[go: up one dir, main page]

CN102854611A - Micro imaging lens - Google Patents

Micro imaging lens Download PDF

Info

Publication number
CN102854611A
CN102854611A CN2012100615647A CN201210061564A CN102854611A CN 102854611 A CN102854611 A CN 102854611A CN 2012100615647 A CN2012100615647 A CN 2012100615647A CN 201210061564 A CN201210061564 A CN 201210061564A CN 102854611 A CN102854611 A CN 102854611A
Authority
CN
China
Prior art keywords
lens
refractive power
present
miniature imaging
imaging lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2012100615647A
Other languages
Chinese (zh)
Other versions
CN102854611B (en
Inventor
陈俊宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asia Optical Co Inc
Original Assignee
Asia Optical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asia Optical Co Inc filed Critical Asia Optical Co Inc
Priority to CN201210061564.7A priority Critical patent/CN102854611B/en
Publication of CN102854611A publication Critical patent/CN102854611A/en
Application granted granted Critical
Publication of CN102854611B publication Critical patent/CN102854611B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Lenses (AREA)

Abstract

The invention relates to a microminiature imaging lens, which comprises a first lens, a second lens, a third lens, an aperture, a fourth lens and a fifth lens which are sequentially arranged along an optical axis from an object side to an image side, wherein the first lens is a crescent lens with negative refractive power, the convex surface of the crescent lens faces to the object side, and at least one surface of the crescent lens is an aspheric surface; the second lens is a biconvex lens with positive refractive power; the third lens is a biconcave lens with negative refractive power; the fourth lens is a biconvex lens with positive refractive power, and at least one surface of the fourth lens is an aspheric surface; the fifth lens is a lens with negative refractive power, so that the lens configuration can achieve the purposes of miniaturization and high optical efficiency.

Description

微小型成像镜头Micro Imaging Lenses

技术领域 technical field

本发明与光学装置有关,更详而言之是指一种微小型成像镜头。The present invention relates to an optical device, and more specifically refers to a miniature imaging lens.

背景技术 Background technique

近年来,随着科技的进步,如相机、摄影机、显微镜或扫描仪等影像撷取装置,为方便人们携带与使用,而逐渐趋向小型化与轻量化,此将使得影像撷取装置所用的成像镜头的体积也因此被大幅缩小。另外,除了小型化与轻量化外,也要能够具有更高的光学效能,才能使达成高分辨率和高对比的展现。因此,小型化和高光学效能,是成像镜头不可缺两项要件。In recent years, with the advancement of technology, image capture devices such as cameras, video cameras, microscopes or scanners have gradually become smaller and lighter in order to facilitate people's portability and use. This will make the imaging devices used in image capture devices The size of the lens is also greatly reduced. In addition, in addition to miniaturization and light weight, higher optical performance is also required to achieve high-resolution and high-contrast display. Therefore, miniaturization and high optical performance are two indispensable requirements for imaging lenses.

然而,目前影像撷取装置所采用的成像镜头,为达到高光学效能的目的,不外乎使用了多组的镜群,甚至有镜片总合多于十片以上者。另外,亦有为达到使成像镜头小型化的目的,而仅使用数片镜片,却使得其光学效能无法有效提升。However, in order to achieve high optical performance, the current imaging lens used by the image capture device is nothing more than using a plurality of lens groups, and some lenses even have more than ten lenses in total. In addition, in order to achieve the purpose of miniaturizing the imaging lens, only a few lenses are used, but the optical performance cannot be effectively improved.

综合以上所述,已知的成像镜头仍未侦完善,且尚有待改进之处。Based on the above, the known imaging lens is still not perfect, and still needs to be improved.

发明内容 Contents of the invention

本发明要解决的技术问题在于,针对现有技术中的成像镜头无法同时满足小型化和高光学效能的缺陷,提供一种微小型成像镜头,不仅体积小且具有高光学效能。The technical problem to be solved by the present invention is to provide a miniaturized imaging lens which is not only small in size but also has high optical efficiency in view of the defect that the imaging lens in the prior art cannot satisfy miniaturization and high optical performance at the same time.

本发明为解决其技术问题所采用的技术方案是,提供一种微小型成像镜头,包含有沿光轴并由物侧至像侧依序排列的第一镜片、第二镜片、第三镜片、光圈、第四镜片以及第五镜片。其中,该第一镜片为具有负屈光力的新月型镜片,其凸面朝向该物侧,且至少一面为非球面表面;该第二镜片为具有正屈光力的双凸镜片;该第三镜片为具有负屈光力的双凹镜片;该第四镜片为具有正屈光力的双凸镜片,且至少一面为非球面表面;该第五镜片为具有负屈光力的镜片。The technical solution adopted by the present invention to solve its technical problems is to provide a micro-miniature imaging lens, which includes a first lens, a second lens, a third lens, Aperture, fourth lens and fifth lens. Wherein, the first lens is a crescent lens with negative refractive power, its convex surface faces the object side, and at least one side is an aspheric surface; the second lens is a biconvex lens with positive refractive power; the third lens has The biconcave lens with negative refractive power; the fourth lens is a biconvex lens with positive refractive power, and at least one side is an aspheric surface; the fifth lens is a lens with negative refractive power.

藉此,利用上述镜片与光圈的配置而达到小型化与高光学效能的目的。In this way, the purpose of miniaturization and high optical performance can be achieved by using the arrangement of the lens and the aperture.

附图说明 Description of drawings

图1为本发明第一较佳实施例的镜片配置图。Fig. 1 is a lens configuration diagram of the first preferred embodiment of the present invention.

图2为本发明第一较佳实施例的光路图。Fig. 2 is an optical path diagram of the first preferred embodiment of the present invention.

图3A为本发明第一较佳实施例的场曲图及畸变图。FIG. 3A is a field curvature diagram and a distortion diagram of the first preferred embodiment of the present invention.

图3B为本发明第一较佳实施例的横向光扇图。FIG. 3B is a lateral light fan diagram of the first preferred embodiment of the present invention.

图3C为本发明第一较佳实施例的离焦调制传递函数图。FIG. 3C is a diagram of the through-focus modulation transfer function of the first preferred embodiment of the present invention.

图3D为本发明第一较佳实施例的空间频率调制传递函数图。FIG. 3D is a diagram of the spatial frequency modulation transfer function of the first preferred embodiment of the present invention.

图4为本发明第二较佳实施例的镜片配置图。Fig. 4 is a lens configuration diagram of the second preferred embodiment of the present invention.

图5为本发明第二较佳实施例的光路图。Fig. 5 is an optical path diagram of the second preferred embodiment of the present invention.

图6A为本发明第二较佳实施例的场曲图及畸变图。FIG. 6A is a field curvature diagram and a distortion diagram of the second preferred embodiment of the present invention.

图6B为本发明第二较佳实施例的横向光扇图。FIG. 6B is a lateral light fan diagram of the second preferred embodiment of the present invention.

图6C为本发明第二较佳实施例的离焦调制传递函数图。FIG. 6C is a diagram of the through-focus modulation transfer function of the second preferred embodiment of the present invention.

图6D为本发明第二较佳实施例的空间频率调制传递函数图。FIG. 6D is a diagram of the spatial frequency modulation transfer function of the second preferred embodiment of the present invention.

图7为本发明第三较佳实施例的镜片配置图。Fig. 7 is a lens configuration diagram of the third preferred embodiment of the present invention.

图8为本发明第三较佳实施例的光路图。Fig. 8 is an optical path diagram of the third preferred embodiment of the present invention.

图9A为本发明第三较佳实施例的场曲图及畸变图。FIG. 9A is a field curvature diagram and a distortion diagram of the third preferred embodiment of the present invention.

图9B为本发明第三较佳实施例的横向光扇图。FIG. 9B is a lateral light fan diagram of the third preferred embodiment of the present invention.

图9C为本发明第三较佳实施例的离焦调制传递函数图。FIG. 9C is a diagram of the through-focus modulation transfer function of the third preferred embodiment of the present invention.

图9D为本发明第三较佳实施例的空间频率调制传递函数图。FIG. 9D is a diagram of the spatial frequency modulation transfer function of the third preferred embodiment of the present invention.

具体实施方式 Detailed ways

为能更清楚地说明本发明,兹举较佳实施例并配合附图详细说明如后。In order to illustrate the present invention more clearly, preferred embodiments are given and described in detail with accompanying drawings as follows.

请参阅图1,为本发明第一较佳实施例的微小型成像镜头1的镜片配置图。图2为图1所示实施例的光路图。配合图1及图2,以下将详细说明本发明第一实施例的微小型成像镜头1。Please refer to FIG. 1 , which is a lens arrangement diagram of a miniature imaging lens 1 according to a first preferred embodiment of the present invention. FIG. 2 is an optical path diagram of the embodiment shown in FIG. 1 . With reference to FIG. 1 and FIG. 2 , the micro-miniature imaging lens 1 according to the first embodiment of the present invention will be described in detail below.

该微小型成像镜头1包含有沿光轴Z并由物侧至像侧依序排列的第一镜片L1、第二镜片L2、第三镜片L3、光圈ST、第四镜片L4以及第五镜片L5。另外,依使用上的需求,在该第五镜片L5与成像平面IP(Image Plane)之间可选择性地设置滤光片CF,是平板玻璃。其中:The miniature imaging lens 1 includes a first lens L1, a second lens L2, a third lens L3, a diaphragm ST, a fourth lens L4 and a fifth lens L5 arranged in sequence along the optical axis Z from the object side to the image side. . In addition, according to the needs of use, a filter CF, which is flat glass, can be optionally provided between the fifth lens L5 and the imaging plane IP (Image Plane). in:

该第一镜片L1由玻璃材质所制成,且为一个具有负屈光力的新月型镜片,其凸面朝向物侧。另外,该第一镜片L1的凸面S1与凹面S2皆为非球面表面。The first lens L1 is made of glass material, and is a crescent-shaped lens with negative refractive power, with its convex surface facing the object side. In addition, both the convex surface S1 and the concave surface S2 of the first lens L1 are aspheric surfaces.

该第二镜片L2由玻璃材质所制成,且为一个具有正屈光力的双凸镜片。该第三镜片L3由玻璃材质所制成,且为一个具有负屈光力的双凹镜片。另外,该第二镜片L2与该第三镜片L3胶黏形成一个具有正屈光力的胶合镜片L23。The second lens L2 is made of glass material and is a biconvex lens with positive refractive power. The third lens L3 is made of glass material and is a biconcave lens with negative refractive power. In addition, the second lens L2 is glued to the third lens L3 to form a cemented lens L23 with positive refractive power.

该第四镜片L4由玻璃材质所制成,且为一个具有正屈光力的双凸镜片。另外,该第四镜片L4的两个凸面S8、S9皆为非球面表面。The fourth lens L4 is made of glass material and is a biconvex lens with positive refractive power. In addition, the two convex surfaces S8 and S9 of the fourth lens L4 are both aspheric surfaces.

该第五镜片L5由玻璃材质所制成,且为一个具有负屈光力的新月型镜片,其凸面S11朝向像侧。The fifth lens L5 is made of glass material, and is a crescent-shaped lens with negative refractive power, and its convex surface S11 faces the image side.

而上述微小型成像镜头1的镜片配置中,该第一镜片L1的负屈光力特性、该第四镜片L4的正屈光力特性、以及该二镜片L1、L4的非球面设计,可使该微小型成像镜头1具有较佳的成像效果,并可有效缩短镜头总长,更可使该微小型成像镜头1得到较大的可视角(Field of View Angle,FOV)。In the above-mentioned lens configuration of the miniature imaging lens 1, the negative refractive power characteristic of the first lens L1, the positive refractive power characteristic of the fourth lens L4, and the aspheric surface design of the two lenses L1 and L4 can make the miniature imaging lens The lens 1 has a better imaging effect, and can effectively shorten the total length of the lens, and also enables the miniature imaging lens 1 to obtain a larger field of view (Field of View Angle, FOV).

本发明第一实施例的微小型成像镜头1的焦距F(Focus Length)、数值孔径Fno(F-number)、各个镜片表面的光轴Z通过处的曲率半径R(radius ofcurvature)、各镜片于光轴Z上的厚度T(thickness)、各镜片的折射率Nd(refractive index)及各镜片的阿贝系数Vd(Abbe number),如表一所示:The focal length F (Focus Length), the numerical aperture Fno (F-number) of the miniature imaging lens 1 of the first embodiment of the present invention, the radius of curvature R (radius of curvature) where the optical axis Z of each lens surface passes through, each lens at The thickness T (thickness) on the optical axis Z, the refractive index Nd (refractive index) of each lens and the Abbe number Vd (Abbe number) of each lens are shown in Table 1:

表一Table I

Figure BDA0000142088960000031
Figure BDA0000142088960000031

Figure BDA0000142088960000041
Figure BDA0000142088960000041

本实施例的各个镜片中,这些非球面表面S1、S2、S8及S9的表面凹陷度z由下列公式所得到:In each lens of the present embodiment, the surface concavity z of these aspherical surfaces S1, S2, S8 and S9 is obtained by the following formula:

zz == chch 22 11 ++ [[ 11 -- (( kk ++ 11 )) cc 22 hh 22 ]] 11 22 ++ AhAh 44 ++ BhBh 66 ++ ChCh 88 ++ DhDh 1010 ++ EhEh 1212 ++ Fhfh 1414 ++ GhGh 1616

其中:in:

z:非球面表面的凹陷度;z: Concavity of the aspheric surface;

c:曲率半径的倒数;c: the reciprocal of the radius of curvature;

h:表面的孔径半径;h: the aperture radius of the surface;

k:圆锥系数;k: conic coefficient;

A~G:表面的孔径半径h的各阶系数。A~G: coefficients of each order of surface aperture radius h.

在本实施例中,各个非球面表面的圆锥系数k(conic constant)及表面孔径半径h的各阶系数A~G如表二所示:In this embodiment, the conic coefficient k (conic constant) of each aspherical surface and the coefficients A to G of each order of the surface aperture radius h are shown in Table 2:

表二Table II

藉由上述的镜片及光圈ST配置,使得本实施例的微小型成像镜头1不但可有效缩小体积以符合小型化的需求,在成像质量上也可达到要求,这可从图3A至图3D看出。With the configuration of the above-mentioned lens and aperture ST, the miniature imaging lens 1 of this embodiment can not only effectively reduce the size to meet the miniaturization requirements, but also meet the requirements in terms of imaging quality, which can be seen from FIGS. 3A to 3D out.

图3A所示的,是本实施例的微小型成像镜头1的场曲图及畸变图;图3B所示的,是本实施例的微小型成像镜头1的横向光扇图;图3C所示的,是本实施例的微小型成像镜头1的离焦调制传递函数图(Through Focus MTF);图3D所示的,是本实施例的微小型成像镜头1的空间频率调制传递函数图(Spatial Frequency MTF)。Shown in Fig. 3 A is the field curvature diagram and distortion diagram of the miniature imaging lens 1 of the present embodiment; Shown in Fig. 3B is the lateral light fan diagram of the miniature imaging lens 1 of the present embodiment; Shown in Fig. 3C It is the through focus modulation transfer function diagram (Through Focus MTF) of the miniature imaging lens 1 of the present embodiment; shown in Fig. 3D is the spatial frequency modulation transfer function diagram (Spatial MTF) of the miniature imaging lens 1 of the present embodiment Frequency MTF).

从图3A可看出,本实施例的最大场曲不超过0.1mm和-0.1mm,畸变量不超过0.6%。从图3B与图3C可看出,本实施例无论在哪个视场位置都具有良好的分辨率。从图3D可知,本实施例在48lp/mm的时侯,其调制光学传递函数值仍维持在60%以上,显见本实施例的微小型成像镜头1的分辨率是符合标准的。It can be seen from FIG. 3A that the maximum field curvature of this embodiment does not exceed 0.1mm and -0.1mm, and the distortion does not exceed 0.6%. It can be seen from FIG. 3B and FIG. 3C that this embodiment has good resolution regardless of the position of the field of view. It can be seen from FIG. 3D that the modulation optical transfer function value of this embodiment is still above 60% at 48 lp/mm. It is obvious that the resolution of the miniature imaging lens 1 of this embodiment meets the standard.

以上所述的,是本发明第一实施例的微小型成像镜头1;依据本发明的技术,以下配合图4及图5说明本发明的第二实施例。The above is the miniature imaging lens 1 of the first embodiment of the present invention; according to the technology of the present invention, the second embodiment of the present invention will be described below with reference to FIG. 4 and FIG. 5 .

与第一实施例相同地,本发明第二实施例的微小型成像镜头2包含有自物侧至像侧且沿光轴Z设置的第一镜片L1、第二镜片L2、第三镜片L3、光圈ST、第四镜片L4以及第五镜片L5,且在第五镜片L5与成像平面IP之间同样设置有平板玻璃的滤光片CF。其中:Similar to the first embodiment, the miniature imaging lens 2 of the second embodiment of the present invention includes a first lens L1, a second lens L2, a third lens L3, The aperture ST, the fourth lens L4 and the fifth lens L5 are also provided with a flat glass filter CF between the fifth lens L5 and the imaging plane IP. in:

该第一镜片L1由玻璃材质所制成,且为一个具有负屈光力的新月型镜片,其凸面S1朝向物侧。另外,该第一镜片L1的凸面S1与凹面S2皆为非球面表面。The first lens L1 is made of glass material, and is a crescent-shaped lens with negative refractive power, with its convex surface S1 facing the object side. In addition, both the convex surface S1 and the concave surface S2 of the first lens L1 are aspherical surfaces.

该第二镜片L2由玻璃材质所制成,且为一个具有正屈光力的双凸镜片。该第三镜片L3由玻璃材质所制成,且为一个具有负屈光力的双凹镜片。另外,该第二镜片L2与该第三镜片L3胶黏形成一个具有正屈光力的胶合镜片L23。The second lens L2 is made of glass material and is a biconvex lens with positive refractive power. The third lens L3 is made of glass material and is a biconcave lens with negative refractive power. In addition, the second lens L2 is glued to the third lens L3 to form a cemented lens L23 with positive refractive power.

该第四镜片L4由玻璃材质所制成,且为一个具有正屈光力的双凸镜片。另外,该第四镜片L4的两个凸面S8、S9皆为非球面表面。The fourth lens L4 is made of glass material and is a biconvex lens with positive refractive power. In addition, the two convex surfaces S8 and S9 of the fourth lens L4 are both aspheric surfaces.

该第五镜片L5由玻璃材质所制成,且为一个具有负屈光力的新月型镜片,且其凸面S11朝向像侧。The fifth lens L5 is made of glass material, and is a crescent-shaped lens with negative refractive power, and its convex surface S11 faces the image side.

而上述的镜片配置中,其中该第一镜片L1的负屈光力特性、该第四镜片L4的正屈光力特性、以及该二镜片L1、L4的非球面设计,同样可使该微小型成像镜头2具有较佳的成像效果,有效缩短镜头总长、以及使该微小型成像镜头2得到较大的可视角(Field of View Angle,FOV)。In the above-mentioned lens configuration, wherein the negative refractive power characteristic of the first lens L1, the positive refractive power characteristic of the fourth lens L4, and the aspherical design of the two lenses L1, L4 can also make the miniature imaging lens 2 have Better imaging effect, effectively shortening the total length of the lens, and enabling the miniature imaging lens 2 to obtain a larger field of view (Field of View Angle, FOV).

本发明第二实施例的微小型成像镜头2的焦距F(Focus Length)、数值孔径Fno(F-number)、各个镜片表面的光轴Z通过处的曲率半径R(radius ofcurvature)、各镜片于光轴Z上的厚度T(thickness)、各镜片的折射率Nd(refractive index)及各镜片的阿贝系数Vd(Abbe number),如表三所示:The focal length F (Focus Length), the numerical aperture Fno (F-number) of the miniature imaging lens 2 of the second embodiment of the present invention, the radius of curvature R (radius of curvature) where the optical axis Z of each lens surface passes through, each lens at The thickness T (thickness) on the optical axis Z, the refractive index Nd (refractive index) of each lens and the Abbe coefficient Vd (Abbe number) of each lens are shown in Table 3:

表三Table three

Figure BDA0000142088960000061
Figure BDA0000142088960000061

本实施例的各个镜片中,这些非球面表面S1、S2、S8及S9的表面凹陷度z由下列公式所得到:In each lens of the present embodiment, the surface concavity z of these aspherical surfaces S1, S2, S8 and S9 is obtained by the following formula:

zz == chch 22 11 ++ [[ 11 -- (( kk ++ 11 )) cc 22 hh 22 ]] 11 22 ++ AhAh 44 ++ BhBh 66 ++ ChCh 88 ++ DhDh 1010 ++ EhEh 1212 ++ Fhfh 1414 ++ GhGh 1616

其中:in:

z:非球面表面的凹陷度;z: Concavity of the aspheric surface;

c:曲率半径的倒数;c: the reciprocal of the radius of curvature;

h:表面的孔径半径;h: the aperture radius of the surface;

k:圆锥系数;k: conic coefficient;

A~G:表面的孔径半径h的各阶系数。A~G: coefficients of each order of surface aperture radius h.

在本实施例中,各个非球面表面的圆锥系数k(conic constant)及表面孔径半径h的各阶系数A~G如表四所示:In this embodiment, the conic coefficient k (conic constant) of each aspherical surface and the coefficients A to G of each order of the surface aperture radius h are shown in Table 4:

表四Table four

Figure BDA0000142088960000071
Figure BDA0000142088960000071

藉由上述的镜片及光圈ST配置,使得本实施例的微小型成像镜头2不但可有效缩小体积以达到小型化的需求,在成像质量上也可达到要求,这可从图6A至图6D看出。With the configuration of the above-mentioned lens and aperture ST, the micro-miniature imaging lens 2 of this embodiment can not only effectively reduce the volume to meet the miniaturization requirements, but also meet the requirements in terms of imaging quality, which can be seen from FIGS. 6A to 6D out.

图6A所示的,是本实施例的微小型成像镜头2的场曲图及畸变图;图6B所示的,是本实施例的微小型成像镜头2的横向光扇图;图6C所示的,是本实施例的微小型成像镜头2的离焦调制传递函数图(Through Focus MTF);图6D所示的,是本实施例的微小型成像镜头2的空间频率调制传递函数图(Spatial Frequency MTF)。Shown in Fig. 6A is the field curvature diagram and distortion diagram of the miniature imaging lens 2 of the present embodiment; shown in Fig. 6B is the lateral light fan diagram of the miniature imaging lens 2 of the present embodiment; shown in Fig. 6C It is the through-focus modulation transfer function diagram (Through Focus MTF) of the miniature imaging lens 2 of the present embodiment; shown in FIG. Frequency MTF).

从图6A可看出,本实施例的最大场曲不超过0.1mm和-0.1mm,畸变量不超过0.6%。从图6 B与图6C可看出,本实施例无论在哪个视场位置都具有良好的分辨率。从图6D可知,本实施例在48lp/mm的时侯,其调制光学传递函数值仍维持在50%以上,显见本实施例的微小型成像镜头2的分辨率是符合标准的。It can be seen from FIG. 6A that the maximum field curvature of this embodiment does not exceed 0.1mm and -0.1mm, and the distortion does not exceed 0.6%. It can be seen from Fig. 6 B and Fig. 6 C that the present embodiment has good resolution regardless of the position of the field of view. It can be seen from FIG. 6D that the modulation optical transfer function value of this embodiment is still above 50% at 48 lp/mm. It is obvious that the resolution of the miniature imaging lens 2 of this embodiment meets the standard.

请参阅图7及图8,为本发明第三较佳实施例的微小型成像镜头3的镜片配置及光路图。该微小型成像镜头3同样包含有自物侧至像侧且沿光轴Z设置的第一镜片L1、第二镜片L2、第三镜片L3、光圈ST、第四镜片L4以及第五镜片L5,且在第五镜片L5与成像平面IP之间同样设置有平板玻璃的滤光片CF。其中:Please refer to FIG. 7 and FIG. 8 , which are the lens configuration and optical path diagram of the miniature imaging lens 3 according to the third preferred embodiment of the present invention. The miniature imaging lens 3 also includes a first lens L1, a second lens L2, a third lens L3, a diaphragm ST, a fourth lens L4 and a fifth lens L5 arranged along the optical axis Z from the object side to the image side, Moreover, a filter CF of plate glass is also arranged between the fifth lens L5 and the imaging plane IP. in:

该第一镜片L1由玻璃材质所制成,且为一个具有负屈光力的新月型镜片,其凸面朝向物侧。另外,该第一镜片L1的凸面S1与凹面S2皆为非球面表面。The first lens L1 is made of glass material, and is a crescent-shaped lens with negative refractive power, with its convex surface facing the object side. In addition, both the convex surface S1 and the concave surface S2 of the first lens L1 are aspherical surfaces.

该第二镜片L2由玻璃材质所制成,且为一个具有正屈光力的双凸镜片。该第三镜片L3由玻璃材质所制成,且为一个具有负屈光力的双凹镜片。另外,该第二镜片L2与该第三镜片L3胶黏形成一个具有负屈光力的胶合镜片L23。The second lens L2 is made of glass material and is a biconvex lens with positive refractive power. The third lens L3 is made of glass material and is a biconcave lens with negative refractive power. In addition, the second lens L2 is glued to the third lens L3 to form a cemented lens L23 with negative refractive power.

该第四镜片L4由玻璃材质所制成,且为一个具有正屈光力的双凸镜片。另外,该第四镜片L4的两个凸面S8、S9皆为非球面表面。The fourth lens L4 is made of glass material and is a biconvex lens with positive refractive power. In addition, the two convex surfaces S8 and S9 of the fourth lens L4 are both aspheric surfaces.

该第五镜片L5由玻璃材质所制成,且为一个具有负屈光力之双凹镜片。The fifth lens L5 is made of glass material and is a biconcave lens with negative refractive power.

而上述的镜片配置中,其中该第一镜片L1的负屈光力特性、该第四镜片L4的正屈光力特性、以及该二镜片L1、L4的非球面设计,同样可使该微小型成像镜头3具有较佳的成像效果,有效缩短镜头总长、以及使该微小型成像镜头3得到较大的可视角(Field of ViewAngle,FOV)。And in the above-mentioned lens configuration, wherein the negative refractive power characteristic of the first lens L1, the positive refractive power characteristic of the fourth lens L4, and the aspherical design of the two lenses L1, L4 can also make the miniature imaging lens 3 have Better imaging effect, effectively shortening the total length of the lens, and enabling the miniature imaging lens 3 to obtain a larger field of view (Field of ViewAngle, FOV).

本发明第三实施例的微小型成像镜头3的焦距F(Focus Length)、数值孔径Fno(F-number)、各个镜片表面的光轴Z通过处的曲率半径R(radius ofcurvature)、各镜片于光轴Z上的厚度T(thickness)、各镜片的折射率Nd(refractive index)及各镜片的阿贝系数Vd(Abbe number),如表五所示:The focal length F (Focus Length), the numerical aperture Fno (F-number) of the miniature imaging lens 3 of the third embodiment of the present invention, the radius of curvature R (radius of curvature) where the optical axis Z of each lens surface passes through, each lens at The thickness T (thickness) on the optical axis Z, the refractive index Nd (refractive index) of each lens and the Abbe coefficient Vd (Abbe number) of each lens are shown in Table 5:

表五Table five

Figure BDA0000142088960000081
Figure BDA0000142088960000081

Figure BDA0000142088960000091
Figure BDA0000142088960000091

本实施例的各个镜片中,这些非球面表面S1、S2、S8及S9的表面凹陷度z由下列公式所得到:In each lens of the present embodiment, the surface concavity z of these aspherical surfaces S1, S2, S8 and S9 is obtained by the following formula:

zz == chch 22 11 ++ [[ 11 -- (( kk ++ 11 )) cc 22 hh 22 ]] 11 22 ++ AhAh 44 ++ BhBh 66 ++ ChCh 88 ++ DhDh 1010 ++ EhEh 1212 ++ Fhfh 1414 ++ GhGh 1616

其中:in:

z:非球面表面的凹陷度;z: Concavity of the aspheric surface;

c:曲率半径的倒数;c: the reciprocal of the radius of curvature;

h:表面的孔径半径;h: the aperture radius of the surface;

k:圆锥系数;k: conic coefficient;

A~G:表面的孔径半径h的各阶系数。A~G: coefficients of each order of surface aperture radius h.

在本实施例中,各个非球面表面的圆锥系数k(conic constant)及表面孔径半径h的各阶系数A~G如表六所示:In this embodiment, the conic coefficient k (conic constant) of each aspherical surface and the coefficients A to G of each order of the surface aperture radius h are shown in Table 6:

表六Table six

Figure BDA0000142088960000093
Figure BDA0000142088960000093

Figure BDA0000142088960000101
Figure BDA0000142088960000101

藉由上述的镜片及光圈ST配置,使得本实施例的微小型成像镜头3不但可有效缩小体积以达到小型化的需求,在成像质量上也可达到要求,这可从图9A至图9D看出。With the configuration of the above-mentioned lenses and aperture ST, the miniature imaging lens 3 of this embodiment can not only effectively reduce the volume to meet the miniaturization requirements, but also meet the requirements in terms of imaging quality, which can be seen from FIGS. 9A to 9D out.

图9A所示的,是本实施例的微小型成像镜头3的场曲图及畸变图;图9B所示的,是本实施例的微小型成像镜头3的横向光扇图;图9C所示的,是本实施例的微小型成像镜头3的离焦调制传递函数图(Through Focus MTF);图9D所示的,是本实施例的微小型成像镜头3的空间频率调制传递函数图(Spatial Frequency MTF)。Shown in FIG. 9A is the field curvature diagram and distortion diagram of the miniature imaging lens 3 of the present embodiment; shown in FIG. 9B is the transverse light fan diagram of the miniature imaging lens 3 of the present embodiment; shown in FIG. 9C It is the through focus modulation transfer function diagram (Through Focus MTF) of the miniature imaging lens 3 of the present embodiment; shown in FIG. Frequency MTF).

从图9A可看出,本实施例的最大场曲不超过0.1mm和-0.1mm,畸变量不超过0.6%。从图9B与图9C可看出,本实施例无论在哪个视场位置都具有良好的分辨率。从图9D可知,本实施例在48lp/mm的时侯,其调制光学传递函数值仍维持在50%以上,显见本实施例的微小型成像镜头的分辨率是符合标准的。It can be seen from FIG. 9A that the maximum field curvature of this embodiment does not exceed 0.1mm and -0.1mm, and the distortion does not exceed 0.6%. It can be seen from FIG. 9B and FIG. 9C that this embodiment has good resolution regardless of the position of the field of view. It can be seen from FIG. 9D that the modulation optical transfer function value of this embodiment is still above 50% at 48 lp/mm, which shows that the resolution of the miniature imaging lens of this embodiment meets the standard.

综合以上所可得知,本发明的微小型成像镜头不仅可以有效地缩小体积且同时可具有高光学效能。Based on the above, it can be seen that the miniature imaging lens of the present invention can not only effectively reduce the size but also have high optical performance.

以上所述仅为本发明较佳可行实施例而已,凡应用本发明说明书及权利要求所做的等效结构及制作方法变化,理应包含在本发明的专利范围内。The above description is only a preferred feasible embodiment of the present invention, and any equivalent structure and manufacturing method changes made by applying the specification and claims of the present invention should be included in the patent scope of the present invention.

Claims (9)

1.一种微小型成像镜头,其特征在于,包含有沿光轴并由物侧至像侧依序排列的:1. A micro-miniature imaging lens is characterized in that it includes along the optical axis and is arranged in sequence from the object side to the image side: 第一镜片,为具有负屈光力的新月型镜片,其凸面朝向该物侧,且至少一面为非球面表面;The first lens is a crescent-shaped lens with negative refractive power, its convex surface faces the object side, and at least one side is an aspheric surface; 第二镜片,为具有正屈光力的双凸镜片;The second lens is a biconvex lens with positive refractive power; 第三镜片,为具有负屈光力的双凹镜片;The third lens is a biconcave lens with negative refractive power; 光圈;aperture; 第四镜片,为具有正屈光力的双凸镜片,且至少一面为非球面表面;The fourth lens is a biconvex lens with positive refractive power, and at least one side is an aspheric surface; 第五镜片,为具有负屈光力的镜片。The fifth lens is a lens with negative refractive power. 2.如权利要求1所述的微小型成像镜头,其特征在于,该第一镜片、该第二镜片、该第三镜片、该第四镜片以及该第五镜片皆由玻璃材质制成。2. The miniature imaging lens according to claim 1, wherein the first lens, the second lens, the third lens, the fourth lens and the fifth lens are all made of glass. 3.如权利要求1所述的微小型成像镜头,其特征在于,该第一镜片的凹面及凸面皆为非球面表面。3. The miniature imaging lens as claimed in claim 1, wherein both the concave surface and the convex surface of the first lens are aspherical surfaces. 4.如权利要求1所述的微小型成像镜头,其特征在于,该第四镜片的两个凸面皆为非球面表面。4. The miniature imaging lens as claimed in claim 1, wherein both convex surfaces of the fourth lens are aspheric surfaces. 5.如权利要求1所述的微小型成像镜头,其特征在于,该第二镜片与该第三镜片胶黏形成胶合镜片,且该胶合镜片具有正屈光力。5. The miniature imaging lens as claimed in claim 1, wherein the second lens and the third lens are glued to form a cemented lens, and the cemented lens has positive refractive power. 6.如权利要求1所述的微小型成像镜头,其特征在于,该第二镜片与该第三镜片胶黏形成胶合镜片,且该胶合镜片具有负屈光力。6 . The miniature imaging lens as claimed in claim 1 , wherein the second lens and the third lens are glued together to form a cemented lens, and the cemented lens has a negative refractive power. 7.如权利要求1所述的微小型成像镜头,其特征在于,更包含滤光片,位于该第五镜片与该像侧之间,且为平板玻璃。7. The miniature imaging lens according to claim 1, further comprising a filter, located between the fifth lens and the image side, and is a plate glass. 8.如权利要求1所述的微小型成像镜头,其特征在于,该第五镜片为新月形镜片,且其凸面朝向该像侧。8 . The miniaturized imaging lens as claimed in claim 1 , wherein the fifth lens is a crescent lens with a convex surface facing the image side. 9.如权利要求1所述的微小型成像镜头,其特征在于,该第五镜片为双凹镜片。9. The miniature imaging lens as claimed in claim 1, wherein the fifth lens is a biconcave lens.
CN201210061564.7A 2011-06-29 2012-03-09 Micro Imaging Lenses Active CN102854611B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210061564.7A CN102854611B (en) 2011-06-29 2012-03-09 Micro Imaging Lenses

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201110178901 2011-06-29
CN2011101789016 2011-06-29
CN201110178901.6 2011-06-29
CN201210061564.7A CN102854611B (en) 2011-06-29 2012-03-09 Micro Imaging Lenses

Publications (2)

Publication Number Publication Date
CN102854611A true CN102854611A (en) 2013-01-02
CN102854611B CN102854611B (en) 2015-05-20

Family

ID=47401343

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210061564.7A Active CN102854611B (en) 2011-06-29 2012-03-09 Micro Imaging Lenses

Country Status (1)

Country Link
CN (1) CN102854611B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103064169A (en) * 2011-10-20 2013-04-24 亚洲光学股份有限公司 Capture lens
CN103926674A (en) * 2013-01-11 2014-07-16 今国光学工业股份有限公司 Miniaturized lens
CN107728288A (en) * 2016-08-12 2018-02-23 三星电子株式会社 Optical lens module and the electronic installation including the optical lens module
CN111929824A (en) * 2020-09-03 2020-11-13 瑞声光电科技(苏州)有限公司 Image pickup optical lens

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5452132A (en) * 1992-10-28 1995-09-19 Samsung Electronics Co., Ltd. Projection lens system for rear type projection television
US5528428A (en) * 1991-11-13 1996-06-18 Nikon Corporation Compact wide-angle objective lens
CN1424612A (en) * 2001-12-14 2003-06-18 日本电产科宝株式会社 Wide-angle lenses
CN1573407A (en) * 2003-05-27 2005-02-02 柯尼卡美能达精密光学株式会社 Small imaging lens and imaging device
JP2008129396A (en) * 2006-11-22 2008-06-05 Konica Minolta Opto Inc Wide converter lens
CN101377562A (en) * 2007-08-30 2009-03-04 鸿富锦精密工业(深圳)有限公司 Lens system
JP2010008562A (en) * 2008-06-25 2010-01-14 Konica Minolta Opto Inc Imaging lens
CN101995646A (en) * 2009-08-17 2011-03-30 大立光电股份有限公司 Image-taking lens system

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5528428A (en) * 1991-11-13 1996-06-18 Nikon Corporation Compact wide-angle objective lens
US5452132A (en) * 1992-10-28 1995-09-19 Samsung Electronics Co., Ltd. Projection lens system for rear type projection television
CN1424612A (en) * 2001-12-14 2003-06-18 日本电产科宝株式会社 Wide-angle lenses
CN1573407A (en) * 2003-05-27 2005-02-02 柯尼卡美能达精密光学株式会社 Small imaging lens and imaging device
JP2008129396A (en) * 2006-11-22 2008-06-05 Konica Minolta Opto Inc Wide converter lens
CN101377562A (en) * 2007-08-30 2009-03-04 鸿富锦精密工业(深圳)有限公司 Lens system
JP2010008562A (en) * 2008-06-25 2010-01-14 Konica Minolta Opto Inc Imaging lens
CN101995646A (en) * 2009-08-17 2011-03-30 大立光电股份有限公司 Image-taking lens system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103064169A (en) * 2011-10-20 2013-04-24 亚洲光学股份有限公司 Capture lens
CN103926674A (en) * 2013-01-11 2014-07-16 今国光学工业股份有限公司 Miniaturized lens
CN103926674B (en) * 2013-01-11 2017-04-12 今国光学工业股份有限公司 miniaturized lens
CN107728288A (en) * 2016-08-12 2018-02-23 三星电子株式会社 Optical lens module and the electronic installation including the optical lens module
CN107728288B (en) * 2016-08-12 2021-06-22 三星电子株式会社 Optical lens assembly and electronic device including the same
CN111929824A (en) * 2020-09-03 2020-11-13 瑞声光电科技(苏州)有限公司 Image pickup optical lens
CN111929824B (en) * 2020-09-03 2021-03-09 诚瑞光学(苏州)有限公司 Image pickup optical lens

Also Published As

Publication number Publication date
CN102854611B (en) 2015-05-20

Similar Documents

Publication Publication Date Title
CN103185956B (en) Miniature projection lens
CN106940469B (en) Photographing lens assembly and image capturing device
TWI431357B (en) Miniature lens
WO2014155468A1 (en) Imaging lens and imaging device provided with imaging lens
US8717689B2 (en) Miniature image pickup lens
TWI464481B (en) Miniature lens
JP3138700U (en) An imaging lens consisting of two lenses
CN104297902A (en) Image pickup lens assembly
TWI443404B (en) Fixed focus projection lens
TWI454726B (en) Lens assembly
CN106125255A (en) Pick-up lens
CN102854611B (en) Micro Imaging Lenses
CN103064169B (en) Capture lens
CN102566020B (en) Miniaturized Zoom Lens
TWI682213B (en) Optical lens
TWI431353B (en) Fixed focus projection lens
CN102914856B (en) zoom lens
TWI436091B (en) Imaging lens
CN106154523A (en) Zoom lens
TWI476472B (en) Imaging lens
CN103135208B (en) Zoom lens
TWI491951B (en) Miniature imaging lens
CN219997398U (en) Half-picture lens with focal length of 23mm
CN102879888B (en) Fixed focus projection lens
TWI451122B (en) Take the camera

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant