is configured to monitor PDCCH from that SCell) and is expected to be able to perform CQI measurements. But in the UL, the WTRU can transmit on the PUSCH of any SCell when scheduled on the corresponding PDCCH (ie, without explicit activation of the SCell on the UL).

激活或去激活机制基于MAC CE和去激活定时器的组合。MAC CE携带用于SCell的DL激活和去激活的位图:设置为1的比特表示相应SCell的激活,而设置为0的比特表示相应SCell的去激活。利用所述位图,SCell可以被单独地激活和去激活,单个激活或去激活命令可以激活或去激活SCell子集。针对每个SCell中都保持一个去激活定时器,但是RRC为每个WTRU配置一个公共值。The activation or deactivation mechanism is based on a combination of MAC CE and deactivation timer. The MAC CE carries a bitmap for DL activation and deactivation of the SCell: a bit set to 1 indicates the activation of the corresponding SCell, while a bit set to 0 indicates the deactivation of the corresponding SCell. Using the bitmap, SCells can be activated and deactivated individually, a single activate or deactivate command can activate or deactivate a subset of SCells. One deactivation timer is maintained for each SCell, but RRC configures a common value for each WTRU.

因为支持可变的数据速率业务,CC上的传输和接收将需要频繁地启用和禁用,以用于性能优化以及考虑推动WTRU处理的最小化和电池寿命。Since variable data rate traffic is supported, transmission and reception on the CC will need to be enabled and disabled frequently for performance optimization as well as considerations to drive WTRU processing minimization and battery life.

图2示出了CA的若干潜在部署情形。在第10版中,对于UL,重点在于支持频带内的载波聚合(例如,情形#1,以及当F1和F2位于相同频带中的情形#2和#3)。对于DL,第10版可以支持图2示出的所有情形。Figure 2 illustrates several potential deployment scenarios for CAs. In Release 10, for UL, the emphasis is on supporting intra-band carrier aggregation (eg, case #1, and cases #2 and #3 when F1 and F2 are located in the same frequency band). For DL, Release 10 can support all scenarios shown in FIG. 2 .

在LTE第8/9版中,网络(例如,eNB)使用PDCCH来分配用于DL传输的PDSCH资源,并向终端设备(此后称作WTRU)授权用于UL传输的PUSCH资源。WTRU可通过发送调度请求(SR)给eNB,来请求用于UL传输的无线电资源。SR可以在PUCCH上的专用资源(D-SR)上(如果配置了的话)被传送,或者以其他方式使用随机接入过程(RA-SR)被传送。为了进行PUSCH上的传输,eNB为WTRU授权无线电资源,其在配置的资源中的PDCCH上接收到的授权中进行指示(半持久性调度的UL授权)。In LTE Release 8/9, the network (eg, eNB) uses the PDCCH to allocate PDSCH resources for DL transmissions and grants PUSCH resources for UL transmissions to terminal devices (hereafter referred to as WTRUs). A WTRU may request radio resources for UL transmissions by sending a scheduling request (SR) to the eNB. The SR may be transmitted on a dedicated resource (D-SR) on the PUCCH (if configured) or otherwise using a random access procedure (RA-SR). For transmission on PUSCH, the eNB grants radio resources to the WTRU as indicated in the grant received on the PDCCH in the configured resources (UL grant for semi-persistent scheduling).

在LTE第8/9版中,在网络仅给WTRU分配一对UL和DL载波的地方是单独的载波系统,对于任何给定的子帧,存在对于UL来说活动的单个HARQ进程和在DL中活动的单个HARQ进程。In LTE Release 8/9, where the network only assigns a pair of UL and DL carriers to a WTRU is a separate carrier system, for any given subframe there is a single HARQ process active for the UL and a single HARQ process for the DL A single HARQ process active in .

对于LTE第8/9版,WTRU可根据以下对象在每个子帧中的PDCCH上接收多个控制信息消息(即,DCI):如果有,则存在至多具有C-RNTI/SPS-C-RNTI的一个UL授权和一个DL分配;以及如果有,则存在至多一个具有P-RNTI(寻呼)的消息和CSS中具有SI-RNTI(SI变化通知)的一个消息。For LTE Release 8/9, the WTRU may receive multiple control information messages (i.e., DCI) on the PDCCH in each subframe according to the following: One UL grant and one DL allocation; and if there is at most one message with P-RNTI (paging) and one message in CSS with SI-RNTI (SI change notification).

DRX的好处因而超出了节省PDCCH的某些处理。对于WTRU不需要为UL授权和DL分配监控PDCCH的子帧,WTRU实现可选择用于关闭至少部分其收发信机电路,可能包括存储器部件和/或部分基带部件(如果WTRU不监控PDCCH的子帧数目足够大,例如,几十毫秒)。The benefits of DRX thus go beyond saving some processing of the PDCCH. For subframes in which the WTRU does not need to monitor the PDCCH for UL grants and DL allocations, the WTRU implementation may choose to switch off at least some of its transceiver circuitry, possibly including memory components and/or some baseband components (if the WTRU does not monitor the subframes for the PDCCH The number is sufficiently large, for example, tens of milliseconds).

图3示出了示例性的DRX循环。在LTE第8/9版中,WTRU典型地在下述事件之一发生时发起随机接入(RA)过程。当WTRU进行对于网络的初始接入以建立RRC连接时。当WTRU在切换过程期间接入目标小区时。当WTRU执行RRC连接重新建立过程时。当WTRU由网络指示来执行RA过程时(即,通过PDCCH RA命令,典型地用于DL数据到达)。当WTRU执行调度请求、但是没有用于请求的PUCCH上的专用资源时,典型地在WTRU有新的UL数据要传送、所述数据比该WTRU的缓冲器中的现有数据具有较高的优先级时。Figure 3 shows an exemplary DRX cycle. In LTE Release 8/9, a WTRU typically initiates a random access (RA) procedure when one of the following events occurs. When a WTRU makes initial access to the network to establish an RRC connection. When a WTRU accesses a target cell during a handover procedure. When the WTRU performs an RRC connection re-establishment procedure. When the WTRU is instructed by the network to perform an RA procedure (ie, via a PDCCH RA order, typically for DL data arrival). When a WTRU performs a scheduling request, but does not have dedicated resources on the PUCCH for the request, there is typically new UL data to transmit at the WTRU that has a higher priority than existing data in the WTRU's buffer grade time.

依赖于WTRU是否被分配有专用的RACH资源(例如,特定的前同步码和/或PRACH资源),RA过程可以是无争用(CFRA)或基于争用(CBRA)的,并且包括下述步骤。首先,在PRACH的资源上发送前同步码。其次,接收随机接入响应(RAR),所述RAR包括用于UL传输和时序提前命令(TAC)的授权。Depending on whether the WTRU is allocated dedicated RACH resources (e.g., specific preamble and/or PRACH resources), the RA procedure may be contention-free (CFRA) or contention-based (CBRA) and include the following steps . First, a preamble is transmitted on the resources of the PRACH. Second, a Random Access Response (RAR) is received that includes a grant for UL transmission and a Timing Advance Command (TAC).

为CBRA执行两个额外的步骤。第三是层2/层3(即,实际的RA过程)消息的传送。第四,执行争用解决,其中WTRU基于PDCCH上的C-RNTI或DL-SCH上的WTRU争用解决标识来确定该WTRU是否成功地完成了RACH过程。Perform two additional steps for CBRA. The third is the transfer of Layer 2/Layer 3 (ie, the actual RA procedure) messages. Fourth, contention resolution is performed, where the WTRU determines whether the WTRU successfully completed the RACH procedure based on the C-RNTI on the PDCCH or the WTRU contention resolution indicator on the DL-SCH.

在LTE第8/9版中,可使用RRC给WTRU配置用于传输CQI、PMI或RI报告以及用于调度请求(D-SR)的专用资源。此外,WTRU可配置有用于SPS的专用UL资源,即,可配置有用于UL SPS的PUSCH资源,以及用于对于相应DL SPS配置的HARQ肯定应答(ACK)/否定应答(NACK)(A/N)的UL PUCCH资源。网络还给WTRU分配专用SRS资源,以在分配用于PUSCH传输的UL资源中协助做出调度决定。In LTE Release 8/9, RRC may be used to configure a WTRU with dedicated resources for transmission of CQI, PMI or RI reports and for scheduling requests (D-SRs). In addition, the WTRU may be configured with dedicated UL resources for SPS, i.e., may be configured with PUSCH resources for UL SPS, and for HARQ acknowledgment (ACK)/negative acknowledgment (NACK) (A/N ) UL PUCCH resources. The network also allocates dedicated SRS resources to the WTRU to assist in scheduling decisions in the UL resources allocated for PUSCH transmissions.

在LTE第8/9版中,在WTRU为周期性SRS执行UL传送、或在PUCCH(即,HARQ A/N反馈;SR;周期性CQI、PMI、或RI报告)或PUSCH上执行UL传输之前,WTRU需要与网络有适当时间校准。UL同步最初通过使用RACH过程来完成,随后网络在DL中发送TAC,以维持适当的时间校准。在RA过程期间的RAR中或在时间提前MAC CE中接收TAC。In LTE Release 8/9, before the WTRU performs UL transmissions for periodic SRS, or UL transmissions on PUCCH (i.e., HARQ A/N feedback; SR; periodic CQI, PMI, or RI reporting) or PUSCH , the WTRU needs to have proper time alignment with the network. UL synchronization is initially done using RACH procedures, after which the network sends TACs in the DL to maintain proper time alignment. TAC is received in RAR during RA procedure or in Time Advance MAC CE.

在接收到TAC之后,WTRU重启TA定时器(TAT)。在TAT运行时,WTRU可在子帧中的PUCCH资源上进行传送,对于所述子帧,WTRU不执行PUSCH传送(单载波属性)。在PUCCH区域的频率或时间共享资源中为PDSCH传输的HARQ A/N反馈动态地分配PUCCH资源。WTRU基于PDCCH上接收到的DCI的第一CCE来确定要使用哪个PUCCH资源,所述CCE指示PDSCH分配。After receiving the TAC, the WTRU restarts the TA timer (TAT). While TAT is running, the WTRU may transmit on PUCCH resources in subframes for which the WTRU does not perform PUSCH transmissions (single carrier property). PUCCH resources are dynamically allocated for HARQ A/N feedback of PDSCH transmission in the frequency or time shared resources of the PUCCH region. The WTRU determines which PUCCH resource to use based on the first CCE of the DCI received on the PDCCH, which CCE indicates the PDSCH allocation.

当WTRU在至少等于TAT配置值(即,时间校准定时器,其范围从500ms到10240ms,如果允许的话)的周期内不从网络接收TAC时,TAT可为该同步的WTRU终止。假如在所述周期期间所有TAC都丢失,即在多个TAC的连续丢失之后,WTRU可以不接收TAC,这是罕见的错误情况,则可以使用足够的重复由调度器实施来最小化。可替换地,为了在网络不再为新的传输调度WTRU时暗中释放专用UL资源,如果网络不发送任何TAC,则WTRU可以不接收TAC。WTRU时间提前量的有效性完全由eNB控制。TAT may terminate for a synchronized WTRU when the WTRU does not receive a TAC from the network for a period at least equal to the TAT configuration value (ie, Time Alignment Timer, which ranges from 500ms to 10240ms, if enabled). In case all TACs are lost during the period, ie, after consecutive losses of multiple TACs, the WTRU may not receive a TAC, which is a rare error condition that can be minimized by the scheduler enforcement with sufficient repetition. Alternatively, to implicitly release dedicated UL resources when the network no longer schedules the WTRU for new transmissions, the WTRU may not receive a TAC if the network does not send any TAC. The validity of the WTRU timing advance is entirely under the control of the eNB.

在TAT终止时,WTRU释放其专用UL资源,包括任何配置的SRS资源,以及用于D-SR、CQI/PMI/RI的PUCCH资源;以及任何配置的DL和UL SPS资源。Upon TAT termination, the WTRU releases its dedicated UL resources, including any configured SRS resources, and PUCCH resources for D-SR, CQI/PMI/RI; and any configured DL and UL SPS resources.

此外,一旦WTRU被认为不与网络同步,则WTRU可以不执行任何PUCCH或PUSCH同步。避免来自不再同步的WTRU的UL传送的一个原因是要避免对于其他WTRU的传输的可能干扰。另外,简单地通过使TAT在缺乏来自网络的TAC之后终止,避免UL传输为调度器提供了隐含装置,而撤销专用UL资源。Furthermore, once the WTRU is deemed not to be synchronized with the network, the WTRU may not perform any PUCCH or PUSCH synchronization. One reason for avoiding UL transmissions from out-of-sync WTRUs is to avoid possible interference with other WTRUs' transmissions. Additionally, avoiding UL transmissions provides an implicit means for the scheduler to withdraw dedicated UL resources simply by having the TAT terminate after lack of TAC from the network.

用于调度PDSCH和PUSCH的控制信息可在一个或多个PDCCH上发送。除了为一对UL和DL载波使用一个PDCCH的LTE第8/9版调度之外,也可为给定的PDCCH支持跨载波调度,允许网络为一个或多个其他CC中的传输提供PDSCH分配和/或PUSCH授权。Control information for scheduling PDSCH and PUSCH may be sent on one or more PDCCHs. In addition to LTE Release 8/9 scheduling using one PDCCH for a pair of UL and DL carriers, cross-carrier scheduling is also supported for a given PDCCH, allowing the network to provide PDSCH allocation and /or PUSCH authorization.

对于使用CA进行操作的LTE第10版WTRU,对于每个CC有一个HARQ实体,每个HARQ实体具有八个HARQ进程,即对于一个RTT的一个子帧有一个HARQ进程。在任何给定的子帧中有不止一个用于UL和DL的活动的HARQ进程,但是对于每个CC最多有一个UL和一个DL HARQ进程。For an LTE Release 10 WTRU operating with CA, there is one HARQ entity per CC, and each HARQ entity has eight HARQ processes, ie, one HARQ process for one subframe of one RTT. There is more than one active HARQ process for UL and DL in any given subframe, but there is at most one UL and one DL HARQ process for each CC.

在下文中提到时,术语“主分量载波(PCC)”包括,但不失一般性,被配置为操作多个分量载波的WTRU的载波,某些功能性(例如,安全参数和非接入层(NAS)信息的获得)仅可应用于该分量载波。WTRU可配置有至少一个用于DL的PCC(DL PCC)和用于UL的一个PCC(UL PCC)。因此,不是WTRU的PCC的载波此后称作次分量载波(SCC)。When referred to hereinafter, the term "Primary Component Carrier (PCC)" includes, without loss of generality, the carrier of a WTRU configured to operate multiple component (NAS) Information Acquisition) is only applicable to this component carrier. A WTRU may be configured with at least one PCC for DL (DL PCC) and one PCC for UL (UL PCC). Accordingly, a carrier that is not the WTRU's PCC is hereinafter referred to as a secondary component carrier (SCC).

DL PCC可以,例如,对应于WTRU使用的CC,以在初始接入系统时得到初始安全参数。UL PCC可以,例如对应于PUCCH资源被配置为携带所有HARQ A/N和用于给定WTRU的信道状态信息(CSI)反馈的CC。The DL PCC may, for example, correspond to the CC used by the WTRU to obtain initial security parameters upon initial access to the system. The UL PCC may, for example, correspond to a CC where PUCCH resources are configured to carry all HARQ A/N and channel state information (CSI) feedback for a given WTRU.

WTRU的小区典型地包括DL CC,并且可选地与一组UL资源结合,例如UL CC。对于LTE第10版,主小区(PCell)包括DL PCC和UL PCC的组合。WTRU多载波配置的次小区(SCell)包括DL SCC和可选的UL SCC(即,LTE第10版支持非对称配置,其中WTRU被配置有比UL CC更多的DL CC)。对于LTE第10版,WTRU多载波配置包括一个PCell,以及至多五个SCell。A WTRU's cell typically includes a DL CC, optionally combined with a set of UL resources, such as a UL CC. For LTE Release 10, the Primary Cell (PCell) consists of a combination of DL PCC and UL PCC. A secondary cell (SCell) for a WTRU multi-carrier configuration includes a DL SCC and optionally a UL SCC (ie, LTE Release 10 supports an asymmetric configuration where the WTRU is configured with more DL CCs than UL CCs). For LTE Release 10, a WTRU multi-carrier configuration includes one PCell, and up to five SCells.

利用CA,WTRU可在RF前端中同时使用多个接收机链。支持非连续频谱也意味着RF前端必须能够抑制不同频谱部分之间的阻塞信号。With CA, a WTRU may simultaneously use multiple receiver chains in the RF front end. Supporting non-contiguous spectrum also means that the RF front end must be able to reject blocking signals between different parts of the spectrum.

与DRX有关的CA的一个方面是在不同收发信机的部件及其各自的启动时间之间分配WTRU功率损耗。另一个方面是用于WTRU的配置SCell的数量对于功率消耗的影响、以及对于RF前端重新配置的影响。一个或多个CC的激活和/或去激活需要用于RF前端的带宽和采样率的变化,导致在周期期间不能从WTRU进行传输和向WTRU进行传输(所述周期可在数以百计的微秒到2ms之间变化)。One aspect of CA related to DRX is the allocation of WTRU power consumption among components of different transceivers and their respective start-up times. Another aspect is the impact of the number of configured SCells for the WTRU on power consumption, and on RF front-end reconfiguration. Activation and/or deactivation of one or more CCs requires a change in bandwidth and sampling rate for the RF front-end, resulting in no transmissions from and to the WTRU during periods (which can vary in the hundreds of microseconds to 2ms).

就像这里所提到的,CC(尤其是SCC)的激活典型地包括下述过程:在该过程中WTRU确保其一个或多个收发信机能够针对PCell和可能也针对其多载波配置的一个或多个SCell,在相关DL CC上执行接收和/或在相关UL CC上执行发送。这可以包括RF前端的重新配置,就像在从不处于“活动”状态的状态中转换的情况中所解释的那样。类似地,CC的“去激活”指CC不“活动”的状态,其中从该状态的转换也具有类似的含义。As mentioned here, activation of a CC (especially an SCC) typically involves a procedure in which a WTRU ensures that one or more of its transceivers are capable of targeting a PCell and possibly also a or multiple SCells, perform reception on the relevant DL CC and/or perform transmission on the relevant UL CC. This may include reconfiguration of the RF front end, as explained in the case of transitioning from a state other than the "active" state. Similarly, "deactivation" of a CC refers to a state in which the CC is not "active," with transitions from that state also having a similar meaning.

根据实施和功率消耗、以及在执行各自状态转换时的需求,对于给定CC的DRX状态的变化和激活状态的变化之间存在差异。There is a difference between a change in DRX state and a change in active state for a given CC depending on implementation and power consumption, as well as requirements when performing the respective state transitions.

对于被配置为使用多个CC进行操作的WTRU,对于PCC的PDCCH监控和/或PDSCH接收被典型地激活,并且可由DRX管理。对于配置的SCC的PDCCH监控和/或PDSCH接收被激活或去激活,此外在激活时可由DRX管理。For a WTRU configured to operate with multiple CCs, PDCCH monitoring and/or PDSCH reception for the PCC is typically activated and may be managed by the DRX. PDCCH monitoring and/or PDSCH reception for configured SCCs is activated or deactivated, and can also be managed by DRX when activated.

当WTRU使用多个CC进行操作时,可支持跨载波调度,即使用PDCCH在载波之间进行调度。在跨载波调度可能时,PDCCH的监控在所有配置的和/或活动载波中可能不是必须的。When a WTRU operates with multiple CCs, it may support cross-carrier scheduling, ie, scheduling between carriers using the PDCCH. Monitoring of PDCCH may not be necessary in all configured and/or active carriers when cross-carrier scheduling is possible.

在考虑到WTRU功率节约和多载波操作时,有若干种不同的选择。在公共DRX(基准)选择中,WTRU为作为DRX活动时间一部分的子帧中的所有CC(配置有PDCCH)监控PDCCH,所述DRX活动时间对于所有CC是相同的。在独立的DRX选择中,所有的DRX定时器用于每个CC,并且因此WTRU独立地监控每个CC(配置有PDCCH)的PDCCH。在快速激活或去激活机制中,SCell可以由L1(例如,使用PDDCH)或L2(例如,使用MAC CE)信令单独地激活和去激活,并且单个激活或去激活命令可激活或去激活服务小区的子集。该快速激活或去激活机制可由其自己使用或与公共DRX或独立的DRX选择相结合。There are several different options when considering WTRU power savings and multi-carrier operation. In common DRX (reference) selection, the WTRU monitors PDCCH for all CCs (configured with PDCCH) in a subframe that is part of the DRX active time, which is the same for all CCs. In independent DRX selection, all DRX timers are used for each CC, and thus the WTRU monitors the PDCCH of each CC (with PDCCH configured) independently. In the fast activation or deactivation mechanism, SCells can be activated and deactivated individually by L1 (e.g., using PDDCH) or L2 (e.g., using MAC CE) signaling, and a single activation or deactivation command can activate or deactivate the service Subset of the district. This fast activation or deactivation mechanism can be used by itself or combined with common DRX or independent DRX selection.

如果WTRU被设计有单个RF前端,则只要CC的传输或接收被启用或禁用时,RF接收和传输的重调谐都会影响不包括在启用或禁用中的其他CC的传输。为了最小化WTRU传输和接收处理的需求,UL和DL CC应该仅在需要时启用,以消除或最小化传输和接收失败。If the WTRU is designed with a single RF front end, whenever a CC's transmission or reception is enabled or disabled, retuning of RF reception and transmission will affect the transmission of other CCs not included in the enabling or disabling. To minimize WTRU transmission and reception processing requirements, UL and DL CCs should be enabled only when needed to eliminate or minimize transmission and reception failures.

为了使得WTRU支持多载波操作,即为了所述WTRU可在具有CA的LTE第10版中配置有不止一个CC,要考虑在满足可能的需要从而为至少一个CC的激活或去激活执行RF重调谐时如何最小化WTRU功率消耗。结合DRX机制,在网络不可能调度WTRU期间,考虑RF前端重新配置的处理(例如,允许CC激活和去激活)。为每个激活的CC处理DRX活动时间,即,也考虑网络调度器为传输所寻址的WTRU的子帧,假定SCC的打开或关闭(例如,DRX)和/或(去)激活(例如,可能需要RF前端的重新配置)对于WTRU实施是可能的。In order for a WTRU to support multi-carrier operation, i.e. for the WTRU to be configured with more than one CC in LTE Release 10 with CA, it is considered possible to perform RF retuning for activation or deactivation of at least one CC how to minimize WTRU power consumption. In conjunction with DRX mechanisms, the handling of RF front-end reconfiguration (eg, allowing CC activation and deactivation) is considered during periods when it is not possible for the network to schedule a WTRU. DRX active time is processed for each activated CC, i.e., subframes of WTRUs addressed by the network scheduler for transmissions are also considered, assuming SCCs are switched on or off (e.g., DRX) and/or (de)activated (e.g., may require reconfiguration of the RF front end) is possible for WTRU implementations.

WTRU和网络必须具有对WTRU监控控制信令(例如,PDCCH)的一个或多个CC和一个或多个子帧的相干和同步观察。一个问题是哪些事件管理每个CC的DRX活动时间,和对于WTRU是否可能执行RF前端的重调谐。The WTRU and the network must have coherent and synchronized observations of one or more CCs and one or more subframes where the WTRU monitors control signaling (eg, PDCCH). One question is which events govern the DRX active time for each CC, and whether it is possible for the WTRU to perform retuning of the RF front end.

WTRU可以在给定周期期间检测某些调度活动,从而确定它是否可以激活额外的SCC,或去激活当前的活动SCC。调度活动可隐式地或显式地指示哪些子帧可用于执行必要的调整,以及在哪些期间不期望WTRU接收用于受影响CC的控制信令。A WTRU may detect certain scheduling activities during a given period to determine whether it can activate additional SCCs, or deactivate the currently active SCC. The scheduling activity may indicate, implicitly or explicitly, which subframes are available to perform the necessary adjustments, and during which periods the WTRU is not expected to receive control signaling for the affected CCs.

令人满意的是保证WTRU和网络相对于UL时序和HARQ状态保持同步。该同步包括在重新配置RF前端(例如,为了(去)激活CC而被执行)时处理时间校准,所述重新配置可引入比WTRU需要用来仍然被认为具有适当UL时序校准的漂移更大的漂移。所述同步还包括在调度间隙期间处理HARQ状态,即在网络不可能调度WTRU的时间期间。It is desirable to ensure that the WTRU and the network remain synchronized with respect to UL timing and HARQ status. This synchronization includes handling time alignment when reconfiguring the RF front-end (e.g., performed in order to (de)activate the CC), which may introduce a larger drift than the WTRU needs to still be considered to have proper UL timing alignment drift. The synchronization also includes handling the HARQ state during scheduling gaps, ie, during times when it is not possible for the network to schedule the WTRU.

WTRU可确定在RF重调谐时是否必须获得适当的UL同步。WTRU可确定给定子帧中的适当HARQ状态,在该子帧中有至少一个活动的HARQ进程,此时WTRU不能为一个或多个HARQ进程接收(例如,PDCCH、PHICH)或发送(例如,PUCCH)控制信令。The WTRU may determine whether proper UL synchronization must be obtained upon RF retuning. The WTRU may determine the appropriate HARQ state in a given subframe in which there is at least one active HARQ process when the WTRU cannot receive (e.g., PDCCH, PHICH) or transmit (e.g., PUCCH ) control signaling.

重调谐发送或接收失败可通过延迟启用和/或禁用CC而被最小化或消除,直到发送或接收空闲周期能够由WTRU预测或由eNB协调。CC的启用和/或禁用由显式的或隐式的方法确定,从而在WTRU和eNB之间协调已知的时间周期,称作重调谐间隙。Retuning transmission or reception failures may be minimized or eliminated by delaying enabling and/or disabling CCs until transmission or reception idle periods can be predicted by the WTRU or coordinated by the eNB. The enabling and/or disabling of CCs is determined by explicit or implicit methods to coordinate between the WTRU and eNB for known time periods, called retuning gaps.

通常,对于每种提出的方法,CC启用和/或禁用触发事件之后,WTRU确定最小化以及在某些情况中可消除不受启用和/或禁用影响的其他CC上的发送或接收失败的最早重调谐间隙时机。优选地,WTRU确定的重调谐间隙对于eNB是已知的,从而eNB可采取进一步的动作来消除发送或接收失败。In general, for each of the proposed methods, after a CC enabling and/or disabling trigger event, the WTRU determines the earliest time to minimize and in some cases eliminate transmit or receive failures on other CCs not affected by the enabling and/or disabling. Retune gap timing. Preferably, the retuning gap determined by the WTRU is known to the eNB so that the eNB can take further actions to eliminate transmission or reception failures.

WTRU对于重调谐间隙时机的自动确定可根据从eNB接收的显式信令发起,或基于WTRU检测的触发事件隐式地启动。eNB可发送显式的信令,请求一个或多个CC的激活和/或去激活。eNB信令可以是请求启用和/或禁用一个或多个CC的PHY PDCCH命令、MAC控制元素或RRC配置消息。在接收到eNB请求时,WTRU根据下述若干方法之一确定下一个重调谐间隙时机。The WTRU's automatic determination of retuning gap opportunities may be initiated from explicit signaling received from the eNB, or implicitly based on triggering events detected by the WTRU. The eNB may send explicit signaling requesting activation and/or deactivation of one or more CCs. The eNB signaling can be a PHY PDCCH order, a MAC control element or an RRC configuration message requesting to enable and/or disable one or more CCs. Upon receiving the eNB request, the WTRU determines the next retuning gap opportunity according to one of several methods described below.

激活或去激活可以由一个或多个配置的CC的DRX状态隐式地触发。如果每个配置的CC或配置的CC的子集具有相对于其他CC的互斥的独立DRX状态,则任何一个CC或CC子集的DRX状态中的变化都会导致发起下一重调谐间隙时机的WTRU自动确定。如果所有配置的CC都具有公共的DRX状态,则公共DRX状态的变化还会导致确定下一重调谐间隙时机。Activation or deactivation may be implicitly triggered by the DRX state of one or more configured CCs. If each configured CC or subset of configured CCs has an independent DRX state that is mutually exclusive with respect to other CCs, a change in the DRX state of any one CC or subset of CCs will cause the WTRU to initiate the next retuning gap opportunity Automatically determined. If all configured CCs have a common DRX state, the change of the common DRX state will also lead to the determination of the next retuning gap opportunity.

在任何配置的CC上的WTRU活动发送或接收状态期间,WTRU可延迟任何CC的启用和/或禁用,直到在允许在重调谐周期的所有配置的CC上确定不活动的发送或接收状态。可替换地,WTRU可在所有启用的CC上追踪各自的UL和DL传输和重传,以确定何时存在重调谐间隙,所述重调谐间隙最小化和潜在地消除了重调谐周期期间的失败的发送或接收。During a WTRU active transmit or receive state on any configured CC, the WTRU may delay enabling and/or disabling of any CC until an inactive transmit or receive state is determined on all configured CCs that allow for a retuning period. Alternatively, the WTRU may track respective UL and DL transmissions and retransmissions on all enabled CCs to determine when there are retuning gaps that minimize and potentially eliminate failures during retuning periods sending or receiving.

eNB还考虑知道一种或多种WTRU用于确定重调谐间隙的自动方法以及何时CC激活和/或去激活已经被触发,以避免在已知的重调谐间隙周期期间发起新的传输和重传。The eNB also considers knowing one or more automatic methods used by the WTRU to determine retuning gaps and when CC activation and/or deactivation has been triggered to avoid initiating new transmissions and retuning gaps during known retuning gap periods. pass.

如果显式的信令和/或隐式的事件触发了对启用或禁用一个或多个CC的需要,则CC发送或接收的启用或禁用在下一重调谐间隙中执行。If explicit signaling and/or implicit events trigger the need to enable or disable one or more CCs, the enabling or disabling of CC transmission or reception is performed in the next retuning gap.

在WTRU确定重调谐间隙出现前,会发生不止一个启用和/或禁用触发事件。当发生了多个触发事件时,事件是添加的,只是后来接收到的事件优先。如果CC的不同子集经历了触发事件,则组合的更高级集合(super set)在重调谐间隙出现时受到影响。也可能某些或所有触发的CC触发事件被清除。例如,如果启用的CC具有禁用事件以及随后的启用事件,则触发事件可以被清除。如果所有检测到的触发事件都被随后的触发事件清除,则取消WTRU确定的重调谐间隙,并且正常的发送和接收可在之前调度的重调谐间隙周期上继续。More than one enabling and/or disabling trigger event may occur before the WTRU determines that a retuning gap has occurred. When multiple trigger events occur, the events are added, but the event received later takes precedence. If different subsets of CCs experience triggering events, the combined higher-level set (superset) is affected when a retuning gap occurs. It is also possible that some or all triggered CC trigger events are cleared. For example, if an enabled CC has a disable event followed by an enable event, the trigger event may be cleared. If all detected trigger events are cleared by subsequent trigger events, then the retuning gap determined by the WTRU is canceled and normal transmission and reception may continue over the previously scheduled retuning gap period.

在WTRU确定下一可用的重调谐间隙时,也可考虑不直接与PUSCH和PDSCH传送相关联的传输。例如,下述情况可另外排除WTRU确定的重调谐间隙时机:任何PUCCH传输(即,对于周期性的CQI、PMI或RI);任何周期性的或非周期性的请求的SRS传输;正在进行的RACH过程,只要MSG1-4不被中断;寻呼时机;或系统信息接收。Transmissions not directly associated with PUSCH and PDSCH transmissions may also be considered when the WTRU determines the next available retuning gap. For example, the following may otherwise preclude WTRU-determined retuning gap opportunities: any PUCCH transmission (i.e., for periodic CQI, PMI, or RI); any periodic or aperiodic requested SRS transmission; ongoing RACH procedure, as long as MSG1-4 is not interrupted; paging occasion; or system information reception.

传输和重传对于WTRU是已知的,并且WTRU可以基于该了解做出自动重调谐间隙决定。基于比PDCCH接收提前四个传输时间间隔(TTI),新的UL传输被提前知道。通过比HARQ反馈或PDCCH调度提前四个TTI,还可以提前知道UL重传。DL重传也可以从比HARQ进程的最早重传提前至少八个TTI的WTRU生成的反馈来近似得到。Transmissions and retransmissions are known to the WTRU, and the WTRU may make automatic retuning gap decisions based on this knowledge. New UL transmissions are known in advance based on four transmission time intervals (TTIs) ahead of PDCCH reception. UL retransmissions can also be known in advance by four TTIs ahead of HARQ feedback or PDCCH scheduling. DL retransmissions may also be approximated from feedback generated by the WTRU at least eight TTIs earlier than the earliest retransmission of the HARQ process.

在这些情况中,WTRU可以确定何时会出现空闲周期,以应用对于可用CC的任何子集的激活和/或去激活的重调谐过程,从而避免中断正在进行的的传输。WTRU可在所有配置的UL和DL CC上追踪传输和重传时机。WTRU确定大于或等于需要的重调谐周期持续时间的公共空闲周期在所有CC上被发现时的重调谐间隙。In these cases, the WTRU may determine when idle periods may occur to apply retuning procedures for activation and/or deactivation of any subset of available CCs to avoid interrupting ongoing transmissions. The WTRU may track transmission and retransmission opportunities on all configured UL and DL CCs. The WTRU determines the retuning gap when a common idle period greater than or equal to the required retuning period duration is found on all CCs.

图4A是用于WTRU确定重调谐间隙时机的方法400的流程图。CC触发事件发生(步骤402),WTRU在检测到至少与需要的重调谐周期一样长的空闲周期时确定重调谐间隙时机(步骤404)。4A is a flowchart of a method 400 for a WTRU to determine retuning gap opportunities. A CC trigger event occurs (step 402), and the WTRU determines a retune gap opportunity (step 404) upon detection of an idle period at least as long as the required retune period.

WTRU发起CC启用和/或禁用事件之后的重调谐间隙确定过程。该事件可由从eNB接收到的显式信令中产生和/或基于内部WTRU过程(即,独立的DRX)产生,所述内部WTRU过程也导致启用或禁用一个或多个CC。如果通过对准DRX开启准持续时间的开始,应用了每个CC或CC子集的独立DRX过程,则在当前没有CC启用时有时可能会避免启用延迟。The WTRU initiates the retuning gap determination procedure following a CC enable and/or disable event. This event may arise from explicit signaling received from the eNB and/or based on internal WTRU procedures (ie, independent DRX) that also result in one or more CCs being enabled or disabled. If an independent DRX process per CC or CC subset is applied by aligning the start of the DRX on quasi-duration, it may sometimes be possible to avoid the enable delay when no CC is currently active.

WTRU当前不可能预测eNB何时会发起新的DL传输。但是eNB知道CC启用和/或禁用触发事件,以及用于确定下一可用重调谐间隙的WTRU逻辑。在应用了重调谐过程时,eNB可使用对此情况的了解在WTRU确定重调谐间隙期间避免调度新的DL传输时机。It is currently impossible for a WTRU to predict when an eNB will initiate a new DL transmission. But the eNB is aware of the CC enable and/or disable trigger events, as well as the WTRU logic for determining the next available retuning gap. When the retuning procedure is applied, the eNB may use this knowledge to avoid scheduling new DL transmission opportunities during the WTRU's determination of the retuning gap.

结合该WTRU自动重调谐间隙决定方法使用的一种方法用于使eNB控制或强制何时确定所述间隙,从而eNB可提前确定何时应该避免新发起的传输。基于对WTRU重调谐间隙确定过程的连接,eNB可使得一个或多个连续的HARQ进程空闲,从而eNB可提前预测WTRU重调谐间隙。One method used in conjunction with this WTRU automatic retuning gap decision method is for the eNB to control or enforce when the gap is determined so that the eNB can determine in advance when new initiated transmissions should be avoided. Based on the connection to the WTRU retuning gap determination procedure, the eNB may idle one or more consecutive HARQ processes so that the eNB may predict the WTRU retuning gap in advance.

不要求和快速WTRU处理一样的另一种方法,是等待所有CC上的任何正在进行的UL和DL HARQ进程传输和重传结束。WTRU在HARQ进程传输循环之后作出自动重调谐间隙决定。如果CC启用或禁用触发事件发生,并且没有正在进行的UL和/或DL传输,那么可立即应用重调谐过程。如果有正在进行的传输,那么WTRU等待所有的UL和DL HARQ进程传输和重传,以做出决定来确定重调谐间隙并应用重调谐过程。Another approach, which does not require the same fast WTRU processing, is to wait for the completion of any ongoing UL and DL HARQ process transmissions and retransmissions on all CCs. The WTRU makes the automatic retuning gap decision after a HARQ process transmission cycle. If a CC enable or disable trigger event occurs and there are no ongoing UL and/or DL transmissions, the retuning procedure may be applied immediately. If there are ongoing transmissions, the WTRU waits for all UL and DL HARQ process transmissions and retransmissions to make a decision to determine the retuning gap and apply the retuning procedure.

图4B是用于在活动HARQ进程已经结束之后执行重调谐的方法420的流程图。CC触发事件发生(步骤422),作出是否有任何正在进行的UL或DL传输的决定(步骤424)。如果没有正在进行的UL或DL传输,那么WTRU应用重调谐过程(步骤426)。如果有正在进行的UL或DL传输,那么WTRU等待所有的HARQ传输和重传完成(步骤428),然后应用重调谐过程(步骤426)。4B is a flowchart of a method 420 for performing retuning after an active HARQ process has ended. A CC trigger event occurs (step 422), and a determination is made whether there are any ongoing UL or DL transmissions (step 424). If there are no ongoing UL or DL transmissions, the WTRU applies a retuning procedure (step 426). If there are ongoing UL or DL transmissions, the WTRU waits for all HARQ transmissions and retransmissions to complete (step 428) before applying the retuning procedure (step 426).

用于启用或禁用CC的WTRU重调谐间隙可由WTRU在所有正在进行的HARQ进程传输都已经在UL和DL方向上完成时自动地确定。对于UL传输,在所有UL CC上所有正在进行的UL HARQ进程传送都已经接收到肯定ACK或对于每个HARQ进程已经超出了最大次数的HARQ重传时,满足用于确定重调谐间隙的准则。The WTRU retuning gap for enabling or disabling CCs may be automatically determined by the WTRU when all ongoing HARQ process transmissions have been completed in both the UL and DL directions. For UL transmissions, the criteria for determining the retuning gap are met when either positive ACKs have been received for all ongoing UL HARQ process transmissions on all UL CCs or the maximum number of HARQ retransmissions has been exceeded for each HARQ process.

对于DL传输,在所有正在进行的DL HARQ进程已经生成了肯定ACK时,满足用于确定重调谐间隙的准则。如果WTRU知道HARQ进程重传的最大次数,或在已知的时间周期之后没有发起的DL重传,那么也满足DL传输准则。当满足UL和DL重调谐间隙准时,应用重调谐过程。然后HARQ进程发送和/或接收可在重调谐间隙之后立即重新开始,只要DRX准则允许该点处进行接收(例如,如果DRX开启持续时间、不活动或重传定时器仍然活动)。For DL transmissions, the criteria for determining the retuning gap are met when all ongoing DL HARQ processes have generated positive ACKs. The DL transmission criterion is also satisfied if the WTRU knows the maximum number of HARQ process retransmissions, or there are no initiated DL retransmissions after a known period of time. The retuning process is applied when the UL and DL retuning gaps are met. The HARQ process transmission and/or reception may then resume immediately after the retuning gap, as long as DRX criteria allow reception at that point (eg, if DRX on-duration, inactivity or retransmission timers are still active).

此外,没有新的UL和/或DL传送被发起的空闲时间在应用重调谐过程之前从最近的在先的活动传输或重传的结尾处被考虑。空闲周期允许eNB停止发起任何新的传输,并使WTRU可靠地调整重调谐周期,从而不中止新发起的传输。因为CC启用和/或禁用事件对于eNB是已知的,并且新启用的传输可由eNB停止,所以该空闲周期可以比现有的DRX不活动和重传定时器短。一旦重调谐过程完成,例如在一个或两个TTI中,依赖于DRX准则(即,如果不活动或重传定时器已经终止)重新开始正常的传送和接收。可替换地,为简化起见(虽然以某些有效性为代价),该空闲时间可以协调现有DRX不活动和重传定时器的组合。Furthermore, the idle time during which no new UL and/or DL transmissions are initiated is considered from the end of the most recent previous active transmission or retransmission before applying the retuning procedure. The idle period allows the eNB to stop initiating any new transmissions and enables the WTRU to reliably adjust the retuning period so that new initiating transmissions are not aborted. This idle period can be shorter than existing DRX inactivity and retransmission timers because CC enablement and/or deactivation events are known to the eNB and newly enabled transmissions can be stopped by the eNB. Once the retuning procedure is complete, eg in one or two TTIs, normal transmission and reception resumes depending on DRX criteria (ie if inactivity or retransmission timer has expired). Alternatively, for simplicity (albeit at the cost of some efficiency), this idle time can coordinate a combination of existing DRX inactivity and retransmission timers.

用于WTRU的另一种方法是等待所有配置的和启用的CC上的DRX活动时间终止,以确定重调谐间隙和发起重调谐过程。如果CC启用或禁用触发器发生,并且在DRX活动时间内没有配置的CC运行,则重调谐过程可立即应用。如果任何CC在DRX活动时间内操作,那么重调谐间隙的WTRU决定被延迟,直到所有配置的CC上的DRX活动时间终止。Another method for the WTRU is to wait for the DRX active time on all configured and enabled CCs to expire in order to determine the retuning gap and initiate the retuning procedure. If a CC enable or disable trigger occurs and no configured CCs are running within the DRX active time, the retuning process can be applied immediately. If any CC is operating during the DRX active time, the WTRU decision to retune the gap is delayed until the DRX active time on all configured CCs expires.

图4C是用于在DRX活动时间终止之后执行重调谐的方法440的流程图。CC触发事件发生(步骤442),并作出DRX活动时间是否终止的决定(步骤444)。如果DRX活动时间没有终止,那么WTRU等待,直到DRX活动时间已经终止。一旦DRX活动时间终止,则WTRU应用重调谐过程(步骤446)。4C is a flowchart of a method 440 for performing retuning after DRX active time expires. A CC trigger event occurs (step 442), and a decision is made whether the DRX active time has expired (step 444). If the DRX active time has not expired, the WTRU waits until the DRX active time has expired. Once the DRX active time expires, the WTRU applies the retuning procedure (step 446).

无论CC启用和/或禁用准则是显式的激活或去激活还是DRX事件(定时器),WTRU都在已知的重调谐间隙或在DRX活动时间终止时进行重调谐。Regardless of whether the CC enable and/or deactivate criteria are explicit activation or deactivation or DRX events (timers), the WTRU performs retuning at known retuning intervals or at expiration of DRX active time.

利用独立的DRX,活动时间需要在每个配置的CC上终止,用于WTRU自动地确定重调谐间隙。如果,例如使用了CC独立DRX,并且新配置的CC用作用于启用CC的显式的触发器,那么WTRU自动重调谐间隙通过等待在所有其他CC上终止的活动时间而确定。类似地,如果各自CC上的活动时间终止用作用于禁用CC的隐式的触发器,则通过等待在所有其他CC上终止的活动时间而确定WTRU自动重调谐间隙。With independent DRX, the active time needs to be terminated on each configured CC for the WTRU to automatically determine the retuning gap. If, for example, CC independent DRX is used, and a newly configured CC is used as an explicit trigger for enabling the CC, then the WTRU auto-retuning gap is determined by waiting for active time to expire on all other CCs. Similarly, if the expiration of active time on the respective CC is used as an implicit trigger for disabling the CC, the WTRU auto-retuning gap is determined by waiting for the active time to expire on all other CCs.

如果出现延长周期的传输,则eNB可通过延迟调度以及潜在地发送请求WTRU进入DRX的MAC CE来强制重调谐间隙。在这种情况中,最佳选择是在下一DRX开启持续时间周期开始之前立即进入DRX,以允许传输快速重新开始。一个选择是用于启用或禁用CC事件,以在下一开启持续时间周期之前自动地强制重调谐间隙。If extended period transmissions occur, the eNB may force a retuning gap by delaying scheduling and potentially sending a MAC CE requesting the WTRU to enter DRX. In this case, the best option is to enter DRX immediately before the start of the next DRX On-Duration period to allow the transmission to restart quickly. One option is to enable or disable CC events to automatically force a retuning gap before the next on-duration period.

eNB可以预配置周期性的重调谐间隙时机或可以动态请求重调谐间隙在特定时间出现。预配置的重调谐间隙仅仅是时机。如果重调谐触发事件没有在下一重调谐间隙时机之前发生或者如果触发事件被随后的触发事件取消,则这些周期可用于发送和接收。The eNB may pre-configure periodic retuning gap opportunities or may dynamically request retuning gaps to occur at specific times. The pre-configured retuning gap is just timing. These cycles are available for transmission and reception if the retune trigger event does not occur before the next retune gap occasion or if the trigger event is canceled by a subsequent trigger event.

可以配置相对于小区系统帧号(SFN)的周期性重调谐间隙时机。在重调谐触发事件之后,可以选择下一可用重调谐间隙时机。触发事件可以是:显式通知的MAC控制元素、每个CC或CC子集的独立DRX方法、和/或请求或通知允许在一个或多个CC上启用和/或禁用发送和接收的WTRU的RRC配置过程。在从最近的重调谐间隙时机以来没有发生触发事件时,在随后的重调谐间隙期间不限制接收。周期性的重调谐间隙周期可以由DRX循环配置来对齐。Periodic retuning gap timing relative to the cell's System Frame Number (SFN) can be configured. After a retune trigger event, the next available retune gap occasion may be selected. Triggering events may be: an explicitly notified MAC Control element, an independent DRX method per CC or a subset of CCs, and/or a WTRU requesting or notifying permission to enable and/or disable transmission and reception on one or more CCs RRC configuration process. When no trigger event has occurred since the most recent retune gap occasion, reception is not restricted during subsequent retune gaps. Periodic retuning gap periods may be aligned by DRX cycle configuration.

可替换地,eNB可动态地向WTRU识别出何时应用重调谐。准确周期的协调可基于PHY(PDCCH)或MAC信令。在之前描述的触发事件之一之后,WTRU可等待eNB动态地分配重调谐间隙。如果使用了动态的重调谐间隙,则重调谐周期也可以由启用或禁用一个或多个CC的eNB信号识别。Alternatively, the eNB may dynamically identify to the WTRU when retuning is applied. The coordination of the exact period can be based on PHY (PDCCH) or MAC signaling. After one of the previously described trigger events, the WTRU may wait for the eNB to dynamically allocate retuning gaps. If dynamic retuning gaps are used, the retuning period may also be identified by the eNB signal enabling or disabling one or more CCs.

eNB可使用显式的信令协调何时应用WTRU重调谐过程。可以为重调谐时机配置可配置的周期性循环,或者可使用非周期性的请求来动态地分配重调谐间隙。The eNBs may use explicit signaling to coordinate when to apply the WTRU retuning procedure. A configurable periodic cycle can be configured for retuning opportunities, or aperiodic requests can be used to dynamically allocate retuning gaps.

用于重调谐间隙的已知周期性循环对于WTRU来说可以是已知的,其中WTRU有机会启用和/或禁用CC发送或接收。基于隐式地触发或显式地用信号通知的重调谐事件,已知的周期性重调谐间隙可以被用于启用和/或禁用CC。已知的周期性循环可被分别配置、或隐式地对齐、或与配置的周期性DRX循环配置相关联。隐式的或显式的重调谐事件对于WTRU和eNB来说是已知的,从而下一周期性重调谐周期的使用是已知的。当在已知重调谐间隙之前没有发生重调谐触发事件时,正常的发送和接收操作在不执行重调谐过程的周期期间继续进行。A known periodic cycle for retuning gaps may be known to the WTRU where the WTRU has the opportunity to enable and/or disable CC transmission or reception. Known periodic retuning gaps may be used to enable and/or disable CCs based on implicitly triggered or explicitly signaled retuning events. Known periodic cycles may be configured separately, or implicitly aligned, or associated with configured periodic DRX cycle configurations. Implicit or explicit retuning events are known to the WTRU and eNB, so the use of the next periodic retuning period is known. When a retune trigger event does not occur before the known retune gap, normal transmit and receive operations continue during periods in which the retune process is not performed.

当WTRU已经自动地确定了重调谐触发准则(即,独立的DRX)时,重调谐间隙可以由eNB信令动态地分配。在来自触发事件的已知时间时或者通过用新号发送特定的重调谐间隙周期,动态分配的重调谐间隙也可以使用CC启用和/或禁用触发事件进行协调。When the WTRU has automatically determined the retune trigger criteria (ie, independent DRX), the retune gaps may be allocated dynamically by eNB signaling. Dynamically allocated retune gaps can also be coordinated using CC enable and/or disable trigger events at known times from the trigger event or by sending a specific retune gap period with a new number.

一种间接方法是eNB使得CC间的传输空闲,以强制WTRU自动方法中的一种方法在eNB已知的时间周期中确定重调谐间隙。这可以通过使一个或多个连续的HARQ进程空闲来完成,所述HARQ进程在配置的CC集之间被对齐。An indirect method is for the eNB to idle inter-CC transmissions to force one of the WTRU's automatic methods to determine retuning gaps in time periods known to the eNB. This can be done by idling one or more consecutive HARQ processes that are aligned across the configured set of CCs.

对于eNB周期性配置的或动态分配的重调谐间隙方法,正在进行的HARQ进程发送和接收可被设计为跳过HARQ发送和接收时机。在该情况中,HARQ进程将跳过分配重调谐间隙的eNB所掩蔽的重传时机。传输本身被跳过,或不成功的ACK被假定用于该传输。利用该方法,eNB调度时机的丢失被最小化。新的传输可在除了实际的重调谐间隙周期之外的任何时间进行调度,这是因为不是必须考虑重传时机。For the eNB periodically configured or dynamically allocated retuning gap approach, ongoing HARQ process transmission and reception can be designed to skip HARQ transmission and reception opportunities. In this case, the HARQ process will skip the retransmission opportunities masked by the eNB that allocated the retuning gap. The transmission itself is skipped, or an unsuccessful ACK is assumed for that transmission. With this approach, loss of eNB scheduling opportunities is minimized. New transmissions can be scheduled at any time other than the actual retuning gap period, since retransmission opportunities do not have to be considered.

虽然下述实施方式基于3GPP LTE技术和相关规范描述了调度间隙,但是这些实施方式同样可应用于任何激活或去激活CC的多载波技术实现方法,和/或通常用于电池节约的方法,例如基于WCDMA、HSPA、HSUPA或HSDPA的其他3GPP技术。Although the following embodiments describe scheduling gaps based on 3GPP LTE technology and related specifications, these embodiments are also applicable to any multi-carrier technology implementation method for activating or deactivating CCs, and/or methods generally used for battery saving, such as Other 3GPP technologies based on WCDMA, HSPA, HSUPA or HSDPA.

WTRU可为多载波操作配置有,例如,用于LTE第10版WTRU的至少一个SCell。可使用第一周期期间的特定特征的控制信令来调度多载波操作,在所述第一周期期间WTRU能够确定第二周期是否发生。在所述第二周期期间,不期望WTRU在受WTRU收发信机状态变化影响的载波上对于传输是活动的。A WTRU may be configured with at least one SCell for multi-carrier operation, eg, for an LTE Release 10 WTRU. Multi-carrier operation may be scheduled using control signaling of certain features during the first period during which the WTRU is able to determine whether a second period occurs. During the second period, the WTRU is not expected to be active for transmission on the carrier affected by the WTRU transceiver state change.

在一个示例中,配置有至少一个SCC的WTRU在第一周期期间成功地解码了其PCell上的至少一个PDCCH。如果有WTRU不处于DRX活动时间的第二周期,所述第二周期至少与WTRU需要用于激活在第一周期期间不活动的至少该WTRU的配置的第一SCell的时间一样长(以子帧为单位),那么WTRU可激活第一SCC,从而WTRU可根据在第三周期中接收到的控制信令进行发送。在该示例中,第一周期和第三周期对应于连续的DRX循环,而第二周期对应于第一周期内(并且接近于结尾处)的子帧。In one example, a WTRU configured with at least one SCC successfully decodes at least one PDCCH on its PCell during the first period. If there is a WTRU not in the second period of DRX active time, the second period is at least as long (in subframes) as the time the WTRU needs to activate at least that WTRU's configured first SCell that was inactive during the first period unit), then the WTRU may activate the first SCC so that the WTRU may transmit according to the control signaling received in the third period. In this example, the first and third cycles correspond to consecutive DRX cycles, while the second cycle corresponds to subframes within (and near the end of) the first cycle.

现有的DRX原理被修改以用于在可能时允许WTRU关闭部分收发信机电路或隐式地去激活一个或多个CC(例如,一个或多个SCell)(例如,可能包括重调谐RF前端)。这基于确定性规则集,以维持网络调度器和WTRU行为之间的相干观察。调度器实现能够产生调度间隙,从而可以由WTRU解释为重调谐其RF前端的可能性。Existing DRX principles are modified to allow the WTRU to switch off part of the transceiver circuitry or implicitly deactivate one or more CCs (e.g., one or more SCells) when possible (e.g., possibly including retuning the RF front-end ). This is based on a deterministic rule set to maintain a coherent observation between the network scheduler and WTRU behavior. A scheduler implementation can generate a scheduling gap that can be interpreted by the WTRU as a possibility to retune its RF front end.

LTE第10版WTRU的基准DRX操作可以是,当仅有PCell活动时,WTRU遵循与DRX活动时间相对应的LTE第8/9版DRX行为。在至少一个SCell被配置或激活(例如,使用RRC)时,WTRU的所有CC遵循公共的DRX活动时间,可能根据第8/9版DRX(根据主DRX活动时间(PDAT)、或根据每个单独CC的DRX活动时间(DAT)总和),或其简化版本,如上所述。The baseline DRX operation for an LTE Release 10 WTRU may be that when only the PCell is active, the WTRU follows the LTE Release 8/9 DRX behavior corresponding to DRX active time. When at least one SCell is configured or activated (e.g., using RRC), all CCs of the WTRU follow a common DRX active time, possibly according to Release 8/9 DRX (based on the primary DRX active time (PDAT), or according to each individual CC's DRX Active Time (DAT) sum), or a simplified version thereof, as described above.

DRX活动时间和/或CC的活动状态可以在相同频带内对CC是公共的。这样的好处是为相同频带(即,相同RF前端)的一个或多个CC执行的DRX转换和/或RF重调谐可以不需要用于不同频带(即,不同RF前端)的CC的任何调度间隙。DRX active time and/or active state of CCs may be common to CCs within the same frequency band. The benefit of this is that DRX transitions and/or RF retuning performed for one or more CCs of the same frequency band (i.e., the same RF front end) may not require any scheduling gaps for CCs of a different frequency band (i.e., different RF front ends) .

特别地,如果使用了组合的RRC配置和SCell的激活,则在相同频带中可以为CC应用相同的活动时间,意味着不是所有的CC都为给定WTRU遵循相同的活动时间。In particular, if combined RRC configuration and activation of SCells are used, the same active time may apply for CCs in the same frequency band, meaning that not all CCs follow the same active time for a given WTRU.

这里使用的下述术语定义如下。The following terms used herein are defined as follows.

PDCCH位置:指PDCCH在其上被成功解码的DL CC。PDCCH position: refers to the DL CC on which the PDCCH is successfully decoded.

PDCCH目标:在使用跨载波调度时,指PDCCH为其提供控制信息的CC,例如,授权情况中的UL CC或分配情况中的DL CC。PDCCH target: when using cross-carrier scheduling, refers to the CC for which the PDCCH provides control information, for example, the UL CC in the grant case or the DL CC in the allocation case.

主DRX活动时间(PDAT):包括WTRU为其监控PDCCH以用于获得可应用于在PCell上进行传输的分配和/或分配的子帧,即PDAT对应于仅考虑到PCell的DRX活动时间。一个或多个可应用的PDCCH的特征可以为使用作为PCell的PDCCH位置、作为PCell的PDCCH目标或两者。Primary DRX Active Time (PDAT): includes the subframe for which the WTRU monitors the PDCCH for allocations and/or allocations applicable for transmission on the PCell, ie PDAT corresponds to the DRX Active Time considering only the PCell. One or more applicable PDCCHs may be characterized as using PDCCH positions as PCells, PDCCH targets as PCells, or both.

调度间隙:包括不期望WTRU或WTRU不能在至少一个CC上进行发送或接收的子帧。例如,这可以包括以下至少一者:为获得DL分配的PDCCH监控和/或可应用于CC上的传输的UL授权;针对一个或多个HARQ进程的物理HARQ指示符信道(PHICH)接收;或PUCCH传输,例如用于一个或多个HARQ进程的HARQ A/N反馈的PUCCH传输。Scheduling gaps: include subframes where the WTRU is not expected or cannot transmit or receive on at least one CC. For example, this may include at least one of: PDCCH monitoring for DL allocations and/or UL grants applicable to transmissions on CCs; Physical HARQ Indicator Channel (PHICH) reception for one or more HARQ processes; or PUCCH transmission, e.g. for HARQ A/N feedback of one or more HARQ processes.

调度间隙(即,RF重调谐(RFR)间隙或DRX状态转换(ST)间隙)可特别被从DAT期间的事件中排除,即,作为调度间隙一部分的子帧可显式地被从DAT中排除。可替换地,可允许调度间隙作为部分DAT。在后一情况中,不需要WTRU在调度间隙期间监控PDCCH,即使它在DAT期间发生,类似于第8版中的测量间隙。Scheduling gaps (i.e. RF Retune (RFR) gaps or DRX State Transition (ST) gaps) can be specifically excluded from events during DAT, i.e. subframes that are part of a scheduling gap can be explicitly excluded from DAT . Alternatively, scheduling gaps may be allowed as part of DAT. In the latter case, the WTRU is not required to monitor the PDCCH during the scheduling gap even though it occurs during DAT, similar to the measurement gap in Release-8.

调度间隙可以是活动CC(或SCell)集中的变化结果,例如作为至少一个CC(或SCell)的“激活”和/或“去激活”的结果,需要WTRU重调谐RF前端。重调谐过程可能会损害到一个时间周期内(例如,可以是1ms或2ms)的WTRU传输,也可以称作RFR间隙。激活或去激活可以是来自网络的显式信令(例如,RRC信令、MAC信令、或L1/PDCCH信令)或隐式信令(例如,基于时间)的结果。A scheduling gap may be the result of a change in the set of active CCs (or SCells), eg, as a result of "activation" and/or "deactivation" of at least one CC (or SCell), requiring the WTRU to retune the RF front end. The retuning process may impair WTRU transmissions for a period of time (eg, may be 1 ms or 2 ms), also referred to as an RFR gap. Activation or deactivation may be the result of explicit signaling (eg, RRC signaling, MAC signaling, or L1/PDCCH signaling) or implicit signaling (eg, time-based) from the network.

调度间隙还可以是CC集的DRX活动时间变化之后的DRX状态转换的结果。至少一个CC可以在DRX活动时间中保持,这不要求WTRU重调谐其RF前端。但是该CC要求打开或关闭若干功能块,例如在RF前端之前(发送)或RF前端之后(接收)的功能块,但是会损害一个时间周期(例如,可以是1ms或2ms)内的WTRU传输,并且可称作DRX ST间隙。The scheduling gap may also be the result of DRX state transition after the DRX active time of the CC set changes. At least one CC may be maintained during DRX active time, which does not require the WTRU to retune its RF front end. But this CC requires turning on or off several functional blocks, e.g. functional blocks before the RF front end (transmit) or after the RF front end (receive), but impairs the WTRU transmission for a period of time (e.g. could be 1 ms or 2 ms), And may be referred to as DRX ST gap.

因而,调度间隙是固定值(例如,1ms或2ms)、网络可配置的值、根据WTRU性能(可能包括WTRU处理时间)得到的值、或基于间隙是RFR间隙还是DRX ST间隙而得到的值。Thus, the scheduling gap is a fixed value (eg, 1 ms or 2 ms), a network configurable value, a value derived from WTRU performance (possibly including WTRU processing time), or a value derived based on whether the gap is an RFR gap or a DRX ST gap.

“激活周期”被定义为若干个连续的子帧,在此期间对于至少活动周期的子帧子集,WTRU监控DRX活动时间期间至少一个DL CC(例如PCell)的PDCCH,以获得可应于任何活动CC上的传输的DL分配和/或UL授权。激活周期可完全由WTRU处于DAT中的子帧组成,例如在所述周期等于DRX开启持续时间周期时;或者可由WTRU不处于DAT(即,一个或多个不活动周期)中的子帧组成,例如,在所述周期等于DRX循环时。术语“可应用于”,在结合PDCCH使用时(例如,“可应用于CC的PDCCH”),指以下至少一者:作为子群的UL和/或DL CC的PDCCH目标、作为子群的CC的PDCCH位置、或两者。An "active period" is defined as a number of consecutive subframes during which, for at least a subset of subframes of the active period, the WTRU monitors the PDCCH of at least one DL CC (e.g., PCell) during the DRX active period to obtain DL assignments and/or UL grants for transmissions on the active CC. The active period may consist entirely of subframes in which the WTRU is in DAT, e.g., when the period is equal to the DRX On-Duration period; or may consist of subframes in which the WTRU is not in DAT (i.e., one or more periods of inactivity), For example, when the period is equal to the DRX cycle. The term "applicable", when used in conjunction with a PDCCH (e.g., "PDCCH applicable to a CC"), refers to at least one of: a PDCCH target of a UL and/or DL CC as a subgroup, a CC as a subgroup PDCCH position, or both.

激活周期可用作子帧集,在该期间可应用于CC的一个或多个DL分配和/或一个或多个UL授权的检测会导致用于相同CC或不同CC的DL分配和/或UL授权的PDCCH监控的后续激活。所述激活周期可在调度间隙之前。所述激活周期之后也可以有调度间隙(还可以有一个或多个不活动周期),如果激活周期的长度不同于多CC DRX循环的长度。“不活动周期”指根据DRX规则不要求WTRU监控PDCCH,以获得可应用于至少一个CC上的传输的分配和/或授权。An activation period may be used as a set of subframes during which the detection of one or more DL assignments and/or one or more UL grants applicable to a CC results in a DL assignment and/or UL assignment for the same CC or a different CC Subsequent activation of authorized PDCCH monitoring. The activation period may precede a scheduling gap. There may also be a scheduling gap (and one or more periods of inactivity) after the active period, if the length of the active period is different from the length of the multi-CC DRX cycle. "Period of inactivity" means that the WTRU is not required to monitor the PDCCH for assignments and/or grants applicable to transmissions on at least one CC according to DRX rules.

“多CC DRX循环”被定义为激活周期的周期性重复,即,激活周期在每个多CC DRX循环上出现一次,如图5所示。在可选的实施方式中,激活周期可以比PDCCH监控活动短。A "multi-CC DRX cycle" is defined as a periodic repetition of an active cycle, i.e., an active cycle occurs once on each multi-CC DRX cycle, as shown in Figure 5. In an alternative embodiment, the activation period may be shorter than the PDCCH monitoring activity.

下面的实施方式的描述基于根据重调谐RF前端的CC的“激活”和“去激活”,并因此使用术语RFR间隙。这些实施方式同样可应用于不要求重调谐RF前端的DRX状态转换(因此可替代使用术语“调度间隙”),或可应用于DRX状态转换和CC激活或去激活的组合。The description of the following embodiments is based on the "activation" and "deactivation" of the CC according to the retuned RF front-end, and therefore uses the term RFR gap. These embodiments are equally applicable to DRX state transitions that do not require retuning of the RF front end (hence the term "scheduling gap" may be used instead), or to combinations of DRX state transitions and CC activation or deactivation.

下面的实施方式使用下述原则中的至少一者:CC分组、确定是否应该执行RF重调谐、确定应该激活一个或多个SCC、或确定RFR间隙的时序。The following embodiments use at least one of the following principles: CC grouping, determining whether RF retuning should be performed, determining that one or more SCCs should be activated, or determining the timing of RFR gaps.

使用CC分组,WTRU的多载波配置的CC集可概念上被分离为多个子组。例如,一个或多个PCC,WTRU根据PDAT为其监控PDCCH;或一个或多个SCC,如果DAT被配置或也可能被激活,WTRU根据DAT为所述SCC监控PDCCH。该定义不排除下述情况:所有CC被单独地处理,所有SCC都被作为单个子组进行处理,相同频带的SCC都被作为子组进行处理,或PCC被进一步分组为PCell以及SCC被分组为SCell。Using CC grouping, the set of CCs for a WTRU's multi-carrier configuration may be conceptually separated into subgroups. For example, one or more PCCs for which the WTRU monitors PDCCH according to PDAT; or one or more SCCs for which the WTRU monitors PDCCH according to DAT, if DAT is configured or possibly also activated. This definition does not exclude cases where all CCs are processed individually, all SCCs are processed as a single subgroup, SCCs of the same frequency band are all processed as subgroups, or PCCs are further grouped into PCells and SCCs are grouped into SCell.

在激活周期期间作出RF重调谐是否应该执行的决定。所述激活周期用于确定以下至少一者:(1)在多CC DRX循环(即,在激活周期的周期上)期间,RFR间隙对于WTRU在特定时间点处是否可用。(2)在RFR间隙出现之后,一个SCC(或多个SCC)是否是活动的。例如,WTRU可以如何重新配置RF前端,即,在RF重调谐期间哪个SCC(或多个SCC)可以被激活,或者对于哪个CC(或多个CC),WTRU可以在RFR间隙之后监控PDCCH。(3)基于激活周期期间发生的事件是否可以修改活动CC集。The decision whether RF retuning should be performed is made during the active period. The active period is used to determine at least one of: (1) whether an RFR gap is available to the WTRU at a particular point in time during a multi-CC DRX cycle (ie, on a period of the active period). (2) Whether an SCC (or multiple SCCs) is active after the RFR gap occurs. For example, how the WTRU may reconfigure the RF front end, ie which SCC (or SCCs) may be activated during RF retuning, or for which CC (or CCs) the WTRU may monitor the PDCCH after the RFR gap. (3) Whether the active CC set can be modified based on events that occur during the activation period.

在激活周期期间作出哪个SCC(或多个SCC)可以被激活的决定。所述激活周期被用于基于以下至少一者确定一个SCC(或多个SCC)是否可被激活:(1)如果WTRU没有在激活周期期间成功解码了任何PDCCH,那么仅有对应于PCell的CC是活动的。(2)如果WTRU在激活周期期间成功解码了可应用于PCC的PDCCH,那么所有CC都是活动的。(3)如果WTRU在激活周期期间成功解码了可应用于一个SCC(或多个SCC)的PDCCH,那么所述SCC(或对应于SCC的子组)是活动的。The decision which SCC (or SCCs) can be activated is made during an activation period. The activation period is used to determine whether an SCC (or SCCs) can be activated based on at least one of the following: (1) If the WTRU did not successfully decode any PDCCH during the activation period, then only the CC corresponding to the PCell is active. (2) If the WTRU successfully decodes the PDCCH applicable to the PCC during the activation period, then all CCs are active. (3) A SCC (or corresponding subgroup of SCCs) is active if the WTRU successfully decodes the PDCCH applicable to the SCC (or SCCs) during the activation period.

例如,如果在激活周期期间在SCC子组的至少一个SCC上调度WTRU,则该子组的DAT和PDAT在激活周期之后期间遵循公共模式。否则,SCC子组的DAT遵循不同的模式(例如,WTRU不积极地为子组的CC监控PDCCH),和/或在RFR间隙期间去激活子组的CC。For example, if a WTRU is scheduled on at least one SCC of a subgroup of SCCs during the activation period, the DAT and PDAT of the subgroup follow a common pattern during the period after the activation period. Otherwise, DAT for the subgroup of SCCs follows a different pattern (eg, the WTRU does not actively monitor PDCCH for the subgroup of CCs), and/or deactivates the subgroup of CCs during RFR gaps.

确定RFR间隙的时序包括确定在下一激活周期之前或当前激活周期之后是否包括RFR间隙。Determining the timing of the RFR gap includes determining whether the RFR gap is included before the next activation period or after the current activation period.

如果以下至少一者为真,则RFR间隙紧接在下一激活周期之前。(1)一个或多个CC的至少一个子组的一个或多个CC在对应于激活周期减去RFR间隙长度后的第一子帧的子帧中是不活动的。(2)如果至少一个PDCCH由WTRU在当前激活周期期间成功地解码。这可以由额外的条件进一步进行限制,例如:在PDCCH可应用于PCell的情况下,在PDCCH可应用于SCell的情况下,或在PDCCH可应用于SCell的情况下,以及在SCell被激活的情况下。The RFR gap immediately precedes the next active cycle if at least one of the following is true. (1) One or more CCs of at least a subgroup of one or more CCs are inactive in the subframe corresponding to the first subframe after the activation period minus the RFR gap length. (2) If at least one PDCCH was successfully decoded by the WTRU during the current activation period. This can be further restricted by additional conditions, such as: in the case of PDCCH applicable to PCell, in the case of PDCCH applicable in SCell, or in the case of PDCCH applicable in SCell and in the case of SCell activated Down.

如果WTRU在激活周期期间确定在激活周期之后可激活CC的不同集,可能仅用于当前多CC DRX循环的余量,例如,假如两个周期不同,则RFR间隙紧跟在当前的激活周期之后。If the WTRU determines during the activation period that a different set of CCs can be activated after the activation period, it may only be used for the margin of the current multi-CC DRX cycle, e.g. if the two periods are different, the RFR gap immediately follows the current activation period .

使用上述原则,可实现定义多CC DRX循环的长度、激活周期的长度以及RFR间隙的参数的实施方式。多CC DRX循环的长度等于WTRU使用的DRX循环(长DRX循环或短DRX循环,如果配置了的话),或不同于配置的DRX循环长度的可配置时间周期。激活周期的长度等于以下一者:DRX开启持续时间的长度,WTRU处于DRX活动时间(例如,PDAT)期间的子帧,或多CC DRX循环的长度。Using the above principles, implementations can be implemented that define the length of the multi-CC DRX cycle, the length of the active cycle, and the parameters of the RFR gap. The length of the multi-CC DRX cycle is equal to the DRX cycle used by the WTRU (long DRX cycle or short DRX cycle, if configured), or a configurable time period different from the configured DRX cycle length. The length of the active period is equal to one of: the length of the DRX on duration, the subframe during which the WTRU is in DRX active time (eg, PDAT), or the length of the multi-CC DRX cycle.

RFR间隙可以是固定值(例如,1ms或2ms)、可由网络配置的值、或根据WTRU的性能(可能包括WTRU处理时间)得到的值。RFR间隙的存在性,可能还有长度,可由网络显式地用信号发送给WTRU,例如在MAC CE中,包括可能重新使用LTE第8/9版DRX MAC CE或类似物。MAC CE可额外包括哪个子帧对应于RFR间隙开始的指示(作为从MAC CE的接收开始的偏移,或针对接收到MAC CE的HARQ应答而发送的反馈,或作为绝对值,例如,在DRX循环内),以及其持续时间。所述MAC CE还包括用于激活或去激活一个或多个SCC或SCell的信令。The RFR gap may be a fixed value (eg, lms or 2ms), a value configurable by the network, or a value derived from the WTRU's capabilities (possibly including WTRU processing time). The presence, and possibly length, of the RFR gap may be explicitly signaled to the WTRU by the network, eg in a MAC CE, including possibly reusing an LTE Release 8/9 DRX MAC CE or similar. The MAC CE may additionally include an indication of which subframe corresponds to the start of the RFR gap (either as an offset from the start of reception of the MAC CE, or as a feedback sent for a received HARQ acknowledgment of the MAC CE, or as an absolute value, e.g. in DRX loop), and its duration. The MAC CE also includes signaling for activating or deactivating one or more SCCs or SCells.

上述原则可用于定义包括WTRU配置的所有SCC的单个SCC组的情况。这些原则也可用于下述情况,其中在至少一个SCC被同时激活时,PCell的CC保持激活,并且遵循类似于第8/9版DRX或其简化版本的特定DRX模式。The above principles may be used in the case of defining a single SCC group that includes all SCCs configured by the WTRU. These principles can also be used in cases where the PCell's CCs remain active while at least one SCC is activated simultaneously, and follow a specific DRX pattern similar to Release 8/9 DRX or a simplified version thereof.

在下述实施方式中,对应于PDCCH信令的WTRU处理时间的若干子帧可在可能出现RFR间隙之前(即,在激活周期之前或之后)被额外地插入,以允许WTRU确定是否需要RFR间隙。在这些子帧期间,WTRU可以不认为成功解码的PDCCH是确定是否需要RFR间隙的逻辑的一部分。In the embodiments described below, a number of subframes corresponding to WTRU processing time for PDCCH signaling may be additionally inserted before an RFR gap may occur (ie, before or after the activation period) to allow the WTRU to determine whether an RFR gap is required. During these subframes, the WTRU may not consider a successfully decoded PDCCH to be part of the logic for determining whether an RFR gap is required.

变化可包括:为PCC和一个或多个SCC使用不同的DRX开启持续时间,其中激活周期对应于一个或多个SCC的DRX开启持续时间周期;为去激活的SCC使用PDCCH控制信令(授权或分配),作为CC(或对应的SCell,或立刻可能的的所有SCC)可在激活周期结尾之后被激活的显式信号;或由上层(例如,RRC)配置的多CC DRX循环,从而其是WTRU使用的DRX循环的整数倍。Variations may include: using different DRX on-durations for the PCC and one or more SCCs, where the activation period corresponds to the DRX on-duration period for the one or more SCCs; using PDCCH control signaling (grant or allocation), as an explicit signal that a CC (or the corresponding SCell, or all SCCs if possible at once) can be activated after the end of the activation period; or a multi-CC DRX cycle configured by upper layers (e.g., RRC), so that it is An integer multiple of the DRX cycle used by the WTRU.

为了处理UL时序对齐,如果WTRU不考虑保持RF前端重调谐之后的UL同步(由于,例如一个或多个活动SCell集中的变化),那么可以另外要求WTRU执行一个过程来重新获得时间对齐。To handle UL timing alignment, if the WTRU is not concerned about maintaining UL synchronization after RF front-end retuning (due to, for example, a change in one or more active SCell sets), then the WTRU may additionally be required to perform a procedure to regain time alignment.

为了处理HARQ进程、调度请求,以及传输HARQ反馈,CQI、PMI或RI,以及SRS,WTRU可另外执行特定逻辑来保证相关状态与eNB的状态保持相关。In order to handle HARQ processes, scheduling requests, and transmit HARQ feedback, CQI, PMI or RI, and SRS, the WTRU may additionally implement certain logic to ensure that the relevant state remains correlated with the state of the eNB.

WTRU可包括从多CC DRX循环的结尾减去RFR间隙的长度开始的子帧中的RFR间隙(如果WTRU确定不是所有的CC都在该子帧中激活)。The WTRU may include the RFR gap in the subframe starting from the end of the multi-CC DRX cycle minus the length of the RFR gap (if the WTRU determines that not all CCs are active in the subframe).

WTRU可使用等于配置的和当前活动的多CC DRX循环长度的激活周期,即随后的多CC DRX循环中需要哪个SCC(或多个SCC)是基于正好在其之前的多CC DRX循环的PDCCH活动性来确定的。The WTRU may use an activation period equal to the length of the configured and currently active multi-CC DRX cycle, i.e. which SCC (or SCCs) are required in the subsequent multi-CC DRX cycle is based on the PDCCH activity of the multi-CC DRX cycle immediately preceding it determined by sex.

类似地,WTRU可基于用于长DRX循环和短DRX循环(如果配置了的话)的WTRU配置来使用等于当前DRX循环的多CC DRX循环。仍然可以使用用于循环转换的第8/9版机制,包括DRX MAC CE。Similarly, the WTRU may use a multi-CC DRX cycle equal to the current DRX cycle based on the WTRU configuration for the long DRX cycle and the short DRX cycle (if configured). The release 8/9 mechanisms for cyclic transitions can still be used, including DRX MAC CE.

图6是时序图600,其中激活周期具有与DRX循环相同的长度。WTRU执行以下至少一者。Figure 6 is a timing diagram 600 where the active period has the same length as the DRX cycle. The WTRU performs at least one of the following.

不迟于对应于当前DRX循环减去RFR间隙长度的最后的子帧的子帧,如果WTRU确定它可以在下一DRX循环期间监控不同于CC的当前活动集的CC集,则需要RFR间隙。WTRU认为DRX循环(即,等于RFR间隙长度的若干个子帧)的剩余部分是重调谐RF前端和/或改变SCC的激活状态的时机(步骤602)。No later than the subframe corresponding to the last subframe of the current DRX cycle minus the RFR gap length, an RFR gap is required if the WTRU determines that it can monitor a CC set different from the current active set of CCs during the next DRX cycle. The WTRU considers the remainder of the DRX cycle (ie, a number of subframes equal to the RFR gap length) to be an opportunity to retune the RF front end and/or change the activation state of the SCC (step 602).

在对应于RFR间隙的子帧(如果之前的步骤需要)中,WTRU根据用于激活SCC的至少一个准则来重新配置RF前端和/或激活SCC(步骤604)。In subframes corresponding to RFR gaps (if required by previous steps), the WTRU reconfigures the RF front end and/or activates the SCC according to at least one criterion for activating the SCC (step 604).

WTRU开始新的DRX循环。在DRX循环的子帧中,除了作为部分RFR间隙的子帧之外,WTRU监控可应用于所有在DAT(可能与PDAT一样)期间配置或激活的CC的PDCCH(步骤606、608)。The WTRU starts a new DRX cycle. In subframes of the DRX cycle, the WTRU monitors PDCCHs applicable to all CCs configured or activated during DAT (possibly like PDAT) except the subframes that are part of the RFR gap (steps 606, 608).

WTRU确定可应用于任何CC(即,用于PCell或任何SCell)的至少一个PDCCH是否在周期的任何子帧中已被成功解码。如果不需要执行RF前端的重调谐和/或改变SCC的激活状态,则所述WTRU确定不需要RFR间隙。例如,在没有PDCCH被成功解码、并且没有SCC为当前的DRX循环激活、或至少一个PDCCH被成功解码、并且所有配置的SCC都为当前的DRX循环被激活的情况下。The WTRU determines whether at least one PDCCH applicable to any CC (ie, for PCell or any SCell) has been successfully decoded in any subframe of the cycle. If there is no need to perform retuning of the RF front end and/or change the activation state of the SCC, then the WTRU determines that no RFR gap is needed. For example, in the case that no PDCCH is successfully decoded and no SCC is activated for the current DRX cycle, or at least one PDCCH is successfully decoded and all configured SCCs are activated for the current DRX cycle.

WTRU还可以确定是否没有成功解码的PDCCH在DRX循环期间可应用于SCC(即,仅接收到可应用于PCell的PDCCH)。The WTRU may also determine if no successfully decoded PDCCHs were applicable to the SCC during the DRX cycle (ie, only PDCCHs applicable to the PCell were received).

WTRU还可以确定可应用于SCC(特别是,作为PDCCH目标的CC)的至少一个PDCCH是否在DRX循环的任何子帧中被成功解码。如果不需要执行RF前端的重调谐和/或改变SCC的激活状态,则WTRU确定不需要RFR间隙。例如,在没有PDCCH被成功解码、并且没有SCC为当前的DRX循环被激活、或至少一个PDCCH被成功解码、但是所有PDCCH仅可应用于为当前DRX循环激活的配置的一个或多个SCC的情况下。The WTRU may also determine whether at least one PDCCH applicable to a SCC (in particular, a CC that is a PDCCH target) was successfully decoded in any subframe of the DRX cycle. If there is no need to perform retuning of the RF front end and/or change the activation state of the SCC, the WTRU determines that no RFR gap is needed. For example, when no PDCCH is successfully decoded and no SCC is activated for the current DRX cycle, or at least one PDCCH is successfully decoded, but all PDCCHs are only applicable to one or more SCCs configured to be activated for the current DRX cycle Down.

WTRU另外还可以确定PDCCH可应用于的一个SCC(或多个SCC,可能是SCC的子组)。在该情况中,仅有对应于一个或多个子组的SCC将为当前DRX循环的剩余部分保持活动。The WTRU may additionally determine an SCC (or multiple SCCs, possibly a subset of SCCs) to which the PDCCH applies. In this case, only the SCCs corresponding to one or more subgroups will remain active for the remainder of the current DRX cycle.

WTRU基于以下至少一者确定是否需要RFR间隙。如果没有PDCCH被成功解码,则仅有对应于PCell的CC需要用于下一DRX循环。只有在至少一个SCC对于当前的DRX循环是活动的时候需要RFR间隙,如果没有成功解码的PDCCH可应用于对应SCell的任何SCC,或如果PDCCH指示新的发送。The WTRU determines whether an RFR gap is required based on at least one of the following. If no PDCCH is successfully decoded, only the CC corresponding to the PCell needs to be used for the next DRX cycle. The RFR gap is only required when at least one SCC is active for the current DRX cycle, if no successfully decoded PDCCH is applicable to any SCC of the corresponding SCell, or if the PDCCH indicates a new transmission.

如果至少一个可应用于SCell的PDCCH被成功解码,则只有在对于当前DRX循环是活动的一个或多个SCC不同于应该对于下一DRX循环是活动的一个或多个SCC的情况下需要RFR间隙,可能仅考虑指示新发送的PDCCH。If at least one PDCCH applicable to the SCell is successfully decoded, an RFR gap is required only if the SCC(s) active for the current DRX cycle is different from the SCC(s) that should be active for the next DRX cycle , possibly only considering the PDCCH indicating a new transmission.

在下一DRX循环(子帧的数量等于RFR间隙的子帧数量)的开始之前的子帧中,如果WTRU先前确定需要RFR间隙,则WTRU重新配置RF前端和/或激活SCC(步骤610)。重新配置RF前端或激活SCC基于是否可修改CC的激活状态的准则。WTRU可以重新配置RF前端和/或:去激活所有SCC,激活所有SCC,或仅去激活在DRX开启持续时间期间没有被成功解码的可应用的PDCCH的SCC(或其子组)。In the subframes before the start of the next DRX cycle (number of subframes equal to the number of subframes of the RFR gap), the WTRU reconfigures the RF front end and/or activates the SCC if the WTRU previously determined that an RFR gap is required (step 610). Reconfiguring the RF front end or activating the SCC is based on the criteria of whether the activation state of the CC can be modified. The WTRU may reconfigure the RF front end and/or: deactivate all SCCs, activate all SCCs, or only deactivate SCCs (or a subset thereof) of applicable PDCCHs that were not successfully decoded during the DRX on-duration.

在整个DRX循环期间,WTRU为所有CC(例如,PDAT)应用相同的DRX活动时间,WTRU针对该CC监控可应用于一个或多个CC(例如,所有激活的CC)上的传输的PDCCH。WTRU不需要为其他CC监控PDCCH(例如,概念上,使用不同于PDAT的DRX活动时间,或可替换地,认为CC被去激活,并且不受到DAT影响),另外所述CC可能在之前的RFR间隙期间已经被去激活。During the entire DRX cycle, the WTRU applies the same DRX active time for all CCs (eg, PDAT) for which the WTRU monitors the PDCCH applicable to transmissions on one or more CCs (eg, all activated CCs). The WTRU does not need to monitor the PDCCH for other CCs (e.g., conceptually, use a different DRX active time than PDAT, or alternatively, consider the CC to be deactivated and not be affected by DAT), which in addition may be in the previous RFR The interstitial period has been deactivated.

如果WTRU确定在激活周期期间PDCCH可被接收的不同CC集可在多CC DRX循环的剩余部分期间进行使用,则WTRU可以包括激活周期之后的RFR间隙。可替换地,WTRU可包括从多CC DRX循环的结尾减去RFR间隙长度开始的子帧中的RFR间隙(如果WTRU确定在该子帧中没有激活所有的CC)。The WTRU may include an RFR gap after the activation period if the WTRU determines that a different set of CCs on which the PDCCH may be received during the activation period may be used during the remainder of the multi-CC DRX cycle. Alternatively, the WTRU may include the RFR gap in the subframe starting from the end of the multi-CC DRX cycle minus the RFR gap length (if the WTRU determines that not all CCs are activated in that subframe).

WTRU可使用等于配置的DRX开启持续时间周期的激活周期,即各个周期的开始点与该周期的长度是相等的。类似地,WTRU可基于用于长DRX循环和短DRX循环(如果配置了的话)的WTRU配置来使用等于当前DRX循环的多CC DRX循环。仍然可以使用用于周期转换的第8/9版机制,包括DRX MAC CE。The WTRU may use an active period equal to the configured DRX on-duration period, ie the start point of each period is equal to the length of the period. Similarly, the WTRU may use a multi-CC DRX cycle equal to the current DRX cycle based on the WTRU configuration for the long DRX cycle and the short DRX cycle (if configured). Release 8/9 mechanisms for cycle transitions can still be used, including DRX MAC CE.

图7是时序图700,其中激活周期具有与DRX开启持续时间一样的长度。WTRU执行以下至少一者。FIG. 7 is a timing diagram 700 where the active period has the same length as the DRX on-duration. The WTRU performs at least one of the following.

对于对应于当前DRX循环减去RFR间隙长度的最近子帧的子帧,如果WTRU确定子帧中活动SCC的数量小于配置的SCC的总数,则需要RFR间隙。WTRU将DRX循环的剩余部分看作是执行RF前端的重调谐和/或改变SCC的激活状态(步骤702)的时机。For the subframe corresponding to the nearest subframe of the current DRX cycle minus the RFR gap length, if the WTRU determines that the number of active SCCs in the subframe is less than the total number of configured SCCs, an RFR gap is required. The WTRU considers the remainder of the DRX cycle as an opportunity to perform retuning of the RF front end and/or change the activation state of the SCC (step 702).

在对应于RFR间隙的子帧中(如果之前的步骤需要),WTRU重新配置RF前端和/或激活所有SCC(步骤704)。In subframes corresponding to RFR gaps (if required by previous steps), the WTRU reconfigures the RF front end and/or activates all SCCs (step 704).

WTRU开始新的DRX循环。在对应于开启持续时间周期的子帧中(即,在DRX开启持续时间定时器运行时),WTRU监控可应用于所有配置的CC的PDCCH(步骤706)。The WTRU starts a new DRX cycle. In subframes corresponding to the on-duration period (ie, while the DRX on-duration timer is running), the WTRU monitors the PDCCH applicable to all configured CCs (step 706).

WTRU确定可应用于任何CC(即,对于PCell或任何SCell)的至少一个PDCCH是否在所述周期的任何子帧中被成功解码,在这种情况中WTRU确定不需要RFR间隙。The WTRU determines whether at least one PDCCH applicable to any CC (ie, for PCell or any SCell) was successfully decoded in any subframe of the period, in which case the WTRU determines that no RFR gap is required.

WTRU确定在所述周期期间是否没有成功解码的PDCCH可应用于SCC(即,仅接收到可应用于PCell的PDCCH)。The WTRU determines if no successfully decoded PDCCHs are applicable to the SCC during the period (ie, only PDCCHs applicable to the PCell are received).

WTRU确定是否可应用于SCC的至少一个PDCCH在所述周期的任何子帧中被成功解码,在该情况中WTRU确定需要RFR间隙。The WTRU determines whether at least one PDCCH applicable to the SCC was successfully decoded in any subframe of the period, in which case the WTRU determines that an RFR gap is required.

WTRU还可以确定PDCCH可应用于哪个SCC(可能是SCC子组),在该情况中仅仅对应于一个或多个子组的SCC将在当前DRX循环的剩余部分中保持活动。The WTRU may also determine to which SCCs (possibly subgroups of SCCs) the PDCCH is applicable, in which case only the SCCs corresponding to one or more subgroups will remain active for the remainder of the current DRX cycle.

WTRU基于以下至少一者确定是否需要RFR间隙。如果没有PDCCH被成功解码,则对于DRX循环的剩余部分仅需要对应于PCell的CC,并且需要RFR间隙。如果没有成功解码的PDCCH可应用于对应于SCell的任何SCC,或如果PDCCH指示新的传输,则也需要RFR间隙。The WTRU determines whether an RFR gap is required based on at least one of the following. If no PDCCH is successfully decoded, only the CC corresponding to the PCell is required for the remainder of the DRX cycle, and an RFR gap is required. RFR gaps are also required if a PDCCH that is not successfully decoded is applicable to any SCC corresponding to the SCell, or if the PDCCH indicates a new transmission.

如果可应用于SCell的至少一个PDCCH已被成功解码,或如果PDCCH指示新的传输,则可以不需要RFR间隙。但是,在WTRU可以重新配置RF前端和/或可以去激活一个或多个SCC(或其子组)的情况中(其中没有成功解码的PDCCH可应用于所述SCC),可能需要RFR间隙,从而用于DRX循环的剩余部分的活动SCC的所得数量将小于开启持续时间周期期间的活动CC数量。If at least one PDCCH applicable to the SCell has been successfully decoded, or if the PDCCH indicates a new transmission, no RFR gap may be required. However, in cases where the WTRU may reconfigure the RF front end and/or may deactivate one or more SCCs (or a subset thereof) for which no successfully decoded PDCCHs are applicable, RFR gaps may be required, thereby The resulting number of active SCCs for the remainder of the DRX cycle will be less than the number of active CCs during the on-duration period.

在DRX开启持续时间周期结尾之后的第一子帧处开始,如果WTRU之前确定需要RFR间隙,则WTRU配置RF前端和/或激活SCC(步骤708)。WTRU可以重新配置RF前端和/或:去激活所有SCC或仅去激活在DRX开启持续时间期间没有可应用的PDCCH已被成功解码的SCC(或其子组)。Beginning at the first subframe after the end of the DRX on-duration period, the WTRU configures the RF front end and/or activates the SCC if the WTRU previously determined that an RFR gap is required (step 708). The WTRU may reconfigure the RF front end and/or: deactivate all SCCs or only SCCs (or a subset thereof) for which no applicable PDCCH has been successfully decoded during the DRX on-duration.

在DRX循环的剩余部分期间,即,在DRX开启持续时间的结尾之后,WTRU为一个或多个所有的CC(例如,PDAT)应用相同的DRX活动时间,WTRU为所述CC监控可应用于一个或多个CC上的传输的PDCCH,例如,所有激活的CC(步骤710)。WTRU不需要监控用于其它CC的PDCCH(例如,不同于PDAT的DRX活动时间),所述CC可以在之前的RFR间隙期间已经另外被去激活。此外,WTRU执行前面的步骤702。During the remainder of the DRX cycle, i.e., after the end of the DRX-on-duration, the WTRU applies the same DRX active time for one or more all CCs (e.g., PDAT) for which the WTRU monitors applicable or PDCCH for transmission on multiple CCs, eg, all activated CCs (step 710). The WTRU does not need to monitor the PDCCH (eg, different DRX active time than PDAT) for other CCs that may have otherwise been deactivated during the previous RFR gap. In addition, the WTRU performs step 702 above.

在DRX循环结尾的RFR间隙期间,WTRU重新配置RF前端和/或激活所有SCC(步骤712)。During the RFR gap at the end of the DRX cycle, the WTRU reconfigures the RF front end and/or activates all SCCs (step 712).

概念上,上面的某些选择也可以看作是第一DRX活动时间之后的PCC(例如,可遵循第8/9版DRX准则的PDAT),而SCC在第二DRX活动时间(例如,SDAT)之后。在DRX开启持续时间周期期间,用于所有SCC的SDAT与PDAT相同。如果WTRU确定至少一个SCC还没有被调度,则WTRU的SDAT(可能全部)可在间隙出现之后使一个或多个SCC不活动(即,进入DRX睡眠或去激活状态),在所述间隙期间不期望调度WTRU。如果WTRU在DRX开启持续时间期间已经确定至少一个SCC不应该在用于该周期的PDAT之后,则在DRX循环接近结束时,WTRU在DRX模式中插入类似的间隙。Conceptually, some of the above options can also be seen as PCC after the first DRX active time (e.g. PDAT that may follow Release 8/9 DRX guidelines), and SCC at the second DRX active time (e.g. SDAT) after. During the DRX on-duration period, the SDAT is the same as the PDAT for all SCCs. If the WTRU determines that at least one SCC has not been scheduled, the WTRU's SDAT (possibly all) may deactivate (i.e., enter DRX sleep or deactivate state) one or more SCCs after a gap occurs during which no It is desired to schedule the WTRU. If the WTRU has determined during the DRX on-duration that at least one SCC should not be after the PDAT for that period, then the WTRU inserts a similar gap in the DRX mode towards the end of the DRX cycle.

WTRU可根据特定的测量需求在激活周期期间为配置的SCell执行需要的测量。所述测量可以是CQI测量(如果配置了的话,譬如说,例如,SCell上A1/A2基于门限的测量),或RRC配置的测量,从而WTRU可为SCell独立地报告一个或多个配置的SCell是否在整个多CC DRX循环内是活动的。The WTRU may perform required measurements for the configured SCells during the activation period according to specific measurement requirements. The measurements may be CQI measurements (if configured, such as, for example, A1/A2 threshold-based measurements on SCells), or RRC configured measurements such that the WTRU may independently report one or more configured SCells for the SCell Is active throughout the multi-CC DRX cycle.

调度间隙的存在性可以是由WTRU实施或同步方法引起的。在基于WTRU实施时,WTRU在调度间隙出现时自动确定在哪种情况中间隙的时序对于eNB调度器不是已知的。基于这种情况,在调度间隙期间有需要处理的正在进行的HARQ进程,因此,在调度间隙期间不应该有任何正在进行的传输。The existence of scheduling gaps may be caused by WTRU implementations or synchronization methods. When implemented on a WTRU basis, the WTRU automatically determines when a scheduling gap occurs in which case the timing of the gap is not known to the eNB scheduler. Based on this situation, there are ongoing HARQ processes that need to be processed during the scheduling gap, therefore, there should not be any ongoing transmissions during the scheduling gap.

在基于同步方法时,调度间隙可由来自eNB的显式信令或由隐式方法进行调度。第一种隐式方法基于定时器或配置的开始偏移和周期性(上述方法将属于该分类)。第二种隐式方法基于HARQ进程状态,例如,一旦所有HARQ进程都完成,则可调度间隙。When based on a synchronization method, scheduling gaps can be scheduled by explicit signaling from the eNB or by an implicit method. The first implicit method is based on a timer or configured start offset and periodicity (the methods above would fall into that category). The second implicit method is based on the HARQ process state, eg, once all HARQ processes are completed, a gap may be scheduled.

在任何上述情况中,如果在正在进行的传输期间出现了所述间隙,则HARQ进程不应该变为不再与用于一个或多个相同HARQ进程的eNB状态相干的状态。In any of the above cases, if the gap occurs during an ongoing transmission, the HARQ process should not become in a state that is no longer coherent with the eNB state for one or more of the same HARQ process.

WTRU可以按照与测量间隙类似的方式为作为部分需要的调度间隙的子帧处理HARQ进程。这还应用于处理调度请求、和HARQ反馈的传输,CQI、PMI或RI,以及SRS。The WTRU may process the HARQ process for subframes that are part of the required scheduling gap in a similar manner to the measurement gap. This also applies to handling scheduling requests, and transmission of HARQ feedback, CQI, PMI or RI, and SRS.

在WTRU发起随机接入过程并且WTRU被要求使用调度间隙时,WTRU可执行下述过程中的至少一个,从而在随机接入过程与调度间隙冲突时处理该随机接入过程。When a WTRU initiates a random access procedure and the WTRU is required to use a scheduling gap, the WTRU may perform at least one of the following procedures to handle the random access procedure when it conflicts with the scheduling gap.

如果作为调度的一部分的子帧与WTRU已经用于前同步码传输的子帧一致,则WTRU可延迟前同步码的传输。例如,如果冲突子帧对应于下一可用子帧,所述下一可用子帧包括由prach配置索引、PRACH掩码索引和物理层时序需求(类似于与测量间隙冲突)给定的限制所允许的PRACH,则WTRU可延迟前同步码的传输。The WTRU may delay the transmission of the preamble if the subframes that are part of the schedule coincide with subframes that the WTRU has used for preamble transmission. For example, if the colliding subframe corresponds to the next available subframe, said next available subframe includes the constraints given by the prach configuration index, the PRACH mask index, and the physical layer timing requirements (similar to conflicting with measurement gaps) that allow PRACH, the WTRU may delay the transmission of the preamble.

如果在调度间隙出现前已经发送了随机接入前同步码,则WTRU可以:扩展RA响应窗的长度,例如,用至少等于调度间隙的长度的数量;忽略调度间隙,从而WTRU不执行相关的行为,例如,RF前端重调谐和/或一次或多次DRX转换;或确定随机接入过程是不成功的。If a random access preamble has been sent before the scheduling gap occurs, the WTRU may: extend the length of the RA response window, e.g., by an amount at least equal to the length of the scheduling gap; ignore the scheduling gap, so that the WTRU does not perform related actions , for example, RF front-end retuning and/or one or more DRX transitions; or determining that the random access procedure was unsuccessful.

如果WTRU已经为与需要的调度间隙相冲突的子帧接收到RAR中的UL授权,则WTRU可忽略所述调度间隙,从而WTRU不执行相关的行为,例如,RF前端重调谐和/或一次或多次DRX转换。可替换地,WTRU可忽略接收到的授权,并声明随机接入过程不成功。If the WTRU has already received a UL grant in the RAR for a subframe that conflicts with the required scheduling gap, the WTRU may ignore the scheduling gap so that the WTRU does not perform related actions, such as RF front-end retuning and/or one or Multiple DRX transitions. Alternatively, the WTRU may ignore the received grant and declare the random access procedure unsuccessful.

如果Msg3已经被发送,并且如果在冲突解决定时器正在运行时调度间隙出现,则WTRU可排除作为来自争用解决周期的间隙一部分的一个或多个子帧;即,不为这些子帧更新定时器。可替换地,WTRU可忽略所述调度间隙,从而WTRU不执行相关行为,例如,RF前端重调谐和/或DRX转换。If Msg3 has been sent, and if a scheduling gap occurs while the collision resolution timer is running, the WTRU may exclude one or more subframes that were part of the gap from the contention resolution period; i.e., do not update the timer for these subframes . Alternatively, the WTRU may ignore the scheduling gap such that the WTRU does not perform related actions, eg, RF front-end retuning and/or DRX transition.

WTRU可在已经执行了RF前端重调谐之后执行恢复UL时间对齐的过程,所述RF前端重调谐可由例如触发活动SCell集中的改变的某些事件引起。该过程可包括下述中任一个。The WTRU may perform procedures to restore UL time alignment after RF front-end retuning has been performed, which may be caused by certain events such as triggering a change in the active SCell set. The process may include any of the following.

WTRU可认为TAT已经终止,并执行相关行为,例如,在执行RF前端重调谐时,移除配置的专用UL资源。WTRU可能不一定移除某些或所有专用资源(例如,SRS,CQI)。The WTRU may consider the TAT terminated and perform related actions, eg, remove configured dedicated UL resources when performing RF front-end retuning. The WTRU may not necessarily remove some or all dedicated resources (eg, SRS, CQI).

WTRU可以在已经完成了RF前端重调谐之后在第一可能时机发送专用前同步码。只有前同步码在该情况中进行发送,其允许eNB使用DL SCH上的专用传输将时间提前命令(TAC)发送回WTRU,WTRU然后应用接收到的时序调整。eNB可从之前已经分配给WTRU的接收到的专用前同步码中得到WTRU的标识。The WTRU may send a dedicated preamble at the first possible opportunity after RF front-end retuning has been completed. Only the preamble is sent in this case, which allows the eNB to use a dedicated transmission on the DL SCH to send a Timing Advance Command (TAC) back to the WTRU, which then applies the received timing adjustments. The eNB may derive the WTRU's identity from a received dedicated preamble that has been previously assigned to the WTRU.

WTRU可在配置的(即,专用的)SRS资源上重新开始发送SRS。然后SRS发送可由eNB用于确定WTRU需要的时间调整。可替换地,WTRU可在其配置的(即,专用的)CQI资源上重新开始发送CQI。然后CQI传输可由eNB用于确定WTRU需要的时间调整。The WTRU may resume sending SRS on configured (ie, dedicated) SRS resources. The SRS transmission may then be used by the eNB to determine the timing adjustment needed by the WTRU. Alternatively, the WTRU may restart sending CQI on its configured (ie, dedicated) CQI resources. The CQI transmission may then be used by the eNB to determine the timing adjustments needed by the WTRU.

WTRU可发起RACH过程,包括发起无争用随机接入(CFRA)或基于争用的随机接入(CBRA)。WTRU还可以执行需要RACH过程的任何其他过程。The WTRU may initiate RACH procedures, including initiating contention-free random access (CFRA) or contention-based random access (CBRA). The WTRU may also perform any other procedures that require RACH procedures.

上述任一个过程都可以与另外的需求相结合,所述需求为不允许WTRU执行任何UL传输(除了上述同步过程要求的一个或多个任何传输之外),直到接收到TAC和/或RA Msg2(即,同步过程完成),或直到WTRU成功将PDCCH解码为其C-RNTI(可能仅用于指示UL授权的DCI)。Either of the above procedures may be combined with the additional requirement that the WTRU is not allowed to perform any UL transmissions (other than one or more of any transmissions required by the synchronization procedures above) until a TAC and/or RA Msg2 is received (ie, synchronization procedure complete), or until the WTRU successfully decodes the PDCCH to its C-RNTI (possibly only for DCI indicating UL grant).

可替换地,eNB可基于正常的操作来依赖于来自WTRU的UL传输,并且如果需要的话,将TAC发布给WTRU。Alternatively, the eNB may rely on UL transmissions from the WTRU based on normal operation and issue TACs to the WTRU if needed.

对于LTE第8/9版,一旦WTRU使用主和次同步信道获取了DL时间,则WTRU应该能够使每个子帧与DL时间同步,从而在RF被调整到一个小区之后,WTRU振荡器漂移不是问题。这也可应用到共享相同TA的多个小区。For LTE Release 8/9, once the WTRU has acquired the DL time using the primary and secondary synchronization channels, the WTRU should be able to synchronize each subframe to the DL time so that after the RF is tuned to a cell, WTRU oscillator drift is not an issue . This also applies to multiple cells sharing the same TA.

实施例Example

1.一种用于由无线发射/接收单元(WTRU)调度重调谐间隙出现时的时间的方法,该方法包括:检测重调谐触发事件;在检测到触发事件的情况下,确定重调谐间隙出现时的时间周期;以及在重调谐间隙期间执行无线电频率前端重调谐。1. A method for scheduling, by a wireless transmit/receive unit (WTRU), when a retune gap occurs, the method comprising: detecting a retune trigger event; if the trigger event is detected, determining that a retune gap occurs and performing radio frequency front-end retuning during the retuning gap.

2.根据实施例1所述的方法,其中所述重调谐触发事件基于以下任意一者:WTRU接收到的显式信号、或WTRU的隐式确定。2. The method of embodiment 1, wherein the retune trigger event is based on any of: an explicit signal received by the WTRU, or an implicit determination by the WTRU.

3.根据实施例2所述的方法,其中WTRU接收到的显式信号包括从演进型节点B接收到的基于分量载波激活或去激活的信号。3. The method of embodiment 2 wherein the explicit signal received by the WTRU comprises a component carrier based activation or deactivation signal received from an eNodeB.

4.根据实施例2所述的方法,其中重调谐触发事件的隐式确定包括一个或多个分量载波的不连续接收状态的改变。4. The method of embodiment 2, wherein the implicit determination of a retune trigger event includes a change in discontinuous reception status of one or more component carriers.

5.根据实施例1-4中任意一个实施例所述的方法,其中重调谐间隙周期是基于上行链路传输或下行链路传输来确定的。5. The method as in any one of embodiments 1-4, wherein the retuning gap period is determined based on uplink transmission or downlink transmission.

6.根据实施例5所述的方法,其中所述传输是基于以下任意一者进行的:物理下行链路控制信道接收、上行链路混合自动重复请求(HARQ)反馈、或下行链路HARQ反馈。6. The method of embodiment 5, wherein the transmission is based on any of: physical downlink control channel reception, uplink hybrid automatic repeat request (HARQ) feedback, or downlink HARQ feedback .

7.根据实施例6所述的方法,该方法还包括确定具有大于或等于重调谐间隙长度的长度的空闲周期。7. The method of embodiment 6, further comprising determining an idle period having a length greater than or equal to a retuning gap length.

8.根据实施例1-4中任意一个实施例所述的方法,其中基于混合自动重复请求(HARQ)进程传输的状态来确定重调谐间隙周期;以及一旦所有上行链路和下行链路HARQ进程空闲,就确定所述重调谐时隙,其中所述HARQ进程在以下情况下是空闲的:所述WTRU生成HARQ应答、所述WTRU接收到HARQ应答、或对于所有HARQ进程已经达到了最大传输次数。8. The method as in any one of embodiments 1-4, wherein the retuning gap period is determined based on the status of Hybrid Automatic Repeat Request (HARQ) process transmissions; and once all uplink and downlink HARQ processes idle, the retuning slot is determined where the HARQ process is idle if: the WTRU generates a HARQ acknowledgment, the WTRU receives a HARQ acknowledgment, or the maximum number of transmissions has been reached for all HARQ processes .

9.根据实施例1-4中任意一个实施例所述的方法,其中基于从所有活动分量载波上在先活动的传输或重传的结尾处检测到的空闲周期来确定重调谐间隙周期。9. The method as in any one of embodiments 1-4, wherein the retuning gap period is determined based on idle periods detected from the end of previously active transmissions or retransmissions on all active component carriers.

10.根据实施例9所述的方法,其中在所检测到的空闲周期具有大于或等于重调谐间隙长度的长度的情况下,确定重调谐间隙周期。10. The method of embodiment 9, wherein the retuning gap period is determined if the detected idle period has a length greater than or equal to the retuning gap length.

11.根据实施例1-4中任意一个实施例所述的方法,其中基于不连续接收(DRX)循环来确定重调谐间隙周期。11. The method as in any one of embodiments 1-4, wherein the retuning gap period is determined based on a discontinuous reception (DRX) cycle.

12.根据实施例11所述的方法,其中:在所有活动分量载波都不在DRX活动时间内的情况下、以及在直到下一DRX开启持续实践周期的时间长度大于或等于重调谐间隙长度的情况下,确定重调谐间隙。12. The method of embodiment 11, wherein: in the case that all active component carriers are not within the DRX active time, and in the case that the length of time until the next DRX on-duration practice period is greater than or equal to the retuning gap length Next, determine the retuning gap.

13.根据实施例12所述的方法,其中在下一DRX开启持续时间周期或下一DRX循环之前、所有激活的分量载波都不再在DRX活动时间内或不再在需要的重调谐间隙周期内的情况下,应用所确定的重调谐间隙。13. The method of embodiment 12, wherein all activated component carriers are no longer within the DRX active time or within the required retuning gap period before the next DRX on-duration period or next DRX cycle In the case of , the determined retuning gap is applied.

14.一种由无线发射/接收单元(WTRU)在激活周期期间执行的方法,该方法包括:为来自活动分量载波(CC)集的任何CC监控至少一个下行链路(DL)CC的物理下行链路控制信道(PDCCH)以获得信道分配,以及确定无线电频率重调谐(RFR)间隙在多CC不连续接收(DRX)循环期间是否可用于WTRU。在至少一个CC子组中的CC在激活周期减去RFR间隙的持续时间后的第一子帧内不是活动的情况下,所述方法还包括调度RFR间隙,以使其在下一激活周期之前。在激活周期期间至少一个PDCCH被WTRU成功解码的情况下,所述方法还包括调度RFR间隙以使其在下一激活周期之前。在不同CC集可在激活周期之后被激活的情况下,所述方法还包括调度RFR间隙以使其在所述激活周期之后。14. A method performed by a wireless transmit/receive unit (WTRU) during an activation period, the method comprising: monitoring the physical downlink of at least one downlink (DL) CC for any CC from a set of active component carriers (CCs) Link Control Channel (PDCCH) to obtain channel assignments, and to determine whether radio frequency retuning (RFR) gaps are available to the WTRU during a multi-CC discontinuous reception (DRX) cycle. In case the CCs in the at least one CC subgroup are not active within the first subframe after the activation period minus the duration of the RFR gap, the method further includes scheduling the RFR gap to precede the next activation period. In case at least one PDCCH is successfully decoded by the WTRU during the active period, the method further includes scheduling the RFR gap to be before the next active period. Where a different set of CCs may be activated after an activation period, the method further includes scheduling RFR gaps to follow the activation period.

15.根据实施例14所述的方法,其中在WTRU成功地解码了可应用于至少一个分量载波(SCC)的PDCCH的情况下,所述方法还包括在RFR间隙之后激活至少一个SCC。15. The method of embodiment 14, wherein in case the WTRU successfully decodes a PDCCH applicable to at least one component carrier (SCC), the method further comprises activating at least one SCC after an RFR gap.

16.根据实施例14或15所述的方法,其中多CC DRX循环的持续时间等于WTRU使用的DRX循环的持续时间。16. The method of embodiment 14 or 15, wherein the duration of the multi-CC DRX cycle is equal to the duration of the DRX cycle used by the WTRU.

17.根据实施例14-16中任意一个实施例所述的方法,其中多CC DRX循环的持续时间是可配置的DRX循环长度。17. The method as in any one of embodiments 14-16, wherein the duration of the multi-CC DRX cycle is a configurable DRX cycle length.

18.根据实施例14-17中任意一个实施例所述的方法,其中激活周期的持续时间是以下任意一者:DRX开启持续时间、主DRX活动时间的持续时间、或多CC DRX循环的持续时间。18. The method as in any one of embodiments 14-17, wherein the duration of the activation period is any one of: DRX on duration, duration of main DRX active time, or duration of multi-CC DRX cycle time.

19.根据实施例14-18中任意一个实施例所述的方法,其中RFR间隙的持续时间是以下任意一者:固定值、由网络配置的值、或根据WTRU的能力得到的值。19. The method as in any one of embodiments 14-18 wherein the duration of the RFR gap is any one of: a fixed value, a value configured by the network, or a value derived from the capabilities of the WTRU.

20.根据实施例14-19中任意一个实施例所述的方法,其中信道分配包括DL分配或上行链路授权中的至少一者。20. The method as in any one of embodiments 14-19, wherein the channel assignment comprises at least one of a DL assignment or an uplink grant.

虽然本发明的特征和元素以特定的结合在以上进行了描述,但本领域普通技术人员可以理解的是,每个特征或元素可以在没有其它特征和元素的情况下单独使用,或在与本发明的其它特征和元素结合的各种情况下使用。此外,本发明提供的方法可以在由计算机或处理器执行的计算机程序、软件或固件中实施,其中所述计算机程序、软件或固件被包含在计算机可读存储介质中。计算机可读介质的实例包括电子信号(通过有线或者无线连接而传送)和计算机可读存储介质。关于计算机可读存储介质的实例包括但不局限于只读存储器(ROM)、随机存取存储器(RAM)、寄存器、缓冲存储器、半导体存储设备、诸如内部硬盘和可移动磁盘之类的磁介质、磁光介质以及CD-ROM碟片和数字多功能光盘(DVD)之类的光介质。与软件有关的处理器可以被用于实施在WTRU、UE、终端、基站、RNC或者任何主计算机中使用的射频收发信机。Although features and elements of the present invention have been described above in particular combinations, one of ordinary skill in the art will understand that each feature or element can be used alone without the other features and elements or in combination with the present invention The other features and elements of the invention are used in various combinations. In addition, the method provided by the present invention can be implemented in a computer program, software or firmware executed by a computer or a processor, wherein the computer program, software or firmware is contained in a computer-readable storage medium. Examples of computer readable media include electronic signals (transmitted over wired or wireless connections) and computer readable storage media. Examples of computer-readable storage media include, but are not limited to, read-only memory (ROM), random-access memory (RAM), registers, cache memory, semiconductor storage devices, magnetic media such as internal hard disks and removable disks, Magneto-optical media and optical media such as CD-ROM discs and digital versatile discs (DVDs). A processor associated with software may be used to implement a radio frequency transceiver for use in a WTRU, UE, terminal, base station, RNC or any host computer.

Claims (20)

1.一种用于由无线发射/接收单元(WTRU)调度重调谐间隙出现时的时间的方法,该方法包括:CLAIMS 1. A method for scheduling, by a wireless transmit/receive unit (WTRU), when a retuning gap occurs, the method comprising: 检测重调谐触发事件;detecting a retune trigger event; 在检测到所述触发事件的情况下,确定重调谐间隙出现时的时间周期;以及In the event that the triggering event is detected, determining a time period during which a retuning gap occurs; and 在所述重调谐间隙期间执行无线电频率前端重调谐。Radio frequency front-end retuning is performed during the retuning gap. 2.根据权利要求1所述的方法,其中所述重调谐触发事件基于以下任意一者:所述WTRU接收到的显式信号、或所述WTRU的隐式确定。2. The method of claim 1, wherein the retuning trigger event is based on any one of: an explicit signal received by the WTRU, or an implicit determination by the WTRU. 3.根据权利要求2所述的方法,其中所述WTRU接收到的所述显式信号包括从演进型节点B接收到的基于分量载波激活或去激活的信号。3. The method of claim 2, wherein the explicit signal received by the WTRU comprises a component carrier based activation or deactivation signal received from an eNodeB. 4.根据权利要求2所述的方法,其中所述重调谐触发事件的所述隐式确定包括一个或多个分量载波的不连续接收状态的改变。4. The method of claim 2, wherein the implicit determination of the retune trigger event comprises a change in discontinuous reception status of one or more component carriers. 5.根据权利要求1所述的方法,其中重调谐间隙周期是基于上行链路传输或下行链路传输来确定的。5. The method of claim 1, wherein the retuning gap period is determined based on uplink transmissions or downlink transmissions. 6.根据权利要求5所述的方法,其中所述传输是基于以下任意一者进行的:物理下行链路控制信道接收、上行链路混合自动重复请求(HARQ)反馈、或下行链路HARQ反馈。6. The method of claim 5, wherein the transmission is based on any one of: physical downlink control channel reception, uplink hybrid automatic repeat request (HARQ) feedback, or downlink HARQ feedback . 7.根据权利要求6所述的方法,该方法还包括:7. The method of claim 6, further comprising: 确定具有大于或等于所述重调谐间隙长度的长度的空闲周期。An idle period having a length greater than or equal to the retuning gap length is determined. 8.根据权利要求1所述的方法,其中:8. The method of claim 1, wherein: 重调谐间隙周期是基于混合自动重复请求(HARQ)进程传输的状态来确定的;以及The retuning gap period is determined based on the status of the Hybrid Automatic Repeat Request (HARQ) process transmission; and 一旦所有上行链路和下行链路HARQ进程空闲,就确定所述重调谐间隙,其中所述HARQ进程在以下情况下是空闲的:所述WTRU生成HARQ应答、所述WTRU接收HARQ应答、或对于所有HARQ进程而言达到了最大传输次数。The retuning gap is determined once all uplink and downlink HARQ processes are idle, where the HARQ processes are idle when: the WTRU generates a HARQ reply, the WTRU receives a HARQ reply, or for The maximum number of transmissions has been reached for all HARQ processes. 9.根据权利要求1所述的方法,其中重调谐间隙周期是基于从所有活动分量载波上的在先活动的传输或重传的结尾处检测到空闲周期来确定的。9. The method of claim 1, wherein the retuning gap period is determined based on detection of idle periods from the end of previously active transmissions or retransmissions on all active component carriers. 10.根据权利要求9所述的方法,其中在所检测到的空闲周期具有大于或等于重调谐间隙长度的长度的情况下,确定所述重调谐间隙周期。10. The method of claim 9, wherein the retuning gap period is determined if the detected idle period has a length greater than or equal to a retuning gap length. 11.根据权利要求1所述的方法,其中重调谐间隙周期是基于不连续接收(DRX)循环来确定的。11. The method of claim 1, wherein the retuning gap period is determined based on a discontinuous reception (DRX) cycle. 12.根据权利要求11所述的方法,其中:12. The method of claim 11, wherein: 在所有活动分量载波都不在DRX活动时间内的情况下、以及In case all active component carriers are not within the DRX active time, and 在直到下一DRX开启持续时间周期的时间长度大于或等于重调谐间隙长度的情况下,确定重调谐间隙。In case the length of time until the next DRX On-Duration period is greater than or equal to the retuning gap length, a retuning gap is determined. 13.根据权利要求12所述的方法,其中在下一DRX开启持续时间周期或下一DRX循环之前、所有激活的分量载波都不再在DRX活动时间内或不再在需要的重调谐间隙周期内的情况下,应用所确定的重调谐间隙。13. The method of claim 12, wherein all activated component carriers are no longer within the DRX active time or within the required retuning gap period before the next DRX on-duration period or next DRX cycle In the case of , the determined retuning gap is applied. 14.一种由无线发射/接收单元(WTRU)在激活周期期间执行的方法,该方法包括:14. A method performed by a wireless transmit/receive unit (WTRU) during an activation period, the method comprising: 为来自活动分量载波(CC)集的任意CC监控至少一个下行链路(DL)CC的物理下行链路控制信道(PDCCH)以获得信道分配;Monitor the Physical Downlink Control Channel (PDCCH) of at least one downlink (DL) CC for any CC from the set of active component carriers (CCs) for channel assignment; 确定无线电频率重调谐(RFR)间隙在多CC不连续接收(DRX)循环期间是否可用于所述WTRU;determining whether radio frequency retuning (RFR) gaps are available to the WTRU during a multi-CC discontinuous reception (DRX) cycle; 在至少一个CC子组中的CC在激活周期减去所述RFR间隙的持续时间后的第一子帧内不为活动的情况下,调度所述RFR间隙以使其在下一激活周期之前;scheduling the RFR gap to precede the next activation period in case the CCs in the at least one CC subgroup are inactive for the first subframe after the activation period minus the duration of the RFR gap; 在所述激活周期期间至少一个PDCCH被所述WTRU成功地解码的情况下,调度所述RFR间隙以使其在所述下一激活周期之前;以及scheduling the RFR gap to precede the next active period if at least one PDCCH was successfully decoded by the WTRU during the active period; and 在不同CC集能在所述激活周期之后被激活的情况下,调度所述RFR间隙以使其在所述激活周期之后。In case a different set of CCs can be activated after the activation period, the RFR gap is scheduled to follow the activation period. 15.根据权利要求14所述的方法,其中在所述WTRU成功地解码了可应用于至少一个次分量载波(SCC)的PDCCH的情况下,在所述RFR间隙之后激活所述至少一个SCC。15. The method of claim 14, wherein at least one secondary component carrier (SCC) is activated after the RFR gap if the WTRU successfully decodes a PDCCH applicable to the at least one secondary component carrier (SCC). 16.根据权利要求14所述的方法,其中所述多CC DRX循环的持续时间等于所述WTRU使用的DRX循环的持续时间。16. The method of claim 14, wherein the duration of the multi-CC DRX cycle is equal to the duration of the DRX cycle used by the WTRU. 17.根据权利要求14所述的方法,其中所述多CC DRX循环的持续时间是可配置的DRX循环长度。17. The method of claim 14, wherein the duration of the multi-CC DRX cycle is a configurable DRX cycle length. 18.根据权利要求14所述的方法,其中所述激活周期的持续时间是以下任意一者:DRX开启持续时间、主DRX活动时间的持续时间、或所述多CC DRX循环的持续时间。18. The method of claim 14, wherein the duration of the active period is any one of: DRX on duration, duration of main DRX active time, or duration of the multi-CC DRX cycle. 19.根据权利要求14所述的方法,其中所述RFR间隙的持续时间是以下任意一者:固定值、能够由网络配置的、或根据所述WTRU的能力得到的。19. The method of claim 14, wherein the duration of the RFR gap is any one of: a fixed value, configurable by the network, or derived from the capabilities of the WTRU. 20.根据权利要求14所述的方法,其中所述信道分配包括DL分配或上行链路授权中的至少一者。20. The method of claim 14, wherein the channel assignment comprises at least one of a DL assignment or an uplink grant.
CN201180025946.8A 2010-05-25 2011-05-24 Retuning gap and schedule gaps in discontinuous reception Ceased CN102907060B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510649328.0A CN105306186A (en) 2010-05-25 2011-05-24 Method operated by WTRU and the WTRU

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US34799710P 2010-05-25 2010-05-25
US61/347,997 2010-05-25
US34851010P 2010-05-26 2010-05-26
US61/348,510 2010-05-26
US35635910P 2010-06-18 2010-06-18
US61/356,359 2010-06-18
PCT/US2011/037717 WO2011149920A2 (en) 2010-05-25 2011-05-24 Retuning gaps and scheduling gaps in discontinuous reception

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN201510649328.0A Division CN105306186A (en) 2010-05-25 2011-05-24 Method operated by WTRU and the WTRU

Publications (2)

Publication Number Publication Date
CN102907060A true CN102907060A (en) 2013-01-30
CN102907060B CN102907060B (en) 2015-10-21

Family

ID=44319897

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201180025946.8A Ceased CN102907060B (en) 2010-05-25 2011-05-24 Retuning gap and schedule gaps in discontinuous reception
CN201510649328.0A Pending CN105306186A (en) 2010-05-25 2011-05-24 Method operated by WTRU and the WTRU

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN201510649328.0A Pending CN105306186A (en) 2010-05-25 2011-05-24 Method operated by WTRU and the WTRU

Country Status (9)

Country Link
US (2) US9203566B2 (en)
EP (1) EP2577926B1 (en)
JP (3) JP5499219B2 (en)
KR (1) KR101763978B1 (en)
CN (2) CN102907060B (en)
IL (1) IL223127A (en)
MY (1) MY163407A (en)
TW (1) TWI523561B (en)
WO (1) WO2011149920A2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105122858A (en) * 2013-04-03 2015-12-02 美国博通公司 Handling downlink semi-persistent scheduling retransmission in wireless networks
CN106134261A (en) * 2014-01-29 2016-11-16 三星电子株式会社 Data emitting method based on multicarrier and equipment in mobile communication system
CN107528683A (en) * 2016-06-28 2017-12-29 广东欧珀移动通信有限公司 Method, device and mobile terminal for setting carrier parameters in carrier aggregation
CN108633036A (en) * 2017-03-24 2018-10-09 中兴通讯股份有限公司 A kind of control information transferring method and device
US10601555B2 (en) 2014-01-29 2020-03-24 Samsung Electronics Co., Ltd. Multicarrier-based data transmission method and apparatus in mobile communication system
CN114557100A (en) * 2019-12-27 2022-05-27 Oppo广东移动通信有限公司 Method and device for uplink MAC CE transmission

Families Citing this family (100)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101877911B (en) * 2009-04-30 2014-06-25 电信科学技术研究院 Special scheduling request resource allocation method and device
US9413498B2 (en) * 2010-05-26 2016-08-09 Innovative Sonic Corporation Method and apparatus for handling buffer status reporting in a wireless communication system
WO2012008691A2 (en) * 2010-07-12 2012-01-19 Lg Electronics Inc. Data transmission method, related base station and user equipment
US8923208B2 (en) * 2010-08-05 2014-12-30 Qualcomm Incorporated Multi-radio coexistence
CN102448151B (en) * 2010-09-30 2016-05-18 索尼公司 Discontinuous receiving method, travelling carriage, base station and wireless communication system
CN102611993B (en) * 2011-01-19 2015-04-29 华为技术有限公司 MCCH (multicast control channel) change notice transmission method, device and system
KR102073027B1 (en) * 2011-04-05 2020-02-04 삼성전자 주식회사 Method and appratus of operating multiple time alignment timer in mobile communication system using carrier aggregation
WO2012134138A2 (en) * 2011-03-28 2012-10-04 엘지전자 주식회사 Method for transmitting an uplink signal, method for receiving an uplink signal, user equipment, and base station
WO2012138197A2 (en) * 2011-04-08 2012-10-11 엘지전자 주식회사 Method and apparatus for transmitting / receiving signals with a terminal in tdd wireless communication system
CN103503535A (en) * 2011-04-29 2014-01-08 诺基亚西门子网络公司 Method and apparatus for deactivating one of a primary cell and a secondary cell of a user device
US9007972B2 (en) 2011-07-01 2015-04-14 Intel Corporation Communication state transitioning control
CN103906462B (en) 2011-08-03 2015-11-25 德雷格医疗系统股份有限公司 Active mode based on handling capacity triggers
ES2561530T3 (en) * 2011-08-12 2016-02-26 Nokia Solutions And Networks Oy Discontinuous reception for carrier aggregation
WO2013028026A2 (en) * 2011-08-24 2013-02-28 Lg Electronics Inc. Method and apparatus for transmitting uplink data associated with mtc device trigger function
US20130083739A1 (en) * 2011-10-04 2013-04-04 Sharp Laboratories Of America, Inc. Devices for random access response scheduling
KR101878883B1 (en) * 2011-10-14 2018-07-17 삼성전자주식회사 Apparatus and method for controlling trnasmission and reception operations in wireless communication system
KR20130045169A (en) * 2011-10-24 2013-05-03 주식회사 팬택 Apparatus and method for performing uplink synchronization in multiple component carrier system
US20150071146A1 (en) * 2012-02-23 2015-03-12 Broadcom Corporation Aperiodical Discovery Channel Design for Small RRHS
JP2013183270A (en) * 2012-03-01 2013-09-12 Ntt Docomo Inc Mobile communication system
JP5917962B2 (en) * 2012-03-15 2016-05-18 株式会社Nttドコモ User device and discontinuous reception control method in mobile communication system
US9526091B2 (en) * 2012-03-16 2016-12-20 Intel Corporation Method and apparatus for coordination of self-optimization functions in a wireless network
US9094999B2 (en) 2012-04-02 2015-07-28 Intel Deutschland Gmbh Radio communication device and method for operating a radio communication device
US9497797B2 (en) 2012-04-02 2016-11-15 Intel Deutschland Gmbh Radio communication devices and methods for operating radio communication devices
US9516698B2 (en) 2012-04-02 2016-12-06 Intel Deutschland Gmbh Radio communication devices and methods for operating radio communication devices
US9781701B2 (en) 2012-04-02 2017-10-03 Intel Deutschland Gmbh Radio communication device and method for operating a radio communication device
US10034329B2 (en) 2012-04-02 2018-07-24 Intel Deutschland Gmbh Radio communication device and method for operating a radio communication device
US9088976B2 (en) * 2012-04-29 2015-07-21 Blackberry Limited Provisioning radio resources in a radio access network
KR20150018531A (en) * 2012-05-09 2015-02-23 삼성전자주식회사 Method and apparatus for controlling discontinuous reception in mobile communication system
US10075912B2 (en) 2012-05-17 2018-09-11 Samsung Electronics Co., Ltd. Method and apparatus for dynamically adjusting DRX settings of user equipment
CN103563435B (en) * 2012-05-17 2017-03-22 联发科技股份有限公司 Mobile communication device and method thereof
CN108923897A (en) 2012-05-25 2018-11-30 谷歌技术控股有限责任公司 Reduce the influence of the interference of communication equipment experience
US20130324112A1 (en) * 2012-05-30 2013-12-05 Intel Mobile Communications GmbH Radio communication device and method for operating a radio communication device
US9485683B2 (en) * 2012-05-31 2016-11-01 Interdigital Patent Holdings, Inc. Sensing measurement configuration and reporting in a long term evolution system operating over license exempt bands
WO2014007593A1 (en) * 2012-07-06 2014-01-09 엘지전자 주식회사 Method and apparatus for transceiving control signal
EP3169100B1 (en) * 2012-07-06 2021-09-01 Samsung Electronics Co., Ltd. Method and apparatus for determining tdd ul-dl configuration applicable for radio frames
WO2014022776A1 (en) 2012-08-03 2014-02-06 Intel Corporation Method and system for enabling device-to-device communication
US9191828B2 (en) 2012-08-03 2015-11-17 Intel Corporation High efficiency distributed device-to-device (D2D) channel access
EP2880782B8 (en) 2012-08-03 2021-01-13 Apple Inc. Device trigger recall/replace feature for 3gpp/m2m systems
US8913518B2 (en) 2012-08-03 2014-12-16 Intel Corporation Enhanced node B, user equipment and methods for discontinuous reception in inter-ENB carrier aggregation
US9036603B2 (en) 2012-08-03 2015-05-19 Intel Corporation Network assistance for device-to-device discovery
GB2510315B (en) * 2012-09-07 2017-12-06 Sony Corp Transmitting a sleep indication signal to a communications device in a virtual carrier narrow band control channel
WO2014048770A1 (en) * 2012-09-28 2014-04-03 Telefonaktiebolaget L M Ericsson (Publ) Component carrier (de)activation in communication systems using carrier aggregation
EP3474579B1 (en) * 2012-10-05 2020-12-09 InterDigital Patent Holdings, Inc. Method and apparatus for enhancing coverage of machine type communication (mtc) devices
RU2604830C1 (en) 2012-10-28 2016-12-10 ЭлДжи ЭЛЕКТРОНИКС ИНК. Operation with different timers in wireless communication system
EP2921019B1 (en) * 2012-11-13 2019-07-31 Telefonaktiebolaget LM Ericsson (publ) Improved control of rf retuning behaviour in a carrier aggregation based communication network
DE112012007166T5 (en) * 2012-11-22 2015-08-13 Broadcom Corporation Methods and apparatus for discontinuous reception
US9635659B2 (en) * 2013-01-03 2017-04-25 Qualcomm Incorporated ENB PDCCH implementation to avoid ambiguous DCI information
US9742533B2 (en) 2013-01-18 2017-08-22 Telefonaktiebolaget Lm Ericsson (Publ) Avoiding serving cell interruption
US9094835B2 (en) 2013-03-15 2015-07-28 Intel Mobile Communications GmbH Radio communication device and method for operating a radio communication device
US9226329B2 (en) * 2013-05-07 2015-12-29 Blackberry Limited Method and apparatus for contention free device signaling without a controlling network node
WO2014181997A1 (en) * 2013-05-09 2014-11-13 Lg Electronics Inc. Method for monitoring on durations in a wireless communication system and a device therefor
WO2014198479A1 (en) * 2013-06-13 2014-12-18 Sony Corporation Telecommunications apparatus and methods
KR102071372B1 (en) * 2013-09-16 2020-01-30 삼성전자 주식회사 Method and apparatus for drx mode of a mobile station in consideration of beamforming in a communication system
US9258747B2 (en) * 2013-09-17 2016-02-09 Intel IP Corporation User equipment and methods for fast handover failure recovery in 3GPP LTE network
US9854518B2 (en) 2013-09-27 2017-12-26 Apple Inc. System and method for audio frame generation alignment with LTE transmission opportunities
WO2015094293A1 (en) * 2013-12-19 2015-06-25 Intel IP Corporation Apparatus, system and method of rescheduling beacon transmissions
WO2015130005A1 (en) * 2014-02-26 2015-09-03 엘지전자 주식회사 Method for monitoring pdcch in fdd half-duplex communication and terminal thereof
US9503918B2 (en) 2014-03-20 2016-11-22 Intel IP Corporation ENODEB and UE for dynamic cell on and off
US10148369B2 (en) * 2014-05-01 2018-12-04 Samsung Electronics Co., Ltd. System and method for timing alignment of LTE cells and inter-operator co-existence on unlicensed spectrum
US10045332B2 (en) * 2014-05-09 2018-08-07 Qualcomm Incorporated UE autonomous radio resource configuration extension
CN106465270B (en) * 2014-05-15 2020-07-21 株式会社Ntt都科摩 User terminal and wireless communication method
WO2016019577A1 (en) * 2014-08-08 2016-02-11 Sony Corporation Selectable configuration for uplink acknowledgement resources
CN105376812B (en) * 2014-08-29 2019-05-24 电信科学技术研究院 The switching of uplink main carrier and its control method, device, base station and UE
EP3216267B1 (en) 2014-11-05 2019-08-14 Telefonaktiebolaget LM Ericsson (publ) Proactive admission control for multi-coverage d2d communications
US10541791B2 (en) * 2014-11-25 2020-01-21 Qualcomm Incorporated Techniques for reducing latency in a wireless communication system
US9961718B2 (en) * 2015-03-27 2018-05-01 Qualcomm Incorporated Discontinuous reception in LTE/LTE-A networks including contention-based frequency spectrum
US10123348B2 (en) 2015-04-01 2018-11-06 Qualcomm Incorporated Enhanced carrier aggregation activation and scheduling request procedures
KR102237511B1 (en) * 2015-04-29 2021-04-07 삼성전자주식회사 Method and appratus for controlling communication of a portable terminal in an wireless communication system
WO2016204678A1 (en) * 2015-06-15 2016-12-22 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for half-duplex communication
EP3313122A4 (en) * 2015-06-19 2018-11-14 Sharp Kabushiki Kaisha Terminal device, communication method, and integrated circuit
DE102015009779B4 (en) 2015-07-27 2021-08-12 Apple Inc. Performance optimization for channel status reports in a wireless communication network
US11184784B2 (en) * 2015-09-24 2021-11-23 Nokia Technologies Oy Method of UE autonomous measurement related actions upon implicit triggers
US10079657B2 (en) * 2015-12-16 2018-09-18 Qualcomm Incorporated Techniques for HARQ retransmission skipping
CN106992846B (en) * 2016-01-20 2023-01-13 华为技术有限公司 Data sending method, data receiving method and device
US10958399B2 (en) 2016-03-11 2021-03-23 Sony Corporation Terminal device, infrastructure equipment and methods
WO2018031788A1 (en) * 2016-08-10 2018-02-15 Idac Holdings, Inc. Network energy efficiency
US12010534B2 (en) * 2016-09-29 2024-06-11 Ntt Docomo, Inc. User terminal and radio communication method
US10863496B2 (en) * 2016-12-06 2020-12-08 Lg Electronics Inc. Method and user equipment for receiving downlink signals
KR102164967B1 (en) 2017-01-06 2020-10-13 한국전자통신연구원 Method and apparatus for transmitting and receiving control channel in communication system
CN109246826B (en) * 2017-06-16 2021-06-22 华为技术有限公司 DRX configuration method, terminal device, network device and communication system
JP6259541B2 (en) * 2017-06-27 2018-01-10 テレフオンアクチーボラゲット エルエム エリクソン(パブル) Discontinuous reception method and user equipment using discontinuous reception method
EP3529934B1 (en) * 2017-08-10 2021-09-29 Ofinno, LLC Harq retransmission and control channel monitoring
US11239956B2 (en) 2017-08-10 2022-02-01 Ofinno, Llc Timers for control channel monitoring
KR102126274B1 (en) * 2017-09-26 2020-06-25 삼성전자주식회사 Apparatus and method for controlling operation cycle of an electronic device in wireless communication system
US11968154B2 (en) * 2017-12-19 2024-04-23 Qualcomm Incorporated Carrier aggregation SCell new state transition design
US11223456B2 (en) * 2018-02-20 2022-01-11 Qualcomm Incorporated Transmission gap configuration
US11330538B2 (en) 2018-05-10 2022-05-10 Apple Inc. Cellular reporting techniques for synchronization state changes
US12218761B2 (en) 2018-11-02 2025-02-04 Qualcomm Incorporated Hybrid automatic repeat request feedback for low latency transmissions
CN114175813A (en) 2019-08-02 2022-03-11 索尼集团公司 Communication device, infrastructure device and method
US20220272767A1 (en) * 2019-08-20 2022-08-25 Qualcomm Incorporated Mobile-terminated downlink data transmission and subsequent mobile-originated uplink data transmission without entering connected mode
CN112654034B (en) * 2019-10-11 2024-05-03 三星电子株式会社 Method and system for managing decoding on control channel of multi-SIM UE
JP7390480B2 (en) * 2019-10-15 2023-12-01 アップル インコーポレイテッド Connected discontinuous reception for carrier aggregation
US11832334B2 (en) * 2020-03-20 2023-11-28 Qualcomm Incorporated Semi-independent discontinuous reception groups
US11683147B2 (en) * 2020-05-12 2023-06-20 Qualcomm Incorporated Physical downlink control channel (PDCCH) ordered uplink carrier switching for half-duplex frequency division duplex (HD-FDD) user equipment
US11695512B2 (en) * 2020-05-15 2023-07-04 Qualcomm Incorporated Downlink assignment index (DAI) updates for piggyback downlink control information (DCI)
US11770809B2 (en) * 2020-07-22 2023-09-26 Samsung Electronics Co., Ltd. MIMO antenna array for cross division duplex
US11812431B2 (en) * 2020-08-12 2023-11-07 Qualcomm Incorporated Methods and apparatus for monitoring DL communication with timing offsets
CN112118581B (en) * 2020-09-08 2023-06-02 中国联合网络通信集团有限公司 Multi-carrier processing method, device, system and computer readable storage medium
US12041000B2 (en) 2021-08-05 2024-07-16 Qualcomm Incorporated Techniques for communicating data channel transmissions
US11985597B2 (en) * 2021-08-05 2024-05-14 Qualcomm Incorporated Techniques for aperiodic discontinuous reception mode communications

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050250510A1 (en) * 2004-05-07 2005-11-10 Jorma Kaikkonen Reduced performance mode of operation for use as needed by a wireless communication terminal
WO2008020236A1 (en) * 2006-08-18 2008-02-21 Iti Scotland Limited Wireless device and method
WO2008042225A2 (en) * 2006-09-29 2008-04-10 Interdigital Technology Corporation Method and apparatus for wireless transmit/receive unit operation in dedicated multimedia broadcast multicast services cells
US20100118720A1 (en) * 2008-10-31 2010-05-13 Interdigital Patent Holdings, Inc. Method and apparatus for monitoring and processing component carriers

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3373663B1 (en) * 2006-10-27 2019-09-25 InterDigital Technology Corporation Method and apparatus for enhancing discontinuous reception in wireless systems
CA2673246A1 (en) * 2006-12-20 2008-07-10 Telefonaktiebolaget L M Ericsson (Publ) A method and arrangements for an event triggered drx cycle adjustment
US8265682B2 (en) * 2008-03-18 2012-09-11 Texas Instruments Incorporated Scheduling request usage in DRX mode in wireless networks
US8706076B2 (en) * 2008-03-18 2014-04-22 Lg Electronics Inc. Method of receiving a disaster warning message through a broadcast/multicast channel
EP2255578B1 (en) * 2008-03-19 2017-09-13 Telefonaktiebolaget LM Ericsson (publ) A method and a base station for detecting loss of synchronization
US9913206B2 (en) * 2008-03-21 2018-03-06 Interdigital Patent Holdings, Inc. Method and apparatus for searching for closed subscriber group cells
EP2272288B1 (en) * 2008-05-07 2014-03-05 Telefonaktiebolaget L M Ericsson (PUBL) Pdcch monitoring after buffer status report transmission
WO2009147053A2 (en) * 2008-06-04 2009-12-10 Nokia Siemens Networks Oy Channel quality signaling for persistent/semi-persistent radio resource allocations
CN102187611B (en) * 2008-10-17 2014-04-02 爱立信电话股份有限公司 Method for improving battery life and HARQ retransmissions in wireless communications systems
KR101642309B1 (en) * 2008-11-06 2016-07-25 엘지전자 주식회사 A method for monitoring a downlink control channel
WO2010078365A1 (en) * 2008-12-30 2010-07-08 Interdigital Patent Holdings, Inc. Discontinuous reception for carrier aggregation
NL1036914C2 (en) * 2009-04-29 2010-11-01 Wouter Garot ANCHORING BODY.
US8848547B2 (en) * 2009-06-22 2014-09-30 Nokia Corporation Apparatus and method for signaling between a user equipment and a wireless network
US20110199908A1 (en) * 2010-02-15 2011-08-18 Nokia Corporation Methods and Apparatuses for Measurement Gap Pattern for Carrier Aggregation
CN104883325B (en) * 2014-02-27 2018-02-06 国际商业机器公司 PVLAN interchangers and its method for being connected to non-PVLANs device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050250510A1 (en) * 2004-05-07 2005-11-10 Jorma Kaikkonen Reduced performance mode of operation for use as needed by a wireless communication terminal
WO2008020236A1 (en) * 2006-08-18 2008-02-21 Iti Scotland Limited Wireless device and method
WO2008042225A2 (en) * 2006-09-29 2008-04-10 Interdigital Technology Corporation Method and apparatus for wireless transmit/receive unit operation in dedicated multimedia broadcast multicast services cells
US20100118720A1 (en) * 2008-10-31 2010-05-13 Interdigital Patent Holdings, Inc. Method and apparatus for monitoring and processing component carriers

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
NOKIA, NOKIA SIEMENS NETWORK: "Disscussion on mobility evaluation for carrier aggregation, R4-100799", 《3GPP TSG-RAN WG4 MEETING #54》 *
NOKIA, NOKIA SIEMENS NETWORK: "Need for measurement gaps with carrier aggregation, R4-100800", 《3GPP TSG-RAN WG4 MEETING #54》 *
NOKIA, NOKIA SIEMENS NETWORKS: "Discussion on mobility evaluations for carrier aggregation, R4-101387", 《3GPP TSG-RAN WG4 AD HOC MEETING #10-02》 *
NOKIA, NOKIA SIEMENS NETWORKS: "Need for measurement gaps with carrier aggregation, R4-101386", 《3GPP TSG-RAN WG4 AD HOC MEETING #10-02》 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105122858A (en) * 2013-04-03 2015-12-02 美国博通公司 Handling downlink semi-persistent scheduling retransmission in wireless networks
CN105122858B (en) * 2013-04-03 2020-05-01 安华高科技股份有限公司 Handling downlink semi-persistent scheduling retransmissions in a wireless network
CN106134261A (en) * 2014-01-29 2016-11-16 三星电子株式会社 Data emitting method based on multicarrier and equipment in mobile communication system
CN106134261B (en) * 2014-01-29 2019-11-26 三星电子株式会社 Data emitting method and equipment in mobile communication system based on multicarrier
US10601555B2 (en) 2014-01-29 2020-03-24 Samsung Electronics Co., Ltd. Multicarrier-based data transmission method and apparatus in mobile communication system
US11368262B2 (en) 2014-01-29 2022-06-21 Samsung Electronics Co., Ltd. Multicarrier-based data transmission method and apparatus in mobile communication system
US11991098B2 (en) 2014-01-29 2024-05-21 Samsung Electronics Co., Ltd. Multicarrier-based data transmission method and apparatus in mobile communication system
CN107528683A (en) * 2016-06-28 2017-12-29 广东欧珀移动通信有限公司 Method, device and mobile terminal for setting carrier parameters in carrier aggregation
CN107528683B (en) * 2016-06-28 2019-10-25 Oppo广东移动通信有限公司 Method, device and mobile terminal for setting carrier parameters in carrier aggregation
CN108633036A (en) * 2017-03-24 2018-10-09 中兴通讯股份有限公司 A kind of control information transferring method and device
CN108633036B (en) * 2017-03-24 2023-09-01 中兴通讯股份有限公司 Control information transmission method and device
CN114557100A (en) * 2019-12-27 2022-05-27 Oppo广东移动通信有限公司 Method and device for uplink MAC CE transmission

Also Published As

Publication number Publication date
WO2011149920A2 (en) 2011-12-01
EP2577926B1 (en) 2018-07-25
MY163407A (en) 2017-09-15
CN105306186A (en) 2016-02-03
EP2577926A2 (en) 2013-04-10
JP2013530636A (en) 2013-07-25
KR101763978B1 (en) 2017-08-01
JP2017055442A (en) 2017-03-16
US20160080131A1 (en) 2016-03-17
US20110292854A1 (en) 2011-12-01
JP6047512B2 (en) 2016-12-21
US9203566B2 (en) 2015-12-01
IL223127A0 (en) 2013-02-03
JP2014143711A (en) 2014-08-07
KR20130111965A (en) 2013-10-11
TWI523561B (en) 2016-02-21
CN102907060B (en) 2015-10-21
IL223127A (en) 2017-11-30
WO2011149920A3 (en) 2012-03-01
TW201218838A (en) 2012-05-01
JP5499219B2 (en) 2014-05-21

Similar Documents

Publication Publication Date Title
CN102907060B (en) Retuning gap and schedule gaps in discontinuous reception
US10498519B2 (en) Methods for dynamic TDD uplink/downlink configuration
TWI545905B (en) Method and device for controlling network connectivity
TWI519190B (en) Component carrier activation/deactivation in multi-carrier systems
TW201401908A (en) Random access procedures in wireless systems
TW202234914A (en) Methods and systems for efficient uplink (ul) synchronization maintenance with a deactivated secondary cell group (scg)

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
IW01 Full invalidation of patent right

Decision date of declaring invalidation: 20200403

Decision number of declaring invalidation: 43787

Granted publication date: 20151021

IW01 Full invalidation of patent right