CN102903746B - 一种大电流密度的横向超薄绝缘栅双极型晶体管 - Google Patents
一种大电流密度的横向超薄绝缘栅双极型晶体管 Download PDFInfo
- Publication number
- CN102903746B CN102903746B CN201210442085.XA CN201210442085A CN102903746B CN 102903746 B CN102903746 B CN 102903746B CN 201210442085 A CN201210442085 A CN 201210442085A CN 102903746 B CN102903746 B CN 102903746B
- Authority
- CN
- China
- Prior art keywords
- type
- region
- base
- source region
- polysilicon gate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000758 substrate Substances 0.000 claims abstract description 9
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims description 39
- 229920005591 polysilicon Polymers 0.000 claims description 39
- 229910052751 metal Inorganic materials 0.000 claims description 12
- 239000002184 metal Substances 0.000 claims description 12
- 238000000407 epitaxy Methods 0.000 claims description 6
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 3
- 229910052760 oxygen Inorganic materials 0.000 claims description 3
- 239000001301 oxygen Substances 0.000 claims description 3
- 230000003139 buffering effect Effects 0.000 claims 4
- 238000000034 method Methods 0.000 description 8
- 238000010586 diagram Methods 0.000 description 7
- 230000000694 effects Effects 0.000 description 6
- 229910052581 Si3N4 Inorganic materials 0.000 description 4
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- 230000003071 parasitic effect Effects 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 238000005468 ion implantation Methods 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 239000011574 phosphorus Substances 0.000 description 2
- 238000000206 photolithography Methods 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 239000007943 implant Substances 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000002161 passivation Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D12/00—Bipolar devices controlled by the field effect, e.g. insulated-gate bipolar transistors [IGBT]
- H10D12/411—Insulated-gate bipolar transistors [IGBT]
- H10D12/421—Insulated-gate bipolar transistors [IGBT] on insulating layers or insulating substrates, e.g. thin-film IGBTs
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/52—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
- H01L23/522—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
- H01L23/528—Layout of the interconnection structure
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/10—Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
- H10D62/124—Shapes, relative sizes or dispositions of the regions of semiconductor bodies or of junctions between the regions
- H10D62/126—Top-view geometrical layouts of the regions or the junctions
- H10D62/127—Top-view geometrical layouts of the regions or the junctions of cellular field-effect devices, e.g. multicellular DMOS transistors or IGBTs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/10—Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
- H10D62/13—Semiconductor regions connected to electrodes carrying current to be rectified, amplified or switched, e.g. source or drain regions
- H10D62/133—Emitter regions of BJTs
- H10D62/134—Emitter regions of BJTs of lateral BJTs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/10—Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
- H10D62/13—Semiconductor regions connected to electrodes carrying current to be rectified, amplified or switched, e.g. source or drain regions
- H10D62/137—Collector regions of BJTs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/10—Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
- H10D62/13—Semiconductor regions connected to electrodes carrying current to be rectified, amplified or switched, e.g. source or drain regions
- H10D62/149—Source or drain regions of field-effect devices
- H10D62/151—Source or drain regions of field-effect devices of IGFETs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/10—Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
- H10D62/17—Semiconductor regions connected to electrodes not carrying current to be rectified, amplified or switched, e.g. channel regions
- H10D62/177—Base regions of bipolar transistors, e.g. BJTs or IGBTs
- H10D62/184—Base regions of bipolar transistors, e.g. BJTs or IGBTs of lateral BJTs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D64/00—Electrodes of devices having potential barriers
- H10D64/60—Electrodes characterised by their materials
- H10D64/66—Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes
- H10D64/661—Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes the conductor comprising a layer of silicon contacting the insulator, e.g. polysilicon having vertical doping variation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/0002—Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/10—Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
- H10D62/102—Constructional design considerations for preventing surface leakage or controlling electric field concentration
- H10D62/103—Constructional design considerations for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse-biased devices
Landscapes
- Physics & Mathematics (AREA)
- Geometry (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Insulated Gate Type Field-Effect Transistor (AREA)
Abstract
一种大电流密度的横向超薄绝缘栅双极型晶体管,包括P型衬底,在P型衬底上设有埋氧层,在埋氧层上设有N型外延层,在N型外延层内设有N型阱区及P型基区,在P型基区内设有第一P型接触区和N型源区,在N型阱区内设有N型缓冲区,在N型阱区上设有场氧化层,在N型缓冲区内设有P型漏区,在N型外延层内设有由P型环形基区构成的P型基区阵列,所述P型基区阵列位于N型阱区与P型基区之间,在所述P型环形基区内设有第二P型接触区和N型环形源区,第二P型接触区位于N型环形源区内,本发明大大的增加了横向超薄绝缘栅双极型晶体管的电流密度,可以极大的提高智能功率模块的性能。
Description
技术领域
本发明涉及功率半导体器件,特别是涉及一种集成在超薄工艺平台上的大电流密度的横向超薄绝缘栅双极型晶体管。
背景技术
高压功率集成电路中的智能功率模块可用于各种领域,如驱动和控制各种工业与民用、单相与三相电机。而智能功率模块中的功率开关元件为整个智能功率模块的关键部分,作为功率开关元件的IGBT不仅具有MOSFET工作速度快、输入阻抗大、驱动电路简单,还具有双极性晶体管载流量大的优点。正因为如此,这些年,IGBT频繁的应用在功率集成电路中。在IGBT中,L-IGBT引起了我们的关注,因为它比较适合集成在高密度集成电路中。在功率器件中,大容量的输出电流能力是很重要的。但是对于超薄L-IGBT由于电导调制效应不够明显,电流密度很难提高。如何在超薄L-IGBT源端和漏端获得大电流和大击穿电压成为提高整个集成电路性能的关键。所以作为功率开关元件中的超薄L-IGBT如何获得大电流密度无疑是智能功率模块电路及工艺研究的重要内容。
现有L-IGBT已有各种提高电流密度的方法,在这些提高电流密度方法中最为有效和突出的为东芝公司的美国专利US5731603提到的采用双沟道来提高厚膜L-IGBT的电流密度。该结构中P型基区两侧都有N型外延层,因此在N型源区两侧形成导电沟道之后,N型外延层可以提供电流流动的路径,但是,由于超薄膜结构中P型基区很容易延伸到下面的埋氧层而导致能够提供电流流动路径的N型外延层被夹断,因此,US5731603专利中提到的提高电流密度的方法在超薄结构中是行不通的。
发明内容
本发明提供一种大电流密度的横向超薄绝缘栅双极型晶体管,本发明解决了超薄L-IGBT电流密度较小的问题,在不牺牲击穿电压的条件下提高了电流密度。
本发明采用如下技术方案:
一种大电流密度的横向超薄绝缘栅双极型晶体管,包括P型衬底,在P型衬底上设有埋氧层,在埋氧层上设有N型外延层且N型外延层的厚度为0.1~2μm,在N型外延层内设有N型阱区及P型基区,在N型阱区内设有N型缓冲区,在N型阱区上设有场氧化层,并且,N型缓冲区的一个边界与场氧化层的一个边界相抵,在N型缓冲区内设有P型漏区,在P型基区内设有第一P型接触区和N型源区,在N型外延层内设有由P型环形基区构成的P型基区阵列,所述P型基区阵列位于N型阱区与P型基区之间,在所述P型环形基区内设有第二P型接触区和N型环形源区,第二P型接触区位于N型环形源区内,在场氧化层的与N型环形源区相邻的边界区域表面设有第一多晶硅栅,且第一多晶硅栅自场氧化层的边界朝N型环形源区方向延伸至N型环形源区的上方,在第一多晶硅栅的延伸区域下方设有第一栅氧化层,在N型外延层的上方设有第二多晶硅栅,并且,第二多晶硅栅的一个边界延伸至N型环形源区的上方,第二多晶硅栅的另一个边界延伸至N型源区的上方,在第二多晶硅栅的下方设有第二栅氧化层,在场氧化层、第一多晶硅栅、第二多晶硅栅、P型基区、P型环形基区、第一P型接触区、N型源区、第二P型接触区、N型环形源区、N型缓冲区及P型漏区上设有介质隔离氧化层,在第一P型接触区、N型源区、第二P型接触区及N型环形源区上连接发射极金属连线,在P型漏区上连接集电极金属连线,在第一多晶硅栅和第二多晶硅栅上连接栅极金属连线。
与现有技术相比,本发明具有如下优点:
(1)本发明的一种大电流密度的横向超薄绝缘栅双极型晶体管采用了新结构,即在N型外延层(3)内设有由P型环形基区(6b)构成的P型基区阵列(17),所述P型基区阵列(17)位于N型阱区(4)与P型基区(6a)之间。相对于传统的源端只有1个P型基区的横向超薄绝缘栅双极型晶体管(图3),本发明实现了在栅压不断加大后,P型基区(6a)和P型环形基区(6b)的栅氧化层下面先出现耗尽层,当栅压达到阈值电压以后,P型基区(6a)和P型环形基区(6b)的栅氧化层下面出现反型层,这相当于增加了横向超薄绝缘栅双极型晶体管中寄生NMOS管的导电沟道,即增加了寄生NMOS管电流。由图1所示,在x方向和y方向的N型外延层(3)又可以提供电流流动的路径,那么寄生NMOS管电流就可以作为横向超薄绝缘栅双极型晶体管中PNP管的基区电流,使P型基区(6a)和P型环形基区(6b)内的第一P型接触区(7a)和第二P型接触区(7b)增加了收集空穴的能力,最终提高了横向超薄绝缘栅双极型晶体管的电流密度。
(2)本发明的一种大电流密度的横向超薄绝缘栅双极型晶体管,由于P型基区(6a)和由P型环形基区(6b)构成的P型基区阵列(17)导致导电沟道数目增加,与传统的只有1个P型基区的横向超薄绝缘栅双极型晶体管相比,在相同耐压下电流密度大,或相同电流密度时,具有更高的耐压。
(3)本发明的一种大电流密度的横向超薄绝缘栅双极型晶体管,完全基于现有的制备横向超薄绝缘栅双极型晶体管工艺,不增加额外的工艺步骤,制备简单。
附图说明
图1是本发明所述的一种大电流密度的横向超薄绝缘栅双极型晶体管示意图;
图2是为沿图1的I-I’线的横向剖面图;
图3为沿图1的II-II’线的横向剖面图;
图4是传统的横向超薄绝缘栅双极型晶体管结构的横向剖面图;
图5是本发明所述的一种大电流密度的横向超薄绝缘栅双极型晶体管(proposed structure)与传统的横向超薄绝缘栅双极型晶体管(conventionalstructure)的电流密度比较图;
图6是本发明所述的一种大电流密度的横向超薄绝缘栅双极型晶体管P型环形基区(P annular base region)构成的P型基区阵列行数增加后电流密度比较图;
图7是本发明所述的一种大电流密度的横向超薄绝缘栅双极型晶体管P型基区(P base region)与P型环形基区(P annular base region)间距变化后的电流密度比较图;
图8是本发明所述的一种大电流密度的横向超薄绝缘栅双极型晶体管P型环形基区(P annular base region)相邻边界间距变化后的电流密度比较图。
具体实施方式
参照图1、2、3,一种大电流密度的横向超薄绝缘栅双极型晶体管,包括:P型衬底1,在P型衬底1上设有埋氧层2,在埋氧层2上设有N型外延层3且N型外延层3的厚度为0.1~1.5μm,在N型外延层3内设有N型阱区4及P型基区6a,在N型阱区4内设有N型缓冲区5,在N型阱区4上设有场氧化层11,并且,N型缓冲区5的一个边界与场氧化层11的一个边界相抵,在N型缓冲区5内设有P型漏区9,在P型基区6a内设有第一P型接触区7a和N型源区8a,在N型外延层3内设有由P型环形基区6b构成的P型基区阵列17,所述P型基区阵列17位于N型阱区4与P型基区6a之间,在所述P型环形基区6b内设有第二P型接触区7b和N型环形源区8b,第二P型接触区7b位于N型环形源区8b内,在场氧化层11的与N型环形源区8b相邻的边界区域表面设有第一多晶硅栅12a,且第一多晶硅栅12自场氧化层11的边界朝N型环形源区8b方向延伸至N型环形源区8b的上方,在第一多晶硅栅12a的延伸区域下方设有第一栅氧化层10a,在N型外延层3的上方设有第二多晶硅栅12b,并且,第二多晶硅栅12b的一个边界延伸至N型环形源区8b的上方,第二多晶硅栅12的另一个边界延伸至N型源区8a的上方,在第二多晶硅栅12b的下方设有第二栅氧化层10b,在场氧化层11、第一多晶硅栅12a、第二多晶硅栅12b、P型基区6a、P型环形基区6b、第一P型接触区7a、N型源区8a、第二P型接触区7b、N型环形源区8b、N型缓冲区5及P型漏区9上设有介质隔离氧化层13,在第一P型接触区7a、N型源区8a、第二P型接触区7b及N型环形源区8b上连接发射极金属连线14,在P型漏区9上连接集电极金属连线15,在第一多晶硅栅12a和第二多晶硅栅12b上连接栅极金属连线16。
P型基区阵列17可以采用多行多列,也可以采用多行单列,在本实施例中,由P型环形基区6b构成的P型基区阵列17选择采用列数是1的P型基区阵列,行数不限,既可以是2行、3行、…、10行或者更多。只要保证P型环形基区的相邻边界之间的间距不变也就是可供电流流动的路径区域不变,随着P型环形基区6b构成的P型基区阵列17行数的增加,对电流密度影响不大。
参照图6,P型环形基区6b构成的P型基区阵列17行数的增加后的电流密度比较图。
本实施例还可以采用以下技术措施来进一步提高电流密度:
(1)P型基区(6a)与P型环形基区(6b)的相邻边界之间的间距为0.5~3μm,P型基区(6a)与P型环形基区(6b)的相邻边界之间的间距小于0.5μm,可供电流流动的区域过小,可以增加电流密度但是提升效果不明显,P型基区(6a)与P型环形基区(6b)的相邻边界之间的间距大于3μm,电流流动的路径过长,也可以增加电流密度但是提升效果不明显。参照图7,P型基区(6a)与P型环形基区(6b)的相邻边界之间的间距变化的电流密度比较图。
(2)相邻P型环形基区的相邻边界之间的间距为1~6μm,相邻P型环形基区的相邻边界之间的间距小于1μm,可供电流流动的区域过小,可以增加电流密度但是提升效果不明显,相邻P型环形基区的相邻边界之间的间距大于6μm,也可以增加电流密度但是提升效果不明显。参照图8,相邻P型环形基区的相邻边界之间的间距变化的电流密度比较图。
本发明采用如下方法来制备:
1、选择一块P型硅衬底,对其进行清洗,淀积氧化层,之后进行外延,淀积氮化硅、光刻、离子注入磷生成N型阱区,退火、去掉氮化硅、光刻、离子注入硼生成P型基区和P型环形基区;
2、然后离子注入砷和磷形成N型缓冲层,淀积氮化硅、光刻形成有源区,刻蚀氮化硅,接着进行场氧的生长,并进行场注,调整沟道阈值电压,然后进行栅氧化层生长,淀积刻蚀多晶硅形成第一多晶硅栅、第二多晶硅栅和多晶硅场板,源漏注入形成N型源区、N型环形源区、第一P型接触区、第二P型接触区和P型漏区,然后淀积场氧化层。
3、刻蚀场氧化层,形成N型源区、N型环形源区、第一P型接触区、第二P型接触区、第一多晶硅栅、第二多晶硅栅及P型漏区的金属电极引出孔,淀积金属层,刻蚀金属层形成横向超薄绝缘栅双极型晶体管的N型源区、N型环形源区、第一P型接触区、第二P型接触区的引出电极,第一多晶硅栅、第二多晶硅栅的引出电极和P型漏区的引出电极。最后,进行钝化处理。
Claims (1)
1.一种大电流密度的横向超薄绝缘栅双极型晶体管,包括:P型衬底(1),在P型衬底(1)上设有埋氧层(2),在埋氧层(2)上设有N型外延层(3)且N型外延层(3)的厚度为0.1~1.5μm,在N型外延层(3)内设有N型阱区(4)及P型基区(6a),在N型阱区(4)内设有N型缓冲区(5),在N型阱区(4)上设有场氧化层(11),并且,N型缓冲区(5)的一个边界与场氧化层(11)的一个边界相抵,在N型缓冲区(5)内设有P型漏区(9),在P型基区(6a)内设有第一P型接触区(7a)和N型源区(8a),其特征在于,在N型外延层(3)内设有由P型环形基区(6b)构成的P型基区阵列(17),所述P型基区阵列(17)位于N型阱区(4)与P型基区(6a)之间,在所述P型环形基区(6b)内设有第二P型接触区(7b)和N型环形源区(8b),第二P型接触区(7b)位于N型环形源区(8b)内,在场氧化层(11)与N型环形源区(8b)相邻的边界区域表面设有第一多晶硅栅(12a),且第一多晶硅栅(12 a)自场氧化层(11)的边界朝N型环形源区(8b)方向延伸至N型环形源区(8b)的上方,在第一多晶硅栅(12a)的延伸区域下方设有第一栅氧化层(10a),在N型外延层(3)的上方设有第二多晶硅栅(12b),并且,第二多晶硅栅(12b)的一个边界延伸至N型环形源区(8b)的上方,第二多晶硅栅(12b)的另一个边界延伸至N型源区(8a)的上方,在第二多晶硅栅(12b)的下方设有第二栅氧化层(10b),在场氧化层(11)、第一多晶硅栅(12a)、第二多晶硅栅(12b)、P型基区(6a)、P型环形基区(6b)、第一P型接触区(7a)、N型源区(8a)、第二P型接触区(7b)、N型环形源区(8b)、N型缓冲区(5)及P型漏区(9)上设有介质隔离氧化层(13),在第一P型接触区(7a)、N型源区(8a)、第二P型接触区(7b)及N型环形源区(8b)上连接发射极金属连线(14),在P型漏区(9)上连接集电极金属连线(15),在第一多晶硅栅(12a)和第二多晶硅栅(12b)上连接栅极金属连线(16)。
2. 根据权利要求1所述的大电流密度的横向超薄绝缘栅双极型晶体管,其特征在于,由P型环形基区(6b)构成的P型基区阵列(17)采用列数是1的P型基区阵列。
3. 根据权利要求1或2所述的大电流密度的横向超薄绝缘栅双极型晶体管,其特征在于,P型环形基区(6b)呈六边形、四边形或圆形。
4. 根据权利要求1所述的大电流密度的横向超薄绝缘栅双极型晶体管,其特征在于,P型基区(6a)与P型环形基区(6b)的相邻边界之间的间距为0.5~3μm。
5. 根据权利要求1所述的大电流密度的横向超薄绝缘栅双极型晶体管,其特征在于,相邻P型环形基区的相邻边界之间的间距为1~6μm。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210442085.XA CN102903746B (zh) | 2012-11-07 | 2012-11-07 | 一种大电流密度的横向超薄绝缘栅双极型晶体管 |
PCT/CN2012/087710 WO2014071673A1 (zh) | 2012-11-07 | 2012-12-27 | 一种大电流密度的横向超薄绝缘栅双极型晶体管 |
US14/439,715 US9240469B2 (en) | 2012-11-07 | 2012-12-27 | Transverse ultra-thin insulated gate bipolar transistor having high current density |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210442085.XA CN102903746B (zh) | 2012-11-07 | 2012-11-07 | 一种大电流密度的横向超薄绝缘栅双极型晶体管 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102903746A CN102903746A (zh) | 2013-01-30 |
CN102903746B true CN102903746B (zh) | 2015-06-03 |
Family
ID=47575906
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201210442085.XA Active CN102903746B (zh) | 2012-11-07 | 2012-11-07 | 一种大电流密度的横向超薄绝缘栅双极型晶体管 |
Country Status (3)
Country | Link |
---|---|
US (1) | US9240469B2 (zh) |
CN (1) | CN102903746B (zh) |
WO (1) | WO2014071673A1 (zh) |
Families Citing this family (128)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10103582B2 (en) | 2012-07-06 | 2018-10-16 | Energous Corporation | Transmitters for wireless power transmission |
US10199835B2 (en) | 2015-12-29 | 2019-02-05 | Energous Corporation | Radar motion detection using stepped frequency in wireless power transmission system |
US10992185B2 (en) | 2012-07-06 | 2021-04-27 | Energous Corporation | Systems and methods of using electromagnetic waves to wirelessly deliver power to game controllers |
US9859797B1 (en) | 2014-05-07 | 2018-01-02 | Energous Corporation | Synchronous rectifier design for wireless power receiver |
US10224758B2 (en) | 2013-05-10 | 2019-03-05 | Energous Corporation | Wireless powering of electronic devices with selective delivery range |
US10063064B1 (en) | 2014-05-23 | 2018-08-28 | Energous Corporation | System and method for generating a power receiver identifier in a wireless power network |
US9825674B1 (en) | 2014-05-23 | 2017-11-21 | Energous Corporation | Enhanced transmitter that selects configurations of antenna elements for performing wireless power transmission and receiving functions |
US10063106B2 (en) | 2014-05-23 | 2018-08-28 | Energous Corporation | System and method for a self-system analysis in a wireless power transmission network |
US9812890B1 (en) | 2013-07-11 | 2017-11-07 | Energous Corporation | Portable wireless charging pad |
US10206185B2 (en) | 2013-05-10 | 2019-02-12 | Energous Corporation | System and methods for wireless power transmission to an electronic device in accordance with user-defined restrictions |
US10038337B1 (en) | 2013-09-16 | 2018-07-31 | Energous Corporation | Wireless power supply for rescue devices |
US10063105B2 (en) | 2013-07-11 | 2018-08-28 | Energous Corporation | Proximity transmitters for wireless power charging systems |
US10243414B1 (en) | 2014-05-07 | 2019-03-26 | Energous Corporation | Wearable device with wireless power and payload receiver |
US10141791B2 (en) * | 2014-05-07 | 2018-11-27 | Energous Corporation | Systems and methods for controlling communications during wireless transmission of power using application programming interfaces |
US10992187B2 (en) | 2012-07-06 | 2021-04-27 | Energous Corporation | System and methods of using electromagnetic waves to wirelessly deliver power to electronic devices |
US10090886B1 (en) | 2014-07-14 | 2018-10-02 | Energous Corporation | System and method for enabling automatic charging schedules in a wireless power network to one or more devices |
US10090699B1 (en) | 2013-11-01 | 2018-10-02 | Energous Corporation | Wireless powered house |
US10148097B1 (en) | 2013-11-08 | 2018-12-04 | Energous Corporation | Systems and methods for using a predetermined number of communication channels of a wireless power transmitter to communicate with different wireless power receivers |
US9853458B1 (en) | 2014-05-07 | 2017-12-26 | Energous Corporation | Systems and methods for device and power receiver pairing |
US10965164B2 (en) | 2012-07-06 | 2021-03-30 | Energous Corporation | Systems and methods of wirelessly delivering power to a receiver device |
US10291066B1 (en) | 2014-05-07 | 2019-05-14 | Energous Corporation | Power transmission control systems and methods |
US10141768B2 (en) | 2013-06-03 | 2018-11-27 | Energous Corporation | Systems and methods for maximizing wireless power transfer efficiency by instructing a user to change a receiver device's position |
US10218227B2 (en) | 2014-05-07 | 2019-02-26 | Energous Corporation | Compact PIFA antenna |
US10124754B1 (en) | 2013-07-19 | 2018-11-13 | Energous Corporation | Wireless charging and powering of electronic sensors in a vehicle |
US9876394B1 (en) | 2014-05-07 | 2018-01-23 | Energous Corporation | Boost-charger-boost system for enhanced power delivery |
US11502551B2 (en) | 2012-07-06 | 2022-11-15 | Energous Corporation | Wirelessly charging multiple wireless-power receivers using different subsets of an antenna array to focus energy at different locations |
US10008889B2 (en) | 2014-08-21 | 2018-06-26 | Energous Corporation | Method for automatically testing the operational status of a wireless power receiver in a wireless power transmission system |
US9843201B1 (en) | 2012-07-06 | 2017-12-12 | Energous Corporation | Wireless power transmitter that selects antenna sets for transmitting wireless power to a receiver based on location of the receiver, and methods of use thereof |
US10223717B1 (en) | 2014-05-23 | 2019-03-05 | Energous Corporation | Systems and methods for payment-based authorization of wireless power transmission service |
US10291055B1 (en) | 2014-12-29 | 2019-05-14 | Energous Corporation | Systems and methods for controlling far-field wireless power transmission based on battery power levels of a receiving device |
US10211680B2 (en) | 2013-07-19 | 2019-02-19 | Energous Corporation | Method for 3 dimensional pocket-forming |
US10256657B2 (en) | 2015-12-24 | 2019-04-09 | Energous Corporation | Antenna having coaxial structure for near field wireless power charging |
US9871398B1 (en) | 2013-07-01 | 2018-01-16 | Energous Corporation | Hybrid charging method for wireless power transmission based on pocket-forming |
US10312715B2 (en) | 2015-09-16 | 2019-06-04 | Energous Corporation | Systems and methods for wireless power charging |
US20150326070A1 (en) | 2014-05-07 | 2015-11-12 | Energous Corporation | Methods and Systems for Maximum Power Point Transfer in Receivers |
US10128699B2 (en) | 2014-07-14 | 2018-11-13 | Energous Corporation | Systems and methods of providing wireless power using receiver device sensor inputs |
US10211682B2 (en) | 2014-05-07 | 2019-02-19 | Energous Corporation | Systems and methods for controlling operation of a transmitter of a wireless power network based on user instructions received from an authenticated computing device powered or charged by a receiver of the wireless power network |
US9787103B1 (en) | 2013-08-06 | 2017-10-10 | Energous Corporation | Systems and methods for wirelessly delivering power to electronic devices that are unable to communicate with a transmitter |
US9124125B2 (en) | 2013-05-10 | 2015-09-01 | Energous Corporation | Wireless power transmission with selective range |
US10263432B1 (en) | 2013-06-25 | 2019-04-16 | Energous Corporation | Multi-mode transmitter with an antenna array for delivering wireless power and providing Wi-Fi access |
US10199849B1 (en) | 2014-08-21 | 2019-02-05 | Energous Corporation | Method for automatically testing the operational status of a wireless power receiver in a wireless power transmission system |
US10211674B1 (en) | 2013-06-12 | 2019-02-19 | Energous Corporation | Wireless charging using selected reflectors |
US10193396B1 (en) | 2014-05-07 | 2019-01-29 | Energous Corporation | Cluster management of transmitters in a wireless power transmission system |
US9887584B1 (en) | 2014-08-21 | 2018-02-06 | Energous Corporation | Systems and methods for a configuration web service to provide configuration of a wireless power transmitter within a wireless power transmission system |
US10186913B2 (en) | 2012-07-06 | 2019-01-22 | Energous Corporation | System and methods for pocket-forming based on constructive and destructive interferences to power one or more wireless power receivers using a wireless power transmitter including a plurality of antennas |
US9867062B1 (en) | 2014-07-21 | 2018-01-09 | Energous Corporation | System and methods for using a remote server to authorize a receiving device that has requested wireless power and to determine whether another receiving device should request wireless power in a wireless power transmission system |
US10439448B2 (en) | 2014-08-21 | 2019-10-08 | Energous Corporation | Systems and methods for automatically testing the communication between wireless power transmitter and wireless power receiver |
US10381880B2 (en) | 2014-07-21 | 2019-08-13 | Energous Corporation | Integrated antenna structure arrays for wireless power transmission |
US10128693B2 (en) | 2014-07-14 | 2018-11-13 | Energous Corporation | System and method for providing health safety in a wireless power transmission system |
US12057715B2 (en) | 2012-07-06 | 2024-08-06 | Energous Corporation | Systems and methods of wirelessly delivering power to a wireless-power receiver device in response to a change of orientation of the wireless-power receiver device |
US9438045B1 (en) | 2013-05-10 | 2016-09-06 | Energous Corporation | Methods and systems for maximum power point transfer in receivers |
US10230266B1 (en) | 2014-02-06 | 2019-03-12 | Energous Corporation | Wireless power receivers that communicate status data indicating wireless power transmission effectiveness with a transmitter using a built-in communications component of a mobile device, and methods of use thereof |
US10270261B2 (en) | 2015-09-16 | 2019-04-23 | Energous Corporation | Systems and methods of object detection in wireless power charging systems |
US10205239B1 (en) | 2014-05-07 | 2019-02-12 | Energous Corporation | Compact PIFA antenna |
US10103552B1 (en) | 2013-06-03 | 2018-10-16 | Energous Corporation | Protocols for authenticated wireless power transmission |
US10021523B2 (en) | 2013-07-11 | 2018-07-10 | Energous Corporation | Proximity transmitters for wireless power charging systems |
US10075017B2 (en) | 2014-02-06 | 2018-09-11 | Energous Corporation | External or internal wireless power receiver with spaced-apart antenna elements for charging or powering mobile devices using wirelessly delivered power |
US10158257B2 (en) | 2014-05-01 | 2018-12-18 | Energous Corporation | System and methods for using sound waves to wirelessly deliver power to electronic devices |
US10170917B1 (en) | 2014-05-07 | 2019-01-01 | Energous Corporation | Systems and methods for managing and controlling a wireless power network by establishing time intervals during which receivers communicate with a transmitter |
US10153653B1 (en) | 2014-05-07 | 2018-12-11 | Energous Corporation | Systems and methods for using application programming interfaces to control communications between a transmitter and a receiver |
US10153645B1 (en) | 2014-05-07 | 2018-12-11 | Energous Corporation | Systems and methods for designating a master power transmitter in a cluster of wireless power transmitters |
US10116143B1 (en) | 2014-07-21 | 2018-10-30 | Energous Corporation | Integrated antenna arrays for wireless power transmission |
US10068703B1 (en) | 2014-07-21 | 2018-09-04 | Energous Corporation | Integrated miniature PIFA with artificial magnetic conductor metamaterials |
US10122415B2 (en) | 2014-12-27 | 2018-11-06 | Energous Corporation | Systems and methods for assigning a set of antennas of a wireless power transmitter to a wireless power receiver based on a location of the wireless power receiver |
US10523033B2 (en) | 2015-09-15 | 2019-12-31 | Energous Corporation | Receiver devices configured to determine location within a transmission field |
US12283828B2 (en) | 2015-09-15 | 2025-04-22 | Energous Corporation | Receiver devices configured to determine location within a transmission field |
US10158259B1 (en) | 2015-09-16 | 2018-12-18 | Energous Corporation | Systems and methods for identifying receivers in a transmission field by transmitting exploratory power waves towards different segments of a transmission field |
US10199850B2 (en) | 2015-09-16 | 2019-02-05 | Energous Corporation | Systems and methods for wirelessly transmitting power from a transmitter to a receiver by determining refined locations of the receiver in a segmented transmission field associated with the transmitter |
US10778041B2 (en) | 2015-09-16 | 2020-09-15 | Energous Corporation | Systems and methods for generating power waves in a wireless power transmission system |
US10211685B2 (en) | 2015-09-16 | 2019-02-19 | Energous Corporation | Systems and methods for real or near real time wireless communications between a wireless power transmitter and a wireless power receiver |
US10008875B1 (en) | 2015-09-16 | 2018-06-26 | Energous Corporation | Wireless power transmitter configured to transmit power waves to a predicted location of a moving wireless power receiver |
US9871387B1 (en) | 2015-09-16 | 2018-01-16 | Energous Corporation | Systems and methods of object detection using one or more video cameras in wireless power charging systems |
US11710321B2 (en) | 2015-09-16 | 2023-07-25 | Energous Corporation | Systems and methods of object detection in wireless power charging systems |
US10186893B2 (en) | 2015-09-16 | 2019-01-22 | Energous Corporation | Systems and methods for real time or near real time wireless communications between a wireless power transmitter and a wireless power receiver |
US10135295B2 (en) | 2015-09-22 | 2018-11-20 | Energous Corporation | Systems and methods for nullifying energy levels for wireless power transmission waves |
US10128686B1 (en) | 2015-09-22 | 2018-11-13 | Energous Corporation | Systems and methods for identifying receiver locations using sensor technologies |
US10153660B1 (en) | 2015-09-22 | 2018-12-11 | Energous Corporation | Systems and methods for preconfiguring sensor data for wireless charging systems |
US10050470B1 (en) | 2015-09-22 | 2018-08-14 | Energous Corporation | Wireless power transmission device having antennas oriented in three dimensions |
US10020678B1 (en) | 2015-09-22 | 2018-07-10 | Energous Corporation | Systems and methods for selecting antennas to generate and transmit power transmission waves |
US10135294B1 (en) | 2015-09-22 | 2018-11-20 | Energous Corporation | Systems and methods for preconfiguring transmission devices for power wave transmissions based on location data of one or more receivers |
US10033222B1 (en) | 2015-09-22 | 2018-07-24 | Energous Corporation | Systems and methods for determining and generating a waveform for wireless power transmission waves |
US10027168B2 (en) | 2015-09-22 | 2018-07-17 | Energous Corporation | Systems and methods for generating and transmitting wireless power transmission waves using antennas having a spacing that is selected by the transmitter |
US10333332B1 (en) | 2015-10-13 | 2019-06-25 | Energous Corporation | Cross-polarized dipole antenna |
US10734717B2 (en) | 2015-10-13 | 2020-08-04 | Energous Corporation | 3D ceramic mold antenna |
US9853485B2 (en) | 2015-10-28 | 2017-12-26 | Energous Corporation | Antenna for wireless charging systems |
US10063108B1 (en) | 2015-11-02 | 2018-08-28 | Energous Corporation | Stamped three-dimensional antenna |
US10135112B1 (en) | 2015-11-02 | 2018-11-20 | Energous Corporation | 3D antenna mount |
US10027180B1 (en) | 2015-11-02 | 2018-07-17 | Energous Corporation | 3D triple linear antenna that acts as heat sink |
US11863001B2 (en) | 2015-12-24 | 2024-01-02 | Energous Corporation | Near-field antenna for wireless power transmission with antenna elements that follow meandering patterns |
US10079515B2 (en) | 2016-12-12 | 2018-09-18 | Energous Corporation | Near-field RF charging pad with multi-band antenna element with adaptive loading to efficiently charge an electronic device at any position on the pad |
US10256677B2 (en) | 2016-12-12 | 2019-04-09 | Energous Corporation | Near-field RF charging pad with adaptive loading to efficiently charge an electronic device at any position on the pad |
US10277054B2 (en) | 2015-12-24 | 2019-04-30 | Energous Corporation | Near-field charging pad for wireless power charging of a receiver device that is temporarily unable to communicate |
US10038332B1 (en) | 2015-12-24 | 2018-07-31 | Energous Corporation | Systems and methods of wireless power charging through multiple receiving devices |
US10027159B2 (en) | 2015-12-24 | 2018-07-17 | Energous Corporation | Antenna for transmitting wireless power signals |
US10320446B2 (en) | 2015-12-24 | 2019-06-11 | Energous Corporation | Miniaturized highly-efficient designs for near-field power transfer system |
US10008886B2 (en) | 2015-12-29 | 2018-06-26 | Energous Corporation | Modular antennas with heat sinks in wireless power transmission systems |
US10923954B2 (en) | 2016-11-03 | 2021-02-16 | Energous Corporation | Wireless power receiver with a synchronous rectifier |
CN116455101A (zh) | 2016-12-12 | 2023-07-18 | 艾诺格思公司 | 发射器集成电路 |
US10439442B2 (en) | 2017-01-24 | 2019-10-08 | Energous Corporation | Microstrip antennas for wireless power transmitters |
US10389161B2 (en) | 2017-03-15 | 2019-08-20 | Energous Corporation | Surface mount dielectric antennas for wireless power transmitters |
US10680319B2 (en) | 2017-01-06 | 2020-06-09 | Energous Corporation | Devices and methods for reducing mutual coupling effects in wireless power transmission systems |
WO2018183892A1 (en) | 2017-03-30 | 2018-10-04 | Energous Corporation | Flat antennas having two or more resonant frequencies for use in wireless power transmission systems |
US10511097B2 (en) | 2017-05-12 | 2019-12-17 | Energous Corporation | Near-field antennas for accumulating energy at a near-field distance with minimal far-field gain |
US12074452B2 (en) | 2017-05-16 | 2024-08-27 | Wireless Electrical Grid Lan, Wigl Inc. | Networked wireless charging system |
US12074460B2 (en) | 2017-05-16 | 2024-08-27 | Wireless Electrical Grid Lan, Wigl Inc. | Rechargeable wireless power bank and method of using |
US11462949B2 (en) | 2017-05-16 | 2022-10-04 | Wireless electrical Grid LAN, WiGL Inc | Wireless charging method and system |
US10848853B2 (en) | 2017-06-23 | 2020-11-24 | Energous Corporation | Systems, methods, and devices for utilizing a wire of a sound-producing device as an antenna for receipt of wirelessly delivered power |
US10122219B1 (en) | 2017-10-10 | 2018-11-06 | Energous Corporation | Systems, methods, and devices for using a battery as a antenna for receiving wirelessly delivered power from radio frequency power waves |
US11342798B2 (en) | 2017-10-30 | 2022-05-24 | Energous Corporation | Systems and methods for managing coexistence of wireless-power signals and data signals operating in a same frequency band |
CN107978632B (zh) * | 2017-11-30 | 2020-06-16 | 电子科技大学 | 多沟道的横向高压器件 |
US10615647B2 (en) | 2018-02-02 | 2020-04-07 | Energous Corporation | Systems and methods for detecting wireless power receivers and other objects at a near-field charging pad |
US11159057B2 (en) | 2018-03-14 | 2021-10-26 | Energous Corporation | Loop antennas with selectively-activated feeds to control propagation patterns of wireless power signals |
US11515732B2 (en) | 2018-06-25 | 2022-11-29 | Energous Corporation | Power wave transmission techniques to focus wirelessly delivered power at a receiving device |
US11437735B2 (en) | 2018-11-14 | 2022-09-06 | Energous Corporation | Systems for receiving electromagnetic energy using antennas that are minimally affected by the presence of the human body |
EP3918691A1 (en) | 2019-01-28 | 2021-12-08 | Energous Corporation | Systems and methods for miniaturized antenna for wireless power transmissions |
US11018779B2 (en) | 2019-02-06 | 2021-05-25 | Energous Corporation | Systems and methods of estimating optimal phases to use for individual antennas in an antenna array |
US12155231B2 (en) | 2019-04-09 | 2024-11-26 | Energous Corporation | Asymmetric spiral antennas for wireless power transmission and reception |
WO2021055898A1 (en) | 2019-09-20 | 2021-03-25 | Energous Corporation | Systems and methods for machine learning based foreign object detection for wireless power transmission |
WO2021055899A1 (en) | 2019-09-20 | 2021-03-25 | Energous Corporation | Systems and methods of protecting wireless power receivers using multiple rectifiers and establishing in-band communications using multiple rectifiers |
WO2021055900A1 (en) | 2019-09-20 | 2021-03-25 | Energous Corporation | Classifying and detecting foreign objects using a power amplifier controller integrated circuit in wireless power transmission systems |
US11381118B2 (en) | 2019-09-20 | 2022-07-05 | Energous Corporation | Systems and methods for machine learning based foreign object detection for wireless power transmission |
WO2021119483A1 (en) | 2019-12-13 | 2021-06-17 | Energous Corporation | Charging pad with guiding contours to align an electronic device on the charging pad and efficiently transfer near-field radio-frequency energy to the electronic device |
US10985617B1 (en) | 2019-12-31 | 2021-04-20 | Energous Corporation | System for wirelessly transmitting energy at a near-field distance without using beam-forming control |
US11799324B2 (en) | 2020-04-13 | 2023-10-24 | Energous Corporation | Wireless-power transmitting device for creating a uniform near-field charging area |
US11469629B2 (en) | 2020-08-12 | 2022-10-11 | Energous Corporation | Systems and methods for secure wireless transmission of power using unidirectional communication signals from a wireless-power-receiving device |
US12306285B2 (en) | 2020-12-01 | 2025-05-20 | Energous Corporation | Systems and methods for using one or more sensors to detect and classify objects in a keep-out zone of a wireless-power transmission field, and antennas with integrated sensor arrangements |
US11916398B2 (en) | 2021-12-29 | 2024-02-27 | Energous Corporation | Small form-factor devices with integrated and modular harvesting receivers, and shelving-mounted wireless-power transmitters for use therewith |
US12142939B2 (en) | 2022-05-13 | 2024-11-12 | Energous Corporation | Integrated wireless-power-transmission platform designed to operate in multiple bands, and multi-band antennas for use therewith |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0760529B1 (en) * | 1995-08-24 | 2002-12-18 | Kabushiki Kaisha Toshiba | Lateral IGBT |
CN101969050A (zh) * | 2010-08-27 | 2011-02-09 | 东南大学 | 一种绝缘体上硅可集成大电流n型组合半导体器件 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0693773B1 (en) | 1994-07-14 | 2005-02-09 | STMicroelectronics S.r.l. | VDMOS power device and manufacturing process thereof |
US6365932B1 (en) * | 1999-08-20 | 2002-04-02 | Denso Corporation | Power MOS transistor |
JP4684523B2 (ja) * | 2002-09-09 | 2011-05-18 | 株式会社デンソー | 半導体装置の製造方法 |
JP2005093696A (ja) | 2003-09-17 | 2005-04-07 | Matsushita Electric Ind Co Ltd | 横型mosトランジスタ |
JP2011134947A (ja) * | 2009-12-25 | 2011-07-07 | Toyota Central R&D Labs Inc | 横型半導体装置 |
-
2012
- 2012-11-07 CN CN201210442085.XA patent/CN102903746B/zh active Active
- 2012-12-27 WO PCT/CN2012/087710 patent/WO2014071673A1/zh active Application Filing
- 2012-12-27 US US14/439,715 patent/US9240469B2/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0760529B1 (en) * | 1995-08-24 | 2002-12-18 | Kabushiki Kaisha Toshiba | Lateral IGBT |
CN101969050A (zh) * | 2010-08-27 | 2011-02-09 | 东南大学 | 一种绝缘体上硅可集成大电流n型组合半导体器件 |
Also Published As
Publication number | Publication date |
---|---|
CN102903746A (zh) | 2013-01-30 |
US20150270377A1 (en) | 2015-09-24 |
US9240469B2 (en) | 2016-01-19 |
WO2014071673A1 (zh) | 2014-05-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102903746B (zh) | 一种大电流密度的横向超薄绝缘栅双极型晶体管 | |
CN102184952B (zh) | 一种垂直电容耗尽型功率器件及制作方法 | |
CN103413824A (zh) | 一种rc-ligbt器件及其制作方法 | |
CN110518058A (zh) | 一种横向沟槽型绝缘栅双极晶体管及其制备方法 | |
CN115360096A (zh) | 一种集成异质结二极管的平面栅碳化硅mosfet的制造方法 | |
CN117080269A (zh) | 一种碳化硅mosfet器件及其制备方法 | |
CN107534053A (zh) | 半导体装置及其制造方法 | |
CN104393029A (zh) | 低输入电容功率半导体场效应晶体管及其自对准制作方法 | |
CN110943124A (zh) | Igbt芯片及其制造方法 | |
CN111584624A (zh) | 一种igbt器件结构及其制备方法 | |
CN107845673B (zh) | 逆导型绝缘栅双极型晶体管及其制作方法、电力电子设备 | |
CN103839802B (zh) | 一种沟槽型igbt结构的制作方法 | |
CN110518069B (zh) | 具有部分碳化硅/硅半导体材料异质结的vdmos及其制作方法 | |
CN111370464A (zh) | 沟槽栅功率器件及其制造方法 | |
CN108091567B (zh) | 半超结fs iegt结构及其制造方法 | |
CN103681824A (zh) | 功率半导体元件 | |
CN103579296A (zh) | 半导体装置及其制造方法 | |
CN103178101B (zh) | 绝缘栅双极晶体管及制造方法 | |
CN113964197B (zh) | 一种低泄漏电流的igbt器件及其制备方法 | |
CN108346692B (zh) | 功率半导体器件及其制造方法 | |
WO2023093132A1 (zh) | Iegt结构及其制作方法 | |
CN104992968A (zh) | 一种绝缘栅双极型晶体管及其制造方法 | |
CN104701362B (zh) | 一种沟槽隔离横向绝缘栅双极型晶体管 | |
CN115050815A (zh) | 一种自保护的半导体结构及制造方法 | |
CN108258040A (zh) | 具有宽带隙半导体衬底材料的绝缘栅双极晶体管及其制作方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |