[go: up one dir, main page]

CN102879480B - Method for delaying self-adaptive ultrasonic phased array wedge - Google Patents

Method for delaying self-adaptive ultrasonic phased array wedge Download PDF

Info

Publication number
CN102879480B
CN102879480B CN201210346042.1A CN201210346042A CN102879480B CN 102879480 B CN102879480 B CN 102879480B CN 201210346042 A CN201210346042 A CN 201210346042A CN 102879480 B CN102879480 B CN 102879480B
Authority
CN
China
Prior art keywords
time
phased array
ultrasonic phased
wedge
delay
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201210346042.1A
Other languages
Chinese (zh)
Other versions
CN102879480A (en
Inventor
王强
肖琨
胡栋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Jiliang University
Original Assignee
China Jiliang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Jiliang University filed Critical China Jiliang University
Priority to CN201210346042.1A priority Critical patent/CN102879480B/en
Publication of CN102879480A publication Critical patent/CN102879480A/en
Application granted granted Critical
Publication of CN102879480B publication Critical patent/CN102879480B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

本发明公开了一种自适应超声波相控阵楔块延时的方法。本发明应用超声波相控阵检测装置对工件进行无损检测,在设备相关参数设置完毕后,获得楔块延时的时间与探头始波结束时间,并在检测过程中去掉幅值低于下限门槛值的信号,采用移动平均算法平滑获取到的[,]范围内的回波信号,并且检测这段时间中回波信号的峰值及峰值所在的时间,将该时间重新定义为,达到自适应超声波相控阵楔块延时的目的。本发明结合相控超声波成像技术,去除超声波相控阵实际检测图像中的由于系统误差产生的回波信号,有利于检测人员对缺陷信号的判别、提高检出率。

The invention discloses a method for delaying time of an adaptive ultrasonic phased array wedge. The invention uses an ultrasonic phased array detection device to carry out non-destructive detection on workpieces, and obtains the wedge delay time after the relevant parameters of the equipment are set. and probe start wave end time , and remove the signal whose amplitude is lower than the lower limit threshold in the detection process, and use the moving average algorithm to smooth the obtained [ , ] within the range of the echo signal, and detect the peak value of the echo signal and the time of the peak value during this period, and redefine the time as , to achieve the purpose of adaptive ultrasonic phased array wedge delay. The invention combines the phase-controlled ultrasonic imaging technology to remove the echo signal generated by the system error in the actual detection image of the ultrasonic phase-controlled array, which is beneficial to the detection personnel to distinguish the defect signal and improves the detection rate.

Description

一种自适应超声波相控阵楔块延时的方法A Method of Adaptive Ultrasonic Phased Array Wedge Delay

技术领域 technical field

本发明涉及超声波相控阵无损检测领域,尤其涉及一种自适应超声波相控阵楔块延时的方法。 The invention relates to the field of ultrasonic phased array non-destructive testing, in particular to an adaptive ultrasonic phased array wedge delay method.

背景技术 Background technique

超声波相控阵无损检测技术在现代工业无损检测中发挥着重要的作用,具有极大的应用前景。在超声波相控阵无损检测中,往往需要在探头的下方安装楔块,以达到使用超声波远场区进行检测并使超声波束发生一定角度初始偏转的目的。由于超声波在楔块中传播同样需要一定的时间,在检测开始时需要测量这段时间,也就是对超声波相控阵检测装置的楔块延时校准。然而由于楔块在使用中特别是在很多在线检测的应用中,会不断的产生磨损,一旦楔块产生较大量的磨损,而又不能及时对楔块延时重新进行校准时,就会使对被检工件内部缺陷的定位出现误差。 Ultrasonic phased array nondestructive testing technology plays an important role in modern industrial nondestructive testing and has great application prospects. In ultrasonic phased array non-destructive testing, it is often necessary to install a wedge under the probe to achieve the purpose of using the ultrasonic far-field region for detection and initially deflecting the ultrasonic beam at a certain angle. Since it also takes a certain amount of time for the ultrasonic wave to propagate in the wedge, it is necessary to measure this time at the beginning of the detection, that is, to calibrate the wedge delay of the ultrasonic phased array detection device. However, because the wedges will continue to wear during use, especially in many online detection applications, once the wedges wear a lot, and the wedges cannot be recalibrated in time, it will cause the There is an error in the positioning of the internal defects of the inspected workpiece.

为了解决上述问题,提高超声波相控阵无损检测的定位精度,本发明提出一种自适应超声波相控阵楔块延时的方法,该方法仅需要在超声波相控阵检测仪开始工作时进行一次楔块延时校准,就可以在后续的使用中不断的自动计算楔块延时,从而达到自适应超声波相控阵楔块延时的目的。 In order to solve the above problems and improve the positioning accuracy of ultrasonic phased array nondestructive testing, the present invention proposes a method for adaptive ultrasonic phased array wedge delay, which only needs to be performed once when the ultrasonic phased array detector starts to work. Wedge delay calibration can automatically calculate the wedge delay in subsequent use, so as to achieve the purpose of adaptive ultrasonic phased array wedge delay.

发明内容 Contents of the invention

本发明的目的是改善现有技术的不足,提供一种自适应超声波相控阵楔块延时的方法。 The purpose of the present invention is to improve the deficiencies of the prior art and provide a method for adaptive ultrasonic phased array wedge time delay.

一种自适应超声波相控阵楔块延时的方法步骤如下: The steps of a method for adaptive ultrasonic phased array wedge time delay are as follows:

步骤一:在超声波相控阵检测装置主机上安装探头和楔块,对超声波相控阵检测装置进行声速校准、楔块延时校准、灵敏度校准及编码器校准; Step 1: Install the probe and wedge on the host of the ultrasonic phased array detection device, and perform sound velocity calibration, wedge delay calibration, sensitivity calibration and encoder calibration on the ultrasonic phased array detection device;

步骤二:设置超声波相控阵检测装置的延时规则、聚焦法则、增益、抑制、起始、范围、声速、电压、平均、标尺、工件厚度、工件材料、检测模式、聚焦深度、探头类型、探头阵元数、探头频率及波束类型; Step 2: Set the delay rule, focus rule, gain, suppression, start, range, sound velocity, voltage, average, scale, workpiece thickness, workpiece material, detection mode, focus depth, probe type, etc. of the ultrasonic phased array detection device. Number of probe array elements, probe frequency and beam type;

步骤三:根据步骤一中的楔块延时校准程序,获得楔块延时的时间                                                与探头始波结束时间Step 3: Obtain the wedge delay time according to the wedge delay calibration procedure in step 1 and probe start wave end time ;

步骤四:去掉一些幅值低于下限门槛值的信号,采用公式如下: Step 4: Remove some signals whose amplitude is lower than the lower threshold, using the following formula:

,k∈[1,N] , k∈[1,N]

其中为时间范围[,]内获取的回波信号,为对数坐标系的参考幅值,为下限门槛值,为经过处理的回波信号,N为x中包含数值的个数,k为索引; in , for the time range [ , The echo signal obtained in ], is the reference amplitude of the logarithmic coordinate system, is the lower threshold, is the processed echo signal, N is the number of values contained in x, and k is the index;

步骤五:使用移动平均算法,对步骤四中经过处理的回波信号进行平滑处理,移动平均算法的表达式如下: Step 5: Use the moving average algorithm to smooth the echo signal processed in step 4. The expression of the moving average algorithm is as follows:

,k∈[1,N-n+1] , k∈[1,N-n+1]

其中,x为时间范围[,]内获取的回波信号,y为经过平滑处理后的回波信号,N为x中包含数值的个数,n为移动平均算法中每次平均使用数值的个数,k为索引; where x is the time range [ , ], y is the smoothed echo signal, N is the number of values contained in x, n is the number of values used for each average in the moving average algorithm, and k is the index;

步骤六:检测信号y在时间范围[,]内的最大值及最大值所在的时间,并认为该时间为新的超声波相控阵楔块延时时间,并将该时间重新定义为Step 6: Detect signal y in the time range [ , ] and the time of the maximum value, and consider this time as the new ultrasonic phased array wedge delay time, and redefine this time as ;

步骤七:在超声波相控阵无损检测过程中,重复步骤四到步骤六,不断获取新的超声波相控阵楔块延时时间,达到自适应超声波相控阵楔块延时的目的。 Step 7: In the process of ultrasonic phased array non-destructive testing, repeat steps 4 to 6 to continuously obtain new ultrasonic phased array wedge delay time , to achieve the purpose of adaptive ultrasonic phased array wedge delay.

本发明的有益效果:本发明结合超声波相控阵无损检测技术,提取回波信号中包含的楔块延时信号,仅需要在超声波相控阵检测仪开始工作时进行一次楔块延时校准,就可以在后续的使用中不断的适应由于楔块磨损带来的延时,从而提高对被检工件内部缺陷的定位精度。 Beneficial effects of the present invention: the present invention combines the ultrasonic phased array non-destructive testing technology to extract the wedge delay signal contained in the echo signal, and only needs to perform wedge delay calibration once when the ultrasonic phased array detector starts to work. It can continuously adapt to the delay caused by wedge wear in subsequent use, thereby improving the positioning accuracy of the internal defects of the inspected workpiece.

附图说明 Description of drawings

图1为本发明的一种自适应超声波相控阵楔块延时的方法的峰值检测示意图。 FIG. 1 is a schematic diagram of a peak detection method of an adaptive ultrasonic phased array wedge delay method according to the present invention.

具体实施方式 Detailed ways

下面结合附图给出本发明的实施例,详细说明本发明的技术方案: Embodiments of the present invention are provided below in conjunction with accompanying drawings, describe technical scheme of the present invention in detail:

步骤一:在超声波相控阵检测装置主机上安装探头和楔块,对超声波相控阵检测装置进行声速校准、楔块延时校准、灵敏度校准及编码器校准,本例中超声波相控阵检测装置主机型号为OMNISCAN MX,探头型号为5L64-A2,楔块型号为SA2-N55S;; Step 1: Install the probe and wedge on the host of the ultrasonic phased array detection device, and perform sound velocity calibration, wedge delay calibration, sensitivity calibration and encoder calibration on the ultrasonic phased array detection device. In this example, the ultrasonic phased array detection The host model of the device is OMNISCAN MX, the probe model is 5L64-A2, and the wedge model is SA2-N55S;

步骤二:设置超声波相控阵检测装置的延时规则、聚焦法则、增益、抑制、起始、范围、声速、电压、平均、标尺、工件厚度、工件材料、检测模式、聚焦深度、探头类型、探头阵元数、探头频率及波束类型,本例中采用扇形扫描、增益-16dB、抑制0%、起始0mm、范围150mm、声速3230m/s、电压80V、平均1次、工件厚度110mm、工件材料为碳钢、聚焦深度200mm、探头类型为纵波探头、探头阵元数64、探头频率5MHz、55°横波检测; Step 2: Set the delay rule, focus rule, gain, suppression, start, range, sound velocity, voltage, average, scale, workpiece thickness, workpiece material, detection mode, focus depth, probe type, etc. of the ultrasonic phased array detection device. The number of probe array elements, probe frequency and beam type, in this example, sector scan, gain -16dB, suppression 0%, initial 0mm, range 150mm, sound velocity 3230m/s, voltage 80V, average 1 time, workpiece thickness 110mm, workpiece The material is carbon steel, the focus depth is 200mm, the probe type is longitudinal wave probe, the number of probe array elements is 64, the probe frequency is 5MHz, and 55°shear wave detection;

步骤三:根据步骤一中的楔块延时校准程序,获得楔块延时的时间与探头始波结束时间,本例中Step 3: Obtain the wedge delay time according to the wedge delay calibration procedure in step 1 and probe start wave end time , in this case , ;

步骤四:去掉一些幅值低于下限门槛值的信号,采用公式如下: Step 4: Remove some signals whose amplitude is lower than the lower threshold, using the following formula:

,k∈[1,N] , k∈[1,N]

其中为时间范围[,]内获取的回波信号,为对数坐标系的参考幅值,为下限门槛值,为经过处理的回波信号,N为x中包含数值的个数,k为索引; in , for the time range [ , The echo signal obtained in ], is the reference amplitude of the logarithmic coordinate system, is the lower threshold, is the processed echo signal, N is the number of values contained in x, and k is the index;

步骤五:使用移动平均算法,对步骤四中经过处理的回波信号进行平滑处理,移动平均算法的表达式如下: Step 5: Use the moving average algorithm to smooth the echo signal processed in step 4. The expression of the moving average algorithm is as follows:

,k∈[1,N-n+1] , k∈[1,N-n+1]

其中,x为时间范围[,]内获取的回波信号,y为经过平滑处理后的回波信号,N为x中包含数值的个数,n为移动平均算法中每次平均使用数值的个数,k为索引; where x is the time range [ , ], y is the smoothed echo signal, N is the number of values contained in x, n is the number of values used for each average in the moving average algorithm, and k is the index;

步骤六:如图1所示,本例中将楔块磨损到一定程度后,检测信号y在时间范围[,]内的最大值及最大值所在的时间,检测到该时间大约为,并认为该时间为新的超声波相控阵楔块延时时间,并将该时间重新定义为,即Step 6: As shown in Figure 1, after the wedge is worn to a certain extent in this example, the detection signal y is within the time range [ , ] in the maximum value and the time of the maximum value, it is detected that the time is about , and consider this time as the delay time of the new ultrasonic phased array wedge, and redefine this time as ,Right now ;

步骤七:在超声波相控阵无损检测过程中,重复步骤四到步骤六,不断获取新的超声波相控阵楔块延时时间,达到自适应超声波相控阵楔块延时的目的。 Step 7: In the process of ultrasonic phased array non-destructive testing, repeat steps 4 to 6 to continuously obtain new ultrasonic phased array wedge delay time , to achieve the purpose of adaptive ultrasonic phased array wedge delay.

Claims (1)

1.一种自适应超声波相控阵楔块延时的方法,其特征在于,该方法包括以下步骤:1. A method for adaptive ultrasonic phased array wedge time delay, characterized in that the method may further comprise the steps: 步骤一:在超声波相控阵检测装置主机上安装探头和楔块,对超声波相控阵检测装置进行声速校准、楔块延时校准、灵敏度校准及编码器校准;Step 1: Install the probe and wedge on the host of the ultrasonic phased array detection device, and perform sound velocity calibration, wedge delay calibration, sensitivity calibration and encoder calibration on the ultrasonic phased array detection device; 步骤二:设置超声波相控阵检测装置的延时规则、聚焦法则、增益、抑制、起始、范围、声速、电压、平均、标尺、工件厚度、工件材料、检测模式、聚焦深度、探头类型、探头阵元数、探头频率及波束类型;Step 2: Set the delay rule, focus rule, gain, suppression, start, range, sound velocity, voltage, average, scale, workpiece thickness, workpiece material, detection mode, focus depth, probe type, etc. of the ultrasonic phased array detection device. Number of probe array elements, probe frequency and beam type; 步骤三:根据步骤一中的楔块延时校准程序,获得楔块延时的时间td与探头始波结束时间tsStep 3: According to the wedge delay calibration procedure in step 1, obtain the time t d of wedge delay and the end time t s of the beginning wave of the probe; 步骤四:去掉一些幅值低于下限门槛值的信号,采用公式如下:Step 4: Remove some signals whose amplitude is lower than the lower threshold, using the following formula: xx (( kk )) == xx &prime;&prime; (( kk )) ,, xx &prime;&prime; (( kk )) &GreaterEqual;&Greater Equal; ii minmin 00 ,, xx &prime;&prime; (( kk )) << ii minmin ,, kk &Element;&Element; [[ 11 ,, NN ]] 其中x′(k)=20lg(f(k)/fref),f(k)为时间范围[ts,td]内获取的回波信号,fref为对数坐标系的参考幅值,imin为下限门槛值,x(k)为经过处理的回波信号,N为x中包含数值的个数,k为索引;Where x′(k)=20lg(f(k)/f ref ), f(k) is the echo signal acquired within the time range [t s ,t d ], f ref is the reference amplitude of the logarithmic coordinate system , i min is the lower limit threshold, x(k) is the processed echo signal, N is the number of values contained in x, and k is the index; 步骤五:使用移动平均算法,对步骤四中经过处理的回波信号进行平滑处理,移动平均算法的表达式如下:Step 5: Use the moving average algorithm to smooth the echo signal processed in step 4. The expression of the moving average algorithm is as follows: ythe y (( kk )) == &Sigma;&Sigma; kk == 11 NN -- nno ++ 11 [[ xx (( kk )) ++ xx (( kk ++ 11 )) ++ .. .. .. ++ xx (( kk ++ nno -- 11 )) ]] // nno ,, kk &Element;&Element; [[ 11 ,, NN -- nno ++ 11 ]] 其中,x为时间范围[ts,td]内获取的回波信号,y为经过平滑处理后的回波信号,N为x中包含数值的个数,n为移动平均算法中每次平均使用数值的个数,k为索引;Among them, x is the echo signal obtained in the time range [t s , t d ], y is the echo signal after smoothing, N is the number of values contained in x, and n is the average value of each time in the moving average algorithm The number of values used, k is the index; 步骤六:检测信号y在时间范围[ts,td]内的最大值及最大值所在的时间,并认为该时间为新的超声波相控阵楔块延时时间,并将该时间重新定义为tdStep 6: Detect the maximum value and the time of the maximum value of the signal y in the time range [t s , t d ], and consider this time as the new ultrasonic phased array wedge delay time, and redefine this time is t d ; 步骤七:在超声波相控阵无损检测过程中,重复步骤四到步骤六,不断获取新的超声波相控阵楔块延时时间td,达到自适应超声波相控阵楔块延时的目的。Step 7: During the ultrasonic phased array nondestructive testing process, repeat steps 4 to 6 to continuously obtain new ultrasonic phased array wedge delay time t d , so as to achieve the purpose of adaptive ultrasonic phased array wedge delay time.
CN201210346042.1A 2012-09-18 2012-09-18 Method for delaying self-adaptive ultrasonic phased array wedge Expired - Fee Related CN102879480B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210346042.1A CN102879480B (en) 2012-09-18 2012-09-18 Method for delaying self-adaptive ultrasonic phased array wedge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210346042.1A CN102879480B (en) 2012-09-18 2012-09-18 Method for delaying self-adaptive ultrasonic phased array wedge

Publications (2)

Publication Number Publication Date
CN102879480A CN102879480A (en) 2013-01-16
CN102879480B true CN102879480B (en) 2014-11-05

Family

ID=47480882

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210346042.1A Expired - Fee Related CN102879480B (en) 2012-09-18 2012-09-18 Method for delaying self-adaptive ultrasonic phased array wedge

Country Status (1)

Country Link
CN (1) CN102879480B (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103584886B (en) * 2013-11-20 2015-07-15 无锡祥生医学影像有限责任公司 Self-adaption apodization method based on phase coherent information
CN104359982A (en) * 2014-11-19 2015-02-18 哈尔滨工业大学 Method for ultrasonic phased array detection of sheet weld joint by wedge block
US20160304104A1 (en) * 2015-04-16 2016-10-20 Transportation Technology Center, Inc. System for inspecting rail with phased array ultrasonics
CN106908522B (en) * 2017-02-16 2021-05-07 泰安市特种设备检验研究院 Ultrasonic guided wave detection calibration sample pipe for axial width of pipeline defect and calibration method
CN110988853B (en) * 2019-12-23 2023-08-01 中煤科工集团重庆研究院有限公司 Ultrasonic arrival time calculation method based on effective peak value

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3942358A (en) * 1974-05-09 1976-03-09 Krautkramer-Branson, Incorporated Method and apparatus for adjusting defect gate in ultrasonic pulse-echo testing
US3969926A (en) * 1975-03-27 1976-07-20 Krautkramer-Branson, Incorporated Alignment of ultrasonic transducer probe in pulse-echo testing
CN101403728A (en) * 2008-04-30 2009-04-08 硕德(北京)科技有限公司 Phase distortion emendation method based on proximity correlation method in phased array ultrasonic detection
CN101571518A (en) * 2008-04-30 2009-11-04 硕德(北京)科技有限公司 Mixed-correlation-process phase-distortion correction method based on array segmentation
CN102866209A (en) * 2012-09-06 2013-01-09 中国计量学院 Method for self-adapting to system error of self-adaptive ultrasonic phased-array detection device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3942358A (en) * 1974-05-09 1976-03-09 Krautkramer-Branson, Incorporated Method and apparatus for adjusting defect gate in ultrasonic pulse-echo testing
US3969926A (en) * 1975-03-27 1976-07-20 Krautkramer-Branson, Incorporated Alignment of ultrasonic transducer probe in pulse-echo testing
CN101403728A (en) * 2008-04-30 2009-04-08 硕德(北京)科技有限公司 Phase distortion emendation method based on proximity correlation method in phased array ultrasonic detection
CN101571518A (en) * 2008-04-30 2009-11-04 硕德(北京)科技有限公司 Mixed-correlation-process phase-distortion correction method based on array segmentation
CN102866209A (en) * 2012-09-06 2013-01-09 中国计量学院 Method for self-adapting to system error of self-adaptive ultrasonic phased-array detection device

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Efficient True-Time-Delay Adaptive-Array Processing;Kelvin Wagner, S. Kraut, L. Griffiths等;《Radar Processing,Technology,and Processing for Antenna Arrays》;19961105;第2845卷(第287期);第287-300页 *
Kelvin Wagner, S. Kraut, L. Griffiths等.Efficient True-Time-Delay Adaptive-Array Processing.《Radar Processing,Technology,and Processing for Antenna Arrays》.1996,第2845卷(第287期),第287-300页. *
数字型超声波检测仪波速和探头延迟校准原理分析;李生平;《青海电力》;20071231;第26卷;第23-25页 *
李生平.数字型超声波检测仪波速和探头延迟校准原理分析.《青海电力》.2007,第26卷 *

Also Published As

Publication number Publication date
CN102879480A (en) 2013-01-16

Similar Documents

Publication Publication Date Title
CN102879480B (en) Method for delaying self-adaptive ultrasonic phased array wedge
CN106093206A (en) A kind of welding line ultrasonic array total focus formation method based on oblique incidence compressional wave
CN107941907B (en) A method for extracting the average grain size of polycrystalline materials based on effective ultrasonic backscattering signals
CN111239246B (en) An all-focus imaging method for surface structural defects for step-by-step screening of effective signals
CN205484211U (en) Ultrasonic wave residual stress test instrument
CN102393422A (en) Ultrasonic time of flight diffraction (TOFD)-based offline defect judgment method
CN104297349B (en) Angle adjustment calibration test block and angle adjustment method of ultrasonic wave water logging transverse wave detection line focusing probe
CN110243945B (en) Ultrasonic TOFD Blind Spot Suppression Method Based on Synthetic Aperture Focusing and Mode-Converted Waves
Takata et al. Acoustic emission monitoring of laser shock peening by detection of underwater acoustic wave
CN111174894B (en) Laser ultrasonic transverse wave sound velocity measurement method
CN104111286B (en) A kind of velocity of wave for the detection of supersonic welding point and thickness calibration steps
CN105973990B (en) A kind of Incline Crack TOFD quantitative detecting method based on geometrical relationship
CN102866209B (en) Method for self-adapting to system error of self-adaptive ultrasonic phased-array detection device
JP2015125008A (en) Ultrasonic flaw detection system, and control method of ultrasonic flaw detection system
CN104897777A (en) Method for improving longitudinal resolution of TOFD (time of flight diffraction) detection with Burg algorithm based autoregressive spectrum extrapolation technology
CN110646119A (en) Method for measuring surface stress tensor of rolled metal material by ultrasonic wave
CN105351322A (en) Test block for bolt ultrasonic testing and bolt ultrasonic testing method and device
CN111060044B (en) Method for measuring thickness of welding type target by adopting water immersion type C-scan equipment
CN105403627A (en) A method for enhancing the lateral resolution of ultrasonic testing images
US11022429B2 (en) Method for real-time inspection of structural components
Li et al. Flaw sizing using ultrasonic C-scan imaging with dynamic thresholds
CN111458415B (en) Method for detecting coupling state of ultrasonic phased array transducer and workpiece to be detected
JP6733650B2 (en) Ultrasonic flaw detection method, ultrasonic flaw detection equipment, steel production equipment row, and steel production method
JP4826950B2 (en) Ultrasonic flaw detection method and ultrasonic flaw detection apparatus
CN112881537B (en) Elliptic synthetic aperture focusing laser ultrasonic signal imaging method

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20141105

Termination date: 20180918