CN102877151A - Preparation method of CdS/carbon nano tube/polyacrylonitrile hybrid nano-fiber - Google Patents
Preparation method of CdS/carbon nano tube/polyacrylonitrile hybrid nano-fiber Download PDFInfo
- Publication number
- CN102877151A CN102877151A CN2012104352246A CN201210435224A CN102877151A CN 102877151 A CN102877151 A CN 102877151A CN 2012104352246 A CN2012104352246 A CN 2012104352246A CN 201210435224 A CN201210435224 A CN 201210435224A CN 102877151 A CN102877151 A CN 102877151A
- Authority
- CN
- China
- Prior art keywords
- cds
- solution
- preparation
- dmf
- pan
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Artificial Filaments (AREA)
- Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
Abstract
本发明涉及一种CdS-OH/碳纳米管/聚丙烯腈杂化纳米纤维的制备方法。技术方案是以CdCl2、Na2S和2-巯基乙醇为原料,以N,N-二甲基甲酰胺(DMF)和水为溶剂合成CdS-OH/DMF悬浮液;通过超声将碳纳米管(CNT)均匀分散于CdS-OH/DMF悬浮液中,再将CNT/CdS-OH/DMF悬浮液缓慢加入到配制好的聚丙烯腈/DMF溶液中,搅拌,超声得到混合纺丝液;采用静电纺丝技术得到杂化纳米纤维。本发明采用溶液生长法和静电纺丝法相结合,工艺简单,制备的杂化纳米纤维具有比表面积大、机械性能好的特点。同时还具有高效的光催降解有机染料的性能,且该杂化纳米纤维较粉末状光催材料易于回收利用。
The invention relates to a preparation method of CdS-OH/carbon nanotube/polyacrylonitrile hybrid nanofiber. The technical solution is to synthesize CdS-OH/DMF suspension with CdCl 2 , Na 2 S and 2-mercaptoethanol as raw materials and N,N-dimethylformamide (DMF) and water as solvents; (CNT) is uniformly dispersed in the CdS-OH/DMF suspension, and then the CNT/CdS-OH/DMF suspension is slowly added to the prepared polyacrylonitrile/DMF solution, stirred, and ultrasonically obtained to obtain a mixed spinning solution; Electrospinning technology to obtain hybrid nanofibers. The invention adopts the combination of the solution growth method and the electrospinning method, the process is simple, and the prepared hybrid nanofiber has the characteristics of large specific surface area and good mechanical properties. At the same time, it also has high-efficiency photocatalytic degradation of organic dyes, and the hybrid nanofiber is easier to recycle than powdery photocatalytic materials.
Description
技术领域 technical field
本发明涉及纳米材料领域,具体涉及一种CdS-OH/碳纳米管/聚丙烯腈杂化纳米纤维的制备方法。该杂化纳米纤维材料可用于光催化材料。 The invention relates to the field of nanometer materials, in particular to a preparation method of CdS-OH/carbon nanotube/polyacrylonitrile hybrid nanofiber. The hybrid nanofiber material can be used for photocatalytic materials.
背景技术 Background technique
硫化镉(CdS)纳米颗粒是一种很重要的II-VI族的半导体材料,在室温下的带隙能为2.42eV。CdS具有非线性光学性能、荧光性能和量子尺寸效应,因而得到了科研人员的广泛研究。CdS纳米颗粒有着很大的比表面积,容易发生团聚。为了避免团聚的发生,如何使用稳定剂来控制纳米颗粒的形态已成为一个重要的研究课题,以及在实际应用中迫切需要解决的现实问题。其中一种很简单温和的合成方法就是在室温下将2-巯基乙醇(ME)作为有机配体获得由羟基修饰的单分散CdS纳米颗粒(CdS-OH)(Feng 等,CdS nanoparticles chemically modified PAN functional materials: preparation and nonlinear optical properties,Eur. Polym. J., 2009,45,1058-1064)。 Cadmium sulfide (CdS) nanoparticles are a very important II-VI semiconductor material with a band gap energy of 2.42eV at room temperature. CdS has nonlinear optical properties, fluorescence properties and quantum size effect, so it has been widely studied by researchers. CdS nanoparticles have a large specific surface area and are prone to agglomeration. In order to avoid the occurrence of agglomeration, how to use stabilizers to control the morphology of nanoparticles has become an important research topic and a realistic problem that needs to be solved urgently in practical applications. One of the very simple and mild synthetic methods is to use 2-mercaptoethanol (ME) as an organic ligand at room temperature to obtain monodisperse CdS nanoparticles (CdS-OH) modified by hydroxyl groups (Feng et al., CdS nanoparticles chemically modified PAN functional materials: preparation and nonlinear optical properties, Eur. Polym. J., 2009, 45, 1058-1064).
为了能够保持甚至进一步提高CdS纳米颗粒的优异性能,一种有效的技术就是将CdS纳米颗粒和聚合物相结合,制成有机-无机杂化材料。聚合物不仅作为一个载体,而且能阻止CdS纳米颗粒的团聚、控制纳米颗粒的尺寸和分布以及改善它们的光稳定性。静电纺丝法可以很容易的制备出直径为几十到几百纳米的聚合物纳米纤维,且其产率较高,可以满足在过滤、催化、复合和支架材料等方面的应用。纳米纤维最主要的特点就是具有高的表面积和大的长径比。为了充分的利用这些特点,目前人们已通过静电纺丝法和溶液浸泡法相结合制备了CdS/聚丙烯腈(PAN)杂化纳米纤维,但由于CdS是由浸泡法引入纳米纤维表面的,一方面CdS与PAN纳米纤维的结合强度较低,在使用中易脱落,另一方面,浸泡法得到的CdS颗粒易发生团聚现象,颗粒大小为几十至几百纳米(Yang 等,Electrospinning of carbon/CdS coaxial nanofibers with photoluminescence and conductive properties,Mater Sci Eng B-Adv., 2007,140,48-52)。而采用溶液生长法制得的CdS-OH纳米颗粒(5 nm)与PAN共同制成纺丝液,再经过静电纺丝得到的CdS-OH/PAN杂化纳米纤维则不仅能够保证CdS-OH纳米颗粒与PAN稳定的结合在一起,而且有效地防止了CdS-OH纳米颗粒的团聚(Wang 等,Fabrication and characterization of electrospun CdS-OH/polyacrylonitrile hybrid nanofibers,Composites Part A, 2012,43,1869-1876)。在此基础上,在纺丝液中掺入碳纳米管(CNT),制成含CdS-OH、CNT和PAN这三种组分的纺丝液,通过静电纺丝法得到三元的CdS-OH/CNT/PAN杂化纳米纤维。CNT自发现以来就因其优异的机械性能、高的电导率、高化学稳定性和大的比表面积受到人们的青睐。因此,CNT的加入使杂化纳米纤维在保证材料的高比表面积、CdS-OH纳米颗粒低尺寸且均匀分布的基础上,CNT的良好的导电性又加强了其CdS-OH纳米颗粒在光照条件下的光生电子空穴对的分离,进一步提高了其光催效率。本发明以CdCl2、Na2S、ME、CNT和PAN为原料,通过溶液生长法和静电纺丝法相结合,制备了三元CdS-OH/CNT/PAN杂化纳米纤维,与传统方法制备的有机-无机杂化材料相比,杂化纳米纤维具有高比表面积和长径比,CdS-OH纳米颗粒的低尺寸及均匀分布,CNT的电导性,抑制光生电子空穴对的杂化等优越性。而且此杂化纳米纤维在光催化反应以后更易于回收利用。 In order to maintain or even further improve the excellent properties of CdS nanoparticles, an effective technology is to combine CdS nanoparticles and polymers to make organic-inorganic hybrid materials. The polymer not only serves as a carrier, but also prevents the aggregation of CdS nanoparticles, controls the size and distribution of nanoparticles, and improves their photostability. Electrospinning can easily prepare polymer nanofibers with a diameter of tens to hundreds of nanometers, and its yield is high, which can meet the applications in filtration, catalysis, composite and scaffold materials. The most important feature of nanofibers is their high surface area and large aspect ratio. In order to make full use of these characteristics, CdS/polyacrylonitrile (PAN) hybrid nanofibers have been prepared by combining electrospinning and solution immersion. However, since CdS is introduced into the surface of nanofibers by immersion, on the one hand, The bonding strength between CdS and PAN nanofibers is low, and it is easy to fall off during use. On the other hand, the CdS particles obtained by the soaking method are prone to agglomeration, and the particle size is tens to hundreds of nanometers (Yang et al., Electrospinning of carbon/CdS coaxial nanofibers with photoluminescence and conductive properties, Mater Sci Eng B-Adv., 2007, 140, 48-52). However, the CdS-OH nanoparticles (5 nm) prepared by the solution growth method and PAN are jointly made into a spinning solution, and then the CdS-OH/PAN hybrid nanofibers obtained by electrospinning can not only ensure that the CdS-OH nanoparticles It is stably combined with PAN and effectively prevents the agglomeration of CdS-OH nanoparticles (Wang et al., Fabrication and characterization of electrospun CdS-OH/polyacrylonitrile hybrid nanofibers, Composites Part A, 2012, 43, 1869-1876). On this basis, carbon nanotubes (CNT) were mixed into the spinning solution to make a spinning solution containing three components of CdS-OH, CNT and PAN, and the ternary CdS- OH/CNT/PAN hybrid nanofibers. Since their discovery, CNTs have been favored by people for their excellent mechanical properties, high electrical conductivity, high chemical stability, and large specific surface area. Therefore, the addition of CNTs enables the hybrid nanofibers to ensure the high specific surface area of the material, and the low-size and uniform distribution of CdS-OH nanoparticles. The separation of photogenerated electron-hole pairs further improves the photocatalytic efficiency. The present invention uses CdCl 2 , Na 2 S, ME, CNT and PAN as raw materials to prepare ternary CdS-OH/CNT/PAN hybrid nanofibers by combining solution growth method and electrospinning method. Compared with organic-inorganic hybrid materials, hybrid nanofibers have high specific surface area and aspect ratio, low size and uniform distribution of CdS-OH nanoparticles, electrical conductivity of CNT, and suppression of hybridization of photogenerated electron-hole pairs. sex. Moreover, the hybrid nanofibers are easier to recycle after the photocatalytic reaction.
发明内容 Contents of the invention
本发明利用溶液生长法和静电纺丝法相结合制备具有光催降解性能,易于回收利用的CdS-OH/CNT/PAN杂化纳米纤维。利用本方法制备的CdS-OH/ CNT/PAN杂化纳米纤维的平均直径为310 nm,杂化纳米纤维内部的CdS-OH纳米颗粒的平均直径约为5 nm。纳米纤维的直径可以通过调整纺丝液浓度、喷嘴直径、喷嘴与接收器距离等条件来实现。 The invention combines a solution growth method and an electrospinning method to prepare CdS-OH/CNT/PAN hybrid nanofibers which have photocatalytic degradation performance and are easy to recycle. The average diameter of the CdS-OH/CNT/PAN hybrid nanofibers prepared by this method is 310 nm, and the average diameter of the CdS-OH nanoparticles inside the hybrid nanofibers is about 5 nm. The diameter of nanofibers can be achieved by adjusting the concentration of the spinning solution, the diameter of the nozzle, and the distance between the nozzle and the receiver.
为实现本发明目的采用的技术方案是: The technical scheme adopted for realizing the object of the present invention is:
(1)CdS-OH/DMF悬浮液的制备 (1) Preparation of CdS-OH/DMF suspension
①在磁力搅拌下,将30 mL 的N,N-二甲基甲酰胺(DMF)溶液逐滴加入到3 mL的 CdCl2的水溶液中,搅拌10min,得到A溶液。 ① Under magnetic stirring, add 30 mL of N,N-dimethylformamide (DMF) solution dropwise to 3 mL of CdCl 2 aqueous solution, and stir for 10 min to obtain A solution.
所述的DMF溶液含有5 mmol的 2-巯基乙醇,所述的CdCl2的水溶液中含2.5 mmol的CdCl2。 The DMF solution contains 5 mmol of 2-mercaptoethanol, and the CdCl 2 aqueous solution contains 2.5 mmol of CdCl 2 .
②将3 mL的Na2S的水溶液逐滴加入到A溶液中,混匀,配制成混合溶液,此时,无色透明的混合溶液先变成黄色并逐渐变得浑浊。静置,在30℃下反应4~5.5小时,黄色溶液再次变得澄清透明,得到B溶液。
所述的Na2S的水溶液中含有1.5 mmol Na2S。 The Na 2 S aqueous solution contains 1.5 mmol Na 2 S.
③将B溶液转移到旋转蒸发仪上在85~92℃下进行减压蒸馏,除去水。在减压蒸馏的过程中,NaCl因不溶于DMF而从溶液中沉淀析出,因此,通过离心除去沉淀析出的NaCl就得到澄清透明的CdS-OH/DMF悬浮液。 ③Transfer the B solution to a rotary evaporator for vacuum distillation at 85-92°C to remove water. In the process of vacuum distillation, NaCl was precipitated out of the solution because it was insoluble in DMF. Therefore, the precipitated NaCl was removed by centrifugation to obtain a clear and transparent CdS-OH/DMF suspension.
(2)静电纺丝液的制备 (2) Preparation of electrospinning solution
①将PAN溶解于65℃DMF中制成澄清的溶液,之后将丙酮和溴化十六烷基三甲胺(CTAB)加入溶液中制成C溶液。C溶液中PAN,质量浓度为11%,丙酮质量浓度为6.1%,CTAB质量浓度为0.03%。 ①Dissolve PAN in DMF at 65°C to make a clear solution, then add acetone and cetyltrimethylamine bromide (CTAB) into the solution to make solution C. In solution C, the mass concentration of PAN is 11%, the mass concentration of acetone is 6.1%, and the mass concentration of CTAB is 0.03%.
②将碳纳米管(CNT)加入到步骤(1)制备的CdS-OH/DMF悬浮液中,磁力搅拌30 min,并在超声振荡器中超声3小时,制成均匀的黑色悬浮液D。 ② Add carbon nanotubes (CNTs) to the CdS-OH/DMF suspension prepared in step (1), stir magnetically for 30 min, and sonicate in an ultrasonic oscillator for 3 hours to make a uniform black suspension D.
黑色悬浮液D中CNT的质量分数为0.004%~0.4%。 The mass fraction of CNT in the black suspension D is 0.004%-0.4%.
③在磁力搅拌下将黑色悬浮液D缓慢滴入到C溶液中,搅拌30 min后在超声振荡器中超声3小时。得到均匀的CdS-OH/ CNT/PAN纺丝液。 ③ Slowly drop the black suspension D into solution C under magnetic stirring, stir for 30 min and then sonicate in an ultrasonic oscillator for 3 hours. Obtain uniform CdS-OH/CNT/PAN spinning solution.
(3)静电纺丝制备CdS-OH/ CNT/PAN杂化纳米纤维 (3) Preparation of CdS-OH/CNT/PAN hybrid nanofibers by electrospinning
将CdS-OH/CNT/PAN纺丝液转移到10 mL的注射器中(注射器针头的内径为1mm),利用电纺装置,高压电源正极与注射器针头连接,负极与覆盖有铝箔的平板接收器连接,在温度为24~30℃,湿度为40~60%,电源电压为12 ~15 kV,针头与接收器的距离为15 cm,纺丝液流速为2.5 μL/min的条件下进行静电纺丝,得到CdS-OH/CNT/PAN杂化纳米纤维。 Transfer the CdS-OH/CNT/PAN spinning solution into a 10 mL syringe (the inner diameter of the syringe needle is 1 mm), using the electrospinning device, connect the positive pole of the high-voltage power supply to the syringe needle, and connect the negative pole to the flat receiver covered with aluminum foil , at a temperature of 24-30°C, a humidity of 40-60%, a power supply voltage of 12-15 kV, a distance between the needle and the receiver of 15 cm, and a spinning solution flow rate of 2.5 μL/min. , to obtain CdS-OH/CNT/PAN hybrid nanofibers.
本发明制备的CdS-OH/CNT/PAN杂化纳米纤维的优点是: The advantage of the CdS-OH/CNT/PAN hybrid nanofiber prepared by the present invention is:
1、本发明采用溶液生长法和静电纺丝法相结合制备杂化纳米纤维,工艺简单,产量高。 1. The present invention adopts the combination of solution growth method and electrospinning method to prepare hybrid nanofibers, with simple process and high yield.
2、本发明制备的CdS-OH/CNT/PAN杂化纳米纤维的平均直径为310 nm,CdS-OH纳米颗粒的平均直径为5 nm,此制备方法有效地抑制了CdS-OH纳米颗粒的团聚。 2. The average diameter of CdS-OH/CNT/PAN hybrid nanofibers prepared by the present invention is 310 nm, and the average diameter of CdS-OH nanoparticles is 5 nm. This preparation method effectively suppresses the agglomeration of CdS-OH nanoparticles .
3、本发明制备的CdS-OH/CNT/PAN杂化纳米纤维具有比表面积大,机械性能好的特点。 3. The CdS-OH/CNT/PAN hybrid nanofiber prepared by the present invention has the characteristics of large specific surface area and good mechanical properties.
4、本发明制备的CdS-OH/CNT/PAN杂化纳米纤维的光生电子空穴对的复合受到CNT的抑制,提高了它对有机染料有高的光催降解效率,且纳米纤维易于回收利用。 4. The recombination of photogenerated electron-hole pairs of the CdS-OH/CNT/PAN hybrid nanofiber prepared by the present invention is inhibited by CNT, which improves its high photocatalytic degradation efficiency for organic dyes, and the nanofiber is easy to recycle .
附图说明 Description of drawings
图1是本发明所述的方法制备的dS-OH/CNT/PAN杂化纳米纤维的结构模型图。 Fig. 1 is a structural model diagram of the dS-OH/CNT/PAN hybrid nanofiber prepared by the method of the present invention.
图1中, 1是聚丙烯腈(PAN);2是CdS纳米颗粒(CdS-OH);3是碳纳米管(CNT)。 In Figure 1, 1 is polyacrylonitrile (PAN); 2 is CdS nanoparticles (CdS-OH); 3 is carbon nanotubes (CNT).
具体实施方式 Detailed ways
实施例1 Example 1
(1)CdS-OH/DMF悬浮液的制备 (1) Preparation of CdS-OH/DMF suspension
①在磁力搅拌下,将30 mL含有5 mmol 2-巯基乙醇(ME)的DMF溶液滴入到3 mL含2.5 mmol CdCl2的水溶液中,搅拌10min,得到A溶液。 ①Under magnetic stirring, drop 30 mL of DMF solution containing 5 mmol 2-mercaptoethanol (ME) into 3 mL of aqueous solution containing 2.5 mmol CdCl 2 and stir for 10 min to obtain A solution.
②将3 mL含1.5 mmol Na2S的水溶液滴加到A溶液中,此时,无色透明的溶液立即变成黄色并逐渐变得浑浊。待此混合溶液在30℃下反应4小时之后,黄色溶液再次变得澄清透明,得到B溶液。
③将B溶液转移到旋转蒸发仪上在85℃下进行减压蒸馏,除去水和少部分的DMF。减压蒸馏后,通过离心除去沉淀出来的NaCl,得到澄清透明的质量浓度为1.2% 的CdS-OH/DMF悬浮液。 ③Transfer the B solution to a rotary evaporator and carry out vacuum distillation at 85°C to remove water and a small part of DMF. After vacuum distillation, the precipitated NaCl was removed by centrifugation to obtain a clear and transparent CdS-OH/DMF suspension with a mass concentration of 1.2%.
(2)静电纺丝液的制备 (2) Preparation of electrospinning solution
①将1.5 g PAN溶解于11.0 g DMF中制成澄清的溶液,之后将0.8 g丙酮和0.004 g 溴化十六烷基三甲胺(CTAB)加入溶液中,制成质量浓度为组成为11% PAN, 6.1% 丙酮,0.03% CTAB的C溶液。 ①Dissolve 1.5 g PAN in 11.0 g DMF to make a clear solution, then add 0.8 g acetone and 0.004 g cetyltrimethylamine bromide (CTAB) into the solution to make a mass concentration of 11% PAN , 6.1% acetone, 0.03% C solution of CTAB.
②将0.0016 g 的多壁碳纳米管(MWCNT)加入到6.6 g 质量浓度为1.2% 的CdS-OH/DMF悬浮液中,磁力搅拌30 min,并在超声振荡器中超声3小时,制成均匀的黑色悬浮液D。 ② Add 0.0016 g of multi-walled carbon nanotubes (MWCNT) to 6.6 g of CdS-OH/DMF suspension with a mass concentration of 1.2%, magnetically stir for 30 min, and ultrasonicate for 3 hours in an ultrasonic oscillator to make a uniform black suspension D.
③在磁力搅拌下将黑色悬浮液D缓慢加入C溶液中,搅拌30 min后在超声振荡器中超声3小时,得到20 g 质量浓度组成为7.5% PAN、0.4% CdS-OH和0.008% MWCNT的均一稳定的CdS-OH/MWCNT/PAN纺丝液。 ③The black suspension D was slowly added to the C solution under magnetic stirring, and after stirring for 30 min, it was sonicated in an ultrasonic oscillator for 3 hours to obtain 20 g of 7.5% PAN, 0.4% CdS-OH and 0.008% MWCNT. Uniform and stable CdS-OH/MWCNT/PAN spinning solution.
(3)CdS-OH/MWCNT/PAN杂化纳米纤维的制备 (3) Preparation of CdS-OH/MWCNT/PAN hybrid nanofibers
将CdS-OH/MWCNT/PAN纺丝液转移到10 mL的注射器中(注射器针尖的内径为1mm),利用电纺装置,高压电源正极与注射器针尖连接,负极与覆盖有铝箔的平板接收器连接,在温度为30℃,湿度为40%的条件下进行静电纺丝。其中,电源电压为12 kV,针尖与接收器的距离为15 cm,溶液流速为2.5 μL/min。得到CdS-OH:MWCNT︰PAN的质量比为5︰0.1︰94.9的CdS-OH/MWCNT /PAN杂化纳米纤维。 Transfer the CdS-OH/MWCNT/PAN spinning solution into a 10 mL syringe (the inner diameter of the needle tip of the syringe is 1 mm), using the electrospinning device, connect the positive pole of the high-voltage power supply to the needle tip of the syringe, and connect the negative pole to the flat receiver covered with aluminum foil , Electrospinning was carried out at a temperature of 30 °C and a humidity of 40%. Among them, the power supply voltage was 12 kV, the distance between the needle tip and the receiver was 15 cm, and the solution flow rate was 2.5 μL/min. CdS-OH/MWCNT/PAN hybrid nanofibers with a mass ratio of CdS-OH:MWCNT:PAN of 5:0.1:94.9 were obtained.
(4)取100 mg CdS-OH/MWCNT /PAN杂化纳米纤维放入100 mL 10 mg/L的甲基橙溶液中,500 W高压汞灯照射下磁力搅拌50 min,测定溶液中甲基橙的降解率为90%。 (4) Take 100 mg of CdS-OH/MWCNT /PAN hybrid nanofibers and put them into 100 mL of 10 mg/L methyl orange solution, stir magnetically for 50 min under the irradiation of a 500 W high-pressure mercury lamp, and measure the methyl orange in the solution. The degradation rate is 90%.
实施例 2 Example 2
(1)CdS-OH/DMF悬浮液的制备同实施例1 (1) The preparation of CdS-OH/DMF suspension is the same as in Example 1
(2)静电纺丝液的制备 (2) Preparation of electrospinning solution
①将1.5 g PAN溶解于11.0 g DMF中制成澄清的溶液,然后将0.83 g丙酮和0.0044 g 溴化十六烷基三甲胺(CTAB)加入溶液中,制成质量浓度组成为11% PAN, 6.1% 丙酮,0.03% CTAB的C溶液。 ①Dissolve 1.5 g PAN in 11.0 g DMF to make a clear solution, then add 0.83 g acetone and 0.0044 g cetyltrimethylamine bromide (CTAB) into the solution to make a mass concentration composition of 11% PAN, 6.1% acetone, 0.03% CTAB solution in C.
②将0.008 g 的MWCNT加入到6.61 g 质量浓度为1.2% CdS-OH/DMF悬浮液中,磁力搅拌30 min,并在超声振荡器中超声3小时,制成均匀的黑色悬浮液D。 ② Add 0.008 g of MWCNT to 6.61 g of 1.2% CdS-OH/DMF suspension, magnetically stir for 30 min, and ultrasonicate for 3 hours in an ultrasonic oscillator to make a uniform black suspension D.
③在磁力搅拌下将悬浮液D缓慢加入到C溶液中,搅拌30 min后在超声振荡器中超声3小时。得到20g 质量浓度组成为7.5% PAN、0.4% CdS-OH和0.04% MWCNT的均一稳定的CdS-OH/MWCNT/PAN纺丝液。 ③ Slowly add suspension D to solution C under magnetic stirring, stir for 30 min, and then ultrasonicate for 3 hours in an ultrasonic oscillator. Obtained 20g mass concentration composition is the homogeneous and stable CdS-OH/MWCNT/PAN spinning solution of 7.5%PAN, 0.4%CdS-OH and 0.04%MWCNT.
(3)CdS-OH/MWCNT/PAN杂化纳米纤维的制备 (3) Preparation of CdS-OH/MWCNT/PAN hybrid nanofibers
将CdS-OH/MWCNT/PAN纺丝液转移到10 mL的注射器中(注射器针尖的内径为1mm),利用电纺装置,高压电源正极与注射器针尖连接,负极与覆盖有铝箔的平板接收器连接,在温度为24℃,湿度为60%的条件下进行静电纺丝。其中,电源电压为15 kV,针尖与接收器的距离为15 cm,溶液流速为2.5 μL/min。得到CdS-OH:MWCNT︰PAN的质量比为为5︰0.5︰94.5的CdS-OH/MWCNT /PAN杂化纳米纤维。 Transfer the CdS-OH/MWCNT/PAN spinning solution into a 10 mL syringe (the inner diameter of the needle tip of the syringe is 1 mm), using the electrospinning device, connect the positive pole of the high-voltage power supply to the needle tip of the syringe, and connect the negative pole to the flat receiver covered with aluminum foil , Electrospinning was carried out at a temperature of 24 °C and a humidity of 60%. Among them, the power supply voltage was 15 kV, the distance between the needle tip and the receiver was 15 cm, and the solution flow rate was 2.5 μL/min. CdS-OH/MWCNT/PAN hybrid nanofibers with a mass ratio of CdS-OH:MWCNT:PAN of 5:0.5:94.5 were obtained.
(4)取100 mg CdS-OH/MWCNT /PAN杂化纳米纤维放入100 mL 10 mg/L的甲基橙溶液中,500 W高压汞灯照射下磁力搅拌50 min,测定溶液中甲基橙的降解率为94%。 (4) Take 100 mg of CdS-OH/MWCNT /PAN hybrid nanofibers and put them into 100 mL of 10 mg/L methyl orange solution, stir magnetically for 50 min under the irradiation of a 500 W high-pressure mercury lamp, and measure the methyl orange in the solution. The degradation rate is 94%.
实施例 3 Example 3
(1)CdS-OH/DMF悬浮液的制备同实施例1 (1) The preparation of CdS-OH/DMF suspension is the same as in Example 1
(2)静电纺丝液的制备 (2) Preparation of electrospinning solution
①将1.5 g PAN溶解于11.0 g DMF中制成澄清的溶液,之后将0.83 g丙酮和0.0044 g 溴化十六烷基三甲胺(CTAB)加入溶液中,制成质量浓度组成为11% PAN, 6.1% 丙酮,0.03% CTAB的C溶液。 ①Dissolve 1.5 g PAN in 11.0 g DMF to make a clear solution, then add 0.83 g acetone and 0.0044 g cetyltrimethylamine bromide (CTAB) into the solution to make a mass concentration composition of 11% PAN, 6.1% acetone, 0.03% CTAB solution in C.
②将0.008 g 的单壁碳纳米管(SWCNT)加入到6.65 g 质量浓度为1.2% CdS-OH/DMF悬浮液中,磁力搅拌30 min,并在超声振荡器中超声3小时,制成均匀的黑色悬浮液D。 ② Add 0.008 g of single-walled carbon nanotubes (SWCNT) to 6.65 g of 1.2% CdS-OH/DMF suspension, magnetically stir for 30 min, and ultrasonicate for 3 hours in an ultrasonic oscillator to make a uniform black suspension D.
③在磁力搅拌下将悬浮液D缓慢加入到C溶液中,搅拌30 min后在超声振荡器中超声3小时。得到20g 质量浓度组成为7.5% PAN、0.4% CdS-OH和0.04% MWCNT的均一稳定的CdS-OH/SWCNT/PAN纺丝液。 ③ Slowly add suspension D to solution C under magnetic stirring, stir for 30 min, and then ultrasonicate for 3 hours in an ultrasonic oscillator. Obtained 20g mass concentration composition is the homogeneous and stable CdS-OH/SWCNT/PAN spinning solution of 7.5%PAN, 0.4%CdS-OH and 0.04%MWCNT.
(3)CdS-OH/SWCNT/PAN杂化纳米纤维的制备 (3) Preparation of CdS-OH/SWCNT/PAN hybrid nanofibers
将CdS-OH/SWCNT/PAN纺丝液转移到10 mL的注射器中(注射器针尖的内径为1mm),利用实验室的电纺装置,高压电源正极与注射器针尖连接,负极与覆盖有铝箔的平板接收器连接,在温度为27℃,湿度为50%的条件下进行静电纺丝。其中,电源电压为12 kV,针尖与接收器的距离为15 cm,溶液流速为2.5 μL/min。得到CdS-OH:SWCNT︰PAN的质量比为为5︰1 ︰94.0的CdS-OH/SWCNT /PAN杂化纳米纤维。 Transfer the CdS-OH/SWCNT/PAN spinning solution into a 10 mL syringe (the inner diameter of the needle tip of the syringe is 1 mm), using the electrospinning device in the laboratory, the positive pole of the high-voltage power supply is connected to the needle tip of the syringe, and the negative pole is connected to the flat plate covered with aluminum foil. With the receiver attached, electrospinning was performed at a temperature of 27 °C and a humidity of 50%. Among them, the power supply voltage was 12 kV, the distance between the needle tip and the receiver was 15 cm, and the solution flow rate was 2.5 μL/min. CdS-OH/SWCNT/PAN hybrid nanofibers with a mass ratio of CdS-OH:SWCNT:PAN of 5:1:94.0 were obtained.
(4)取100 mg CdS-OH/SWCNT /PAN杂化纳米纤维放入100 mL 10 mg/L的甲基橙溶液中,500 W高压汞灯照射下磁力搅拌50 min,测定溶液中甲基橙的降解率为97%。 (4) Take 100 mg CdS-OH/SWCNT /PAN hybrid nanofibers into 100 mL of 10 mg/L methyl orange solution, stir magnetically for 50 min under the irradiation of a 500 W high-pressure mercury lamp, and measure the methyl orange in the solution. The degradation rate is 97%.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2012104352246A CN102877151A (en) | 2012-11-05 | 2012-11-05 | Preparation method of CdS/carbon nano tube/polyacrylonitrile hybrid nano-fiber |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2012104352246A CN102877151A (en) | 2012-11-05 | 2012-11-05 | Preparation method of CdS/carbon nano tube/polyacrylonitrile hybrid nano-fiber |
Publications (1)
Publication Number | Publication Date |
---|---|
CN102877151A true CN102877151A (en) | 2013-01-16 |
Family
ID=47478657
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2012104352246A Pending CN102877151A (en) | 2012-11-05 | 2012-11-05 | Preparation method of CdS/carbon nano tube/polyacrylonitrile hybrid nano-fiber |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102877151A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104674365A (en) * | 2015-03-04 | 2015-06-03 | 河南省科学院能源研究所有限公司 | Biomass tar-PAN (polyacrylonitrile) fibrous material and preparation method thereof |
CN105019056A (en) * | 2015-07-01 | 2015-11-04 | 宁波工程学院 | High-purity TiO2/CuO/Cu fully mesoporous nanofibers |
CN105483938A (en) * | 2015-11-30 | 2016-04-13 | 福建师范大学 | Method for preparing PBT/chitosan graft nanofiber membrane through electrostatic spinning method |
CN105999859A (en) * | 2016-07-14 | 2016-10-12 | 新时代健康产业(集团)有限公司 | Efficient low-resistance antibacterial filtering material containing bamboo leaf flavonoids and preparation method and application of efficient low-resistance antibacterial filtering material |
CN110052263A (en) * | 2019-04-30 | 2019-07-26 | 广东工业大学 | A kind of photocatalytic nanometer fibrous material and its preparation method and application |
CN113604969A (en) * | 2021-07-19 | 2021-11-05 | 东北林业大学 | Preparation method of cellulose-based composite nanofiber membrane |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1618850A (en) * | 2004-10-11 | 2005-05-25 | 东华大学 | A kind of composite material fiber based on carbon nanotube and preparation method thereof |
CN101413154A (en) * | 2008-11-21 | 2009-04-22 | 东华大学 | Carbon nano-tube / polypropylene / polylactic acid complex fiber material and preparation thereof |
CN102600905A (en) * | 2012-02-20 | 2012-07-25 | 合肥工业大学 | Semiconductor hetero-junction/conductive polymer fiber membrane composite photocatalyst and preparation method thereof |
-
2012
- 2012-11-05 CN CN2012104352246A patent/CN102877151A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1618850A (en) * | 2004-10-11 | 2005-05-25 | 东华大学 | A kind of composite material fiber based on carbon nanotube and preparation method thereof |
CN101413154A (en) * | 2008-11-21 | 2009-04-22 | 东华大学 | Carbon nano-tube / polypropylene / polylactic acid complex fiber material and preparation thereof |
CN102600905A (en) * | 2012-02-20 | 2012-07-25 | 合肥工业大学 | Semiconductor hetero-junction/conductive polymer fiber membrane composite photocatalyst and preparation method thereof |
Non-Patent Citations (4)
Title |
---|
《composites:Part A(Applied Science and Manufacturing》 20120807 Qiaoying Wang等 "Fabrication and characterization of electrospun CdS-OH/polyacrylonitrile hybrid nanofibers" 第1869-1876页 1-6 第43卷, 第11期 * |
《化学进展》 20110430 肖信等 "碳纳米管/半导体复合材料光催化研究进展" 第657-668页 1-6 第23卷, 第4期 * |
QIAOYING WANG等: ""Fabrication and characterization of electrospun CdS-OH/polyacrylonitrile hybrid nanofibers"", 《COMPOSITES:PART A(APPLIED SCIENCE AND MANUFACTURING》 * |
肖信等: ""碳纳米管/半导体复合材料光催化研究进展"", 《化学进展》 * |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104674365A (en) * | 2015-03-04 | 2015-06-03 | 河南省科学院能源研究所有限公司 | Biomass tar-PAN (polyacrylonitrile) fibrous material and preparation method thereof |
CN105019056A (en) * | 2015-07-01 | 2015-11-04 | 宁波工程学院 | High-purity TiO2/CuO/Cu fully mesoporous nanofibers |
CN105019056B (en) * | 2015-07-01 | 2018-12-21 | 宁波工程学院 | High purity Ti O2The full meso-porous nano fiber of/CuO/Cu |
CN105483938A (en) * | 2015-11-30 | 2016-04-13 | 福建师范大学 | Method for preparing PBT/chitosan graft nanofiber membrane through electrostatic spinning method |
CN105999859A (en) * | 2016-07-14 | 2016-10-12 | 新时代健康产业(集团)有限公司 | Efficient low-resistance antibacterial filtering material containing bamboo leaf flavonoids and preparation method and application of efficient low-resistance antibacterial filtering material |
CN110052263A (en) * | 2019-04-30 | 2019-07-26 | 广东工业大学 | A kind of photocatalytic nanometer fibrous material and its preparation method and application |
CN113604969A (en) * | 2021-07-19 | 2021-11-05 | 东北林业大学 | Preparation method of cellulose-based composite nanofiber membrane |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102877151A (en) | Preparation method of CdS/carbon nano tube/polyacrylonitrile hybrid nano-fiber | |
CN102850576B (en) | Nanocomposite scaffold assembled with chitosan scaffold and its preparation method and application | |
CN105752966B (en) | A kind of preparation method of graphene/hollow Nano carbon balls | |
CN103121705B (en) | Preparation method of CuS nanoparticles, product and application thereof | |
CN103301860B (en) | Preparation method of multiwalled carbon nanotube supported silver phosphate visible light photocatalyst | |
CN103691433B (en) | A kind of Ag doped Ti O 2material, and its preparation method and application | |
CN102553595A (en) | Preparation method of nano ferrate/carbon nano tube composite materials | |
CN104445167A (en) | Preparation method of water-soluble graphene | |
CN102674334A (en) | Preparation method of graphene with nano ferroferric oxide precipitated on surface | |
CN102580739A (en) | Graphene/silver molybdenum oxide compound visible-light catalyst and preparation method thereof | |
CN103286318A (en) | Preparation method of nano precious metal-carbon nano tube-graphene composite and nano precious metal-carbon nano tube-graphene composite product | |
CN103031618A (en) | Preparation method of graphene oxide hollow fiber and graphene hollow fiber | |
CN103956470A (en) | Two-dimensional layered composite film and preparation method and application thereof | |
CN104167295B (en) | Carbon nano tube surface loaded nano cobaltosic oxide composite material and preparation method thereof | |
CN109360971A (en) | A kind of preparation method of microspherical manganese selenide/carbon composite material | |
CN102626519B (en) | Prostatic cancer targeted multifunctional carbon nanotube / polyethylenimine drug delivery carrier, and preparation method and application thereof | |
CN104588014A (en) | Method for depositing gold nanoparticles on surface of one-dimensional ZnO material | |
CN103721750B (en) | A kind of Large Diameter Pipeline carbon nano-tube catalyst and preparation method thereof | |
CN105602201B (en) | A kind of preparation method of high-strength conductive high molecule nano composite material | |
CN106047939B (en) | A method for preparing carbon nanotube-based composite materials based on a biological method | |
CN104194233B (en) | PAA-calcium carbonate composite Nano rod and its preparation method | |
CN102242407B (en) | Method for preparing silicon oxide/silver nano composite fibers | |
CN103943372A (en) | Nickel hydroxide/multi-walled carbon nanotube composite material and preparation method thereof | |
CN101429032B (en) | CuO-carbon nano-tube composite micro-nano-sphere, preparation and uses thereof | |
CN102888028B (en) | Method for preparing chitosan-ferroferric oxide (CS-Fe3O4) composite nanoparticles by self-assembly |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20130116 |