[go: up one dir, main page]

CN102901853A - Nuclear signal frequency conversion digitization sampling method - Google Patents

Nuclear signal frequency conversion digitization sampling method Download PDF

Info

Publication number
CN102901853A
CN102901853A CN2012103493073A CN201210349307A CN102901853A CN 102901853 A CN102901853 A CN 102901853A CN 2012103493073 A CN2012103493073 A CN 2012103493073A CN 201210349307 A CN201210349307 A CN 201210349307A CN 102901853 A CN102901853 A CN 102901853A
Authority
CN
China
Prior art keywords
signal
digital
frequency
rising edge
falling edge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2012103493073A
Other languages
Chinese (zh)
Inventor
王鹏
张软玉
许祖润
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sichuan University
Original Assignee
Sichuan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sichuan University filed Critical Sichuan University
Priority to CN2012103493073A priority Critical patent/CN102901853A/en
Publication of CN102901853A publication Critical patent/CN102901853A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Image Processing (AREA)

Abstract

本发明提出了一种基于数字抽取技术的核信号变频数字化采样的新方法,属于核信号技术领域。该方法通过下面步骤实现:1.最佳采样频率确定:(1)数字核信号甄别及寻峰,(2)数字核信号上升沿最佳采样频率的确定,(3)数字核信号下降沿最佳采样频率的确定;2.对同一数字核信号波形进行变频采样:(1)数字核信号甄别及寻峰,(2)数字低通滤波,(3)对上升沿进行数字分频抽取,(4)对下降沿进行数字分频抽取,(5)信号合成。通过本发明方法能够在保证波形数字化核仪器输出的数字化核信号采样精度不受损失的同时,使最终生成的数字核信号波形数据量最小。The invention proposes a new method for nuclear signal frequency conversion digital sampling based on digital extraction technology, which belongs to the technical field of nuclear signals. The method is realized through the following steps: 1. Determination of the optimal sampling frequency: (1) identification and peak-finding of the digital core signal, (2) determination of the optimal sampling frequency for the rising edge of the digital core signal, (3) the optimal sampling frequency for the falling edge of the digital core signal Determination of the best sampling frequency; 2. Frequency conversion sampling of the same digital core signal waveform: (1) digital core signal screening and peak finding, (2) digital low-pass filtering, (3) digital frequency division extraction on the rising edge, ( 4) Carry out digital frequency division extraction on the falling edge, (5) Signal synthesis. Through the method of the invention, the sampling accuracy of the digitized nuclear signal output by the waveform digital nuclear instrument can be ensured without loss, and at the same time, the amount of waveform data of the finally generated digital nuclear signal can be minimized.

Description

一种核信号变频数字化采样的方法A method for nuclear signal frequency conversion digital sampling

技术领域 technical field

本发明涉及一种核信号采样技术,具体地说涉及一种核信号变频数字化采样的方法,属于核信号技术领域。The invention relates to a nuclear signal sampling technology, in particular to a nuclear signal frequency conversion digital sampling method, which belongs to the technical field of nuclear signals.

背景技术 Background technique

核信息数字化获取技术已经发展了半个世纪。近20多年随着计算机软硬件技术、数字通信技术和半导体技术的快速进步,数字化核仪器技术也得到了全面发展。至今,数字化核仪器已占据了核仪器市场50%以上份额。要实现任何一种数字化核仪器,波形数字化系统都是必不可少的关键部分,因此对波形数字化实现原理和方法的研究也是目前数字化核仪器乃至所有数字化仪器研究的热点问题。现有理论,如香农采样定律、Nyquist采样定律等都表明:将模拟信号通过模拟/数字变换技术转化为数字信号的过程中会引入量化误差,而提高模拟/数字转换器(ADC)的转换速度和转换位数是减小量化误差的有效方法。但是,在波形数字化问题上存在着几个矛盾:第一,数字化仪器仪表性能和价格之间的矛盾。比如2012年美国Tektronic公司推出了采样率80Gbps,模拟频带33GHz的高性能数字示波器,该产品售价在300万人民币。第二,ADC性能与仪器通道密度之间的矛盾。比如,美国XIA公司生产系列数字化核能谱仪Pixie-500,采用的是采样率500MSPS的ADC,实现了4通道数字谱仪;而数字化核能谱仪Pixie-16实现了16通道数字谱仪,采用的采样率则是100MSPS的ADC。第三,ADC的变换速度和变换位数之间的矛盾。2002年美国阿贡国家实验室牵头带领12家研究机构组成“核结构物理中的数字电子学”工作组,计划建立一套能满足低能核物理大部分测量任务的40通道的全数字化测量系统。在计划中设计了两种波形数字化指标,一种是采用100MSPS的采样率,12bitADC,另一种则采用1GSPS的采样率,8bitADC。纵观这些矛盾,都可以归结为ADC变换的高精度与大数据量的处理、存储、传输之间的矛盾,解决好这些矛盾意义重大。The digital acquisition technology of nuclear information has been developed for half a century. In the past 20 years, with the rapid progress of computer software and hardware technology, digital communication technology and semiconductor technology, digital nuclear instrument technology has also been fully developed. So far, digital nuclear instruments have occupied more than 50% of the nuclear instrument market. To realize any kind of digital nuclear instrument, the waveform digitization system is an essential key part, so the research on the realization principle and method of waveform digitization is also a hot issue in the research of digital nuclear instrument and even all digital instruments. Existing theories, such as Shannon's sampling law and Nyquist's sampling law, all indicate that quantization errors will be introduced in the process of converting analog signals into digital signals through analog/digital conversion technology, and the conversion speed of analog/digital converters (ADCs) will be improved. And converting the number of bits is an effective way to reduce the quantization error. However, there are several contradictions in the digitization of waveforms: First, the contradiction between the performance and price of digital instruments. For example, in 2012, the American Tektronic company launched a high-performance digital oscilloscope with a sampling rate of 80Gbps and an analog frequency band of 33GHz. The price of this product is RMB 3 million. Second, the contradiction between ADC performance and instrument channel density. For example, the digital nuclear energy spectrometer Pixie-500 produced by XIA Corporation of the United States uses an ADC with a sampling rate of 500MSPS to realize a 4-channel digital spectrometer; and the digital nuclear energy spectrometer Pixie-16 realizes a 16-channel digital spectrometer. The sampling rate is 100MSPS ADC. Third, the contradiction between the conversion speed of the ADC and the number of conversion bits. In 2002, the Argonne National Laboratory led 12 research institutions to form a working group of "Digital Electronics in Nuclear Structural Physics", planning to establish a 40-channel fully digital measurement system that can meet most of the measurement tasks of low-energy nuclear physics. Two types of waveform digitization indicators are designed in the plan, one adopts a sampling rate of 100MSPS, 12bitADC, and the other adopts a sampling rate of 1GSPS, 8bitADC. Looking at these contradictions, they can all be attributed to the contradictions between the high precision of ADC conversion and the processing, storage, and transmission of large amounts of data. It is of great significance to solve these contradictions.

发明内容 Contents of the invention

本发明的目的就是针对现有数字化核仪器中波形数字化环节上模拟/数字变换技术的高频率采样和其生成大数据量之间的矛盾,提出了一种基于数字抽取技术的核信号变频数字化采样的新方法。该新方法可以在保证波形数字化仪输出的数字化核信号采样精度不受损失的同时,使最终生成的数字核信号波形的数据量最小。The purpose of the present invention is aimed at the contradiction between the high-frequency sampling of the analog/digital conversion technology and the large amount of data generated by the waveform digitization link in the existing digital nuclear instrument, and proposes a nuclear signal frequency conversion digital sampling based on digital extraction technology new method. The new method can minimize the data volume of the finally generated digital nuclear signal waveform while ensuring that the sampling accuracy of the digital nuclear signal output by the waveform digitizer is not lost.

为实现上述目的,本发明采用以下技术措施构成的技术方案来实现。In order to achieve the above object, the present invention adopts the following technical measures to realize the technical solution.

本发明一种核信号变频数字化采样的方法,其特征在于包括以下具体步骤:A method for nuclear signal frequency conversion digital sampling of the present invention is characterized in that comprising the following specific steps:

(1)最佳采样频率确定(1) Determination of the best sampling frequency

(ⅰ)数字核信号甄别及寻峰(i) Digital nuclear signal identification and peak finding

从波形数字化仪输出的数字化波形数据中用传统甄别及寻峰算法找出一个波形的起始时刻、终止时刻和峰值时刻;From the digitized waveform data output by the waveform digitizer, use traditional discrimination and peak-finding algorithms to find out the start time, end time and peak time of a waveform;

(ⅱ)数字核信号上升沿最佳采样频率的确定(ii) Determination of the optimal sampling frequency for the rising edge of the digital core signal

将第(ⅰ)步获得的数字核信号的起始时刻和峰值时刻之间的信号数据作为其上升沿部分,设计“最佳频率确定算法”,找到小于设定的上升沿畸变率的上升沿最大分频系数Mr,从而确定上升沿最佳采样频率;Use the signal data between the initial moment and the peak moment of the digital core signal obtained in step (i) as its rising edge part, and design the "best frequency determination algorithm" to find the rising edge that is less than the set rising edge distortion rate The maximum frequency division coefficient M r , so as to determine the best sampling frequency of the rising edge;

(ⅲ)数字核信号下降沿最佳采样频率的确定(Ⅲ) Determination of the optimal sampling frequency for the falling edge of the digital core signal

将第(ⅰ)步获得的数字核信号的峰值时刻和终止时刻之间的信号数据作为其下降沿部分,设计“最佳频率确定算法”,找到小于设定的下降沿畸变率的下降沿最大分频系数Mf,从而确定下降沿最佳采样频率;Using the signal data between the peak moment and the end moment of the digital nuclear signal obtained in the (i) step as its falling edge part, design "best frequency determination algorithm", find the falling edge maximum value less than the set falling edge distortion rate Frequency division coefficient M f , so as to determine the best sampling frequency of the falling edge;

(2)对波形数字化仪输出数字核信号数据流进行变频采样(2) Frequency conversion sampling of the digital core signal data stream output by the waveform digitizer

(ⅰ)数字核信号甄别及寻峰(i) Digital nuclear signal identification and peak finding

根据步骤(1)第(ⅰ)步获取的数字核信号波形并将该波形分为上升沿和下降沿两部分;According to the digital core signal waveform obtained in step (1) and step (i), the waveform is divided into two parts: rising edge and falling edge;

(ⅱ)数字低通滤波(ii) Digital low-pass filtering

根据步骤(1)第(ⅱ)步中获得的上升沿最佳采样频率和Nyquist采样定律中对最小采样频率之规定设计反混叠数字滤波器,并对数字核信号上升沿进行反混叠数字低通滤波,根据步骤(1)第(ⅲ)中获得的下降沿最佳采样频率和Nyquist采样定律中对最小采样频率之规定设计反混叠数字滤波器,对数字核信号的下降沿进行反混叠数字低通滤波;Design an anti-aliasing digital filter according to the optimal sampling frequency of the rising edge obtained in step (1) and (ii) and the minimum sampling frequency in the Nyquist sampling law, and perform anti-aliasing digital filtering on the rising edge of the digital core signal Low-pass filtering, design an anti-aliasing digital filter according to the optimal sampling frequency of the falling edge obtained in step (1) (iii) and the minimum sampling frequency in the Nyquist sampling law, and reverse the falling edge of the digital nuclear signal Aliasing digital low-pass filtering;

(ⅲ)对上升沿进行数字分频抽取(Ⅲ) Perform digital frequency division extraction on the rising edge

用步骤(1)第(ⅱ)获得的上升沿最大分频系数Mr,对步骤(2)第(ⅱ)步得到的经反混叠低通滤波后的上升沿信号进行变频抽取;Use the maximum frequency division coefficient M r of the rising edge obtained in step (1) (ii) to perform frequency conversion extraction on the rising edge signal obtained in step (2) (ii) after anti-aliasing and low-pass filtering;

(ⅳ)对下降沿进行数字分频抽取(ⅳ) Perform digital frequency division extraction on the falling edge

用步骤(1)第(ⅲ)步获得的下降沿最大分频系数Mf,对步骤(2)第(ⅱ)步得到的经反混叠低通滤波后的下降沿信号进行变频抽取;Use the maximum frequency division coefficient M f of the falling edge obtained in step (1) (iii) to perform frequency conversion extraction on the falling edge signal obtained in step (2) (ii) after anti-aliasing and low-pass filtering;

(v)信号合成(v) Signal synthesis

将步骤(2)第(ⅲ)步得到的分频后的上升沿信号和步骤(2)第(ⅳ)步得到的分频后的下降沿信号合成为一个完整的数字核信号波形。Synthesize the frequency-divided rising edge signal obtained in step (2) (iii) and the frequency-divided falling edge signal obtained in step (2) (iv) to form a complete digital core signal waveform.

上述方案中,所述数字核信号上升沿最佳采样频率的确定,将输出的数字化核信号数据的采样频率记为f0,通过最佳频率迭代算法找到上升沿最大分频系数Mr的正整数值,并确保以此Mr值对上升沿部分xir(n)进行Mr倍分频抽取后的信号小于测量所设定的上升沿畸变率,此

Figure BDA00002162803300031
值即为上升沿的最佳采样频率。In the above scheme, the determination of the optimal sampling frequency of the rising edge of the digital nuclear signal, the sampling frequency of the output digitized nuclear signal data is recorded as f 0 , and the positive value of the maximum frequency division coefficient M r of the rising edge is found through the optimal frequency iterative algorithm Integer value, and ensure that the rising edge part x ir (n) is subjected to M r times frequency division and extraction with this M r value, and the signal is smaller than the rising edge distortion rate set by the measurement, this
Figure BDA00002162803300031
The value is the optimal sampling frequency of the rising edge.

上述方案中,所述数字核信号上升沿最佳采样频率确定的具体步骤如下:In the above scheme, the specific steps for determining the optimal sampling frequency on the rising edge of the digital core signal are as follows:

1)数字低通滤波1) Digital low-pass filtering

对输出的数字化波形数据的上升沿部分xir(n)进行数字低通滤波,滤波结果为xirlp(n);Carry out digital low-pass filtering to the rising edge part x ir (n) of the digitized waveform data of the output, and the filtering result is x irp (n);

2)数字分频抽取2) Digital frequency division extraction

分频系数Mr从2开始增加,对波形上升沿xirlp(n)进行Mr倍分频抽取,得到分频抽取后的波形上升沿xirlp(Mrn);The frequency division coefficient M r starts to increase from 2, and the rising edge x irlp (n) of the waveform is extracted by M r times of frequency division to obtain the rising edge x irlp (M r n) of the waveform after the frequency division extraction;

3)数字分频抽取后信号精度的评估3) Evaluation of signal accuracy after digital frequency division extraction

定义上升沿的畸变率为:分频抽取后数字信号的上升时间tra与分频抽取前信号上升时间trb之差εr与trb的比率,如式(1)所示,Define the distortion rate of the rising edge: the ratio of the difference between the rise time t ra of the digital signal after frequency division and extraction and the signal rise time t rb before frequency division and extraction ε r to t rb , as shown in formula (1),

δδ (( sthe s nno )) == ϵϵ rr tt rbrb == tt rara -- tt rbrb tt rbrb -- -- -- (( 11 ))

(1)式中sn为分频后数字核信号采样率,δ(sn)为相应采样率下信号上升沿形状畸变率,(1)式中涉及的信号被分频前后上升时间tra和trb的计算方法概括为tr的计算方法:设第i个数字核信号起始时刻和对应的幅度值为(tis,vi0),达峰时刻和对应的幅度值为(tim,vim),则信号的上升时间由(2)式确定,(1) where s n is the sampling rate of the digital nuclear signal after frequency division, δ(s n ) is the shape distortion rate of the rising edge of the signal at the corresponding sampling rate, and the rise time t ra of the signal involved in the formula (1) is divided before and after frequency division The calculation method of t rb and t rb is summarized as the calculation method of t r : suppose the i-th digital nuclear signal start time and corresponding amplitude value are (t is , v i0 ), the peak time and corresponding amplitude value are (t im , vi im ), the rise time of the signal is determined by formula (2),

tir=t(0.9vim)-t(0.1vim)            (2)t ir =t(0.9v im )-t(0.1v im ) (2)

(2)式中,t(0.1vim)和t(0.9vim)分别表示该信号上升沿中,即ti0到tim时间段里,核信号波形峰值的10%和峰值的90%处所对应的时间值;In the formula (2), t(0.1v im ) and t(0.9v im ) represent the positions of 10% and 90% of the peak value of the nuclear signal waveform during the rising edge of the signal, that is, during the time period from t i0 to t im corresponding time value;

由测量精度要求设置上升沿畸变率δ0,将(1)式中得到的δ(sn)与δ0比较:当δ(sn)<δ0则继续增大上升沿分频系数Mr的值,重复上述步骤1)~3),直至找到满足δ(sn)<δ0条件下最大的上升沿分频系数Mr正整数值,此时 Set the rising edge distortion rate δ 0 according to the measurement accuracy requirements, and compare the δ(s n ) obtained in formula (1) with δ 0 : when δ(s n )<δ 0 , continue to increase the rising edge frequency division coefficient M r value, repeat the above steps 1) to 3), until finding the largest positive integer value of the rising edge frequency division coefficient M r under the condition of δ(s n )<δ 0 , at this time

上述方案中,所述采样频率f0通过最佳频率迭代算法找到下降沿最大分频系数Mf的正整数值,并确保以此Mf值对下降沿部分xif(n)进行Mf倍分频抽取后的信号满足小于测量所设定的下降沿畸变率,此

Figure BDA00002162803300042
值即为下降沿的最佳采样频率。In the above scheme, the sampling frequency f0 finds the positive integer value of the maximum frequency division coefficient M f on the falling edge through the optimal frequency iterative algorithm, and ensures that the falling edge part x if (n) is multiplied by M f with this value of M f The signal after frequency division and extraction is less than the falling edge distortion rate set by the measurement.
Figure BDA00002162803300042
The value is the optimal sampling frequency of the falling edge.

上述方案中,所述数字核信号下降沿最佳采样频率确定的具体步骤如下:In the above scheme, the specific steps for determining the optimal sampling frequency on the falling edge of the digital core signal are as follows:

1)数字化低通滤波1) Digital low-pass filtering

对输出的第i个数字化波形数据的一个完整的信号xi(n)进行低通滤波,滤波结果为xilp(n),即xilp(n)分为上升沿滤波结果xirlp(n)和下降沿滤波结果xiflp(n)两部分;Perform low-pass filtering on a complete signal x i (n) of the output i-th digitized waveform data, and the filtering result is x ilp (n), that is, x ilp (n) is divided into rising edge filtering results x irlp (n) and the falling edge filtering result x iflp (n) two parts;

2)数字分频抽取2) Digital frequency division extraction

分频系数Mf从2开始增加,对波形下降沿xiflp(n)进行Mf倍分频抽取,得到分频抽取后的波形下降沿xiflp(Mfn);The frequency division coefficient M f starts to increase from 2, and the waveform falling edge x iflp (n) is extracted by M f times of frequency division, and the waveform falling edge x iflp (M f n) after frequency division extraction is obtained;

3)数字分频抽取后信号精度的评估3) Evaluation of signal accuracy after digital frequency division extraction

定义数字核信号下降沿的畸变率为:分频抽取后数字信号的下降时间tfa与分频抽取前信号下降时间tfb之差εf与tfb的比率,如式(3)所示:Define the distortion rate of the falling edge of the digital core signal: the ratio of the difference between the falling time t fa of the digital signal after frequency division and extraction and the signal falling time t fb before frequency division and extraction ε f to t fb , as shown in formula (3):

&delta;&delta; (( sthe s nno )) == &epsiv;&epsiv; ff tt fbfb == tt fafa -- tt fbfb tt fbfb -- -- -- (( 33 ))

(3)式中δ(sn)的定义参考(1)式,(3)式表示数字核信号下降沿被分频后,采样率为sn时,核信号下降沿形状畸变率,(3)式中涉及的下降时间tf的计算方法为:设第i个数字核信号达峰时刻和对应的幅度值为(tim,vim),终止时间和对应的幅度值为(tie,vie),则信号的下降时间由(4)式确定:The definition of δ(s n ) in the formula (3) refers to the formula (1), and the formula (3) indicates the shape distortion rate of the falling edge of the digital nuclear signal when the sampling rate is s n after the falling edge of the digital nuclear signal is divided, (3 The calculation method of the fall time t f involved in the formula is as follows: set the i-th digital nuclear signal peak moment and the corresponding amplitude value as (t im , v im ), the termination time and the corresponding amplitude value as (t ie , v ie ), then the falling time of the signal is determined by formula (4):

tif=t(0.9vim)-t(0.1vim)        (4)t if =t(0.9v im )-t(0.1v im ) (4)

(4)式中t(0.9vim)和t(0.1vim)分别表示该信号下降沿中,即tim到tie时间段里,数字核信号峰值vim的90%和10%所对应的时间;(4) In the formula, t(0.9v im ) and t(0.1v im ) respectively represent the corresponding 90% and 10% of the peak value v im of the digital core signal in the falling edge of the signal, that is, in the time period from t im to t ie time;

由测量精度要求设置下降沿畸变率δ0,将(3)式中得到的δ(sn)与δ0比较:当δ(sn)<δ0则继续增大下降沿分频系数Mf的值,重复上述步骤1)~3),直至找到满足δ(sn)<δ0条件下最大下降沿分频系数Mf的正整数值,此时

Figure BDA00002162803300051
Set the falling edge distortion rate δ 0 according to the measurement accuracy requirements, and compare the δ(s n ) obtained in formula (3) with δ 0 : when δ(s n )<δ 0 , continue to increase the falling edge frequency division coefficient M f value, repeat the above steps 1) to 3), until finding the positive integer value of the maximum falling edge frequency division coefficient M f under the condition of δ(s n )<δ 0 , at this time
Figure BDA00002162803300051

上述方案中,将所获得的上升沿最佳频率对第i个数字核信号的上升沿部分xir(n)进行低通滤波,得到其滤波结果为xirlp(n);将所获得的下降沿最佳频率

Figure BDA00002162803300053
对第i个数字核信号的整个信号xi(n)进行低通滤波,得到其滤波结果为xiflp(n)。In the above scheme, the best frequency obtained by the rising edge Carry out low-pass filtering to the rising edge part x ir (n) of the i-th digital core signal, and obtain the filtering result as x irp (n); the obtained falling edge optimal frequency
Figure BDA00002162803300053
Low-pass filtering is performed on the entire signal x i (n) of the i-th digital core signal, and the filtering result is obtained as x iflp (n).

上述方案中,将分频抽取后的波形上升沿信号xirlp(Mrn)和波形下降沿信号xiflp(Mfn)重新合成为一个新的信号xiext(n),合成的算法为:xiext(n)=Mrxirlp(Mrn)+Mfxiflp(Mfn),信号xiext(n)即为最佳采样频率下获得一个核信号的波形数据。In the above scheme, the waveform rising edge signal x irlp (M r n ) and the waveform falling edge signal x iflp (M f n ) after frequency division and extraction are recombined into a new signal x iext (n), and the synthesis algorithm is : x iext (n)=M r x irlp (M r n)+M f x iflp (M f n), the signal x iext (n) is the waveform data of a nuclear signal obtained at the optimal sampling frequency.

本发明所述数字核信号甄别及寻峰其实现过程为:The digital nuclear signal discrimination of the present invention and its realization process of peak-seeking are:

1)波形的甄别1) Waveform screening

设定信号阈值为x0,波形数字化仪输出的数字核信号序列表示为x(n),其中,n=1,2,3,……,以此判断x(n)的大小,当x(tsi)>x0时,tsi=nsiT时刻即为此次测量中第i个核信号波形的起始时刻;其中,T为波形数字化仪中模数变换器的采样周期,当x(tei)<x0时,tei=neiT为此次测量中第i个核信号波形的终止时刻,则此次测量甄别出的第i个数字核信号波形数据可记为:xi(n)={x(tsi),x(tsi+1),…,x(tei)};Set the signal threshold as x 0 , and the digital core signal sequence output by the waveform digitizer is expressed as x(n), where n=1,2,3,..., to judge the size of x(n), when x( t si )>x 0 , t si =n si T time is the starting time of the i-th nuclear signal waveform in this measurement; where, T is the sampling period of the analog-to-digital converter in the waveform digitizer, when x When (t ei )<x 0 , t ei =n ei T is the termination moment of the i-th nuclear signal waveform in this measurement, then the i-th digital nuclear signal waveform data screened out in this measurement can be recorded as: x i (n)={x(t si ),x(t si +1),...,x(t ei )};

2)峰位的确定2) Determination of peak position

采用取样数据逐点比较法获取信号峰值位置,若信号中某点幅度值比它临近的m个点的幅值都大,则该点为波形的峰值,表示为:Use the point-by-point comparison method of sampling data to obtain the peak position of the signal. If the amplitude value of a certain point in the signal is greater than the amplitude values of m points adjacent to it, then this point is the peak value of the waveform, expressed as:

xi(tp)>xi(tp+j),j=-m,-m+1,-m+2,…,m-2,m-1,m;则xi(tp)为此次测量第i个数字核信号波形的峰值,tp为达到峰值的时刻。以tp为分界点将一个核信号分为上升沿和下降沿两部分,tsi至tp部分为该核信号波形的上升沿,信号波形上升沿数据序列记为xir(n);tp至tei部分为该核信号波形的下降沿,信号波形下降沿数据序列记为xif(n),xi(n)=xir(n)+xif(n)。x i (t p )> xi (t p +j),j=-m,-m+1,-m+2,…,m-2,m-1,m; then x i (t p ) In order to measure the peak value of the i-th digital core signal waveform this time, t p is the moment when it reaches the peak value. Take t p as the dividing point to divide a nuclear signal into two parts, the rising edge and the falling edge. The part from t si to t p is the rising edge of the nuclear signal waveform, and the data sequence of the rising edge of the signal waveform is recorded as x ir (n); t The part from p to t ei is the falling edge of the nuclear signal waveform, and the data sequence of the falling edge of the signal waveform is recorded as x if (n), x i (n)=xi ir (n)+xi if (n).

本发明所述波形数字化仪输出数字核信号数据流的变频采样的原理:首先由所确定的上升沿和下降沿的最佳分频系数Mr和Mf,分别设计截至频率为

Figure BDA00002162803300054
Figure BDA00002162803300055
的数字反混叠低通滤波器,其次根据完成信号甄别,确定第i个数字核信号已出现;再根据寻峰原理找到第i个数字核信号的达峰时刻,将第i个信号分为上升沿和下降沿两部分;最后,将第i个数字核信号上升沿波形数据输入截至频率为
Figure BDA00002162803300061
的数字反混叠低通滤波器,再将滤波后的波形数据xirlp(n)以Mr倍进行数据抽取,从而得到第i个数字核信号的上升沿部分处理后的数据序列xirlp(Mrn),与此同时将第i个数字核信号的下降沿波形数据输入截至频率为
Figure BDA00002162803300062
的数字反混叠低通滤波器,再将滤波后的波形数据xiflp(n)以Mf倍进行数据抽取,从而得到第i个数字核信号的下降沿部分处理后的数据序列xiflp(Mfn)。The principle of the frequency conversion sampling of the waveform digitizer output digital core signal data stream of the present invention: at first by the determined optimal frequency division coefficients M r and M f of the rising edge and the falling edge, respectively design the cut-off frequency as
Figure BDA00002162803300054
and
Figure BDA00002162803300055
The digital anti-aliasing low-pass filter of the digital anti-aliasing low-pass filter, and then according to the completion of signal screening, it is determined that the i-th digital core signal has appeared; then according to the peak-seeking principle, the peak-reaching moment of the i-th digital core signal is found, and the i-th signal is divided into There are two parts: rising edge and falling edge; finally, input the rising edge waveform data of the i-th digital core signal until the frequency is
Figure BDA00002162803300061
The digital anti-aliasing low-pass filter of the digital anti-aliasing low-pass filter, and then perform data extraction on the filtered waveform data x irlp (n) by M r times, so as to obtain the data sequence x irlp ( M r n), at the same time, the falling edge waveform data of the i-th digital core signal is input and the cut-off frequency is
Figure BDA00002162803300062
The digital anti-aliasing low-pass filter of the digital anti-aliasing low-pass filter, and then the waveform data x iflp (n) after filtering is carried out data extraction with M f times, thereby obtain the data sequence x iflp ( M f n).

本发明整个系统的工作原理为:①搭建好核探测器、波形数字化仪和数字核信号处理系统后,并启动波形数字化仪对核探测器信号进行采样;②数字核信号处理系统根据步骤(1)第(ⅰ)步所述的方法从波形数字化仪输出的结果中先甄别出一个完整的核信号波形;再根据步骤(1)第(ⅱ)步和步骤(1)第(ⅲ)步所述的方法确定该次测量中核信号波形上升沿和下降沿的最佳采样频率;③根据前述②所得到的最佳采样频率开始对波形数字化仪获取的数字核信号的数据流进行连续处理;根据步骤(2)第(ⅰ)步所甄别核信号波形的出现;再根据步骤(2)第(ⅱ)步所述的方法以上升沿最佳采样频率和下降沿最佳采样频率作为滤波参数对波形的上升沿和下降沿进行反混叠低通滤波;④数字核信号处理系统根据步骤(2)第(ⅲ)步及步骤(2)第(ⅳ)步所述的方法对反混叠低通滤波器输出的信号的上升沿和下降沿分别进行分频抽取;⑤根据步骤(2)第(ⅴ)所述的方法将抽取好的上升沿信号和下降沿信号组合成一个新的完整的数字核信号,并传送给系统的下一个环节。The working principle of the whole system of the present invention is: 1. after setting up the nuclear detector, the waveform digitizer and the digital nuclear signal processing system, start the waveform digitizer to sample the nuclear detector signal; 2. the digital nuclear signal processing system according to the steps (1 ) The method described in step (i) first discriminates a complete nuclear signal waveform from the output result of the waveform digitizer; then according to step (1) (ii) and step (1) (iii) Determine the optimum sampling frequency of the rising edge and falling edge of the nuclear signal waveform in this measurement according to the method described above; ③ start to continuously process the data stream of the digital nuclear signal obtained by the waveform digitizer according to the optimal sampling frequency obtained in the aforementioned ②; Step (2) The appearance of the nuclear signal waveform screened in step (i); then according to the method described in step (2) step (ii), the optimal sampling frequency of the rising edge and the optimal sampling frequency of the falling edge are used as filtering parameters for the Perform anti-aliasing low-pass filtering on the rising and falling edges of the waveform; ④The digital nuclear signal processing system performs anti-aliasing low-pass filtering according to the method described in step (2) (iii) and step (2) (iv). The rising edge and falling edge of the signal output by the pass filter are respectively frequency-divided and extracted; ⑤ According to the method described in step (2) (v), the extracted rising edge signal and falling edge signal are combined into a new complete The digital nuclear signal is transmitted to the next link of the system.

本发明所具有的特点和有益的技术效果:Features and beneficial technical effects of the present invention:

1、本发明提出了用数字信号处理的方法确定某次核测量中最佳数字采样频率,用于数字化核仪器的核信号变频数字化采样,并以此作为建立智能化核信号数字采样的基础和依据。1. The present invention proposes to use the method of digital signal processing to determine the optimal digital sampling frequency in a certain nuclear measurement, which is used for digital nuclear signal frequency conversion digital sampling of digital nuclear instruments, and uses this as the basis and basis for establishing intelligent nuclear signal digital sampling in accordance with.

2、本发明提出了采样数字抽取的方式来实现对同一数字核信号上升沿和下降沿采样不同抽取频率进行抽取,然后再合成为一个完整数字核信号;实现了在不损伤波形数字化仪输出的数字化核信号精度的情况下使数字核信号的数据量最小。2. The present invention proposes a method of sampling digital extraction to realize extraction at different extraction frequencies of the rising edge and falling edge sampling of the same digital nuclear signal, and then synthesize a complete digital nuclear signal; it realizes the output without damaging the waveform digitizer. The data volume of the digital nuclear signal is minimized without compromising the accuracy of the digital nuclear signal.

3、本发明提出了一种对同一核信号不同部分实现数字低通反混叠滤波的算法,这种原理既适用于数字核信号处理,同样也适用于其它信号的数字低通反混叠处理。3. The present invention proposes an algorithm for realizing digital low-pass anti-aliasing filtering on different parts of the same core signal. This principle is applicable to both digital core signal processing and digital low-pass anti-aliasing processing of other signals. .

4、数字核信号经过数字低通滤波后在波形上将可能产生不同程度的畸变,本发明在时域里定义了滤波后信号上升沿和下降沿的畸变评估方法,为本发明提出的变频采样算法的具体实现提供了理论依据。4. After digital low-pass filtering, the digital nuclear signal may have different degrees of distortion on the waveform. The present invention defines the distortion evaluation method of the rising edge and falling edge of the filtered signal in the time domain, which is the frequency conversion sampling proposed by the present invention. The specific implementation of the algorithm provides a theoretical basis.

5、本发明所述核信号通过变频采样后的上升沿和下降沿形状均与原信号保持一致,但数据量却大量减少。5. The shape of the rising edge and falling edge of the nuclear signal in the present invention after frequency conversion sampling is consistent with the original signal, but the amount of data is greatly reduced.

附图说明 Description of drawings

图1为本发明设计的巴特沃斯滤波器的幅频特性;Fig. 1 is the amplitude-frequency characteristic of the Butterworth filter that the present invention designs;

图2为本发明信号上升沿或下降沿最佳频率的确定流程;Fig. 2 is the determination process of the optimum frequency of the signal rising edge or falling edge of the present invention;

图3为本发明同一数字核信号波形的变频采样流程;Fig. 3 is the frequency conversion sampling process of the same digital core signal waveform of the present invention;

图4为本发明所示最佳采样频率确定的实验结果,其中,A为得到一组120MHz抽取后信号与原信号比较、B为一组30MHz抽取后信号与原信号比较、C为一组5MHz抽取后信号与原信号比较的数字化波形;黑色为原信号,白色为抽取后的信号;由图中可见5MHz的上升沿与原信号已经不重合,利用畸变率评估算法,可以得到对该核信号上升沿的采样频率最小应为30MHz,下降沿采样频率最小应为10MHz;Fig. 4 is the experimental result that the best sampling frequency shown in the present invention is determined, and wherein, A is to obtain a group of 120MHz after signal is extracted and compared with the original signal, B is a group of 30MHz after the signal is extracted and compared with the original signal, C is a group of 5MHz The digitized waveform of the extracted signal compared with the original signal; the black is the original signal, and the white is the extracted signal; it can be seen from the figure that the rising edge of 5MHz does not coincide with the original signal. Using the distortion rate evaluation algorithm, the core signal can be obtained The sampling frequency of the rising edge should be at least 30MHz, and the sampling frequency of the falling edge should be at least 10MHz;

图5为本发明对变频采样前后波形对比结果,黑色为原信号,白色为抽取后的信号,上升沿采样频率为30MHz,下降沿采样频率为10MHz。Fig. 5 is the waveform comparison result before and after frequency conversion sampling in the present invention, the black is the original signal, the white is the extracted signal, the sampling frequency of the rising edge is 30MHz, and the sampling frequency of the falling edge is 10MHz.

具体实施方式 Detailed ways

下面结合附图对本发明作进一步详细地说明,但不应理解为是对本发明保护内容的任何限定。The present invention will be described in further detail below in conjunction with the accompanying drawings, but it should not be construed as any limitation to the protection content of the present invention.

1、搭建测量系统。1. Build a measurement system.

①清华同方威视公司提供的镝锌铬(CdZnTd)探测器及电荷灵敏前放探测241Am的γ射线,输出模拟信号,波形数字化系统用最大模拟带宽1GHz,最大采样率10Gsps的高能性数字示波器Lecroy WaveRunner 104MXi-A获取数字化核信号波形。① Dysprosium-zinc-chromium (CdZnTd) detectors and charge-sensitive preamplifiers provided by Tsinghua Tongfang Nuctech Co., Ltd. detect 241 Am gamma rays and output analog signals. The waveform digitization system uses a high-performance digital oscilloscope with a maximum analog bandwidth of 1GHz and a maximum sampling rate of 10Gsps Lecroy WaveRunner 104MXi-A acquires digitized nuclear signal waveforms.

2、数字核信号甄别及寻峰2. Digital nuclear signal identification and peak finding

信号的甄别:设定信号阈值为x0=150(毫伏),波形数字化仪输出的数字核信号序列表示为x(n),其中,n=1,2,3,……,以此判断x(n)的大小,当x(tsi)>x0时,tsi=nsiT时刻即为此次测量中第i个核信号波形的起始时刻;其中,T为波形数字化仪中模数变换器的采样周期,当x(tei)<x0时,tei=neiT为此次测量中第i个核信号波形的终止时刻,则此次测量甄别出的第i个数字核信号波形数据可记为:xi(n)={x(tsi),x(tsi+1),…,x(tei)};Signal discrimination: set the signal threshold to x 0 =150 (millivolts), and the digital core signal sequence output by the waveform digitizer is expressed as x(n), where n=1,2,3,..., to judge The size of x(n), when x(t si )>x 0 , t si =n si T time is the starting time of the i-th nuclear signal waveform in this measurement; where, T is the waveform digitizer The sampling period of the analog-to-digital converter, when x(t ei )<x 0 , t ei =n ei T is the termination moment of the i-th nuclear signal waveform in this measurement, then the i-th nuclear signal waveform identified in this measurement The digital core signal waveform data can be recorded as: x i (n)={x(t si ),x(t si +1),…,x(t ei )};

⑵峰位的确定:采用取样数据逐点比较法获取信号峰值位置,若信号中某点幅度值比它临近的m个点的幅值都大,则该点为波形的峰值,表示为:(2) Determination of the peak position: Use the point-by-point comparison method of sampling data to obtain the peak position of the signal. If the amplitude value of a certain point in the signal is larger than the amplitude values of m points adjacent to it, then this point is the peak value of the waveform, expressed as:

xi(tp)>xi(tp+j),j=-m,-m+1,-m+2,…,m-2,m-1,m;则xi(tp)为此次测量第i个数字核信号波形的峰值,tp为达到峰值的时刻。以tp为分界点将一个核信号分为上升沿和下降沿两部分,tsi至tp部分为该核信号波形的上升沿,记为xir(n);tp至tei部分为该核信号波形的下降沿,记为xif(n),xi(n)=xir(n)+xif(n)。x i (t p )> xi (t p +j),j=-m,-m+1,-m+2,…,m-2,m-1,m; then x i (t p ) In order to measure the peak value of the i-th digital core signal waveform this time, t p is the moment when it reaches the peak value. Take t p as the dividing point to divide a nuclear signal into two parts: rising edge and falling edge. The part from t si to t p is the rising edge of the nuclear signal waveform, which is recorded as x ir (n); the part from t p to t ei is The falling edge of the nuclear signal waveform is denoted as x if (n), where x i (n)=xi ir (n)+xi if (n).

3、数字核信号上升沿最佳采样频率的确定3. Determination of the best sampling frequency on the rising edge of the digital core signal

本实例中波形数字化仪输出的数字化波形数据的采样频率为1200MHz,设定核信号的畸变率δ0为20%,Mr的初始值为2;所述数字核信号上升沿最佳采样频率确定,其具体步骤如下:In this example, the sampling frequency of the digitized waveform data output by the waveform digitizer is 1200MHz, and the distortion rate δ 0 of the nuclear signal is set as 20%, and the initial value of M is 2; the optimal sampling frequency of the rising edge of the digital nuclear signal is determined , the specific steps are as follows:

1)数字低通滤波1) Digital low-pass filtering

对波形数字化仪输出的数字化波形数据的上升沿部分xir(n)进行数字低通滤波:核信号xi(n)上升沿表示为: x ir ( n ) = x i ( n ) , n &le; t p 0 , n > t p , 其中tp为核信号的峰值时刻,Perform digital low-pass filtering on the rising edge part x ir (n) of the digitized waveform data output by the waveform digitizer: the rising edge of the nuclear signal x i (n) is expressed as: x ir ( no ) = x i ( no ) , no &le; t p 0 , no > t p , where t p is the peak moment of the nuclear signal,

对xir(n)以上升沿实现反混叠滤波,滤波后核信号的上升沿xirlp(n)为:Anti-aliasing filtering is implemented on the rising edge of x ir (n), and the rising edge x irlp (n) of the filtered nuclear signal is:

xirlp(n)=xir(n)*h1(n)=xi(n)*h1(n)    (n≤tp),h1(n)为上升沿Butterworth低通滤波器的冲击响应;x irlp (n)=x ir (n)*h 1 (n)= xi (n)*h 1 (n) (n≤t p ), h 1 (n) is the rising edge Butterworth low-pass filter Shock response;

2)数字分频抽取2) Digital frequency division extraction

分频系数Mr从2开始增加,对波形上升沿xirlp(n)进行Mr倍分频抽取,得到分频抽取后的波形上升沿xirlp(Mrn);The frequency division coefficient M r starts to increase from 2, and the rising edge x irlp (n) of the waveform is extracted by M r times of frequency division to obtain the rising edge x irlp (M r n) of the waveform after the frequency division extraction;

3)数字分频抽取后信号精度的评估3) Evaluation of signal accuracy after digital frequency division extraction

定义上升沿的畸变率为:分频抽取后数字信号的上升时间tra与分频抽取前信号上升时间trb之差εr与trb的比率,如式(1)所示,Define the distortion rate of the rising edge: the ratio of the difference between the rise time t ra of the digital signal after frequency division and extraction and the signal rise time t rb before frequency division and extraction ε r to t rb , as shown in formula (1),

&delta;&delta; (( sthe s nno )) == &epsiv;&epsiv; rr tt rbrb == tt rara -- tt rbrb tt rbrb -- -- -- (( 11 ))

(1)式中sn为分频后数字核信号采样率,δ(sn)为相应采样率下信号上升沿形状畸变率,(1) where s n is the sampling rate of the digital nuclear signal after frequency division, δ(s n ) is the shape distortion rate of the rising edge of the signal at the corresponding sampling rate,

(1)式中涉及的信号被分频前后上升时间tra和trb的计算方法可概括为tr的计算方法:假设第i个数字核信号起始时刻和对应的幅度值为(tis,vi0),达峰时刻和对应的幅度值为(tim,vim),则信号的上升时间由(2)式确定,The calculation method of the rise time t ra and t rb of the signals involved in the formula (1) before and after frequency division can be summarized as the calculation method of t r : Assume that the starting moment of the i-th digital core signal and the corresponding amplitude value are (t is , v i0 ), the peak moment and the corresponding amplitude value (t im , v im ), then the rise time of the signal is determined by formula (2),

tir=t(0.9vim)-t(0.1vim)          (2)t ir =t(0.9v im )-t(0.1v im ) (2)

(2)式中,t(0.1vim)和t(0.9vim)分别表示该信号上升沿中,即ti0到tim时间段里,核信号波形峰值的10%和峰值的90%处所对应的时间值;In the formula (2), t(0.1v im ) and t(0.9v im ) represent the positions of 10% and 90% of the peak value of the nuclear signal waveform during the rising edge of the signal, that is, during the time period from t i0 to t im corresponding time value;

根据测量的精度要求设置上升沿畸变率δ0,将(1)式中得到的δ(sn)与δ0比较:若δ(sn)<δ0则继续增大上升沿分频系数Mr的值,重复上述步骤1)~3),直至找到满足δ(sn)<δ0条件下最大的上升沿分频系数Mr正整数值,此时

Figure BDA00002162803300091
这里计算的该核信号上升沿的采样频率最小应为30MHz。图2所示描述了信号上升沿最佳频率的确定流程。Set the rising edge distortion rate δ 0 according to the measurement accuracy requirements, and compare the δ(s n ) obtained in formula (1) with δ 0 : if δ(s n )<δ 0 , continue to increase the rising edge frequency division coefficient M value of r , repeat the above steps 1) to 3), until the maximum positive integer value of the rising edge frequency division coefficient M r is found under the condition of δ(s n )<δ 0 , at this time
Figure BDA00002162803300091
The sampling frequency of the rising edge of the nuclear signal calculated here should be at least 30MHz. Figure 2 shows the process of determining the optimum frequency of the rising edge of the signal.

4、数字核信号下降沿最佳采样频率的确定4. Determination of the best sampling frequency on the falling edge of the digital core signal

本实例中波形数字化仪输出的数字化波形数据的采样频率为1200MHz,设定核信号的畸变率δ0为20%,Mf的初始值为2;所述数字核信号下降沿最佳采样频率确定,其具体步骤如下:In this example, the sampling frequency of the digitized waveform data output by the waveform digitizer is 1200MHz, and the distortion rate δ 0 of the nuclear signal is set as 20%, and the initial value of M is 2; the optimal sampling frequency is determined on the falling edge of the digital nuclear signal , the specific steps are as follows:

1)数字化低通滤波1) Digital low-pass filtering

核信号下降沿为xif(n),表示为: x if ( n ) = 0 , n &le; t p x i ( n ) , n > t p , 其中tp为核信号的峰值时刻。由于,当t>tp时xi(n)*h2(n)≠0,为了使低通滤波后原信号中有效信息不丢失,在得到反混叠滤波后信号下降沿xflp(n)时,需对整个信号做下降沿Butterworth低通滤波,滤波后信号的下降沿xiflp(n)为xiflp(n)=xi(n)*h2(n)    (n>tp),h2(n)为下降沿Butterworth低通滤波器的冲击响应。The falling edge of the nuclear signal is x if (n), expressed as: x if ( no ) = 0 , no &le; t p x i ( no ) , no > t p , Where t p is the peak moment of the nuclear signal. Since, when t>t p , x i (n)*h 2 (n)≠0, in order not to lose the effective information in the original signal after low-pass filtering, the falling edge x flp (n ), the falling edge Butterworth low-pass filter needs to be performed on the entire signal, and the falling edge x iflp (n) of the filtered signal is x iflp (n)= xi (n)*h 2 (n) (n>t p ) , h 2 (n) is the impulse response of the falling edge Butterworth low-pass filter.

2)数字分频抽取2) Digital frequency division extraction

分频系数Mf从2开始增加,对波形下降沿xiflp(n)进行Mf倍分频抽取,得到分频抽取后的波形下降沿xiflp(Mfn);The frequency division coefficient M f starts to increase from 2, and the waveform falling edge x iflp (n) is extracted by M f times of frequency division, and the waveform falling edge x iflp (M f n) after frequency division extraction is obtained;

3)数字分频抽取后信号精度的评估3) Evaluation of signal accuracy after digital frequency division extraction

定义数字核信号下降沿的畸变率为:分频抽取后数字信号的下降时间tfa与分频抽取前信号下降时间tfb之差εf与tfb的比率,如式(3)所示:Define the distortion rate of the falling edge of the digital core signal: the ratio of the difference between the falling time t fa of the digital signal after frequency division and extraction and the signal falling time t fb before frequency division and extraction ε f to t fb , as shown in formula (3):

&delta;&delta; (( sthe s nno )) == &epsiv;&epsiv; ff tt fbfb == tt fafa -- tt fbfb tt fbfb -- -- -- (( 33 ))

(3)式中δ(sn)的定义参考(1)式,表示数字核信号下降沿被分频后,采样率为sn时,核信号下降沿形状畸变率,(3)式中涉及的下降时间tf的计算方法为:假设第i个数字核信号达峰时刻和对应的幅度值为(tim,vim),终止时间和对应的幅度值为(tie,vie),则信号的下降时间由(4)式确定:The definition of δ(s n ) in formula (3) refers to formula (1), which means that after the falling edge of the digital nuclear signal is divided, when the sampling rate is s n , the shape distortion rate of the falling edge of the nuclear signal, in formula (3) involves The calculation method of the fall time t f is as follows: Assume that the i-th digital core signal reaches its peak moment and the corresponding amplitude value is (t im , v im ), the end time and the corresponding amplitude value is (t ie , vi ie ), Then the falling time of the signal is determined by formula (4):

tif=t(0.9vim)-t(0.1vim)        (4)t if =t(0.9v im )-t(0.1v im ) (4)

(4)式中t(0.9vim)和t(0.1vim)分别表示该信号下降沿中,即tim到tie时间段里,数字核信号峰值vim的90%和10%所对应的时间;(4) In the formula, t(0.9v im ) and t(0.1v im ) respectively represent the corresponding 90% and 10% of the peak value v im of the digital core signal in the falling edge of the signal, that is, in the time period from t im to t ie time;

根据测量的精度要求设置下降沿畸变率δ0,将(3)式中得到的δ(sn)与δ0比较:若δ(sn)<δ0则继续增大下降沿分频系数Mf的值,重复上述步骤1)~3),直至找到满足δ(sn)<δ0条件下最大的下降沿分频系数Mf的正整数值,此时

Figure BDA00002162803300102
这里计算的该核信号下降沿的采样频率最小应为10MHz。图2所示描述了信号下降沿最佳频率的确定流程。Set the falling edge distortion rate δ 0 according to the measurement accuracy requirements, and compare the δ(s n ) obtained in formula (3) with δ 0 : if δ(s n )<δ 0 , continue to increase the falling edge frequency division coefficient M For the value of f , repeat the above steps 1) to 3), until finding the positive integer value of the largest falling edge frequency division coefficient M f under the condition of δ(s n )<δ 0 , at this time
Figure BDA00002162803300102
The sampling frequency of the falling edge of the nuclear signal calculated here should be at least 10MHz. Figure 2 describes the process of determining the optimum frequency of the falling edge of the signal.

5、数字信号的反混叠低通滤波5. Anti-aliasing low-pass filtering of digital signals

根据上述步骤获得的核信号波形的上升沿最佳采样频率和下降沿最佳采样频率后,可以对波形数字化仪输出的数据中甄别出所有波形,按照上升沿最佳采样频率和下降沿最佳采样频率分别对核信号的上升沿部分和下降沿部分进行反混叠低通滤波。After obtaining the optimal sampling frequency of the rising edge and the optimal sampling frequency of the falling edge of the nuclear signal waveform according to the above steps, all waveforms can be identified from the data output by the waveform digitizer, according to the optimal sampling frequency of the rising edge and the optimal sampling frequency of the falling edge The sampling frequency performs anti-aliasing low-pass filtering on the rising edge part and the falling edge part of the nuclear signal respectively.

设核信号xi(n)上升沿为xir(n),下降沿为xif(n),表示为:Let the rising edge of the core signal x i (n) be x ir (n), and the falling edge be x if (n), expressed as:

x ir ( n ) = x i ( n ) , n &le; t p 0 , n > t p , x if ( n ) = 0 , n &le; t p x i ( n ) , n > t p , 其中tp为核信号的峰值时刻, x ir ( no ) = x i ( no ) , no &le; t p 0 , no > t p , x if ( no ) = 0 , no &le; t p x i ( no ) , no > t p , where t p is the peak moment of the nuclear signal,

对xir(n)以上升沿滤波器实现反混叠滤波,滤波后核信号的上升沿xirlp(n)为:Anti-aliasing filtering is implemented with a rising edge filter for x ir (n), and the rising edge x irlp (n) of the filtered nuclear signal is:

xirlp(n)=xir(n)*h1(n)=xi(n)*h1(n)    (n≤tp),h1(n)为上升沿Butterworth低通滤波器的冲击响应。x irlp (n)=x ir (n)*h 1 (n)= xi (n)*h 1 (n) (n≤t p ), h 1 (n) is the rising edge Butterworth low-pass filter shock response.

由于,当t>tp时xi(n)*h2(n)≠0,为了使低通滤波后原信号中有效信息不丢失,在得到反混叠滤波后信号下降沿xflp(n)时,需对整个信号做下降沿Butterworth低通滤波,滤波后信号的下降沿xiflp(n)为xiflp(n)=xi(n)*h2(n)    (n>tp),h2(n)为下降沿Butterworth低通滤波器的冲击响应。Since, when t>t p , x i (n)*h 2 (n)≠0, in order not to lose the effective information in the original signal after low-pass filtering, the falling edge x flp (n ), the falling edge Butterworth low-pass filter needs to be performed on the entire signal, and the falling edge x iflp (n) of the filtered signal is x iflp (n)= xi (n)*h 2 (n) (n>t p ) , h 2 (n) is the impulse response of the falling edge Butterworth low-pass filter.

6、数字化波形的分频抽取6. Frequency division and extraction of digitized waveform

将核信号波形的上升沿和下降沿进行反混叠低通滤波后,设上升沿最佳采样频率对应的分频系数为Mr、下降沿最佳采样频率对应的分频系数为Mf;将波形上升沿xirlp(n)进行Mr倍分频抽取,得到分频抽取后的波形上升沿为xirlp(Mrn);将波形下降沿xiflp(n)进行Mf倍分频抽取,得到分频抽取后的波形下降沿为xiflp(Mfn)。After the rising and falling edges of the nuclear signal waveform are anti-aliased and low-pass filtered, the frequency division coefficient corresponding to the optimal sampling frequency of the rising edge is M r , and the frequency division coefficient corresponding to the optimal sampling frequency of the falling edge is M f ; Perform M r times frequency division and extraction on the rising edge x irlp (n) of the waveform, and obtain the rising edge of the waveform after frequency division and extraction as x irlp (M r n); perform M f frequency division on the falling edge x iflp (n) of the waveform Extraction, the falling edge of the waveform obtained after frequency division and extraction is x iflp (M f n).

7、数字化波形分频抽取后的合成7. Synthesis of digital waveform after frequency division and extraction

由于低通滤波器对原信号上升沿和下降沿信号的幅度有不同程度的衰减,所以将分频抽取后的上升沿信号和下降沿信号重新合成为一个新信号xiext(n)时,需要相应的幅度补偿,合成的算法为:xiext(n)=Mrxirlp(Mrn)+Mfxiflp(Mfn);Mr、Mf分别为对上升沿和下降沿的抽取倍数。图3所示,说明了同一数字核信号波形的变频采样流程。图4所示为最佳采样频率确定的实验结果,图4中画出了一组分别以1/10倍(120MHz)、1/40(30MHz)、1/240(5MHz)进行整个波形的数字化分频抽取的结果,其中黑色曲线代表原信号,白色曲线代表抽取后的信号;由图4中可见5MHz的上升沿与原信号相比畸变很明显。图5所示对比了上升沿和下降沿分别以各自的最佳采样频率进行变频采样后的波形与变频采样前的波形,其中,黑色曲线代表原信号,白色曲线代表抽取后的信号;可见变频采样后的上升沿和下降沿形状均与原信号保持一致,但数据量却降低为原来的0.85%。计算方法如下:原信号的采样频率为1200MHz;上升沿最佳采样频率为30MHz,上升沿宽度占整个波形宽度的1%;下降沿最佳采样频率为10MHz,下降沿宽度占整个波形宽度的99%;则波形数据量减少为原来的(30/1200*0.01+10/1200*0.99)=0.85%。Since the low-pass filter attenuates the amplitudes of the rising edge and falling edge signals of the original signal to different degrees, when recombining the rising edge signal and falling edge signal after frequency division and extraction into a new signal x iext (n), it is necessary The corresponding amplitude compensation, the synthesis algorithm is: x iext (n) = M r x irlp ( M r n) + M f x iflp (M f n ) ; Draw multiples. As shown in Figure 3, it illustrates the frequency conversion sampling process of the same digital core signal waveform. Figure 4 shows the experimental results of determining the optimal sampling frequency. Figure 4 shows a group of digitalization of the entire waveform at 1/10 times (120MHz), 1/40 (30MHz), and 1/240 (5MHz). The result of frequency division extraction, where the black curve represents the original signal, and the white curve represents the extracted signal; it can be seen from Figure 4 that the rising edge of 5MHz is significantly distorted compared with the original signal. Figure 5 shows the comparison of the waveforms after frequency-conversion sampling and the waveforms before frequency-conversion sampling on the rising edge and falling edge respectively at their respective optimal sampling frequencies. Among them, the black curve represents the original signal, and the white curve represents the extracted signal; it can be seen that the frequency conversion The shape of the rising edge and falling edge after sampling is consistent with the original signal, but the amount of data is reduced to 0.85% of the original. The calculation method is as follows: the sampling frequency of the original signal is 1200MHz; the optimal sampling frequency of the rising edge is 30MHz, and the width of the rising edge accounts for 1% of the entire waveform width; the optimal sampling frequency of the falling edge is 10MHz, and the width of the falling edge accounts for 99% of the entire waveform width %; then the amount of waveform data is reduced to the original (30/1200*0.01+10/1200*0.99)=0.85%.

Claims (7)

1.一种核信号变频数字化采样的方法,其特征在于包括以下具体步骤:1. a method for digital sampling of nuclear signal frequency conversion is characterized in that comprising the following concrete steps: (1)最佳采样频率确定(1) Determination of the best sampling frequency (ⅰ)数字核信号甄别及寻峰(i) Digital nuclear signal identification and peak finding 从波形数字化仪输出的数字化波形数据中用传统甄别及寻峰操作找出其起始时刻、终止时刻和峰值时刻;Use traditional discrimination and peak-finding operations to find out the start time, end time and peak time from the digitized waveform data output by the waveform digitizer; (ⅱ)数字核信号上升沿最佳采样频率的确定(ii) Determination of the optimal sampling frequency for the rising edge of the digital core signal 将第(ⅰ)步获得的数字核信号的起始时刻和峰值时刻之间的信号数据作为其上升沿部分,设计“最佳频率确定算法”,找到小于设定的上升沿畸变率的上升沿最大分频系数Mr,从而确定上升沿最佳采样频率;Use the signal data between the initial moment and the peak moment of the digital core signal obtained in step (i) as its rising edge part, and design the "best frequency determination algorithm" to find the rising edge that is less than the set rising edge distortion rate The maximum frequency division coefficient M r , so as to determine the best sampling frequency of the rising edge; (ⅲ)数字核信号下降沿最佳采样频率的确定(Ⅲ) Determination of the optimal sampling frequency for the falling edge of the digital core signal 将第(ⅰ)步获得的数字核信号的峰值时刻和终止时刻之间的信号数据作为其下降沿部分,设计“最佳频率迭代算法”,找到小于设定的下降沿畸变率的下降沿最大分频系数Mf,从而确定下降沿最佳采样频率;Using the signal data between the peak moment and the end moment of the digital core signal obtained in the (i) step as its falling edge part, design "best frequency iterative algorithm", find the falling edge maximum value less than the set falling edge distortion rate Frequency division coefficient M f , so as to determine the best sampling frequency of the falling edge; (2)对波形数字化仪输出数字核信号数据流进行变频采样(2) Frequency conversion sampling of the digital core signal data stream output by the waveform digitizer (ⅰ)数字核信号甄别及寻峰(i) Digital nuclear signal identification and peak finding 对步骤(1)第(ⅰ)步获取的数字核信号波形分为上升沿和下降沿两部分;The digital nuclear signal waveform obtained in the step (i) of step (1) is divided into two parts: rising edge and falling edge; (ⅱ)数字低通滤波(ii) Digital low-pass filtering 将步骤(1)第(ⅱ)步中获得的上升沿最佳采样频率和Nyquist采样定律中对最小采样频率之规定设计反混叠数字滤波器,并对数字核信号上升沿进行反混叠数字低通滤波,将步骤(1)第(ⅲ)中获得下降沿最佳采样频率和Nyquist采样定律中对最小采样频率之规定设计反混叠数字滤波器,并对数字核信号的下降沿进行反混叠数字低通滤波;Design an anti-aliasing digital filter based on the optimal sampling frequency of the rising edge obtained in step (1) and (ii) and the minimum sampling frequency specified in the Nyquist sampling law, and perform anti-aliasing digital filtering on the rising edge of the digital core signal Low-pass filtering, obtain the optimal sampling frequency of the falling edge in step (1) (Ⅲ) and design the anti-aliasing digital filter to the regulation of the minimum sampling frequency in the Nyquist sampling law, and reverse the falling edge of the digital nuclear signal Aliasing digital low-pass filtering; (ⅲ)对上升沿进行数字变频抽取(Ⅲ) Perform digital frequency conversion extraction on the rising edge 采用步骤(1)第(ⅱ)获得的上升沿最大分频系数Mr,对步骤(2)第(ⅱ)步得到的经反混叠低通滤波后的上升沿信号进行变频抽取;Use the maximum frequency division coefficient M r of the rising edge obtained in step (1) (ii) to perform frequency conversion extraction on the rising edge signal obtained in step (2) (ii) after anti-aliasing and low-pass filtering; (ⅳ)对下降沿进行数字变频抽取(ⅳ) Perform digital frequency conversion extraction on the falling edge 采用步骤(1)第(ⅲ)步获得的下降沿最大分频系数Mf,对步骤(2)第(ⅱ)步得到的经反混叠低通滤波后的下降沿信号进行变频抽取;Using the falling edge maximum frequency division coefficient M f obtained in step (1) step (iii), perform frequency conversion extraction on the falling edge signal obtained in step (2) step (ii) after anti-aliasing and low-pass filtering; (v)信号合成(v) Signal synthesis 将步骤(2)第(ⅲ)步得到的分频后的上升沿信号和步骤(2)第(ⅳ)步得到的分频后的下降沿信号合成为一个完整的数字核信号波形。Synthesize the frequency-divided rising edge signal obtained in step (2) (iii) and the frequency-divided falling edge signal obtained in step (2) (iv) to form a complete digital core signal waveform. 2.根据权利要求1所述的方法,其特征在于所述上升沿最佳采样频率确定,波形数字化仪以f0采样频率获取数字化核信号波形,并输出到本最佳采样频率确定系统中,运用“最佳频率确定算法”找到上升沿最大分频系数Mr的正整数值,则
Figure FDA00002162803200021
值即为上升沿的最佳采样频率。
2. method according to claim 1, it is characterized in that described rising edge optimal sampling frequency is determined, and waveform digitizer obtains digitization nuclear signal waveform with f 0 sampling frequency, and is output in this optimal sampling frequency determining system, Use the "best frequency determination algorithm" to find the positive integer value of the maximum frequency division coefficient M r on the rising edge, then
Figure FDA00002162803200021
The value is the optimal sampling frequency of the rising edge.
3.根据权利要求1或2所述的方法,其特征在于所述数字核信号上升沿最佳采样频率确定的具体步骤如下:3. according to the described method of claim 1 or 2, it is characterized in that the concrete steps that described digital core signal rising edge optimal sampling frequency determine are as follows: 1)数字低通滤波1) Digital low-pass filtering 对输出的数字化波形数据的上升沿部分xir(n)进行数字低通滤波,滤波结果为xirlp(n);Carry out digital low-pass filtering to the rising edge part x ir (n) of the digitized waveform data of the output, and the filtering result is x irp (n); 2)数字分频抽取2) Digital frequency division extraction 最大分频系数Mr从2开始增加,对波形上升沿xirlp(n)进行Mr倍分频抽取,得到分频抽取后的波形上升沿xirlp(Mrn);The maximum frequency division coefficient M r starts to increase from 2, and M r multiple frequency division extraction is performed on the waveform rising edge x irlp (n), and the waveform rising edge x irlp (M r n) after frequency division extraction is obtained; 3)数字分频抽取后信号精度的评估3) Evaluation of signal accuracy after digital frequency division extraction 定义上升沿的畸变率为:分频抽取后数字信号的上升时间tra与分频抽取前信号上升时间trb之差εr与trb的比率,如式(1)所示,Define the distortion rate of the rising edge: the ratio of the difference between the rise time t ra of the digital signal after frequency division and extraction and the signal rise time t rb before frequency division and extraction ε r to t rb , as shown in formula (1), &delta;&delta; (( sthe s nno )) == &epsiv;&epsiv; rr tt rbrb == tt rara -- tt rbrb tt rbrb -- -- -- (( 11 )) (1)式中sn为分频后数字核信号采样率,δ(sn)为相应采样率下信号上升沿形状畸变率,(1)式中涉及的信号被分频前后上升时间tra和trb的计算方法概括为tr的计算方法:设第i个数字核信号起始时刻和对应的幅度值为(tis,vi0),达峰时刻和对应的幅度值为(tim,vim),则信号的上升时间由(2)式确定,(1) where s n is the sampling rate of the digital nuclear signal after frequency division, δ(s n ) is the shape distortion rate of the rising edge of the signal at the corresponding sampling rate, and the rise time t ra of the signal involved in the formula (1) is divided before and after frequency division The calculation method of t rb and t rb is summarized as the calculation method of t r : suppose the i-th digital nuclear signal start time and corresponding amplitude value are (t is , v i0 ), the peak time and corresponding amplitude value are (t im , vi im ), the rise time of the signal is determined by formula (2), tir=t(0.9vim)-t(0.1vim)        (2)t ir =t(0.9v im )-t(0.1v im ) (2) (2)式中,t(0.1vim)和t(0.9vim)分别表示该信号上升沿中,即ti0到tim时间段里,核信号波形峰值的10%和峰值的90%处所对应的时间值;In the formula (2), t(0.1v im ) and t(0.9v im ) represent the positions of 10% and 90% of the peak value of the nuclear signal waveform during the rising edge of the signal, that is, during the time period from t i0 to t im corresponding time value; 由测量精度要求设置上升沿畸变率δ0,将(1)式中得到的δ(sn)与δ0比较:当δ(sn)<δ0则继续增大上升沿分频系数Mr的值,重复上述步骤1)~3),直至找到满足δ(sn)<δ0条件下最大的上升沿分频系数Mr正整数值,此时
Figure FDA00002162803200031
Set the rising edge distortion rate δ 0 according to the measurement accuracy requirements, and compare the δ(s n ) obtained in formula (1) with δ 0 : when δ(s n )<δ 0 , continue to increase the rising edge frequency division coefficient M r value, repeat the above steps 1) to 3), until finding the largest positive integer value of the rising edge frequency division coefficient M r under the condition of δ(s n )<δ 0 , at this time
Figure FDA00002162803200031
4.根据权利要求1所述的方法,其特征在于所述下降沿采样频率的确定,将输出的核信号数据采样频率f0通过“最佳频率迭代算法”找到下降沿最大分频系数Mf的正整数值,并以此Mf值对下降沿部分xif(n)进行Mf倍分频抽取后的信号满足小于测量所设定的下降沿畸变率,此
Figure FDA00002162803200032
值即为下降沿的最佳采样频率。
4. method according to claim 1, it is characterized in that the determination of said falling edge sampling frequency, the nuclear signal data sampling frequency f of output is found falling edge maximum frequency division coefficient M f by " optimal frequency iterative algorithm " The positive integer value of , and with this M f value, the signal after performing M f frequency division and extraction on the falling edge part x if (n) satisfies the falling edge distortion rate that is less than the measurement setting, this
Figure FDA00002162803200032
The value is the optimal sampling frequency of the falling edge.
5.根据权利要求1或4所述的方法,其特征在于所述数字核信号下降沿最佳采样频率确定的具体步骤如下:5. according to the described method of claim 1 or 4, it is characterized in that the concrete steps that described digital nuclear signal falling edge optimal sampling frequency determine are as follows: 1)数字化低通滤波1) Digital low-pass filtering 对输出的第i个数字化波形数据的一个完整的信号xi(n)进行低通滤波,滤波结果为xilp(n),即xilp(n)分为上升沿滤波结果xirlp(n)和下降沿滤波结果xiflp(n)两部分;Perform low-pass filtering on a complete signal x i (n) of the output i-th digitized waveform data, and the filtering result is x ilp (n), that is, x ilp (n) is divided into rising edge filtering results x irlp (n) and the falling edge filtering result x iflp (n) two parts; 2)数字分频抽取2) Digital frequency division extraction 最大分频系数Mf从2开始增加,对波形下降沿xiflp(n)进行Mf倍分频抽取,得到分频抽取后的波形下降沿xiflp(Mfn);The maximum frequency division coefficient M f starts to increase from 2, and the waveform falling edge x iflp (n) is extracted by M f times frequency division, and the waveform falling edge x iflp (M f n) after frequency division extraction is obtained; 3)数字分频抽取后信号精度的评估3) Evaluation of signal accuracy after digital frequency division extraction 定义数字核信号下降沿的畸变率为:分频抽取后数字信号的下降时间tfa与分频抽取前信号下降时间tfb之差εf与tfb的比率,如式(3)所示:Define the distortion rate of the falling edge of the digital core signal: the ratio of the difference between the falling time t fa of the digital signal after frequency division and extraction and the signal falling time t fb before frequency division and extraction ε f to t fb , as shown in formula (3): &delta;&delta; (( sthe s nno )) == &epsiv;&epsiv; ff tt fbfb == tt fafa -- tt fbfb tt fbfb -- -- -- (( 33 )) (3)式中δ(sn)的定义参考(1)式,(3)式表示数字核信号下降沿被分频后,采样率为sn时,核信号下降沿形状畸变率,(3)式中涉及的下降时间tf的计算方法为:设第i个数字核信号达峰时刻和对应的幅度值为(tim,vim),终止时间和对应的幅度值为(tie,vie),则信号的下降时间由(4)式确定:The definition of δ(s n ) in the formula (3) refers to the formula (1), and the formula (3) indicates the shape distortion rate of the falling edge of the digital nuclear signal when the sampling rate is s n after the falling edge of the digital nuclear signal is divided, (3 The calculation method of the fall time t f involved in the formula is as follows: set the i-th digital nuclear signal peak moment and the corresponding amplitude value as (t im , v im ), the termination time and the corresponding amplitude value as (t ie , v ie ), then the falling time of the signal is determined by formula (4): tif=t(0.9vim)-t(0.1vim)        (4)t if =t(0.9v im )-t(0.1v im ) (4) (4)式中t(0.9vim)和t(0.1vim)分别表示该信号下降沿中,即tim到tie时间段里,数字核信号峰值vim的90%和10%所对应的时间;(4) In the formula, t(0.9v im ) and t(0.1v im ) respectively represent the corresponding 90% and 10% of the peak value v im of the digital core signal in the falling edge of the signal, that is, in the time period from t im to t ie time; 由测量精度要求设置下降沿畸变率δ0,将(3)式中得到的δ(sn)与δ0比较:当δ(sn)<δ0则继续增大下降沿分频系数Mf的值,重复上述步骤1)~3),直至找到满足δ(sn)<δ0条件下最大下降沿分频系数Mf的正整数值,此时
Figure FDA00002162803200041
Set the falling edge distortion rate δ 0 according to the measurement accuracy requirements, and compare the δ(s n ) obtained in formula (3) with δ 0 : when δ(s n )<δ 0 , continue to increase the falling edge frequency division coefficient M f value, repeat the above steps 1) to 3), until finding the positive integer value of the maximum falling edge frequency division coefficient M f under the condition of δ(s n )<δ 0 , at this time
Figure FDA00002162803200041
6.根据权利要求2或4所述的方法,其特征在于将所获得的上升沿最佳频率
Figure FDA00002162803200042
对第i个数字核信号的上升沿部分xir(n)进行低通滤波,得到其滤波结果为xirlp(n);将所获得的下降沿最佳频率对第i个数字核信号的整个信号xi(n)进行低通滤波,得到其滤波结果为xiflp(n)。
6. The method according to claim 2 or 4, characterized in that the obtained rising edge optimum frequency
Figure FDA00002162803200042
Carry out low-pass filtering to the rising edge part x ir (n) of the i-th digital core signal, and obtain the filtering result as x irp (n); the obtained falling edge optimal frequency Low-pass filtering is performed on the entire signal x i (n) of the i-th digital core signal, and the filtering result is obtained as x iflp (n).
7.根据权利要求2或4所述的方法,其特征在于将分频抽取后的波形上升沿信号xirlp(Mrn)和波形下降沿信号xiflp(Mfn)重新合成为一个新的信号xiext(n),合成的算法为:xiext(n)=Mrxirlp(Mrn)+Mfxiflp(Mfn),信号xiext(n)即为最佳采样频率下获得一个核信号的波形数据。7. The method according to claim 2 or 4, characterized in that the waveform rising edge signal x irlp (M r n ) and the waveform falling edge signal x iflp (M f n) after frequency division extraction are recombined into a new signal x iext (n), the synthesis algorithm is: x iext (n)=M r x irlp (M r n)+M f x iflp (M f n), the signal x iext (n) is the best sampling Waveform data of a nuclear signal is obtained at the frequency.
CN2012103493073A 2012-09-19 2012-09-19 Nuclear signal frequency conversion digitization sampling method Pending CN102901853A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2012103493073A CN102901853A (en) 2012-09-19 2012-09-19 Nuclear signal frequency conversion digitization sampling method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2012103493073A CN102901853A (en) 2012-09-19 2012-09-19 Nuclear signal frequency conversion digitization sampling method

Publications (1)

Publication Number Publication Date
CN102901853A true CN102901853A (en) 2013-01-30

Family

ID=47574202

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2012103493073A Pending CN102901853A (en) 2012-09-19 2012-09-19 Nuclear signal frequency conversion digitization sampling method

Country Status (1)

Country Link
CN (1) CN102901853A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105318940A (en) * 2015-10-08 2016-02-10 华南理工大学 A multi-path flow meter calibrating device pulse counting signal reconstruction method
CN106324324A (en) * 2016-08-12 2017-01-11 株洲中车时代电气股份有限公司 Method and device for calculating effective value of terminal voltage of generator
CN106483551A (en) * 2015-08-28 2017-03-08 易良碧 A kind of imitative nuclear signal generator and its method of work

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6189559A (en) * 1984-09-21 1986-05-07 テクトロニツクス・インコーポレーテツド Anti-aliasing filter circuit
US5115189A (en) * 1991-02-06 1992-05-19 Hewlett-Packard Company Anti-aliasing dithering method and apparatus for low frequency signal sampling
EP0671611A2 (en) * 1994-03-10 1995-09-13 Fluke Corporation Vibration monitoring apparatus with strobe trigger feature
CN1710622A (en) * 2005-07-01 2005-12-21 清华大学 An analog-to-digital conversion method and system based on voltage-frequency conversion and photoelectric isolation
CN101216511A (en) * 2008-01-18 2008-07-09 杭州万工科技有限公司 Digital synchronous sampling method
CN202168051U (en) * 2011-07-25 2012-03-14 武汉理工光科股份有限公司 Detection circuit at peak position

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6189559A (en) * 1984-09-21 1986-05-07 テクトロニツクス・インコーポレーテツド Anti-aliasing filter circuit
US5115189A (en) * 1991-02-06 1992-05-19 Hewlett-Packard Company Anti-aliasing dithering method and apparatus for low frequency signal sampling
EP0671611A2 (en) * 1994-03-10 1995-09-13 Fluke Corporation Vibration monitoring apparatus with strobe trigger feature
CN1710622A (en) * 2005-07-01 2005-12-21 清华大学 An analog-to-digital conversion method and system based on voltage-frequency conversion and photoelectric isolation
CN101216511A (en) * 2008-01-18 2008-07-09 杭州万工科技有限公司 Digital synchronous sampling method
CN202168051U (en) * 2011-07-25 2012-03-14 武汉理工光科股份有限公司 Detection circuit at peak position

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
万东阳等: "数字核信号图形化识别和处理研究", 《第十六届全国核电子学与核探测技术学术年会论文集(下册)》 *
周翠等: "多抽样率信号处理理论及其应用研究", 《软件导刊》 *
张软玉等: "参数最优化数字核能谱获取系统研究", 《原子能科学技术》 *
王鹏等: "一种虚拟核仪器的实现原理及方法", 《第十六届全国核电子学与核探测技术学术年会论文集(下册)》 *
闫洋洋等: "数字核信号智能采样理论和方法研究", 《第十六届全国核电子学与核探测技术学术年会论文集(下册)》 *
闫洋洋等: "核信号最优化数采方案的研究", 《第十五届全国科学计算与信息化会议暨现代物理信息化论坛论文集》 *
陶然等: "《多抽样率数字信号处理理论及其应用》", 30 April 2007, 清华大学出版社 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106483551A (en) * 2015-08-28 2017-03-08 易良碧 A kind of imitative nuclear signal generator and its method of work
CN106483551B (en) * 2015-08-28 2018-11-09 成都理工大学 A kind of imitative nuclear signal generator and its working method
CN105318940A (en) * 2015-10-08 2016-02-10 华南理工大学 A multi-path flow meter calibrating device pulse counting signal reconstruction method
CN106324324A (en) * 2016-08-12 2017-01-11 株洲中车时代电气股份有限公司 Method and device for calculating effective value of terminal voltage of generator
CN106324324B (en) * 2016-08-12 2019-07-05 株洲中车时代电气股份有限公司 A kind of calculation method and device of generator voltage virtual value

Similar Documents

Publication Publication Date Title
CN106772545B (en) A kind of digit pulse amplitude analyzer using pinnacle shaping Algorithm
CN104181577B (en) Beam position and phase measurement system and method based on full digitalization technology
CN101504431B (en) Nanosecond on-line detection system for random pulse time sequence
US10833695B2 (en) Analog-to-digital converter
CN102901853A (en) Nuclear signal frequency conversion digitization sampling method
CN102353972A (en) Multimode digital multichannel spectrometer
CN104101751B (en) Digital storage oscilloscope vertical resolution based on comentropy improves method
CN110308476A (en) A particle radiation detection method and detection device
CN106444216A (en) Broadband signal acquisition channel mismatch correction method in multichannel analog-to-digital conversion system
CN101303377A (en) Parametric Acquisition Method of Discharge Radiation Pulse
CN107395157A (en) Grounded screen potential difference filtering method based on wavelet transformation and weighted moving average
CN103634005A (en) Method for randomizing quantizing noise in analog-digital converter
CN114236594A (en) Nuclear pulse signal digital triangle-trapezoid two-channel forming method
CN109948223A (en) A Pulse Amplitude Acquisition Method Based on Lagrangian Interpolation
Wang et al. Evaluation of a fast pulse sampling module with switched-capacitor arrays
CN1252694C (en) Recording disk evaluation device
Zhao et al. A 1.6-gsps high-resolution waveform digitizer based on a time-interleaved technique
CN105866557A (en) A Time-Energy Dual-spectrum Synchronous Measurement System Realizing GHZ Pulse Pass Rate
CN108226682B (en) Compression algorithm for fault indicator recording waveform
CN106953621B (en) A Digital Pulse Amplitude Analyzer Based on Symmetrical Zero Area Trapezoid
CN103941280A (en) Digital nuclear pulse Gauss shaping method based on impulse response invariance method
CN107104674A (en) Noise power estimation apparatus in electric parameter metering process
CN111413725A (en) A system and method for realizing γ-γ digital coincidence measurement using virtual instrument technology
CN100336085C (en) Digital analog converting method and system based on pressure-frequency conversion
Wang et al. Development of a 128-Channel Readout System for a Multistrip Ionization Chamber in PREF

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20130130