CN102903757B - Method for forming SOI MOSFET (Silicon On Insulator Metal-Oxide-Semiconductor Field Effect Transistor) body contact by using side wall process - Google Patents
Method for forming SOI MOSFET (Silicon On Insulator Metal-Oxide-Semiconductor Field Effect Transistor) body contact by using side wall process Download PDFInfo
- Publication number
- CN102903757B CN102903757B CN201210407235.3A CN201210407235A CN102903757B CN 102903757 B CN102903757 B CN 102903757B CN 201210407235 A CN201210407235 A CN 201210407235A CN 102903757 B CN102903757 B CN 102903757B
- Authority
- CN
- China
- Prior art keywords
- semiconductor substrate
- body contact
- oxide layer
- etching
- soi mosfet
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 45
- 238000000034 method Methods 0.000 title claims abstract description 26
- 229910052710 silicon Inorganic materials 0.000 title claims abstract description 21
- 239000010703 silicon Substances 0.000 title claims abstract description 21
- 230000005669 field effect Effects 0.000 title 1
- 239000012212 insulator Substances 0.000 title 1
- 239000000758 substrate Substances 0.000 claims abstract description 53
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 20
- 238000005530 etching Methods 0.000 claims abstract description 19
- 238000005516 engineering process Methods 0.000 claims abstract description 13
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims abstract description 8
- 229920005591 polysilicon Polymers 0.000 claims abstract description 8
- 230000000873 masking effect Effects 0.000 claims description 22
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 16
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 13
- 238000002955 isolation Methods 0.000 claims description 11
- 238000000151 deposition Methods 0.000 claims description 7
- 229920002120 photoresistant polymer Polymers 0.000 claims description 7
- 238000001259 photo etching Methods 0.000 claims description 4
- 230000015572 biosynthetic process Effects 0.000 claims description 3
- 125000006850 spacer group Chemical group 0.000 claims description 3
- 238000000206 photolithography Methods 0.000 claims description 2
- 239000011248 coating agent Substances 0.000 claims 1
- 238000000576 coating method Methods 0.000 claims 1
- 230000000694 effects Effects 0.000 abstract description 19
- 238000004519 manufacturing process Methods 0.000 abstract description 8
- 210000000746 body region Anatomy 0.000 abstract description 6
- 230000007935 neutral effect Effects 0.000 abstract description 6
- 238000010438 heat treatment Methods 0.000 abstract description 5
- 239000010410 layer Substances 0.000 description 31
- 239000000463 material Substances 0.000 description 24
- 150000001875 compounds Chemical class 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 239000013078 crystal Substances 0.000 description 4
- 239000003292 glue Substances 0.000 description 3
- 230000003071 parasitic effect Effects 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 229910052732 germanium Inorganic materials 0.000 description 2
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 238000004518 low pressure chemical vapour deposition Methods 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 238000000992 sputter etching Methods 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Landscapes
- Thin Film Transistor (AREA)
Abstract
本发明提供的是一种利用侧墙工艺的SOI MOSFET体接触形成方法。包括一个经过刻蚀形成底层半导体衬底1;在底层半导体衬底(1)上的左面隐埋氧化层6(A)和右面隐埋氧化层6(B);顶部硅膜(7);在顶部硅膜(7)上生长栅氧化层(8);一个位于栅氧化层(8)上的多晶硅栅极(9);其特征是:体接触(11)引出端位于两个处在不同高度的底层半导体衬底(1)水平面之间。本发明提供一种能够将中性体区中多余的空穴导出,实现抗浮体效应,同时还防止自加热效应的产生的SOI MOSFET体接触结构;还提供一种简化制造流程,降低制作成本,提高器件可靠性的SOI MOSFET体接触结构的形成方法。
The invention provides a SOI MOSFET body contact forming method using side wall technology. It includes a bottom semiconductor substrate 1 formed by etching; a left buried oxide layer 6 (A) and a right buried oxide layer 6 (B) on the bottom semiconductor substrate (1); a top silicon film (7); A gate oxide layer (8) is grown on the top silicon film (7); a polysilicon gate (9) is located on the gate oxide layer (8); the feature is that the leads of the body contact (11) are located at two different heights between the horizontal planes of the underlying semiconductor substrate (1). The present invention provides a SOI MOSFET body contact structure capable of deriving redundant holes in the neutral body region, realizing anti-floating body effect and preventing self-heating effect; also provides a simplified manufacturing process and reduced manufacturing cost, A method for forming an SOI MOSFET body contact structure for improving device reliability.
Description
技术领域technical field
本发明涉及的是一种电子元器件,本发明也涉及一种电子元器件的形成方法。具体的说是一种利用侧墙工艺的SOI MOSFET体接触结构及其形成方法。The invention relates to an electronic component, and the invention also relates to a method for forming the electronic component. Specifically, it is a SOI MOSFET body contact structure using sidewall technology and its forming method.
背景技术Background technique
SOI技术作为一种全介质隔离技术,有着许多体硅技术不可比拟的优越性。但是SOI器件本身也存在着一些寄生效应,其中部分耗尽SOI器件的浮体效应是与体硅器件相比最大的一个问题,这也成为制约SOI技术发展与广泛应用的原因之一。浮体效应会产生kink效应、漏击穿电压降低、反常亚阈值斜率等,严重影响器件的性能。As a full dielectric isolation technology, SOI technology has many incomparable advantages over bulk silicon technology. However, SOI devices also have some parasitic effects, among which the floating body effect of partially depleted SOI devices is the biggest problem compared with bulk silicon devices, which has also become one of the reasons restricting the development and wide application of SOI technology. Floating body effect will produce kink effect, drain breakdown voltage reduction, abnormal subthreshold slope, etc., which seriously affect the performance of the device.
由于浮体效应对器件性能的影响,如何抑制浮体效应成为SOI器件研究的热点。针对浮体效应的抑制方法可分为两类:一类是采用体接触的方式使体区积累的空穴得到释放,一类是从工艺的角度出发通过注入复合中心,控制少子寿命。Due to the impact of the floating body effect on device performance, how to suppress the floating body effect has become a hot spot in the research of SOI devices. The suppression methods for the floating body effect can be divided into two categories: one is to release the accumulated holes in the body region by means of body contact, and the other is to control the minority carrier lifetime by injecting recombination centers from the perspective of technology.
体接触是指使隐埋氧化层上方、硅膜底部处于电学浮空状态的中性区域和外部相接触,导致空穴不可能在该区域积累。传统的体接触方法有T型栅、H型栅和BTS结构。但是传统的T型栅、H型栅器件的体接触电阻随沟道宽度的增加而增大,相应的浮体效应越显著,虽然可以采取增加硅膜厚度的方法解决接触电阻偏大的问题,但是随着硅膜厚度的增加,器件的源漏结深加大,使得体寄生电容增大,从而影响器件的性能。BTS结构是直接在源区形成P+区,这种结构使得源漏不对称,导致源漏无法互换,进而使有效沟道宽度减小。Body contact refers to making the neutral region above the buried oxide layer and the bottom of the silicon film in an electrically floating state contact with the outside, so that holes cannot accumulate in this region. Traditional body contact methods include T-type gate, H-type gate and BTS structure. However, the body contact resistance of traditional T-gate and H-gate devices increases with the increase of the channel width, and the corresponding floating body effect is more significant. Although the method of increasing the thickness of the silicon film can be adopted to solve the problem of high contact resistance, but As the thickness of the silicon film increases, the source-drain junction depth of the device increases, which increases the body parasitic capacitance, thereby affecting the performance of the device. The BTS structure is to form a P+ region directly in the source region. This structure makes the source and drain asymmetrical, making the source and drain unable to be interchanged, thereby reducing the effective channel width.
因此如何在实现体接触结构的同时,减小接触电阻和寄生电容成为研究SOI MOSFET器件体接触问题的热点。Therefore, how to reduce the contact resistance and parasitic capacitance while realizing the body contact structure has become a hot spot in researching the body contact problem of SOI MOSFET devices.
同时由于SOI隐埋氧化层的低热导率,SOI器件存在直流自加热效应。随着器件漏端电压和栅电压的增大,功耗增大,硅体内的温度上升,高于环境温度,器件中迁移率、阈值电压、碰撞离化、浮体电位、泄漏电流、亚阈值斜率等均会受温度的影响,由此引起器件特性的变化。而现有的大多数的体接触结构中,对器件抗自加热效应的研究较少。At the same time, due to the low thermal conductivity of the SOI buried oxide layer, the SOI device has a DC self-heating effect. As the drain voltage and gate voltage of the device increase, the power consumption increases, and the temperature in the silicon body rises above the ambient temperature. Mobility, threshold voltage, impact ionization, floating body potential, leakage current, and subthreshold slope in the device etc. will be affected by temperature, which will cause changes in device characteristics. However, in most of the existing body contact structures, there are few studies on the resistance to the self-heating effect of the device.
现有的许多通过体接触结构实现抑制SOI MOSFET器件浮体效应的方法是通过在源区或漏区下方形成沟槽,将中性体区与栅电极相接实现将中性体区引出。这种方法固然可以抑制SOI MOSFET器件的浮体效应,但有时会破坏SOI MOSFET器件的隔离效果,同时由于要形成接触沟槽,在形成方法上要反复的用到掩膜版与刻蚀技术,这使得器件在制作工艺上复杂化,不利于降低生产成本。Many existing methods to suppress the floating body effect of SOI MOSFET devices through the body contact structure are to form a trench under the source region or the drain region, and connect the neutral body region to the gate electrode to lead out the neutral body region. Although this method can suppress the floating body effect of SOI MOSFET devices, it sometimes destroys the isolation effect of SOI MOSFET devices. At the same time, due to the formation of contact trenches, mask plates and etching techniques must be used repeatedly in the formation method. This complicates the manufacturing process of the device, which is not conducive to reducing the production cost.
发明内容Contents of the invention
本发明的目的在于提供一种能够将中性体区中多余的空穴导出,实现抗浮体效应,同时还具有防止自加热效应的产生的利用侧墙工艺的SOI MOSFET体接触结构。本发明的目的还在于提供一种简化制造流程,降低制作成本,提高器件可靠性的利用侧墙工艺的SOI MOSFET体接触结构的形成方法。The object of the present invention is to provide a kind of SOI MOSFET body contact structure that can lead out redundant hole in the neutral body region, realize anti-floating body effect, also have the generation that prevents self-heating effect simultaneously and utilize side wall technology. The purpose of the present invention is also to provide a method for simplifying the manufacturing process, reducing the manufacturing cost, and improving the reliability of the device using the SOI MOSFET body contact structure of the sidewall process.
本发明的目的是这样实现的:The purpose of the present invention is achieved like this:
本发明利用侧墙工艺的SOI MOSFET体接触结构为:包括一个经过刻蚀形成具有两个不同高度水平面的台阶结构的底层半导体衬底1;两个在底层半导体衬底1上的左面隐埋氧化层6A和右面隐埋氧化层6B;一个位于左面隐埋氧化层6A和右面隐埋氧化层6B和底层半导体衬底1上的顶部硅膜7;一个在顶部硅膜7上生长形成的栅氧化层8;一个位于栅氧化层8上的多晶硅栅极9;其特征是:体接触11引出端位于两个处在不同高度的底层半导体衬底1水平面之间。The SOI MOSFET body contact structure utilizing the sidewall process in the present invention is: a bottom semiconductor substrate 1 formed by etching to form a step structure with two different height levels; layer 6A and the right buried oxide layer 6B; a top silicon film 7 on the left buried oxide layer 6A and right buried oxide layer 6B and the underlying semiconductor substrate 1; a gate oxide grown on the top silicon film 7 layer 8; a polysilicon gate 9 located on the gate oxide layer 8; characterized in that the terminal of the body contact 11 is located between two levels of the underlying semiconductor substrate 1 at different heights.
所述的导体衬底1材料为硅、锗、Ⅲ~Ⅴ族化合物半导体材料、Ⅱ~Ⅵ族化合物半导体材料或其他化合物半导体材料,也能采用单晶材料。The material of the conductive substrate 1 is silicon, germanium, group III~V compound semiconductor materials, group II~VI compound semiconductor materials or other compound semiconductor materials, and single crystal materials can also be used.
所述的掩蔽膜2采用硬掩蔽材料或软掩蔽材料,但掩蔽膜2所用材料不能与底层半导体衬底1材料相同。The masking film 2 is made of a hard masking material or a soft masking material, but the material used for the masking film 2 cannot be the same as that of the underlying semiconductor substrate 1 .
所述的单晶材料可通过掺杂使其成为n型衬底或p型衬底。The single crystal material can be made into an n-type substrate or a p-type substrate by doping.
本发明利用侧墙工艺的SOI MOSFET体接触结构形成方法,其特征在于包括以下步骤:The present invention utilizes the SOI MOSFET body contact structure forming method of side wall technology, is characterized in that comprising the following steps:
步骤1、在半导体衬底1上淀积掩蔽膜2,并将光刻胶涂在掩蔽膜2上,该半导体衬底1作为器件的底层衬底。Step 1. Deposit a masking film 2 on a semiconductor substrate 1, and apply a photoresist on the masking film 2. The semiconductor substrate 1 is used as the underlying substrate of the device.
步骤2、对该底层半导体衬底1进行第一次刻蚀,去除多余的掩蔽膜2,露出部分底层半导体衬底1。Step 2: Carry out the first etching on the underlying semiconductor substrate 1 to remove the redundant masking film 2 and expose part of the underlying semiconductor substrate 1 .
步骤3、对该底层半导体衬底1继续刻蚀,使其形成具有不同高度的两个水平表面,并去除余下的掩蔽膜2。Step 3: Continue etching the underlying semiconductor substrate 1 to form two horizontal surfaces with different heights, and remove the remaining masking film 2 .
步骤4、在底层半导体衬底1上淀积氮化硅隔离层4,并对氮化硅隔离层4进行第二次刻蚀,形成氮化硅侧墙5。Step 4, depositing a silicon nitride isolation layer 4 on the underlying semiconductor substrate 1, and performing a second etching on the silicon nitride isolation layer 4 to form a silicon nitride spacer 5.
步骤5、在底层半导体衬底上生长左面隐埋氧化层6A和右面隐埋氧化层6B,第三次刻蚀去除氮化硅侧墙5,露出底层半导体衬底1。Step 5, growing the left buried oxide layer 6A and the right buried oxide layer 6B on the underlying semiconductor substrate, and etching the silicon nitride sidewall 5 for the third time to expose the underlying semiconductor substrate 1 .
步骤6、外延生长顶部硅膜7,在顶部硅膜7与底层半导体衬底1直接相连处形成体接触11引出通道。Step 6, growing the top silicon film 7 epitaxially, and forming a body contact 11 to lead out a channel at the place where the top silicon film 7 is directly connected with the bottom semiconductor substrate 1 .
步骤7、光刻形成有源区,生长栅氧化层8,淀积多晶硅栅9,光刻多晶硅栅9,源漏端注入形成源端和漏端。Step 7, forming an active region by photolithography, growing a gate oxide layer 8, depositing a polysilicon gate 9, photoetching the polysilicon gate 9, and implanting source and drain terminals to form a source terminal and a drain terminal.
本发明的方法的主要特点如下:The main features of the method of the present invention are as follows:
本发明提出了一种利用侧墙工艺的SOI MOSFET体接触结构及其形成方法。与传统的单纯利用沟槽刻蚀及掩膜版刻蚀技术从器件顶层开始,通过一层一层向下刻蚀制造SOIMOSFET体接触结构的方法相比,本发明利用侧墙工艺及外延生长技术达到简化工艺步骤的目的。特别地,体引出端通过直接与底层半导体衬底相接的外延硅层实现,这一结构不仅可以将中性体区中多余的空穴导出,实现抗浮体效应,还能够有效的防止自加热效应的产生。本发明在不增加工艺步骤的同时,可实现体接触结构,增加抗浮体效应的有效性。The invention proposes a SOI MOSFET body contact structure utilizing a sidewall process and a forming method thereof. Compared with the traditional method of simply using trench etching and mask etching technology to start from the top layer of the device and etch down layer by layer to manufacture the SOIMOSFET body contact structure, the present invention utilizes sidewall technology and epitaxial growth technology The purpose of simplifying the process steps is achieved. In particular, the body terminal is implemented by an epitaxial silicon layer directly connected to the underlying semiconductor substrate. This structure can not only lead out the redundant holes in the neutral body region, realize the anti-floating body effect, but also effectively prevent self-heating. The production of the effect. The invention can realize the body contact structure and increase the effectiveness of anti-floating body effect without adding process steps.
附图说明Description of drawings
图1是刻蚀前带有掩蔽膜的底层半导体衬底的示意图;1 is a schematic diagram of a bottom semiconductor substrate with a masking film before etching;
图2是图1结构涂抹光刻胶后的截面图;Fig. 2 is a cross-sectional view of the structure of Fig. 1 after applying photoresist;
图3是图1结构进行第一次刻蚀的示意图;Fig. 3 is a schematic diagram of the first etching of the structure of Fig. 1;
图4是在刻蚀好的底层半导体衬底上淀积氮化硅隔离层后的截面图;4 is a cross-sectional view after depositing a silicon nitride isolation layer on the etched underlying semiconductor substrate;
图5是在图4所示结构基础上洗去多余氮化硅隔离层,形成氮化硅侧墙的示意图;FIG. 5 is a schematic diagram of washing away excess silicon nitride isolation layers on the basis of the structure shown in FIG. 4 to form silicon nitride side walls;
图6是在图5所示结构上淀积SiO2层的示意图;Fig. 6 is a schematic diagram of depositing a SiO layer on the structure shown in Fig. 5;
图7是洗去氮化硅侧墙后的结构的示意图;7 is a schematic diagram of the structure after the silicon nitride sidewall is washed away;
图8是在图7所示结构基础上外延生长顶部硅膜的截面图;Fig. 8 is a cross-sectional view of epitaxially growing a top silicon film on the basis of the structure shown in Fig. 7;
图9是最终的器件结构的简略图。Fig. 9 is a schematic diagram of the final device structure.
具体实施方式detailed description
下面结合附图举例对本发明做详细的描述:The present invention is described in detail below in conjunction with accompanying drawing example:
结合图1。所示在底层半导体衬底1上淀积掩蔽膜2。底层半导体衬底1的材料可自由选择,例如:硅、锗、Ⅲ~Ⅴ族化合物半导体材料、Ⅱ~Ⅵ族化合物半导体材料或其他化合物半导体材料等,也可以采用单晶材料,对于单晶材料也可通过掺杂使其成为n型衬底或p型衬底。掩蔽膜2所用材料可以采用如SiO2一样的硬掩蔽材料,也可应用如光刻胶一样的软掩蔽材料,但不论使用哪一种类型的掩蔽材料,应注意掩蔽膜所用材料不能与底层半导体衬底材料相同,防止刻蚀时出现问题。Combined with Figure 1. A masking film 2 is shown deposited on an underlying semiconductor substrate 1 . The material of the underlying semiconductor substrate 1 can be freely selected, for example: silicon, germanium, group III~V compound semiconductor materials, group II~VI compound semiconductor materials or other compound semiconductor materials, etc., and single crystal materials can also be used. For single crystal materials It can also be made into an n-type substrate or a p-type substrate by doping. The material used for the masking film 2 can be a hard masking material like SiO2 , or a soft masking material like photoresist, but no matter which type of masking material is used, it should be noted that the material used for the masking film cannot be compatible with the underlying semiconductor material. The same substrate material prevents problems during etching.
结合图2。在掩蔽膜2的部分面积上涂胶,形成光刻胶保护层3,保护一部分底层半导体衬底,使这部分底层半导体衬底不会受到下一步中的光照刻蚀。Combined with Figure 2. Glue is applied on a part of the masking film 2 to form a photoresist protective layer 3 to protect a part of the underlying semiconductor substrate, so that this part of the underlying semiconductor substrate will not be subjected to photo-etching in the next step.
结合图3。对涂胶后的结构进行第一次光照刻蚀,刻蚀去除未涂胶的掩蔽膜2,直到露出底层半导体衬底1。Combined with Figure 3. The first photoetching is performed on the glue-coated structure, and the uncoated masking film 2 is etched away until the underlying semiconductor substrate 1 is exposed.
结合图4。继续刻蚀,使底层半导体衬底1形成具有不同高度的两个水平衬底表面1A和1B,底层半导体衬底侧墙表面10直接在两个水平衬底表面1A和1B之间形成。去除光刻胶3和多余的掩蔽膜2,之后在第一水平衬底表面1A、第二水平衬底表面1B和底层半导体衬底侧墙表面10上通过低压化学气相淀积的方法生长氮化硅隔离层4。Combined with Figure 4. The etching is continued to form two horizontal substrate surfaces 1A and 1B with different heights on the underlying semiconductor substrate 1, and the spacer surface 10 of the underlying semiconductor substrate is directly formed between the two horizontal substrate surfaces 1A and 1B. Remove the photoresist 3 and the redundant masking film 2, and then grow nitride on the first horizontal substrate surface 1A, the second horizontal substrate surface 1B and the bottom semiconductor substrate spacer surface 10 by low-pressure chemical vapor deposition. Silicon isolation layer 4.
结合图5。利用离子刻蚀的方法对氮化硅隔离层4进行直接刻蚀,去除水平衬底表面1A和水平衬底表面1B上的氮化硅隔离层,形成如图所示的氮化硅侧墙5。Combined with Figure 5. The silicon nitride isolation layer 4 is directly etched by ion etching, and the silicon nitride isolation layer on the horizontal substrate surface 1A and the horizontal substrate surface 1B is removed to form a silicon nitride spacer 5 as shown in the figure. .
结合图6。在图5所示结构基础上,在水平衬底表面1A和水平衬底表面1B上生长左面隐埋氧化层6A和右面隐埋氧化层6B,作为SOI MOSFET器件的隐埋氧化层。Combined with Figure 6. On the basis of the structure shown in FIG. 5 , a buried oxide layer 6A on the left and a buried oxide layer 6B on the right are grown on the horizontal substrate surface 1A and the horizontal substrate surface 1B as the buried oxide layer of the SOI MOSFET device.
结合图7。对左面隐埋氧化层6A和右面隐埋氧化层6B进行涂胶保护,进行第三次刻蚀,刻蚀去除氮化硅侧墙5,之后去除多余的光刻胶。Combined with Figure 7. The buried oxide layer 6A on the left and the buried oxide layer 6B on the right are coated with glue for protection, and a third etching is performed to remove the silicon nitride sidewall 5 by etching, and then remove excess photoresist.
结合图8。外延生长顶部硅膜7,其材料的物理性质可与底层半导体衬底材料相同,也可与底层半导体衬底材料不同。通过左面隐埋氧化层6A和右面隐埋氧化层6B之间的区域形成体接触端11。Combined with Figure 8. The top silicon film 7 is epitaxially grown, and the physical properties of the material can be the same as or different from the material of the underlying semiconductor substrate. The body contact 11 is formed by the region between the left buried oxide layer 6A and the right buried oxide layer 6B.
结合图9。对图8所示结构进行光刻形成有源区,生长栅氧化层,淀积多晶硅栅,光刻多晶硅栅,源漏端注入形成源端和漏端。Combined with Figure 9. The structure shown in FIG. 8 is photolithographically formed to form an active region, a gate oxide layer is grown, a polysilicon gate is deposited, the polysilicon gate is photolithographically etched, and source and drain terminals are implanted to form a source terminal and a drain terminal.
以上所述的具体实施例,对本发明的目的、技术方案和有益效果经行了进一步详细说明,应注意到的是,以上所述仅为本发明的具体实施例,并不限制本发明,凡在本发明的精神和原则之内,所做的调制和优化,均应包含在本发明的保护范围之内。The specific embodiments described above have further described the purpose, technical solutions and beneficial effects of the present invention in detail. It should be noted that the above descriptions are only specific embodiments of the present invention, and do not limit the present invention. Within the spirit and principles of the present invention, all adjustments and optimizations should be included in the protection scope of the present invention.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210407235.3A CN102903757B (en) | 2012-10-23 | 2012-10-23 | Method for forming SOI MOSFET (Silicon On Insulator Metal-Oxide-Semiconductor Field Effect Transistor) body contact by using side wall process |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210407235.3A CN102903757B (en) | 2012-10-23 | 2012-10-23 | Method for forming SOI MOSFET (Silicon On Insulator Metal-Oxide-Semiconductor Field Effect Transistor) body contact by using side wall process |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102903757A CN102903757A (en) | 2013-01-30 |
CN102903757B true CN102903757B (en) | 2015-07-22 |
Family
ID=47575915
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201210407235.3A Expired - Fee Related CN102903757B (en) | 2012-10-23 | 2012-10-23 | Method for forming SOI MOSFET (Silicon On Insulator Metal-Oxide-Semiconductor Field Effect Transistor) body contact by using side wall process |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102903757B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9812449B2 (en) | 2015-11-20 | 2017-11-07 | Samsung Electronics Co., Ltd. | Multi-VT gate stack for III-V nanosheet devices with reduced parasitic capacitance |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1529342A (en) * | 2003-09-26 | 2004-09-15 | 中国科学院上海微系统与信息技术研究 | Method for preparing buried oxygen with nano-silicon channel by using sidewall technology |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6476445B1 (en) * | 1999-04-30 | 2002-11-05 | International Business Machines Corporation | Method and structures for dual depth oxygen layers in silicon-on-insulator processes |
KR100583725B1 (en) * | 2003-11-07 | 2006-05-25 | 삼성전자주식회사 | Semiconductor device having partially insulated field effect transistor and method for manufacturing same |
-
2012
- 2012-10-23 CN CN201210407235.3A patent/CN102903757B/en not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1529342A (en) * | 2003-09-26 | 2004-09-15 | 中国科学院上海微系统与信息技术研究 | Method for preparing buried oxygen with nano-silicon channel by using sidewall technology |
Also Published As
Publication number | Publication date |
---|---|
CN102903757A (en) | 2013-01-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100487922B1 (en) | A transistor of a semiconductor device and a method for forming the same | |
CN105655402B (en) | Low-voltage super-junction MOSFET terminal structure and manufacturing method thereof | |
CN104103515B (en) | Manufacturing method for PMOS transistor and manufacturing method for NMOS transistor | |
US20120025267A1 (en) | Mos device for eliminating floating body effects and self-heating effects | |
CN108091573A (en) | Shield grid groove MOSFET ESD structures and its manufacturing method | |
CN111029408A (en) | ESD integrated VDMOS device and preparation method thereof | |
CN104752513A (en) | Redundant doping radiation-proof MOS (Metal Oxide Semiconductor) field-effect tube based on 65nm process | |
CN101621009B (en) | Method for manufacturing body contact structure of partially-depleted SOI (silicon on insulator) device | |
CN108231899B (en) | A kind of SOI body contact device and its manufacturing method | |
CN109950256A (en) | The method for improving FDSOI PMOS structure and improving MOS device performance | |
KR100886708B1 (en) | SOI element and its manufacturing method | |
CN103258742B (en) | The formation method of transistor | |
CN102903757B (en) | Method for forming SOI MOSFET (Silicon On Insulator Metal-Oxide-Semiconductor Field Effect Transistor) body contact by using side wall process | |
CN102916047B (en) | SOI body contact structure and the formation method of oxygen corrosion technology are buried in a kind of utilization | |
CN112133750B (en) | Deep trench power device and preparation method thereof | |
CN103681343B (en) | Method for manufacturing semiconductor structure | |
CN112054061B (en) | Body contact structure of partially depleted silicon on insulator and manufacturing method thereof | |
CN103123899A (en) | FinFET (field effect transistor) device manufacturing method | |
CN211017088U (en) | ESD integrated VDMOS device | |
CN102903640B (en) | A kind of SOI MOSFET body contact formation method utilizing sacrifice layer | |
CN104282753B (en) | Highly integrated shape source and drain grid auxiliary control U-shaped raceway groove high mobility nodeless mesh body pipe of subsisting | |
KR100833595B1 (en) | Protruding transistor and its manufacturing method | |
CN204905262U (en) | SOI device with asymmetric retrograde well and back gate | |
TWI788152B (en) | Semiconductor device and method of fabricating the same | |
CN114121667B (en) | Method for manufacturing semiconductor device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20150722 Termination date: 20211023 |
|
CF01 | Termination of patent right due to non-payment of annual fee |