[go: up one dir, main page]

CN102903141B - Many seismic properties based on opacity weighting merge texture mapping object plotting method - Google Patents

Many seismic properties based on opacity weighting merge texture mapping object plotting method Download PDF

Info

Publication number
CN102903141B
CN102903141B CN201210319309.8A CN201210319309A CN102903141B CN 102903141 B CN102903141 B CN 102903141B CN 201210319309 A CN201210319309 A CN 201210319309A CN 102903141 B CN102903141 B CN 102903141B
Authority
CN
China
Prior art keywords
data
opacity
color
seismic
texture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201210319309.8A
Other languages
Chinese (zh)
Other versions
CN102903141A (en
Inventor
鲁才
秦玉飞
胡光岷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN201210319309.8A priority Critical patent/CN102903141B/en
Publication of CN102903141A publication Critical patent/CN102903141A/en
Application granted granted Critical
Publication of CN102903141B publication Critical patent/CN102903141B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Image Generation (AREA)

Abstract

The invention discloses a kind of many seismic properties based on opacity weighting and merge texture mapping object plotting method, obtain mapped color value and the opacity of voxel respectively with the transmission function of each attribute data, then determine the proportion shared by the color value of this seismic properties component according to the opacity of each voxel;Finally synthesizing new color value through opacity weighting, then draw out by the mode of 2 d texture volume drawing, the inventive method shows while achieving multiple seismic properties on said three-dimensional body is drawn, and to seismic interpretation, personnel bring convenience.

Description

基于不透明度加权的多地震属性融合纹理映射体绘制方法Multi-seismic attribute fusion texture mapping volume rendering method based on opacity weighting

技术领域technical field

本发明涉及一种基于不透明度加权的多地震属性融合纹理映射体绘制方法。The invention relates to a multi-seismic attribute fusion texture mapping volume rendering method based on opacity weighting.

背景技术Background technique

随着油田地震勘探各项技术的应用与发展,勘探工作者对地震成果的要求也越来越高,面对日益复杂、隐蔽的油藏情况,为提高钻探的成功率,需要为勘探工作者提供一个全新的地质构造形态及其属性特征。科学计算可视化技术的出现,为实现这个思想提供了成熟的技术支持。科学计算可视化技术应用于地震资料,产生了地震可视化技术。地震可视化不但能够提高地震解释的效率、精度和完整性,容易理解显示集成大量的数据,大大提高了解释人对数据体的理解程度。With the application and development of various technologies in oilfield seismic exploration, exploration workers have higher and higher requirements for seismic results. In the face of increasingly complex and hidden oil reservoir conditions, in order to improve the success rate of drilling, it is necessary for exploration workers Provide a brand-new geological structure form and its attribute characteristics. The emergence of scientific computing visualization technology provides mature technical support for the realization of this idea. Scientific computing visualization technology is applied to seismic data, resulting in seismic visualization technology. Seismic visualization can not only improve the efficiency, accuracy and completeness of seismic interpretation, but it is also easy to understand and display a large amount of data, which greatly improves the interpreter's understanding of the data volume.

三维数据场可视化是科学计算可视化的核心领域,该技术的研究成果在医学、气象学以及地质勘探等领域已经得到广泛的应用。三维数据场可视化主要是对定义在三维空间的各种数据进行分析和处理,通过对二维数据序列的处理获得客体对象的三维显示效果,并根据显示效果或交互操作对三维实体对象做出客观的定性或定量分析的理论、方法和技术。The visualization of 3D data field is the core field of scientific computing visualization. The research results of this technology have been widely used in the fields of medicine, meteorology and geological exploration. The visualization of 3D data field is mainly to analyze and process various data defined in 3D space, obtain the 3D display effect of the object object by processing the 2D data sequence, and make an objective analysis of the 3D entity object according to the display effect or interactive operation. Theories, methods and techniques of qualitative or quantitative analysis.

三维数据场的可视化方法,根据绘制过程中数据描述方法的不同,大致可以分为三大类。一类是通过几何单元拼接拟合物体表面的方式来描述物体三维结构的,称为表面绘制方法;另一类是直接由三维体数据产生屏幕上二维图像的方法,称为体绘制方法,又称为直接体绘制方法。此外,还有一类既以反映数据整体信息为目标又以几何造型作为显示单元的算法,这类算法称为混合绘制方法。体绘制方法是直接应用视觉原理,通过对体数据重新采样来合成三维图像。The visualization methods of 3D data field can be roughly divided into three categories according to the different data description methods in the drawing process. One is to describe the three-dimensional structure of the object by splicing and fitting the surface of the object, which is called the surface rendering method; the other is to directly generate a two-dimensional image on the screen from the three-dimensional volume data, which is called the volume rendering method. Also known as the direct volume rendering method. In addition, there is another type of algorithm that aims to reflect the overall information of the data and uses geometric shapes as the display unit. This type of algorithm is called a hybrid rendering method. Volume rendering methods directly apply vision principles to synthesize 3D images by resampling volume data.

直接体绘制算法可分为图像空间算法和物体空间算法两种,图像空间算法是从屏幕上的像素出发,在体数据场中采样混合来累加像素颜色,直接得到最终图像;而物体空间算法则是按预定的顺序扫描体素或单元,并把体素或单元投影到屏幕的像素上。图像空间体绘制算法中最有代表性的是光线投射(RayCasting)及纹理映射(TextureMapping)体绘制。错切-变形(Shear-Warp)及抛雪球(Splatting)算法是物体空间体绘制中比较有代表性的算法。The direct volume rendering algorithm can be divided into image space algorithm and object space algorithm. The image space algorithm starts from the pixels on the screen, samples and mixes in the volume data field to accumulate the pixel color, and directly obtains the final image; while the object space algorithm It is to scan voxels or units in a predetermined order and project the voxels or units onto the pixels of the screen. The most representative ones in image space volume rendering algorithms are RayCasting and TextureMapping volume rendering. Shear-Warp and Splatting algorithms are representative algorithms in object space volume rendering.

前三种绘制方法与实时交互显示的需求相差甚远。即使采用一些改进的加速算法,仍然不能在PC机上实现大规模体数据的实时动态显示。为了实现大规模的应用,人们便求助于硬件,利用高档图形显卡提供的由硬件实现的纹理映射功能来进行三维数据场的直接体绘制,从而大大提高了绘制速度。The first three drawing methods are far from the requirements of real-time interactive display. Even with some improved acceleration algorithms, it is still impossible to realize real-time dynamic display of large-scale volume data on a PC. In order to achieve large-scale applications, people turn to hardware, and use the texture mapping function provided by high-end graphics cards to perform direct volume rendering of 3D data fields, thereby greatly improving the rendering speed.

二维纹理映射是物体空间直接体绘制算法,该算法将三维空间的重采样过程转换为二维平面的重采样过程。采用简单的二次线性插值运算代替三次线性插值运算,可以极大减少计算量。在三维数据场内定义一系列的采样多边形,这些多边形彼此平行且垂直于物体空间中与视平面法向夹角最小的坐标轴,这些多边形相当于一系列体数据的切片,由于多边形的间隔及采样密度与原始数据不同,只有通过重采样才能获得这一系列平行平面上各采样点的数值。如果观察方向发生的变化超过90度,采样多边形法向的方向也必须改变,因此需要在内存中保存体数据集的多个拷贝,每个拷贝必须代表不同的多边形法向方向。最后,合成为最后的图像。Two-dimensional texture mapping is a direct volume rendering algorithm in object space, which converts the resampling process of three-dimensional space into the resampling process of two-dimensional plane. Using a simple quadratic linear interpolation operation instead of a cubic linear interpolation operation can greatly reduce the amount of calculation. Define a series of sampling polygons in the three-dimensional data field. These polygons are parallel to each other and perpendicular to the coordinate axis with the smallest angle with the normal direction of the viewing plane in the object space. These polygons are equivalent to a series of slices of volume data. Due to the polygon interval and The sampling density is different from the original data, and only by resampling can the value of each sampling point on this series of parallel planes be obtained. If the viewing direction changes by more than 90 degrees, the direction of the sampled polygon normal must also change, so multiple copies of the volume dataset need to be kept in memory, each copy must represent a different polygon normal direction. Finally, composite into the final image.

但是以上的可视化技术只是针对同一种地震数据类型进行显示。在地震勘探中,地球物理学家可以从地震数据中提取百余种属性(如振幅类、频率类、相位类、波形类、构造类、叠前类属性以及谱分解类属性等),并试图通过地震属性对地下地质体进行定性或定量描述。但是由于地球物理勘探手段不可避免地存在多解性,仅用单一地震属性或复合后的单一综合属性开展地质解释问题往往容易产生偏差,并且仅仅用同一种属性来进行解释往往会丢失很多有用的信息。而对多种不同类型地震数据(比如振幅体和相干体)进行融合计算是一件非常困难的事情。不仅复杂度特别高而且在效果上也不好。However, the above visualization techniques are only displayed for the same type of seismic data. In seismic exploration, geophysicists can extract more than a hundred attributes (such as amplitude, frequency, phase, waveform, structure, prestack attributes, and spectral decomposition attributes, etc.) from seismic data, and try to Qualitative or quantitative description of subsurface geological bodies through seismic attributes. However, due to the unavoidable multi-solutions of geophysical exploration methods, geological interpretation problems are often prone to deviations when only using a single seismic attribute or a composite single comprehensive attribute, and often lose a lot of useful information when only using the same attribute for interpretation. information. However, it is very difficult to perform fusion calculations on many different types of seismic data (such as amplitude volume and coherence volume). Not only the complexity is particularly high but also the effect is not good.

Liu等在文献“Multicolordisplayofspectralattributes”(TheLeadingEdge,2007,26(3):268-271)中提出一种根据自定义频谱范围,对谱分解后的不同频率数据体,采用基于余弦函数变换的RGBA颜色融合技术。Guo等在文献“Principalcomponentsanalysisofspectralcomponents”(ExpandedAbstractsof76AnnualInternatSEGMtg,2006,988-992)中提出将主成分分析(PCA)技术和RGBA颜色融合技术联合应用于谱分解数据,提高了谱分解数据对河道的识别能力。丁峰等在文献“地震多属性RGB颜色融合技术的应用研究”(石油物探,2010,5)中提出了PCA-RGBA地震多属性RGBA颜色融合的关键是,将四个不同的地震属性值(M,i=1,2,3,4)通过某种变换一一映射成R,G,B,A四种颜色。In the literature "Multicolordisplayofspectralattributes" (TheLeadingEdge, 2007, 26(3): 268-271), Liu et al. proposed a method based on the user-defined spectrum range, for different frequency data volumes after spectral decomposition, using RGBA color fusion based on cosine function transformation technology. In the literature "Principal components analysis of spectral components" (Expanded Abstracts of 76 Annual Internat SEGMtg, 2006, 988-992), Guo et al. proposed to apply principal component analysis (PCA) technology and RGBA color fusion technology to spectral decomposition data to improve the ability of spectral decomposition data to identify river channels. Ding Feng et al. proposed in the literature "Application Research of Seismic Multi-Attribute RGB Color Fusion Technology" (Petroleum Geophysical Prospecting, 2010, 5) that the key to PCA-RGBA seismic multi-attribute RGBA color fusion is to combine four different seismic attribute values ( M, i=1, 2, 3, 4) are mapped into four colors of R, G, B, and A one by one through a certain transformation.

以上这些方法都是应用在二维地震剖面上,对于体透视并没有实现的方法。并且以上方法只能实现最多四个分量的地震属性绘制,多在勘测技术发达的今天有上百个地震属性,在某些方面以上方法达不到要求。而且A(不透明度)值也作为一个分量,这样个分量不能再调节透明度,对于体透视从空间上便不能找到自己感兴趣的分量。The above methods are all applied to the two-dimensional seismic section, and there is no method for volume perspective. Moreover, the above method can only realize the mapping of seismic attributes of up to four components. Today, with the development of survey technology, there are hundreds of seismic attributes. In some respects, the above methods fail to meet the requirements. And the A (opacity) value is also used as a component, such a component can no longer adjust the transparency, and the component of interest cannot be found from the perspective of volume.

传统的可视化都是针对一种地震数据类型。而现在勘测技术的发展以及后续处理技术的发展,单一属性已经不能够很好地对地震信息进行解释。Traditional visualizations are all about one type of seismic data. However, with the development of survey technology and subsequent processing technology, a single attribute can no longer explain seismic information well.

而对于多种地震属性的处理方法,对各种地震属性进行计算融合并没有一个有效的算法。而在绘制时进行融合只是在二维剖面显示中有过实现,三维地震体绘制中并没有良好的算法。However, for the processing methods of various seismic attributes, there is no effective algorithm for computing fusion of various seismic attributes. The fusion during rendering has only been realized in 2D section display, and there is no good algorithm in 3D seismic volume rendering.

发明内容Contents of the invention

为了克服现有技术的上述缺点,本发明提供了一种基于不透明度加权的多地震属性融合纹理映射体绘制方法,分别用各属性数据的传递函数得到体素的映射颜色值和不透明度,然后根据各个体素的不透明度确定这个地震属性分量的颜色值所占的比重;经过不透明度加权最终合成新的颜色值,然后用二维纹理体绘制的方式绘制出来,本发明方法在三维体绘制上实现了多种地震属性的同时显示,给地震解释人员带来方便。In order to overcome the above-mentioned shortcomings of the prior art, the present invention provides a multi-seismic attribute fusion texture mapping volume rendering method based on opacity weighting. The transfer function of each attribute data is used to obtain the mapping color value and opacity of the voxel, and then Determine the proportion of the color value of the seismic attribute component according to the opacity of each voxel; finally synthesize a new color value through opacity weighting, and then draw it out in a two-dimensional texture volume rendering method. Simultaneous display of multiple seismic attributes is realized, which brings convenience to earthquake interpreters.

本发明解决其技术问题所采用的技术方案是:一种基于不透明度加权的多地震属性融合纹理映射体绘制方法,包括如下步骤:The technical solution adopted by the present invention to solve its technical problems is: a method for volume rendering based on multi-seismic attribute fusion texture mapping based on opacity weighting, comprising the following steps:

步骤一、导入地震数据;Step 1. Import seismic data;

步骤二、数据的预处理:Step 2. Data preprocessing:

1)将地震数据按照主测线inline、垂直于主测线的从测线xline和时间轴time三个方向等间隔采样;1) The seismic data are sampled at equal intervals in three directions: the main survey line inline, the slave survey line xline perpendicular to the main survey line, and the time axis time;

2)对每个属性数据中的体素进行处理,将体素的值转化成0-255的伪颜色值;2) Process the voxel in each attribute data, and convert the value of the voxel into a false color value of 0-255;

步骤三、分别对每个地震属性数据体的体素映射颜色值和不透明度:Step 3, respectively map the color value and opacity to the voxel of each seismic attribute data volume:

1)颜色的设定:通过颜色的传递函数建立体素的伪颜色值与颜色索引表的对应;1) Color setting: establish the correspondence between the pseudo-color value of the voxel and the color index table through the color transfer function;

2)不透明度的设定;2) Setting of opacity;

步骤四、融合多个地震数据的颜色和不透明度;所述的融合方法是对各个属性数据根据不透明度加权相加取均值的方法;Step 4, color and opacity of fusion multiple seismic data; Described fusion method is to each attribute data according to the method of opacity weighted addition to get mean value;

RR == (( ΣΣ ii == 11 nno RR ii ×× AA ii )) ÷÷ nno

GG == (( ΣΣ ii == 11 nno GG ii ×× AA ii )) ÷÷ nno

BB == (( ΣΣ ii rr == 11 nno BB ii ×× AA ii )) ÷÷ nno

其中,R为红色,G为绿色,B为蓝色,A为不透明度,i为第i个地震属性数据,n为总计n个地震属性数据,∑表示求和运算; Among them, R is red, G is green, B is blue, A is opacity, i is the i-th seismic attribute data, n is a total of n seismic attribute data, and ∑ represents the summation operation;

步骤五、生成二维纹理贴片:Step 5. Generate a two-dimensional texture patch:

1)对data数据按照xline、inline和time三个方向的垂直方向切片,生成纹理图像;1) The data data is sliced in the vertical direction according to the three directions of xline, inline and time to generate a texture image;

2)创建纹理对象,绑定纹理;2) Create a texture object and bind the texture;

3)纹理映射;3) texture mapping;

步骤六、绘制图像:Step 6. Draw the image:

1)根据视线方向确定绘制纹理的方向;1) Determine the direction of drawing texture according to the direction of sight;

2)根据视线从后向前纹理融合绘制。2) According to the line of sight, the texture is blended and drawn from the back to the front.

与现有技术相比,本发明的积极效果是:实现了在三维体绘制中多种地震数据共同显示,解决了单一属性不能很好的地震解释,以及不同数据类型无法直接融合计算的问题,提高了地震数据解释的准确性、可靠性和有效性,为地震解释提供了一种有效的方法,具体表现如下:Compared with the prior art, the positive effect of the present invention is: realize the common display of various seismic data in 3D volume rendering, solve the problem that a single attribute cannot be well interpreted, and different data types cannot be directly fused and calculated. It improves the accuracy, reliability and effectiveness of seismic data interpretation, and provides an effective method for seismic interpretation, as follows:

(1)能够充分利用地震属性中蕴含的构造与岩性变化信息,克服了单一地震属性显示不足的缺点,提高了从多属性中提取地质体的能力,增强了图像显示的清晰度,具有特征明显、细节丰富、高信息量和多属性联合显示的特点。其显示效果较常规地震属性显示方式具有明显的优势。使解释人员能够直观地对地震的多种信息进行判断分析,提高了效率和精确度。(1) It can make full use of the structural and lithological change information contained in seismic attributes, overcome the shortcomings of insufficient display of single seismic attributes, improve the ability to extract geological bodies from multiple attributes, and enhance the clarity of image display. The characteristics of obviousness, rich details, high information content and multi-attribute joint display. Its display effect has obvious advantages over conventional seismic attribute display methods. It enables interpreters to visually judge and analyze various earthquake information, improving efficiency and accuracy.

(2)对各地震属性数据的颜色值而不是原来的数据值进行融合。地震属性数据各不相同,很难有一种算法进行融合(如矢量和标量),即便可以融合,算法也过于复杂、得不偿失。而本发明的实现算法简单,效果明显。(2) The color value of each seismic attribute data is fused instead of the original data value. Seismic attribute data are different, and it is difficult to have an algorithm for fusion (such as vector and scalar). Even if fusion is possible, the algorithm is too complicated and the gain outweighs the gain. But the realization algorithm of the present invention is simple, and effect is obvious.

(3)采用了纹理映射体绘制的方法,绘制速度快,交互性好。(3) The method of texture mapping volume rendering is adopted, and the rendering speed is fast and the interaction is good.

具体实施方式detailed description

在介绍本发明的方案之前先介绍几个概念:Before introducing the scheme of the present invention, introduce several concepts:

SEGY:SEGY(SocietyofExplorationGeophysicistsYformat)地震数据,是美国SEG(SocietyofExplorationGeophysicists)协会于上世纪70年代,为了方便地震数据交流与共享而制定的众多磁带式地震数据通用格式标准之一。它以地震道为单位进行组织,逐道存储地震道数据。目前,SEGY地震数据文件已成为油气勘探行业户外数据采集环节中使用最为普遍的数据记录载体。SEGY: SEGY (Society of Exploration Geophysicists Y format) seismic data is one of the general format standards for many tape-type seismic data developed by the American SEG (Society of Exploration Geophysicists) Association in the 1970s to facilitate the exchange and sharing of seismic data. It is organized in units of seismic channels and stores seismic channel data channel by channel. At present, SEGY seismic data files have become the most commonly used data recording carrier in outdoor data acquisition in the oil and gas exploration industry.

传递函数:传递函数主要是将三维数据场的数据值映射为光学属性,如不透明度,颜色值等,决定了体绘制的成像质量。因此传递函数的设计是体绘制过程中的一个关键过程。Transfer function: The transfer function mainly maps the data values of the three-dimensional data field to optical properties, such as opacity, color values, etc., which determine the imaging quality of volume rendering. Therefore, the design of the transfer function is a key process in the volume rendering process.

在数学上,传递函数可以定义为三维数据场笛卡尔积到光学属性笛卡尔积的映射:Mathematically, the transfer function can be defined as a mapping from the Cartesian product of three-dimensional data fields to the Cartesian product of optical properties:

τ:D1×D2×……×Dn→O1×O2×……×On τ:D 1 ×D 2 ×……×D n →O 1 ×O 2 ×……×O n

其中D表示三维数据场的数据属性,是传递函数的定义域。三维数据场的数据属性可以是采样点的数据值,还可以是局部采样点的数据计算结果,如梯度模值、梯度方向二阶导数、曲率、空间坐标等等;O是传递函数的值域,表示进行可视化的光学属性,如颜色、透明度、阴影参数、反射率、折射率等。通过传递函数的定义可知,三维数据场中具有某种数据属性的采样点将以某种形式显示在二维图像中。设计传递函数就是根据可视化的需求,选择和设计合适的数据属性和光学属性,并建立它们之间的映射关系。where D represents the data attribute of the three-dimensional data field, and is the definition domain of the transfer function. The data attribute of the three-dimensional data field can be the data value of the sampling point, or the data calculation result of the local sampling point, such as the gradient modulus, the second derivative of the gradient direction, curvature, spatial coordinates, etc.; O is the value range of the transfer function , representing the optical properties for visualization, such as color, transparency, shading parameters, reflectivity, refraction, and so on. Through the definition of the transfer function, it can be seen that the sampling points with certain data attributes in the 3D data field will be displayed in the 2D image in a certain form. Designing the transfer function is to select and design appropriate data attributes and optical attributes according to the needs of visualization, and to establish the mapping relationship between them.

不透明度:不透明度是衡量光线穿过一个表面的能力的度量。完全不透明表面的不透明度为1,可以阻止所有入射到该表面的光线透过。另一方面,如果表面的不透明度为0,则代表完全透明,此表面是不可见的。不透明度介于0和1之间的半透明的表面,可以隐约地显示出之前存储的颜色。就像透过有颜色的玻璃观察有颜色的物体时的效果:能看出物体的颜色,又带有玻璃的颜色。有时候我们用透明度的方式进行表示,一个不透明度为A的表面的透明度为1-A。如果我们把纹理片元当作源像素,把帧缓存中的像素当作是目标像素,两者之间有多种组合方式,可以替换,也可以通过A进行融合。Opacity: Opacity is a measure of the ability of light to pass through a surface. A fully opaque surface has an opacity of 1 and blocks all light incident on the surface from passing through. On the other hand, if the surface has an opacity of 0, it is completely transparent and the surface is invisible. A semi-transparent surface with an opacity between 0 and 1 that reveals the previously stored color subtly. It is like the effect of observing a colored object through colored glass: the color of the object can be seen, and it has the color of the glass. Sometimes we express it in terms of transparency, a surface with an opacity of A has a transparency of 1-A. If we regard the texture fragment as the source pixel and the pixel in the frame buffer as the target pixel, there are many combinations between the two, which can be replaced or fused through A.

一种基于不透明度加权的多地震属性融合纹理映射体绘制方法,包括如下步骤:A multi-seismic attribute fusion texture mapping volume rendering method based on opacity weighting, comprising the following steps:

步骤一、导入地震数据:Step 1. Import seismic data:

将多个地震数据网格化分别保存到内存中。SEGY地震数据的主要特点是数据存储格式规范、包含地震信息量全面并且具有一定的伸缩性,这些特点决定了它比较适用于不同地震勘探软件系统间的地震数据交换与共享。另一方面,由于SEGY地震数据包含的冗余信息过于庞杂,导致软件系统资源额外开销大;因此,在交互要求高、响应时间要求严格的应用场景中,直接按数据格式读取SEGY地震数据,数据读取效率却不很理想。为此,先将地震数据分别按照主测线inline,垂直于主测线的从测线xline和时间轴time三个方向网格化并且保存到内存中。Save multiple seismic data grids separately to memory. The main features of SEGY seismic data are standard data storage format, comprehensive seismic information and certain scalability. These characteristics determine that it is more suitable for seismic data exchange and sharing among different seismic exploration software systems. On the other hand, because the redundant information contained in the SEGY seismic data is too complicated, the additional overhead of software system resources is large; therefore, in the application scenarios with high interaction requirements and strict response time requirements, the SEGY seismic data can be read directly according to the data format. Data reading efficiency is not ideal. To this end, the seismic data are first gridded in three directions: the main survey line inline, the secondary survey line xline perpendicular to the main survey line, and the time axis time and saved in the memory.

步骤二、数据的预处理:Step 2. Data preprocessing:

1)将地震数据按照主测线inline,垂直于主测线的从测线xline和时间轴time三个方向等间隔采样。由于硬件的限制,采样后的数据最大为512×512×512,采样间隔由数据大小决定。设数据大小为l×w×h,其中l、w、h分别为数据的长、宽、高,且分别对应于xline、inline、time方向,则采样间隔分别为l/512+1,w/512+1和h/512+1。那么采样后的大小为:1) The seismic data are sampled at equal intervals in three directions: the main survey line inline, the slave survey line xline perpendicular to the main survey line, and the time axis time. Due to hardware limitations, the maximum size of the sampled data is 512×512×512, and the sampling interval is determined by the size of the data. Let the data size be l×w×h, where l, w, and h are the length, width, and height of the data respectively, and correspond to the xline, inline, and time directions respectively, and the sampling intervals are l/512+1, w/ 512+1 and h/512+1. Then the sampled size is:

L=l/(l/512+1)L=l/(l/512+1)

W=w/(w/512+1)W=w/(w/512+1)

H=h/(h/512+1)H=h/(h/512+1)

其中:L、W、H分别为采样后的长、宽、高。网格的交点位置便作为一个体素,每个体素的值保存到三维数组data中。Among them: L, W, and H are the length, width, and height after sampling, respectively. The intersection position of the grid is regarded as a voxel, and the value of each voxel is saved in the three-dimensional array data.

2)对每个属性数据中的体素进行处理。即把体素的值转化成0-255的伪颜色值。伪颜色值为unsignedchar类型。本发明中采用一阶线性变换。即2) Process the voxels in each attribute data. That is, the value of the voxel is converted into a pseudo-color value of 0-255. The false color value is of type unsignedchar. In the present invention, a first-order linear transformation is used. which is

VV ii == vv ii -- vv minmin vv mm aa xx -- vv mm ii nno ×× 255255

其中Vi为最第i个体素的最终伪颜色取值,vi为第i个体素的属性值,vmax,vmin为数据的最大值和最小值,同时允许用户调节这种对应关系。用户通过调节数据的范围,即可以设置一个数据的最大值和最小值,只有在这个范围内的体数据才能被映射到颜色索引表上,处于此范围外的数据将不会被绘制出来。这有利于排除无关数据对最终图像的影响,突出图像的重点部分。Among them, V i is the final pseudo-color value of the i-th voxel, v i is the attribute value of the i-th voxel, v max and v min are the maximum and minimum values of the data, and the user is allowed to adjust this correspondence. By adjusting the range of the data, the user can set the maximum and minimum values of a data, only the volume data within this range can be mapped to the color index table, and the data outside this range will not be drawn. This is beneficial to eliminate the impact of irrelevant data on the final image and highlight the key parts of the image.

考虑到地震波最常用的属性,振幅、频率等正负往复的分布特性,本发明还做了近一步细化,使得非负的采样点数据的伪颜色值分布到区间(0,127),负数的采样点数据的伪颜色值分布到区间(128,255)。Considering the most commonly used attributes of seismic waves, such as positive and negative reciprocating distribution characteristics of amplitude and frequency, the present invention has also made a further refinement, so that the pseudo-color values of non-negative sampling point data are distributed to the interval (0,127), and the sampling of negative numbers Pseudocolor values for point data are distributed into the interval (128, 255).

步骤三、分别对每个地震属性体的体素映射颜色值和不透明度:Step 3: Map the color value and opacity to the voxel of each seismic attribute volume respectively:

把每个体素的char型伪颜色值通过传递函数映射成颜色。这里的颜色采用RGBA格式即红(R)、绿(G),蓝(B)、不透明度(A)。当前的计算机图形色彩系统普遍支持32位(256×256×256×256)色深,其中红(R)、绿(G),蓝(B)、透明度(A)各占一个色彩通道。计算机显示设备通过RGBA四者混合产生更多的颜色,即IRGBA=s(IR,IG,IB,IA)。IRGBA表示某一点的颜色;IR,IG,IB,IA分别表示红、绿、蓝、透明4种颜色;S为混色变换,由计算机显示设备完成。The char-type pseudo-color value of each voxel is mapped into a color through a transfer function. The colors here are in RGBA format, namely red (R), green (G), blue (B), and opacity (A). The current computer graphics color system generally supports 32-bit (256×256×256×256) color depth, in which red (R), green (G), blue (B), and transparency (A) each occupy a color channel. Computer display devices produce more colors by mixing the four components of RGBA, that is, I RGBA = s(I R , I G , I B , I A ). I RGBA represents the color of a certain point; I R , I G , I B , and I A represent four colors of red, green, blue, and transparent respectively; S represents the color mixing transformation, which is completed by the computer display device.

合理有效的传递函数的设计在体绘制算法中占据着很重要的位置。体绘制传递函数负责把光学特性(颜色、不透明度等)分配给体素,将原始数据几种不同的物质,不同结构区分开来,在显示人们感兴趣的重要结构的时候,隐藏不重要的信息。Reasonable and effective design of transfer function occupies a very important position in volume rendering algorithm. The volume rendering transfer function is responsible for assigning the optical properties (color, opacity, etc.) information.

1)颜色的设定,颜色的传递函数为体素的伪颜色值与颜色索引表的对应。1) The setting of the color, the transfer function of the color is the correspondence between the pseudo color value of the voxel and the color index table.

颜色索引表是由用户提供,用户只需要提供0-255之间的索引值和对应的颜色分量RGB。根据用户提供的颜色索引,对其进行插值得到一个完整的渐变颜色索引表,颜色索引表对应于0-255的伪颜色值。对于每个体素,查找颜色索引表,可以得到这个体素的颜色。遍历完各体素,完成所有数据颜色的设定。The color index table is provided by the user, and the user only needs to provide the index value between 0-255 and the corresponding color component RGB. According to the color index provided by the user, it is interpolated to obtain a complete gradient color index table, and the color index table corresponds to the pseudo color value of 0-255. For each voxel, look up the color index table to get the color of this voxel. After traversing each voxel, the setting of all data colors is completed.

2)不透明度的设定,不透明体数据中的体素在绘制的图像中是否可见取决于传递函数分配的不透明度值,感兴趣的体素分配较高的不透明度值,相反则分配较低的不透明度值。而体素的值已经映射成为颜色值,于是我们可以根据颜色表调节不透明度,让某些感兴趣的颜色不透明度高一些,从而看得清晰一些。2) The setting of opacity. Whether the voxels in the opaque volume data are visible in the drawn image depends on the opacity value assigned by the transfer function. The voxel of interest is assigned a higher opacity value, and vice versa. the opacity value. The voxel value has been mapped into a color value, so we can adjust the opacity according to the color table, so that some interesting colors have higher opacity, so that they can be seen more clearly.

步骤四、融合多个地震数据的颜色和不透明度:Step 4. Blend the color and opacity of multiple seismic data:

对于n个地震数据data1,data2…datan。其中datai存储的为第i个地震数据的颜色值和不透明度,大小为L×W×H。对于网格中某个位置,我们从datai中得到第i个地震数据此位置体素的一个颜色值IRGBAi。其中RGB为颜色值,A为不透明度,那么此位置所有颜色和不透明度的融合结果为:For n seismic data data 1 , data 2 . . . data n . Among them, data i stores the color value and opacity of the i-th seismic data, and the size is L×W×H. For a certain position in the grid, we get a color value I RGBAi of the i-th seismic data voxel at this position from data i . Among them, RGB is the color value, and A is the opacity, then the fusion result of all colors and opacity at this position is:

IRGBA=f(IRGBA1,IRGBA2,……IRGBAn)I RGBA =f(I RGBA1 ,I RGBA2 ,……I RGBAn )

其中f为融合方法。where f is the fusion method.

本发明采用各个RGB分量根据不透明度加权相加取均值的融合方法。之所以选用不透明度为加权因子,是因为不透明度的设定与我们感兴趣目标息息相关。由此各属性数据值为:The present invention adopts a fusion method in which each RGB component is weighted and added according to the opacity to obtain an average value. The reason why opacity is chosen as the weighting factor is that the setting of opacity is closely related to our interested goal. Therefore, the data values of each attribute are:

RR == (( ΣΣ ii == 11 nno RR ii ×× AA ii )) ÷÷ nno

GG == (( ΣΣ ii == 11 nno GG ii ×× AA ii )) ÷÷ nno

BB == (( ΣΣ ii == 11 nno BB ii ×× AA ii )) ÷÷ nno

AA == (( ΣΣ ii == 11 nno AA ii )) ÷÷ nno

从以上融合公式中可以看出,不透明度高即对我们来说相对重要的地震属性的颜色占的比重相对要大一些,从而整体绘制上我们容易看到我们想要的效果。每个体素的RGBA便可以设定好了。对所有体素进行颜色和不透明度进行融合,融合后的值保存在data中。It can be seen from the above fusion formula that the high opacity means that the color of the seismic attribute that is relatively important to us accounts for a relatively larger proportion, so that we can easily see the effect we want in the overall drawing. The RGBA of each voxel can be set. The color and opacity of all voxels are fused, and the fused value is saved in data.

步骤五、生成二维纹理贴片:Step 5. Generate a two-dimensional texture patch:

1)对data数据按照xline,inline,time三个方向的垂直方向切片,生成纹理图像。之所以采用三个方向是因为如果只沿一个方向切片,则当视线垂直这个方向时看到的便是一条线,效果非常不好。而如果沿视线切片,则每次旋转之后方向改变都要重新生成纹理,交互性不好。这里以time方向为例:沿Z轴方向以距离d的间隔进行切片采样,得到切片的尺寸为L×W,切片数目为W/d。其中,采样间隔d决定了绘制的质量。较小的d,可得到较多的切片,能够更精确地描述数据场,但同时也会增加图形硬件的绘制操作,降低交互速度。较大的d可以得到较快的绘制速度,但是以牺牲绘制图像的质量为代价的。这里我们取d为1,由此time方向有有H个切片,每个贴片保存为一个二维数组textureData中。这个数组的所有数据便形成了一张图片的像素值,即一张纹理图像。同理xline方向和inline方向也分别进行切片。1) Slice the data data in the vertical direction of xline, inline, and time to generate a texture image. The reason why three directions are used is that if you only slice along one direction, you will see a line when the line of sight is perpendicular to this direction, and the effect is very bad. However, if you slice along the line of sight, the texture will be regenerated every time the direction changes after rotation, and the interactivity is not good. Here, the time direction is taken as an example: Slice sampling is performed at an interval of distance d along the Z-axis direction, and the size of the obtained slice is L×W, and the number of slices is W/d. Among them, the sampling interval d determines the quality of the drawing. Smaller d can get more slices, which can more accurately describe the data field, but at the same time it will increase the drawing operations of the graphics hardware and reduce the interaction speed. Larger d can get faster drawing speed, but at the cost of sacrificing the quality of the drawn image. Here we take d as 1, so there are H slices in the time direction, and each slice is saved as a two-dimensional array textureData. All the data in this array forms the pixel values of a picture, that is, a texture image. Similarly, the xline direction and the inline direction are also sliced separately.

2)创建纹理对象,绑定纹理。用glGenTextures函数创建纹理和glBindTexture函数绑定纹理对象,glTexImage2D函数将textureData数组中的像素值传给当前绑定的纹理对象,于是便创建了纹理。2) Create a texture object and bind the texture. Use the glGenTextures function to create a texture and the glBindTexture function to bind a texture object. The glTexImage2D function transfers the pixel values in the textureData array to the currently bound texture object, thus creating a texture.

3)纹理映射。对于任何纹理,无论纹理的真正大小如何,其顶端(左上角)的纹理坐标恒为(0,0),右下角的纹理坐标恒为(1,1)。也就是说,纹理坐标应是一个介于0到1之间的一个小数。映射时便是将纹理坐标与实际三维坐标对应起来。映射时要按照统一的顺序对应,否则图片贴反显示会不正确。3) Texture mapping. For any texture, regardless of the actual size of the texture, the texture coordinates of the top (upper left corner) are always (0,0), and the texture coordinates of the lower right corner are always (1,1). That is, texture coordinates should be a decimal number between 0 and 1. Mapping is to match the texture coordinates with the actual three-dimensional coordinates. Mapping should be done in a unified order, otherwise the picture will be displayed incorrectly if it is pasted backwards.

步骤六、绘制图像:Step 6. Draw the image:

1)根据视线方向确定绘制哪个方向的纹理。我们准备了三个方向的纹理贴图xline,inline和time,但是每次旋转等操作之后不必全部绘制,只需要绘制最靠近视线方向的坐标轴即可。假设视线方向单位化后为d(x,y,z),则选择的纹理方向便为x,y,z三个值中最大的值所代表的方向。比如d(0,0,1)那么便是绘制time方向的纹理。这样我们总是能看到跟我们视线相近的纹理,效果良好。并且不用全部绘制三个方向的纹理,交互性好。1) Determine which direction to draw the texture according to the view direction. We have prepared texture maps xline, inline and time in three directions, but it is not necessary to draw all of them after each operation such as rotation, but only need to draw the coordinate axis closest to the line of sight. Assuming that the line of sight direction is unitized as d(x, y, z), the selected texture direction is the direction represented by the largest value among the three values of x, y, and z. For example, d(0, 0, 1) is to draw the texture in the time direction. This way we can always see the texture close to our line of sight, which works well. And there is no need to draw textures in all three directions, and the interactivity is good.

2)根据视线从后向前纹理融合绘制。纹理的融合是由硬件来完成的,但是必须由远及近的方式来融合才能达到正确的效果。其主要原因是不同的对象之间可能有重叠区域,而绘制顺序将影响重叠区域的颜色。2) According to the line of sight, the texture is blended and drawn from the back to the front. The fusion of textures is done by hardware, but it must be blended from far to near to achieve the correct effect. The main reason is that there may be overlapping areas between different objects, and the drawing order will affect the color of the overlapping areas.

Claims (3)

1.一种基于不透明度加权的多地震属性融合纹理映射体绘制方法,其特征在于:包括如下步骤:1. A multi-seismic attribute fusion texture mapping volume rendering method based on opacity weighting, is characterized in that: comprise the steps: 步骤一、导入地震数据;先将地震数据分别按照主测线inline,垂直于主测线的从测线xline和时间轴time三个方向网格化并且保存到内存中;Step 1. Import seismic data; first grid the seismic data according to the main survey line inline, the slave survey line xline perpendicular to the main survey line, and the time axis time and save them in the memory; 步骤二、数据的预处理:Step 2. Data preprocessing: 1)将地震数据按照主测线inline、垂直于主测线的从测线xline和时间轴time三个方向等间隔采样;1) The seismic data are sampled at equal intervals in three directions: the main survey line inline, the slave survey line xline perpendicular to the main survey line, and the time axis time; 2)对每个属性数据中的体素进行处理,将体素的值转化成0-255的伪颜色值;2) Process the voxel in each attribute data, and convert the value of the voxel into a false color value of 0-255; 步骤三、分别对每个地震属性数据体的体素映射颜色值和不透明度:Step 3, respectively map the color value and opacity to the voxel of each seismic attribute data volume: 1)颜色的设定:通过颜色的传递函数建立体素的伪颜色值与颜色索引表的对应;1) Color setting: establish the correspondence between the pseudo-color value of the voxel and the color index table through the color transfer function; 2)不透明度的设定;2) Setting of opacity; 步骤四、融合多个地震数据的颜色和不透明度;所述的融合方法是对各个属性数据根据不透明度加权相加取均值的方法;Step 4, color and opacity of fusion multiple seismic data; Described fusion method is to each attribute data according to the method of opacity weighted addition to get mean value; RR == (( ΣΣ ii == 11 nno RR ii ×× AA ii )) ÷÷ nno GG == (( ΣΣ ii == 11 nno GG ii ×× AA ii )) ÷÷ nno BB == (( ΣΣ ii == 11 nno BB ii ×× AA ii )) ÷÷ nno 其中,R为红色,G为绿色,B为蓝色,A为不透明度,i为第i个地震属性数据,n为总计n个地震属性数据,∑表示求和运算; Among them, R is red, G is green, B is blue, A is opacity, i is the i-th seismic attribute data, n is a total of n seismic attribute data, and ∑ represents the summation operation; 步骤五、生成二维纹理贴片:Step 5. Generate a two-dimensional texture patch: 1)对data数据按照xline、inline和time三个方向的垂直方向切片,生成纹理图像;1) The data data is sliced in the vertical direction according to the three directions of xline, inline and time to generate a texture image; 2)创建纹理对象,绑定纹理;2) Create a texture object and bind the texture; 3)纹理映射;3) texture mapping; 步骤六、绘制图像:Step 6. Draw the image: 1)根据视线方向确定绘制纹理的方向;1) Determine the direction of drawing texture according to the direction of sight; 2)根据视线从后向前纹理融合绘制。2) Fusion drawing from back to front texture according to line of sight. 2.根据权利要求1所述的基于不透明度加权的多地震属性融合纹理映射体绘制方法,其特征在于:在对每个数据中的体素进行处理时,使得非负的采样点数据的伪颜色值分布到区间(0,127),负数的采样点数据的伪颜色值分布到区间(128,255);2. the multi-seismic attribute fusion texture mapping volume rendering method based on opacity weighting according to claim 1, is characterized in that: when the voxel in each data is processed, make the false of non-negative sample point data The color value is distributed to the interval (0,127), and the pseudo-color value of the negative sampling point data is distributed to the interval (128, 255); 对于n个地震属性数据data1,data2…datan,其中datai存储的为第i个地震属性数据的颜色值和不透明度,大小为L×W×H,对于网格中某个位置,从datai中得到第i个地震属性数据此位置体素的一个颜色IRGBAi,其中RGB为颜色值,A为不透明度,那么此位置所有颜色和不透明度的融合结果为:For n seismic attribute data data 1 , data 2 ...data n , where data i stores the color value and opacity of the i-th seismic attribute data, the size is L×W×H, for a certain position in the grid, Obtain a color I RGBAi of the i-th seismic attribute data voxel at this location from data i , where RGB is the color value and A is the opacity, then the fusion result of all colors and opacity at this location is: IRGBA=f(IRGBA1,IRGBA2,......IRGBAn)I RGBA =f(I RGBA1 ,I RGBA2 ,...I RGBAn ) 其中f为融合方法。where f is the fusion method. 3.根据权利要求1所述的基于不透明度加权的多地震属性融合纹理映射体绘制方法,其特征在于:颜色设定的方法是:根据用户提供的0-255之间的索引值和对应的颜色分量RGB,对其进行插值得到一个完整的、对应于0-255的伪颜色值渐变颜色索引表;对于每个体素,查找颜色索引表,便得到该体素的颜色。3. The multi-seismic attribute fusion texture mapping volume rendering method based on opacity weighting according to claim 1, characterized in that: the color setting method is: according to the index value between 0-255 provided by the user and the corresponding The color component RGB is interpolated to obtain a complete pseudo-color value gradient color index table corresponding to 0-255; for each voxel, look up the color index table to obtain the color of the voxel.
CN201210319309.8A 2012-08-31 2012-08-31 Many seismic properties based on opacity weighting merge texture mapping object plotting method Expired - Fee Related CN102903141B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210319309.8A CN102903141B (en) 2012-08-31 2012-08-31 Many seismic properties based on opacity weighting merge texture mapping object plotting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210319309.8A CN102903141B (en) 2012-08-31 2012-08-31 Many seismic properties based on opacity weighting merge texture mapping object plotting method

Publications (2)

Publication Number Publication Date
CN102903141A CN102903141A (en) 2013-01-30
CN102903141B true CN102903141B (en) 2016-07-06

Family

ID=47575353

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210319309.8A Expired - Fee Related CN102903141B (en) 2012-08-31 2012-08-31 Many seismic properties based on opacity weighting merge texture mapping object plotting method

Country Status (1)

Country Link
CN (1) CN102903141B (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103487833B (en) * 2013-09-16 2016-04-13 电子科技大学 A kind of 3-D seismics voxel vector quantizes compression body method for drafting
CN104199091B (en) * 2014-08-25 2017-03-01 电子科技大学 Texture properties method based on azimuthal seismic data
WO2016073483A1 (en) * 2014-11-05 2016-05-12 Shell Oil Company Systems and methods for multi-dimensional geophysical data visualization
CN105096385B (en) * 2015-07-20 2018-06-12 北京工业大学 A kind of two-dimension earthquake section 3 D displaying method
CN106226817B (en) * 2016-09-12 2018-02-23 电子科技大学 More attribute earthquake data visualization methods based on continuous parallel coordinates
CN107507253B (en) * 2017-08-15 2020-09-01 电子科技大学 Multi-attribute body data compression method based on high-order tensor approximation
CN107329172A (en) * 2017-09-06 2017-11-07 四川易诚智讯科技有限公司 Many attribute visual analysis methods based on spatial information
CN107657648B (en) * 2017-09-30 2021-05-04 广州悦世界信息科技有限公司 Real-time efficient dyeing method and system in mobile game
CN108876783B (en) * 2018-06-27 2021-02-05 上海联影医疗科技股份有限公司 Image fusion method and system, medical equipment and image fusion terminal
CN110223371B (en) * 2019-06-14 2020-12-01 北京理工大学 Shearlet Transform and Volume Rendering Opacity Weighted 3D Image Fusion Method
CN110211216B (en) * 2019-06-14 2020-11-03 北京理工大学 Three-dimensional image spatial domain fusion method based on volume rendering opacity weighting
CN112288846B (en) * 2020-09-22 2025-01-14 比特视界(北京)科技有限公司 Method and device for making top layer pattern on the surface of three-dimensional object
CN117876598B (en) * 2024-01-15 2024-12-03 核工业航测遥感中心 Three-dimensional expression method, system and readable storage medium for attribute volume model

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101051395A (en) * 2007-04-11 2007-10-10 中国科学院地质与地球物理研究所 Three dimension visual method based on geological body of geophysical field data
CN102222365A (en) * 2011-07-29 2011-10-19 电子科技大学 Method for reconstructing curved surface of complex space

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101051395A (en) * 2007-04-11 2007-10-10 中国科学院地质与地球物理研究所 Three dimension visual method based on geological body of geophysical field data
CN102222365A (en) * 2011-07-29 2011-10-19 电子科技大学 Method for reconstructing curved surface of complex space

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ActiveX技术在三维地震资料可视化中的应用;路鹏飞等;《地球物理学进展》;20070630;第22卷(第3期);第826-830页 *
Mapping multiple attributes to three- and four-component color models - A tutorial;Hao Guo et al.;《Geophysics》;20081231;第73卷(第3期);第W7-W19页 *

Also Published As

Publication number Publication date
CN102903141A (en) 2013-01-30

Similar Documents

Publication Publication Date Title
CN102903141B (en) Many seismic properties based on opacity weighting merge texture mapping object plotting method
AU2008205061B2 (en) Systems and methods for visualizing multiple volumetric data sets in real time
US8022947B2 (en) Systems and methods for imaging waveform volumes
AU2011286432B2 (en) Obtaining data from an earth model using functional decriptors
US7995057B2 (en) System and method for real-time co-rendering of multiple attributes
US7702463B2 (en) Systems and methods for enhancing a seismic data image
MX2010012490A (en) Systems and methods for imaging a three-dimensional volume of geometrically irregular grid data representing a grid volume.
CN108460232B (en) A kind of electromagnetic environment volume visualization method based on texture mapping
CN106226817B (en) More attribute earthquake data visualization methods based on continuous parallel coordinates
Castanié et al. VolumeExplorer: Roaming large volumes to couple visualization and data processing for oil and gas exploration
Patel et al. Illustrative rendering of seismic data.
Silva et al. 3d seismic volume rendering
CN113487735B (en) A collaborative visualization and modeling system and method for multi-source and multi-parameter gravity and magnetic data
Sun et al. Study of 3-D seismic volume visualization with Ray Casting
Lin et al. Multiple oil and gas volumetric data visualization with GPU programming
Xiang et al. The research of the hybrid volume rendering algorithm based on gpu technology
Chen et al. Run-Time GPU Computing and Rendering of Earthquake Ground-Motion Data
Ropinski et al. Interactive Visualization of Subsurface information
Weijiang et al. Volume Rendering of 3D Borehole Data Based on GPU
Liang et al. Volume visualization techniques as applied in the modeling of ore bodies
Wu et al. Volume Rendering of 3D Borehole Data Based on GPU
Castanié et al. Advanced volume visualization techniques for seismic interpretation
Schwarzhaupt Occlusion-aware hessians for error control in irradiance caching
Medina Real-Time Visualizations of Ocean Data Collected By The NORUS Glider

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160706

Termination date: 20190831