CN102854611A - Micro imaging lens - Google Patents
Micro imaging lens Download PDFInfo
- Publication number
- CN102854611A CN102854611A CN2012100615647A CN201210061564A CN102854611A CN 102854611 A CN102854611 A CN 102854611A CN 2012100615647 A CN2012100615647 A CN 2012100615647A CN 201210061564 A CN201210061564 A CN 201210061564A CN 102854611 A CN102854611 A CN 102854611A
- Authority
- CN
- China
- Prior art keywords
- lens
- refractive power
- present
- miniature imaging
- imaging lens
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000003384 imaging method Methods 0.000 title claims abstract description 63
- 230000003287 optical effect Effects 0.000 claims abstract description 28
- 239000011521 glass Substances 0.000 claims description 16
- 239000005357 flat glass Substances 0.000 claims description 4
- 238000010586 diagram Methods 0.000 description 37
- 239000000463 material Substances 0.000 description 15
- 230000000694 effects Effects 0.000 description 3
- 238000004904 shortening Methods 0.000 description 2
- 230000007547 defect Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
Images
Landscapes
- Lenses (AREA)
Abstract
Description
技术领域 technical field
本发明与光学装置有关,更详而言之是指一种微小型成像镜头。The present invention relates to an optical device, and more specifically refers to a miniature imaging lens.
背景技术 Background technique
近年来,随着科技的进步,如相机、摄影机、显微镜或扫描仪等影像撷取装置,为方便人们携带与使用,而逐渐趋向小型化与轻量化,此将使得影像撷取装置所用的成像镜头的体积也因此被大幅缩小。另外,除了小型化与轻量化外,也要能够具有更高的光学效能,才能使达成高分辨率和高对比的展现。因此,小型化和高光学效能,是成像镜头不可缺两项要件。In recent years, with the advancement of technology, image capture devices such as cameras, video cameras, microscopes or scanners have gradually become smaller and lighter in order to facilitate people's portability and use. This will make the imaging devices used in image capture devices The size of the lens is also greatly reduced. In addition, in addition to miniaturization and light weight, higher optical performance is also required to achieve high-resolution and high-contrast display. Therefore, miniaturization and high optical performance are two indispensable requirements for imaging lenses.
然而,目前影像撷取装置所采用的成像镜头,为达到高光学效能的目的,不外乎使用了多组的镜群,甚至有镜片总合多于十片以上者。另外,亦有为达到使成像镜头小型化的目的,而仅使用数片镜片,却使得其光学效能无法有效提升。However, in order to achieve high optical performance, the current imaging lens used by the image capture device is nothing more than using a plurality of lens groups, and some lenses even have more than ten lenses in total. In addition, in order to achieve the purpose of miniaturizing the imaging lens, only a few lenses are used, but the optical performance cannot be effectively improved.
综合以上所述,已知的成像镜头仍未侦完善,且尚有待改进之处。Based on the above, the known imaging lens is still not perfect, and still needs to be improved.
发明内容 Contents of the invention
本发明要解决的技术问题在于,针对现有技术中的成像镜头无法同时满足小型化和高光学效能的缺陷,提供一种微小型成像镜头,不仅体积小且具有高光学效能。The technical problem to be solved by the present invention is to provide a miniaturized imaging lens which is not only small in size but also has high optical efficiency in view of the defect that the imaging lens in the prior art cannot satisfy miniaturization and high optical performance at the same time.
本发明为解决其技术问题所采用的技术方案是,提供一种微小型成像镜头,包含有沿光轴并由物侧至像侧依序排列的第一镜片、第二镜片、第三镜片、光圈、第四镜片以及第五镜片。其中,该第一镜片为具有负屈光力的新月型镜片,其凸面朝向该物侧,且至少一面为非球面表面;该第二镜片为具有正屈光力的双凸镜片;该第三镜片为具有负屈光力的双凹镜片;该第四镜片为具有正屈光力的双凸镜片,且至少一面为非球面表面;该第五镜片为具有负屈光力的镜片。The technical solution adopted by the present invention to solve its technical problems is to provide a micro-miniature imaging lens, which includes a first lens, a second lens, a third lens, Aperture, fourth lens and fifth lens. Wherein, the first lens is a crescent lens with negative refractive power, its convex surface faces the object side, and at least one side is an aspheric surface; the second lens is a biconvex lens with positive refractive power; the third lens has The biconcave lens with negative refractive power; the fourth lens is a biconvex lens with positive refractive power, and at least one side is an aspheric surface; the fifth lens is a lens with negative refractive power.
藉此,利用上述镜片与光圈的配置而达到小型化与高光学效能的目的。In this way, the purpose of miniaturization and high optical performance can be achieved by using the arrangement of the lens and the aperture.
附图说明 Description of drawings
图1为本发明第一较佳实施例的镜片配置图。Fig. 1 is a lens configuration diagram of the first preferred embodiment of the present invention.
图2为本发明第一较佳实施例的光路图。Fig. 2 is an optical path diagram of the first preferred embodiment of the present invention.
图3A为本发明第一较佳实施例的场曲图及畸变图。FIG. 3A is a field curvature diagram and a distortion diagram of the first preferred embodiment of the present invention.
图3B为本发明第一较佳实施例的横向光扇图。FIG. 3B is a lateral light fan diagram of the first preferred embodiment of the present invention.
图3C为本发明第一较佳实施例的离焦调制传递函数图。FIG. 3C is a diagram of the through-focus modulation transfer function of the first preferred embodiment of the present invention.
图3D为本发明第一较佳实施例的空间频率调制传递函数图。FIG. 3D is a diagram of the spatial frequency modulation transfer function of the first preferred embodiment of the present invention.
图4为本发明第二较佳实施例的镜片配置图。Fig. 4 is a lens configuration diagram of the second preferred embodiment of the present invention.
图5为本发明第二较佳实施例的光路图。Fig. 5 is an optical path diagram of the second preferred embodiment of the present invention.
图6A为本发明第二较佳实施例的场曲图及畸变图。FIG. 6A is a field curvature diagram and a distortion diagram of the second preferred embodiment of the present invention.
图6B为本发明第二较佳实施例的横向光扇图。FIG. 6B is a lateral light fan diagram of the second preferred embodiment of the present invention.
图6C为本发明第二较佳实施例的离焦调制传递函数图。FIG. 6C is a diagram of the through-focus modulation transfer function of the second preferred embodiment of the present invention.
图6D为本发明第二较佳实施例的空间频率调制传递函数图。FIG. 6D is a diagram of the spatial frequency modulation transfer function of the second preferred embodiment of the present invention.
图7为本发明第三较佳实施例的镜片配置图。Fig. 7 is a lens configuration diagram of the third preferred embodiment of the present invention.
图8为本发明第三较佳实施例的光路图。Fig. 8 is an optical path diagram of the third preferred embodiment of the present invention.
图9A为本发明第三较佳实施例的场曲图及畸变图。FIG. 9A is a field curvature diagram and a distortion diagram of the third preferred embodiment of the present invention.
图9B为本发明第三较佳实施例的横向光扇图。FIG. 9B is a lateral light fan diagram of the third preferred embodiment of the present invention.
图9C为本发明第三较佳实施例的离焦调制传递函数图。FIG. 9C is a diagram of the through-focus modulation transfer function of the third preferred embodiment of the present invention.
图9D为本发明第三较佳实施例的空间频率调制传递函数图。FIG. 9D is a diagram of the spatial frequency modulation transfer function of the third preferred embodiment of the present invention.
具体实施方式 Detailed ways
为能更清楚地说明本发明,兹举较佳实施例并配合附图详细说明如后。In order to illustrate the present invention more clearly, preferred embodiments are given and described in detail with accompanying drawings as follows.
请参阅图1,为本发明第一较佳实施例的微小型成像镜头1的镜片配置图。图2为图1所示实施例的光路图。配合图1及图2,以下将详细说明本发明第一实施例的微小型成像镜头1。Please refer to FIG. 1 , which is a lens arrangement diagram of a
该微小型成像镜头1包含有沿光轴Z并由物侧至像侧依序排列的第一镜片L1、第二镜片L2、第三镜片L3、光圈ST、第四镜片L4以及第五镜片L5。另外,依使用上的需求,在该第五镜片L5与成像平面IP(Image Plane)之间可选择性地设置滤光片CF,是平板玻璃。其中:The
该第一镜片L1由玻璃材质所制成,且为一个具有负屈光力的新月型镜片,其凸面朝向物侧。另外,该第一镜片L1的凸面S1与凹面S2皆为非球面表面。The first lens L1 is made of glass material, and is a crescent-shaped lens with negative refractive power, with its convex surface facing the object side. In addition, both the convex surface S1 and the concave surface S2 of the first lens L1 are aspheric surfaces.
该第二镜片L2由玻璃材质所制成,且为一个具有正屈光力的双凸镜片。该第三镜片L3由玻璃材质所制成,且为一个具有负屈光力的双凹镜片。另外,该第二镜片L2与该第三镜片L3胶黏形成一个具有正屈光力的胶合镜片L23。The second lens L2 is made of glass material and is a biconvex lens with positive refractive power. The third lens L3 is made of glass material and is a biconcave lens with negative refractive power. In addition, the second lens L2 is glued to the third lens L3 to form a cemented lens L23 with positive refractive power.
该第四镜片L4由玻璃材质所制成,且为一个具有正屈光力的双凸镜片。另外,该第四镜片L4的两个凸面S8、S9皆为非球面表面。The fourth lens L4 is made of glass material and is a biconvex lens with positive refractive power. In addition, the two convex surfaces S8 and S9 of the fourth lens L4 are both aspheric surfaces.
该第五镜片L5由玻璃材质所制成,且为一个具有负屈光力的新月型镜片,其凸面S11朝向像侧。The fifth lens L5 is made of glass material, and is a crescent-shaped lens with negative refractive power, and its convex surface S11 faces the image side.
而上述微小型成像镜头1的镜片配置中,该第一镜片L1的负屈光力特性、该第四镜片L4的正屈光力特性、以及该二镜片L1、L4的非球面设计,可使该微小型成像镜头1具有较佳的成像效果,并可有效缩短镜头总长,更可使该微小型成像镜头1得到较大的可视角(Field of View Angle,FOV)。In the above-mentioned lens configuration of the
本发明第一实施例的微小型成像镜头1的焦距F(Focus Length)、数值孔径Fno(F-number)、各个镜片表面的光轴Z通过处的曲率半径R(radius ofcurvature)、各镜片于光轴Z上的厚度T(thickness)、各镜片的折射率Nd(refractive index)及各镜片的阿贝系数Vd(Abbe number),如表一所示:The focal length F (Focus Length), the numerical aperture Fno (F-number) of the
表一Table I
本实施例的各个镜片中,这些非球面表面S1、S2、S8及S9的表面凹陷度z由下列公式所得到:In each lens of the present embodiment, the surface concavity z of these aspherical surfaces S1, S2, S8 and S9 is obtained by the following formula:
其中:in:
z:非球面表面的凹陷度;z: Concavity of the aspheric surface;
c:曲率半径的倒数;c: the reciprocal of the radius of curvature;
h:表面的孔径半径;h: the aperture radius of the surface;
k:圆锥系数;k: conic coefficient;
A~G:表面的孔径半径h的各阶系数。A~G: coefficients of each order of surface aperture radius h.
在本实施例中,各个非球面表面的圆锥系数k(conic constant)及表面孔径半径h的各阶系数A~G如表二所示:In this embodiment, the conic coefficient k (conic constant) of each aspherical surface and the coefficients A to G of each order of the surface aperture radius h are shown in Table 2:
表二Table II
藉由上述的镜片及光圈ST配置,使得本实施例的微小型成像镜头1不但可有效缩小体积以符合小型化的需求,在成像质量上也可达到要求,这可从图3A至图3D看出。With the configuration of the above-mentioned lens and aperture ST, the
图3A所示的,是本实施例的微小型成像镜头1的场曲图及畸变图;图3B所示的,是本实施例的微小型成像镜头1的横向光扇图;图3C所示的,是本实施例的微小型成像镜头1的离焦调制传递函数图(Through Focus MTF);图3D所示的,是本实施例的微小型成像镜头1的空间频率调制传递函数图(Spatial Frequency MTF)。Shown in Fig. 3 A is the field curvature diagram and distortion diagram of the
从图3A可看出,本实施例的最大场曲不超过0.1mm和-0.1mm,畸变量不超过0.6%。从图3B与图3C可看出,本实施例无论在哪个视场位置都具有良好的分辨率。从图3D可知,本实施例在48lp/mm的时侯,其调制光学传递函数值仍维持在60%以上,显见本实施例的微小型成像镜头1的分辨率是符合标准的。It can be seen from FIG. 3A that the maximum field curvature of this embodiment does not exceed 0.1mm and -0.1mm, and the distortion does not exceed 0.6%. It can be seen from FIG. 3B and FIG. 3C that this embodiment has good resolution regardless of the position of the field of view. It can be seen from FIG. 3D that the modulation optical transfer function value of this embodiment is still above 60% at 48 lp/mm. It is obvious that the resolution of the
以上所述的,是本发明第一实施例的微小型成像镜头1;依据本发明的技术,以下配合图4及图5说明本发明的第二实施例。The above is the
与第一实施例相同地,本发明第二实施例的微小型成像镜头2包含有自物侧至像侧且沿光轴Z设置的第一镜片L1、第二镜片L2、第三镜片L3、光圈ST、第四镜片L4以及第五镜片L5,且在第五镜片L5与成像平面IP之间同样设置有平板玻璃的滤光片CF。其中:Similar to the first embodiment, the
该第一镜片L1由玻璃材质所制成,且为一个具有负屈光力的新月型镜片,其凸面S1朝向物侧。另外,该第一镜片L1的凸面S1与凹面S2皆为非球面表面。The first lens L1 is made of glass material, and is a crescent-shaped lens with negative refractive power, with its convex surface S1 facing the object side. In addition, both the convex surface S1 and the concave surface S2 of the first lens L1 are aspherical surfaces.
该第二镜片L2由玻璃材质所制成,且为一个具有正屈光力的双凸镜片。该第三镜片L3由玻璃材质所制成,且为一个具有负屈光力的双凹镜片。另外,该第二镜片L2与该第三镜片L3胶黏形成一个具有正屈光力的胶合镜片L23。The second lens L2 is made of glass material and is a biconvex lens with positive refractive power. The third lens L3 is made of glass material and is a biconcave lens with negative refractive power. In addition, the second lens L2 is glued to the third lens L3 to form a cemented lens L23 with positive refractive power.
该第四镜片L4由玻璃材质所制成,且为一个具有正屈光力的双凸镜片。另外,该第四镜片L4的两个凸面S8、S9皆为非球面表面。The fourth lens L4 is made of glass material and is a biconvex lens with positive refractive power. In addition, the two convex surfaces S8 and S9 of the fourth lens L4 are both aspheric surfaces.
该第五镜片L5由玻璃材质所制成,且为一个具有负屈光力的新月型镜片,且其凸面S11朝向像侧。The fifth lens L5 is made of glass material, and is a crescent-shaped lens with negative refractive power, and its convex surface S11 faces the image side.
而上述的镜片配置中,其中该第一镜片L1的负屈光力特性、该第四镜片L4的正屈光力特性、以及该二镜片L1、L4的非球面设计,同样可使该微小型成像镜头2具有较佳的成像效果,有效缩短镜头总长、以及使该微小型成像镜头2得到较大的可视角(Field of View Angle,FOV)。In the above-mentioned lens configuration, wherein the negative refractive power characteristic of the first lens L1, the positive refractive power characteristic of the fourth lens L4, and the aspherical design of the two lenses L1, L4 can also make the
本发明第二实施例的微小型成像镜头2的焦距F(Focus Length)、数值孔径Fno(F-number)、各个镜片表面的光轴Z通过处的曲率半径R(radius ofcurvature)、各镜片于光轴Z上的厚度T(thickness)、各镜片的折射率Nd(refractive index)及各镜片的阿贝系数Vd(Abbe number),如表三所示:The focal length F (Focus Length), the numerical aperture Fno (F-number) of the
表三Table three
本实施例的各个镜片中,这些非球面表面S1、S2、S8及S9的表面凹陷度z由下列公式所得到:In each lens of the present embodiment, the surface concavity z of these aspherical surfaces S1, S2, S8 and S9 is obtained by the following formula:
其中:in:
z:非球面表面的凹陷度;z: Concavity of the aspheric surface;
c:曲率半径的倒数;c: the reciprocal of the radius of curvature;
h:表面的孔径半径;h: the aperture radius of the surface;
k:圆锥系数;k: conic coefficient;
A~G:表面的孔径半径h的各阶系数。A~G: coefficients of each order of surface aperture radius h.
在本实施例中,各个非球面表面的圆锥系数k(conic constant)及表面孔径半径h的各阶系数A~G如表四所示:In this embodiment, the conic coefficient k (conic constant) of each aspherical surface and the coefficients A to G of each order of the surface aperture radius h are shown in Table 4:
表四Table four
藉由上述的镜片及光圈ST配置,使得本实施例的微小型成像镜头2不但可有效缩小体积以达到小型化的需求,在成像质量上也可达到要求,这可从图6A至图6D看出。With the configuration of the above-mentioned lens and aperture ST, the
图6A所示的,是本实施例的微小型成像镜头2的场曲图及畸变图;图6B所示的,是本实施例的微小型成像镜头2的横向光扇图;图6C所示的,是本实施例的微小型成像镜头2的离焦调制传递函数图(Through Focus MTF);图6D所示的,是本实施例的微小型成像镜头2的空间频率调制传递函数图(Spatial Frequency MTF)。Shown in Fig. 6A is the field curvature diagram and distortion diagram of the
从图6A可看出,本实施例的最大场曲不超过0.1mm和-0.1mm,畸变量不超过0.6%。从图6 B与图6C可看出,本实施例无论在哪个视场位置都具有良好的分辨率。从图6D可知,本实施例在48lp/mm的时侯,其调制光学传递函数值仍维持在50%以上,显见本实施例的微小型成像镜头2的分辨率是符合标准的。It can be seen from FIG. 6A that the maximum field curvature of this embodiment does not exceed 0.1mm and -0.1mm, and the distortion does not exceed 0.6%. It can be seen from Fig. 6 B and Fig. 6 C that the present embodiment has good resolution regardless of the position of the field of view. It can be seen from FIG. 6D that the modulation optical transfer function value of this embodiment is still above 50% at 48 lp/mm. It is obvious that the resolution of the
请参阅图7及图8,为本发明第三较佳实施例的微小型成像镜头3的镜片配置及光路图。该微小型成像镜头3同样包含有自物侧至像侧且沿光轴Z设置的第一镜片L1、第二镜片L2、第三镜片L3、光圈ST、第四镜片L4以及第五镜片L5,且在第五镜片L5与成像平面IP之间同样设置有平板玻璃的滤光片CF。其中:Please refer to FIG. 7 and FIG. 8 , which are the lens configuration and optical path diagram of the
该第一镜片L1由玻璃材质所制成,且为一个具有负屈光力的新月型镜片,其凸面朝向物侧。另外,该第一镜片L1的凸面S1与凹面S2皆为非球面表面。The first lens L1 is made of glass material, and is a crescent-shaped lens with negative refractive power, with its convex surface facing the object side. In addition, both the convex surface S1 and the concave surface S2 of the first lens L1 are aspherical surfaces.
该第二镜片L2由玻璃材质所制成,且为一个具有正屈光力的双凸镜片。该第三镜片L3由玻璃材质所制成,且为一个具有负屈光力的双凹镜片。另外,该第二镜片L2与该第三镜片L3胶黏形成一个具有负屈光力的胶合镜片L23。The second lens L2 is made of glass material and is a biconvex lens with positive refractive power. The third lens L3 is made of glass material and is a biconcave lens with negative refractive power. In addition, the second lens L2 is glued to the third lens L3 to form a cemented lens L23 with negative refractive power.
该第四镜片L4由玻璃材质所制成,且为一个具有正屈光力的双凸镜片。另外,该第四镜片L4的两个凸面S8、S9皆为非球面表面。The fourth lens L4 is made of glass material and is a biconvex lens with positive refractive power. In addition, the two convex surfaces S8 and S9 of the fourth lens L4 are both aspheric surfaces.
该第五镜片L5由玻璃材质所制成,且为一个具有负屈光力之双凹镜片。The fifth lens L5 is made of glass material and is a biconcave lens with negative refractive power.
而上述的镜片配置中,其中该第一镜片L1的负屈光力特性、该第四镜片L4的正屈光力特性、以及该二镜片L1、L4的非球面设计,同样可使该微小型成像镜头3具有较佳的成像效果,有效缩短镜头总长、以及使该微小型成像镜头3得到较大的可视角(Field of ViewAngle,FOV)。And in the above-mentioned lens configuration, wherein the negative refractive power characteristic of the first lens L1, the positive refractive power characteristic of the fourth lens L4, and the aspherical design of the two lenses L1, L4 can also make the
本发明第三实施例的微小型成像镜头3的焦距F(Focus Length)、数值孔径Fno(F-number)、各个镜片表面的光轴Z通过处的曲率半径R(radius ofcurvature)、各镜片于光轴Z上的厚度T(thickness)、各镜片的折射率Nd(refractive index)及各镜片的阿贝系数Vd(Abbe number),如表五所示:The focal length F (Focus Length), the numerical aperture Fno (F-number) of the
表五Table five
本实施例的各个镜片中,这些非球面表面S1、S2、S8及S9的表面凹陷度z由下列公式所得到:In each lens of the present embodiment, the surface concavity z of these aspherical surfaces S1, S2, S8 and S9 is obtained by the following formula:
其中:in:
z:非球面表面的凹陷度;z: Concavity of the aspheric surface;
c:曲率半径的倒数;c: the reciprocal of the radius of curvature;
h:表面的孔径半径;h: the aperture radius of the surface;
k:圆锥系数;k: conic coefficient;
A~G:表面的孔径半径h的各阶系数。A~G: coefficients of each order of surface aperture radius h.
在本实施例中,各个非球面表面的圆锥系数k(conic constant)及表面孔径半径h的各阶系数A~G如表六所示:In this embodiment, the conic coefficient k (conic constant) of each aspherical surface and the coefficients A to G of each order of the surface aperture radius h are shown in Table 6:
表六Table six
藉由上述的镜片及光圈ST配置,使得本实施例的微小型成像镜头3不但可有效缩小体积以达到小型化的需求,在成像质量上也可达到要求,这可从图9A至图9D看出。With the configuration of the above-mentioned lenses and aperture ST, the
图9A所示的,是本实施例的微小型成像镜头3的场曲图及畸变图;图9B所示的,是本实施例的微小型成像镜头3的横向光扇图;图9C所示的,是本实施例的微小型成像镜头3的离焦调制传递函数图(Through Focus MTF);图9D所示的,是本实施例的微小型成像镜头3的空间频率调制传递函数图(Spatial Frequency MTF)。Shown in FIG. 9A is the field curvature diagram and distortion diagram of the
从图9A可看出,本实施例的最大场曲不超过0.1mm和-0.1mm,畸变量不超过0.6%。从图9B与图9C可看出,本实施例无论在哪个视场位置都具有良好的分辨率。从图9D可知,本实施例在48lp/mm的时侯,其调制光学传递函数值仍维持在50%以上,显见本实施例的微小型成像镜头的分辨率是符合标准的。It can be seen from FIG. 9A that the maximum field curvature of this embodiment does not exceed 0.1mm and -0.1mm, and the distortion does not exceed 0.6%. It can be seen from FIG. 9B and FIG. 9C that this embodiment has good resolution regardless of the position of the field of view. It can be seen from FIG. 9D that the modulation optical transfer function value of this embodiment is still above 50% at 48 lp/mm, which shows that the resolution of the miniature imaging lens of this embodiment meets the standard.
综合以上所可得知,本发明的微小型成像镜头不仅可以有效地缩小体积且同时可具有高光学效能。Based on the above, it can be seen that the miniature imaging lens of the present invention can not only effectively reduce the size but also have high optical performance.
以上所述仅为本发明较佳可行实施例而已,凡应用本发明说明书及权利要求所做的等效结构及制作方法变化,理应包含在本发明的专利范围内。The above description is only a preferred feasible embodiment of the present invention, and any equivalent structure and manufacturing method changes made by applying the specification and claims of the present invention should be included in the patent scope of the present invention.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210061564.7A CN102854611B (en) | 2011-06-29 | 2012-03-09 | Micro Imaging Lenses |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201110178901 | 2011-06-29 | ||
CN2011101789016 | 2011-06-29 | ||
CN201110178901.6 | 2011-06-29 | ||
CN201210061564.7A CN102854611B (en) | 2011-06-29 | 2012-03-09 | Micro Imaging Lenses |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102854611A true CN102854611A (en) | 2013-01-02 |
CN102854611B CN102854611B (en) | 2015-05-20 |
Family
ID=47401343
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201210061564.7A Active CN102854611B (en) | 2011-06-29 | 2012-03-09 | Micro Imaging Lenses |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102854611B (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103064169A (en) * | 2011-10-20 | 2013-04-24 | 亚洲光学股份有限公司 | Capture lens |
CN103926674A (en) * | 2013-01-11 | 2014-07-16 | 今国光学工业股份有限公司 | Miniaturized lens |
CN107728288A (en) * | 2016-08-12 | 2018-02-23 | 三星电子株式会社 | Optical lens module and the electronic installation including the optical lens module |
CN111929824A (en) * | 2020-09-03 | 2020-11-13 | 瑞声光电科技(苏州)有限公司 | Image pickup optical lens |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5452132A (en) * | 1992-10-28 | 1995-09-19 | Samsung Electronics Co., Ltd. | Projection lens system for rear type projection television |
US5528428A (en) * | 1991-11-13 | 1996-06-18 | Nikon Corporation | Compact wide-angle objective lens |
CN1424612A (en) * | 2001-12-14 | 2003-06-18 | 日本电产科宝株式会社 | Wide-angle lenses |
CN1573407A (en) * | 2003-05-27 | 2005-02-02 | 柯尼卡美能达精密光学株式会社 | Small imaging lens and imaging device |
JP2008129396A (en) * | 2006-11-22 | 2008-06-05 | Konica Minolta Opto Inc | Wide converter lens |
CN101377562A (en) * | 2007-08-30 | 2009-03-04 | 鸿富锦精密工业(深圳)有限公司 | Lens system |
JP2010008562A (en) * | 2008-06-25 | 2010-01-14 | Konica Minolta Opto Inc | Imaging lens |
CN101995646A (en) * | 2009-08-17 | 2011-03-30 | 大立光电股份有限公司 | Image-taking lens system |
-
2012
- 2012-03-09 CN CN201210061564.7A patent/CN102854611B/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5528428A (en) * | 1991-11-13 | 1996-06-18 | Nikon Corporation | Compact wide-angle objective lens |
US5452132A (en) * | 1992-10-28 | 1995-09-19 | Samsung Electronics Co., Ltd. | Projection lens system for rear type projection television |
CN1424612A (en) * | 2001-12-14 | 2003-06-18 | 日本电产科宝株式会社 | Wide-angle lenses |
CN1573407A (en) * | 2003-05-27 | 2005-02-02 | 柯尼卡美能达精密光学株式会社 | Small imaging lens and imaging device |
JP2008129396A (en) * | 2006-11-22 | 2008-06-05 | Konica Minolta Opto Inc | Wide converter lens |
CN101377562A (en) * | 2007-08-30 | 2009-03-04 | 鸿富锦精密工业(深圳)有限公司 | Lens system |
JP2010008562A (en) * | 2008-06-25 | 2010-01-14 | Konica Minolta Opto Inc | Imaging lens |
CN101995646A (en) * | 2009-08-17 | 2011-03-30 | 大立光电股份有限公司 | Image-taking lens system |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103064169A (en) * | 2011-10-20 | 2013-04-24 | 亚洲光学股份有限公司 | Capture lens |
CN103926674A (en) * | 2013-01-11 | 2014-07-16 | 今国光学工业股份有限公司 | Miniaturized lens |
CN103926674B (en) * | 2013-01-11 | 2017-04-12 | 今国光学工业股份有限公司 | miniaturized lens |
CN107728288A (en) * | 2016-08-12 | 2018-02-23 | 三星电子株式会社 | Optical lens module and the electronic installation including the optical lens module |
CN107728288B (en) * | 2016-08-12 | 2021-06-22 | 三星电子株式会社 | Optical lens assembly and electronic device including the same |
CN111929824A (en) * | 2020-09-03 | 2020-11-13 | 瑞声光电科技(苏州)有限公司 | Image pickup optical lens |
CN111929824B (en) * | 2020-09-03 | 2021-03-09 | 诚瑞光学(苏州)有限公司 | Image pickup optical lens |
Also Published As
Publication number | Publication date |
---|---|
CN102854611B (en) | 2015-05-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103185956B (en) | Miniature projection lens | |
CN106940469B (en) | Photographing lens assembly and image capturing device | |
TWI431357B (en) | Miniature lens | |
WO2014155468A1 (en) | Imaging lens and imaging device provided with imaging lens | |
US8717689B2 (en) | Miniature image pickup lens | |
TWI464481B (en) | Miniature lens | |
JP3138700U (en) | An imaging lens consisting of two lenses | |
CN104297902A (en) | Image pickup lens assembly | |
TWI443404B (en) | Fixed focus projection lens | |
TWI454726B (en) | Lens assembly | |
CN106125255A (en) | Pick-up lens | |
CN102854611B (en) | Micro Imaging Lenses | |
CN103064169B (en) | Capture lens | |
CN102566020B (en) | Miniaturized Zoom Lens | |
TWI682213B (en) | Optical lens | |
TWI431353B (en) | Fixed focus projection lens | |
CN102914856B (en) | zoom lens | |
TWI436091B (en) | Imaging lens | |
CN106154523A (en) | Zoom lens | |
TWI476472B (en) | Imaging lens | |
CN103135208B (en) | Zoom lens | |
TWI491951B (en) | Miniature imaging lens | |
CN219997398U (en) | Half-picture lens with focal length of 23mm | |
CN102879888B (en) | Fixed focus projection lens | |
TWI451122B (en) | Take the camera |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |