[go: up one dir, main page]

CN102852511B - A kind of intelligent drilling control system and method for oil-well rig - Google Patents

A kind of intelligent drilling control system and method for oil-well rig Download PDF

Info

Publication number
CN102852511B
CN102852511B CN201210372330.4A CN201210372330A CN102852511B CN 102852511 B CN102852511 B CN 102852511B CN 201210372330 A CN201210372330 A CN 201210372330A CN 102852511 B CN102852511 B CN 102852511B
Authority
CN
China
Prior art keywords
drilling
unit
control
fuzzy
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201210372330.4A
Other languages
Chinese (zh)
Other versions
CN102852511A (en
Inventor
苏建华
乔红
戴相富
王鹏
郑碎武
王敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Automation of Chinese Academy of Science
Original Assignee
Institute of Automation of Chinese Academy of Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Automation of Chinese Academy of Science filed Critical Institute of Automation of Chinese Academy of Science
Priority to CN201210372330.4A priority Critical patent/CN102852511B/en
Publication of CN102852511A publication Critical patent/CN102852511A/en
Application granted granted Critical
Publication of CN102852511B publication Critical patent/CN102852511B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Earth Drilling (AREA)

Abstract

本发明公开了一种用于石油钻机钻进控制的智能钻进控制系统和控制方法。智能钻进控制系统包括钻进驱动模块、钻进检测模块、钻进控制模块。智能控制方法为具有参数自调节能力的模糊控制算法,算法由两个控制环路构成,内环为钻速控制,外环为钻压控制。每个控制回路都包括模糊控制器单元、性能评价单元、参数校正单元、决策单元等四个部分,能够通过自适应调整模糊控制器的参数,提高控制器性能,实现对石油钻机的钻压和钻速的智能控制。本发明能够降低钻机钻进过程中工人劳动强度,并能够提高钻井的井眼轨迹精度、降低钻头磨损和提高钻速。

The invention discloses an intelligent drilling control system and control method for drilling control of an oil drilling rig. The intelligent drilling control system includes a drilling drive module, a drilling detection module and a drilling control module. The intelligent control method is a fuzzy control algorithm with parameter self-adjusting ability. The algorithm is composed of two control loops, the inner loop is for drilling speed control, and the outer loop is for drilling pressure control. Each control loop includes four parts: fuzzy controller unit, performance evaluation unit, parameter correction unit, and decision-making unit. It can adjust the parameters of the fuzzy controller adaptively, improve the performance of the controller, and realize the drilling pressure and pressure of the oil drilling rig. Intelligent control of drilling speed. The invention can reduce the labor intensity of workers during the drilling process of the drilling rig, and can improve the accuracy of the wellbore trajectory of the drilling, reduce the wear of the drill bit and increase the drilling speed.

Description

一种石油钻机的智能钻进控制系统和方法An intelligent drilling control system and method for an oil drilling rig

技术领域 technical field

本发明涉及工程机械领域,特别涉及一种用于石油天然气钻探的石油钻机的控制系统和控制方法。The invention relates to the field of engineering machinery, in particular to a control system and a control method of an oil drilling rig used for oil and gas drilling.

背景技术 Background technique

钻井是地下石油开采的主要方式之一。目前,钻井的钻进过程主要采用人工操作钻机的方式:司钻人员依据钻机操作手册上推荐的钻头的推进力和旋转速度,根据钻进过程的力度感觉调整钻机参数。钻机钻进时,钻具的钻头和岩层之间不仅有湿摩擦,还有干摩擦和半干摩擦。人工操作容易导致钻具上端下放不均匀,造成钻头载荷不均匀;此外由于操作技术的差异也会导致钻压的急剧波动。因而,人工操作的方式会导致钻孔的位置发生偏移:推进力过低会导致,冲击能量的扩散缓慢,使得钻头的推进速率变慢;钻杆的旋转扭矩变小;会导致钻井的位置偏差过大等。推进力过高也会增加钻井的位置偏差;也不会提高钻头的推进速率。为了获得好的钻井质量,需要避免过低的旋转速度。相反的,过高的旋转速度会导致损伤钻头。Drilling is one of the main methods of underground oil extraction. At present, the drilling process of drilling mainly adopts the method of manually operating the drilling rig: the driller adjusts the drilling rig parameters according to the thrust and rotation speed of the drill bit recommended in the drilling rig operation manual, and according to the force feeling of the drilling process. When the drilling rig is drilling, there is not only wet friction between the drill bit of the drilling tool and the rock formation, but also dry friction and semi-dry friction. Manual operation can easily lead to uneven lowering of the upper end of the drilling tool, resulting in uneven load on the drill bit; in addition, the difference in operating technology will also cause sharp fluctuations in the drilling pressure. Therefore, the manual operation method will cause the position of the drilling hole to shift: too low propulsion force will lead to slow diffusion of impact energy, which will slow down the advancement rate of the drill bit; the rotational torque of the drill pipe will become smaller; it will lead to the drilling position The deviation is too large, etc. Excessive propulsion will also increase the position deviation of drilling; it will not increase the rate of advancement of the drill bit. In order to obtain good drilling quality, excessively low rotational speeds need to be avoided. Conversely, an excessively high rotational speed can cause damage to the drill bit.

采用自动送钻的方法可以消除人工操作钻机的缺点:通过采集钻进过程中的参数,例如包括钻压、钻速、扭矩、泥浆性能、岩石特性、地层孔隙压力、井眼轨迹、井眼稳定性、钻头磨损情况和力学特性等,采用智能控制方法使钻具能够适应不同的岩层,获得最佳的岩层穿透速率,并保持钻孔的准直度的能力。智能钻进控制系统不仅能够维持钻进参数的精确性,也能够减少钻头磨损,从而提高钻井质量和经济效益。The method of automatic drilling can eliminate the shortcomings of manual drilling rigs: by collecting parameters during the drilling process, such as drilling pressure, drilling speed, torque, mud performance, rock properties, formation pore pressure, wellbore trajectory, wellbore stability It adopts intelligent control method to make the drilling tool adapt to different rock formations, obtain the best rock formation penetration rate, and maintain the ability of drilling collimation. The intelligent drilling control system can not only maintain the accuracy of drilling parameters, but also reduce drill bit wear, thereby improving drilling quality and economic benefits.

申请号为201010115470.4的中国发明专利(一种入岩钻机及其控制系统和控制方法)公开了一种用于入岩钻机的控制系统:检测钻斗深度并与预先设置的深度基准值进行比较,根据比较结果上提或下压钻斗;检测钻斗压力并与预先设置的压力基准值进行比较,根据比较结果控制钻斗停止入岩或继续入岩;检测钻斗速度并与速度基准值进行比较,根据比较结果控制主卷扬减少或提高加压压力。美国专利US6732052B2(MethodandApparatusforPredictionControlinDrillingDynamicsUsingNeuralNetworks)公开了一种基于神经网络的钻进过程预测控制方法。利用井下控制计算机控制井下钻具组合,根据钻进参数和钻进方向的变化自动优化钻进效率。通过神经网络迭代更新钻进过程的预测模型并为司钻人员提供操作指导。文献“石油钻机智能送钻技术研究”(《石油机械》,2006年第34卷第12期,王平等)中提出了一种基于模糊智能技术的石油钻机自动送钻技术。利用工业控制计算机对钻机辅助电动机进行自动送钻控制,根据熟练操作司钻的控制经验建立模糊规则,实现恒钻压钻进控制。The Chinese invention patent with the application number of 201010115470.4 (a rock drilling rig and its control system and control method) discloses a control system for rock drilling rigs: detecting the depth of the drilling bucket and comparing it with a preset depth reference value, Lift up or press down the drilling bucket according to the comparison result; detect the pressure of the drilling bucket and compare it with the preset pressure reference value, and control the drilling bucket to stop entering the rock or continue to enter the rock according to the comparison result; detect the speed of the drilling bucket and compare it with the speed reference value Compare, and control the main winch to reduce or increase the pressurizing pressure according to the comparison result. US Patent US6732052B2 (Method and Apparatus for Prediction Control in Drilling Dynamics Using Neural Networks) discloses a neural network-based predictive control method for the drilling process. The downhole control computer is used to control the downhole drilling tool assembly, and the drilling efficiency is automatically optimized according to the changes of the drilling parameters and the drilling direction. The prediction model of the drilling process is iteratively updated through the neural network and operation guidance is provided for the driller. In the document "Study on Intelligent Drilling Technology of Oil Drilling Rig" ("Petroleum Machinery", Volume 34, No. 12, 2006, Wang Pingping), an automatic drilling technology for oil drilling rigs based on fuzzy intelligent technology is proposed. The industrial control computer is used to automatically control the drilling rig auxiliary motor, and the fuzzy rules are established according to the control experience of the experienced driller to realize the drilling control with constant drilling pressure.

传统的钻进控制方法主要是通过建立钻进过程模型,通过传感器对钻进参数的反馈实现对钻具钻进的控制。然而由于钻进过程受到地质情况、钻头磨损情况和泥浆性能等参数的影响,很难建立精确的数学模型。智能钻进控制方法不需要精确数学模型,就能实现对非线性系统的控制。The traditional drilling control method is mainly to realize the control of the drilling tool drilling by establishing the drilling process model and the feedback of the sensor to the drilling parameters. However, because the drilling process is affected by parameters such as geological conditions, bit wear and mud properties, it is difficult to establish an accurate mathematical model. The intelligent drilling control method can realize the control of nonlinear system without precise mathematical model.

发明内容 Contents of the invention

(一)要解决的技术问题(1) Technical problems to be solved

为克服现有技术中的不足,本发明所要解决的技术问题是提供一种石油钻机的智能钻进控制系统和控制方法,能够在不建立精确数学模型的情况下,实现对石油钻机钻进过程的控制,控制参数包括石油钻机的钻压和钻速。In order to overcome the deficiencies in the prior art, the technical problem to be solved by the present invention is to provide an intelligent drilling control system and control method for an oil drilling rig, which can realize the control of the drilling process of the oil drilling rig without establishing an accurate mathematical model. The control parameters include drilling pressure and drilling speed of the oil drilling rig.

(二)技术方案(2) Technical solutions

本发明提出一种钻机的智能钻进控制系统,所述钻机包括用于钻进的钻头,所述智能钻进控制系统包括钻进控制模块、钻进检测模块、钻进驱动模块;钻进检测模块用于获取钻机钻进过程中的参数;钻进控制模块用于根据钻进检测模块获取的所述参数,计算出钻头期望的钻压和期望的钻速;钻进驱动模块根据所述期望的钻压和期望的钻速,驱动所述钻机钻进。The present invention proposes an intelligent drilling control system for a drilling rig, the drilling rig includes a drill bit for drilling, and the intelligent drilling control system includes a drilling control module, a drilling detection module, and a drilling drive module; The module is used to obtain the parameters during the drilling process of the drilling rig; the drilling control module is used to calculate the expected drilling pressure and expected drilling speed of the drill bit according to the parameters obtained by the drilling detection module; The WOB and the desired drilling speed are used to drive the drilling rig to drill.

根据本发明的一种具体实施方式,所述钻进检测模块获取的参数包括钻头的振动量、钻压、扭矩、钻速和钻井液的参数,所述钻进检测模块包括振动检测单元、钻井液检测单元、钻压检测单元、扭矩检测单元、转速检测单元、钻速检测单元,其中:振动检测单元用于实时检测钻头的振动量;钻井液检测模块用于实时检测钻井液的参数;钻压检测单元用于检测所述钻头的钻压;扭矩检测单元用于检测所述钻头的扭矩;转速检测单元用于检测所述钻头的转速;钻速检测单元用于根据所述钻头的钻压、转速和扭矩计算钻头的钻速。According to a specific embodiment of the present invention, the parameters acquired by the drilling detection module include the vibration amount of the drill bit, drilling pressure, torque, drilling speed and drilling fluid parameters, and the drilling detection module includes a vibration detection unit, a drilling Fluid detection unit, weight-on-bit detection unit, torque detection unit, rotational speed detection unit, drilling speed detection unit, wherein: the vibration detection unit is used to detect the vibration of the drill bit in real time; the drilling fluid detection module is used to detect the parameters of the drilling fluid in real time; The pressure detection unit is used to detect the WOB of the drill bit; the torque detection unit is used to detect the torque of the drill bit; the rotation speed detection unit is used to detect the rotation speed of the drill bit; the drilling speed detection unit is used to detect the WOB of the drill bit. , rotational speed and torque to calculate the drilling speed of the drill bit.

根据本发明的一种具体实施方式,所述钻进驱动模块包括钻具起升单元和钻具旋转单元,所述钻具起升单元用于悬持钻头和控制钻压;所述钻具旋转单元用于驱动钻头旋转。According to a specific embodiment of the present invention, the drilling drive module includes a drill tool hoist unit and a drill tool rotation unit, and the drill tool hoist unit is used to suspend the drill bit and control the weight-on-bit; the drill tool rotation unit The unit is used to drive the drill bit to rotate.

根据本发明的一种具体实施方式,所述钻进控制模块包括内环和外环,所述内环用于控制钻机的钻具旋转单元,所述外环用于控制钻机的钻具起升单元。According to a specific embodiment of the present invention, the drilling control module includes an inner ring and an outer ring, the inner ring is used to control the drilling tool rotation unit of the drilling rig, and the outer ring is used to control the drilling tool lifting of the drilling rig unit.

根据本发明的一种具体实施方式,所述内环包括内环模糊控制器单元,所述内环模糊控制器单元存储有内环比例因子、内环量化因子和期望的性能指标,用于根据所述钻速检测单元输入的转速以及该内环比例因子、内环量化因子计算得到钻速模糊输入量,并对该钻速模糊输入量进行模糊推理,获得钻速模糊控制量,并根据该钻速模糊控制量计算用于控制钻具旋转单元的钻速数字控制量,输出到该钻具旋转单元。According to a specific embodiment of the present invention, the inner loop includes an inner loop fuzzy controller unit, and the inner loop fuzzy controller unit stores an inner loop scaling factor, an inner loop quantization factor, and an expected performance index, and is used for according to The rotational speed input by the drilling speed detection unit and the inner ring scale factor and the inner ring quantization factor are calculated to obtain the drilling speed fuzzy input amount, and fuzzy reasoning is performed on the drilling speed fuzzy input amount to obtain the drilling speed fuzzy control amount, and according to the The drilling speed fuzzy control quantity calculates the drilling speed digital control quantity used to control the drilling tool rotation unit, and outputs it to the drilling tool rotation unit.

根据本发明的一种具体实施方式,所述外环包括外环模糊控制器单元,所述外环模糊控制器单元存储有外环比例因子、外环量化因子和期望的性能指标,用于根据所述所述钻压检测单元输入的钻压以及该外环比例因子、外环量化因子计算得到钻压模糊输入量,并对该钻压模糊输入量进行模糊推理,获得钻压模糊控制量,并根据该钻压模糊控制量计算用于控制钻具起升单元的钻压数字控制量,输出到该钻具起升单元。According to a specific embodiment of the present invention, the outer loop includes an outer loop fuzzy controller unit, and the outer loop fuzzy controller unit stores an outer loop scaling factor, an outer loop quantization factor, and an expected performance index for The WOB input by the WOB detection unit and the outer ring scale factor and the outer ring quantization factor are calculated to obtain the WOB fuzzy input amount, and fuzzy reasoning is performed on the WOB fuzzy input amount to obtain the WOB fuzzy control amount, And according to the weight-on-bit fuzzy control amount, calculate the weight-on-bit digital control amount used to control the drilling tool hoisting unit, and output it to the drilling tool hoisting unit.

本发明还提出一种钻机的智能钻进控制方法,所述钻机包括用于钻进的钻头,所述方法包括如下步骤:获取钻机钻进过程中的参数;根据所述获取的参数,计算所述钻头期望的钻压和期望的钻速;根据所述期望的钻压和期望的钻速,驱动所述钻机钻进。The present invention also proposes an intelligent drilling control method for a drilling rig, the drilling rig includes a drill bit for drilling, and the method includes the following steps: obtaining parameters during the drilling process of the drilling rig; calculating the obtained parameters according to the obtained parameters The expected drilling pressure and expected drilling speed of the drill bit; according to the expected drilling pressure and expected drilling speed, the drilling machine is driven to drill.

(三)有益效果(3) Beneficial effects

本发明提出的智能钻进控制系统和控制方法,有益于降低钻机钻进过程中司钻人员的劳动强度,提高钻井的井眼轨迹精度、降低钻头磨损和钻头的穿透率。The intelligent drilling control system and control method proposed by the present invention are beneficial to reduce the labor intensity of the driller during the drilling process of the drilling rig, improve the accuracy of the wellbore trajectory of drilling, and reduce the wear and penetration rate of the drill bit.

附图说明 Description of drawings

图1所示为本发明的智能钻进控制系统的模块连接示意图;Fig. 1 shows the module connection schematic diagram of intelligent drilling control system of the present invention;

图2所示为本发明的智能钻进控制系统的工作原理图;Fig. 2 shows the working principle diagram of the intelligent drilling control system of the present invention;

图3所示为本发明的智能钻进控制系统的钻进检测模块的工作流程图;Fig. 3 shows the working flow diagram of the drilling detection module of the intelligent drilling control system of the present invention;

图4所示为本发明的智能钻进控制系统的自适应控制方法的控制流程示意图;Fig. 4 shows the control flow diagram of the adaptive control method of the intelligent drilling control system of the present invention;

图5所示为本发明的智能控制方法的自适应参数调整的算法流程图;Fig. 5 shows the algorithm flowchart of the adaptive parameter adjustment of the intelligent control method of the present invention;

图6所示为本发明的内环模糊控制器单元的参数调整算法的流程图。FIG. 6 is a flow chart of the parameter adjustment algorithm of the inner-loop fuzzy controller unit of the present invention.

具体实施方式 Detailed ways

为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本发明作进一步的详细说明。In order to make the object, technical solution and advantages of the present invention clearer, the present invention will be further described in detail below in conjunction with specific embodiments and with reference to the accompanying drawings.

在石油钻机钻进过程中,由于井下的岩体构造的多样性,当钻机钻头前端接触到不同性质的岩石时,过高的钻压和钻速可能造成事故,如折断钻杆、钻头,钻头损坏等;过低的钻压、钻速和扭矩又使钻井效率十分低。因此,在某一地层和某一深度,合适的钻压、钻速和扭矩对钻井是十分有利的,既可以提高钻井效率,也有利于减小钻头的磨损。During the drilling process of oil drilling rigs, due to the diversity of rock mass structures downhole, when the front end of the drill bit touches rocks of different properties, excessive drilling pressure and drilling speed may cause accidents, such as broken drill pipes, drill bits, and drill bits. Damage, etc.; too low drilling pressure, drilling speed and torque make drilling efficiency very low. Therefore, in a certain formation and a certain depth, proper drilling pressure, drilling speed and torque are very beneficial to drilling, which can not only improve drilling efficiency, but also help reduce drill bit wear.

当石油钻机接触到不同性质的岩石时,如果不能实时调整钻压、钻速和扭矩,保持钻头与岩石条件的贴合,就会导致钻头的偏载,甚至折断钻杆。钻压FT可以表示为:When the oil drilling rig comes into contact with rocks of different properties, if the drilling pressure, drilling speed and torque cannot be adjusted in real time to keep the drill bit in line with the rock conditions, it will cause the unbalanced load of the drill bit and even break the drill pipe. The weight on bit FT can be expressed as:

FT=MG-F1-F2-Ff F T =MG-F 1 -F 2 -F f

其中,钻具净重为MG,钻具在钻井液中的浮力是F1,受到钢丝绳上提的拉力是F2,钻头与岩层之间的摩擦力是FfAmong them, the net weight of the drilling tool is MG, the buoyancy of the drilling tool in the drilling fluid is F 1 , the pulling force on the wire rope is F 2 , and the friction between the drill bit and the rock formation is F f .

钻速VT与钻头的旋转速度WT和钻压FT相关。钻头的旋转速度WT等同于钻杆上转盘的转速WPThe rate of penetration V T is related to the rotational speed W T of the drill bit and the weight on bit F T . The rotational speed W T of the drill bit is equal to the rotational speed W P of the rotary table on the drill pipe.

本发明提出的智能钻进控制系统包括钻进控制模块1、钻进检测模块2、钻进驱动模块3。钻进检测模块2获得钻机钻进过程中的钻头的振动量、钻压、扭矩、钻速等以及钻井液的参数。钻进控制模块1根据钻进检测模块2计算得到参数,通过钻进控制模块1中存储的具有参数自调节能力的自适应控制算法单元11,计算出期望的钻压和期望的钻速。钻进驱动模块3根据期望的钻压和期望的钻速,驱动钻机钻进。The intelligent drilling control system proposed by the present invention includes a drilling control module 1 , a drilling detection module 2 and a drilling driving module 3 . The drilling detection module 2 obtains the vibration amount of the drill bit, drilling pressure, torque, drilling speed, etc. and drilling fluid parameters during the drilling process of the drilling rig. The drilling control module 1 obtains the parameters calculated by the drilling detection module 2, and calculates the expected pressure on bit and the expected drilling speed through the adaptive control algorithm unit 11 stored in the drilling control module 1 with parameter self-adjustment capability. The drilling drive module 3 drives the drilling rig to drill according to the desired drilling pressure and desired drilling speed.

钻进检测模块包括:振动检测单元21、钻井液检测单元22、钻压检测单元23、扭矩检测单元24、钻速检测单元25。其中:振动检测单元21实时检测钻头在井下的振动量,即钻头的轴向振动力的幅值和频率、钻头的纵向振动力的幅值和频率;钻井液检测模块22实时检测井下钻头附近的钻井液的物理特性和化学特性,包括钻井液的粘度、pH值、温度和钻井液压等参数信息;钻压检测单元23实时测量钻头与井下岩层之间的接触压力;扭矩检测单元24测量钻进过程中钻头的扭矩,包括测量破碎岩石时的水平阻力和钻具回转时与孔壁的摩擦阻力的大小;转速检测单元25检测测量钻头转速;钻速检测模块25则根据钻压、转速和扭矩,计算出岩层穿透率计算钻机钻进时的岩石穿透速度,即钻速。The drilling detection module includes: a vibration detection unit 21 , a drilling fluid detection unit 22 , a pressure-on-bit detection unit 23 , a torque detection unit 24 , and a drilling speed detection unit 25 . Wherein: the vibration detection unit 21 detects the vibration amount of the drill bit in the downhole in real time, that is, the amplitude and frequency of the axial vibration force of the drill bit and the amplitude and frequency of the longitudinal vibration force of the drill bit; the drilling fluid detection module 22 detects the vibration near the downhole drill bit in real time The physical and chemical properties of the drilling fluid, including the viscosity, pH value, temperature and drilling hydraulic pressure and other parameter information of the drilling fluid; the pressure on bit detection unit 23 measures the contact pressure between the drill bit and the downhole rock formation in real time; the torque detection unit 24 measures the drilling pressure The torque of the drill bit during the process includes measuring the horizontal resistance when the rock is broken and the frictional resistance with the hole wall when the drilling tool rotates; the rotational speed detection unit 25 detects and measures the rotational speed of the drill bit; , Calculate the rock penetration rate to calculate the rock penetration speed when the drilling rig is drilling, that is, the penetration rate.

钻进驱动模块3包括用于悬持钻头和控制钻压的钻具起升单元31,和用于驱动钻头旋转以破碎岩层的钻具旋转单元32,优选的钻具起升单元31可以包括绞车、辅助刹车等起升钻具以及悬持钻柱和控制钻压的机构;钻机钻具旋转单元32包括转盘、水龙头和钻具等用于驱动钻具旋转以破碎岩层的机构。The drilling drive module 3 includes a drilling tool hoist unit 31 for suspending the drill bit and controlling the weight-on-bit, and a drilling tool rotation unit 32 for driving the drill bit to rotate to break rock formations. The preferred drilling tool hoisting unit 31 may include a winch , auxiliary brakes, etc. to lift the drilling tool and the mechanism for suspending the drill string and controlling the drilling pressure; the drilling rig rotation unit 32 includes a rotary table, a faucet and a drilling tool, etc., which are used to drive the drilling tool to rotate to break the rock formation.

为确保钻孔过程中钻压和钻速变化的光滑性,需要采用智能控制系统及控制方法,控制石油钻机的钻具起升单元31和钻具旋转单元32。In order to ensure the smoothness of changes in drilling pressure and drilling speed during drilling, it is necessary to adopt an intelligent control system and control method to control the drilling tool lifting unit 31 and the drilling tool rotating unit 32 of the oil drilling rig.

图1所示为本发明的智能钻进控制系统的模块连接示意图。如图1所示,钻进驱动模块3的作用对象为井下岩层和泥浆等。钻进检测模块2的输出端连接钻进控制模块1的输入端;钻进控制模块1的输出端连接钻进驱动模块3;钻进检测模块2实时检测钻进驱动模块3的状态和作用对象4的状态。Fig. 1 is a schematic diagram of module connection of the intelligent drilling control system of the present invention. As shown in FIG. 1 , the action objects of the drilling drive module 3 are downhole rock formations and mud. The output end of the drilling detection module 2 is connected to the input end of the drilling control module 1; the output end of the drilling control module 1 is connected to the drilling drive module 3; the drilling detection module 2 detects the status and action objects of the drilling drive module 3 in real time 4 status.

图2为本发明的智能钻进控制系统的工作原理图。根据钻进检测模块2输出的钻头振动量、钻井液参数、钻压、扭矩、钻头转速,以及钻速等信息,钻进控制模块1计算出下一时刻期望的钻压和期望的钻速。期望钻压和期望钻速输出到钻进驱动模块3中,以调整钻具起升单元31和钻具旋转单元32。Fig. 2 is a working principle diagram of the intelligent drilling control system of the present invention. According to the drill bit vibration, drilling fluid parameters, drilling pressure, torque, drill bit speed, and drilling speed output by the drilling detection module 2, the drilling control module 1 calculates the expected drilling pressure and expected drilling speed at the next moment. The expected drilling pressure and expected drilling speed are output to the drilling drive module 3 to adjust the drilling tool lifting unit 31 and the drilling tool rotating unit 32 .

图3所示为本发明的智能钻进控制系统的钻进检测模块2的结构示意图。钻进检测模块2包括振动检测单元21、钻井液检测单元22、钻压检测单元23、扭矩检测单元24、转速检测单元25、钻速检测单元26。其中:振动检测单元21实时检测钻头在井下的振动规律,可以是轴向振动力幅值、纵向振动力幅值;钻井液检测单元22实时检测井下钻头附近的钻井液参数,可以是钻井液的粘度、pH值、温度和钻井液压等参数;钻压检测单元23实时测量钻头与井下岩层之间的钻压;扭矩检测单元24测量钻进过程中钻头破碎岩石时的水平阻力和钻具回转时与孔壁的摩擦阻力,获得扭矩;转速检测单元25检测钻头转速,可以是转盘的旋转速度;钻速检测单元26根据钻头转速、钻压和扭矩,计算出钻速,如下式所示:FIG. 3 is a schematic structural diagram of the drilling detection module 2 of the intelligent drilling control system of the present invention. The drilling detection module 2 includes a vibration detection unit 21 , a drilling fluid detection unit 22 , a weight-on-bit detection unit 23 , a torque detection unit 24 , a rotational speed detection unit 25 , and a drilling speed detection unit 26 . Wherein: the vibration detection unit 21 detects the vibration law of the drill bit in the downhole in real time, which can be the amplitude of the axial vibration force and the amplitude of the longitudinal vibration force; Parameters such as viscosity, pH value, temperature, and drilling hydraulic pressure; the WOB detection unit 23 measures the WOB between the drill bit and the downhole rock formation in real time; the torque detection unit 24 measures the horizontal resistance when the drill bit breaks rocks during drilling and the rotation time of the drilling tool The friction resistance with the hole wall is used to obtain the torque; the rotational speed detection unit 25 detects the rotational speed of the drill bit, which can be the rotational speed of the turntable; the drilling speed detection unit 26 calculates the drilling speed according to the rotational speed of the drill bit, the pressure on bit and the torque, as shown in the following formula:

APRAPR == PRPR // (( PPPP ×× RPRP ))

其中,APR表示钻速,PR表示钻头转速,PP表示钻压,RP表示扭矩。Among them, APR represents the drilling speed, PR represents the bit speed, PP represents the bit pressure, and RP represents the torque.

图4所示为本发明的智能钻进控制系统的自适应控制方法的控制流程示意图。本发明的自适应控制方法采用参数自调节的模糊控制算法,由两个控制环路构成,内环为钻速控制,外环为钻压控制。Fig. 4 is a schematic control flow diagram of the adaptive control method of the intelligent drilling control system of the present invention. The self-adaptive control method of the present invention adopts a parameter self-adjusting fuzzy control algorithm, and is composed of two control loops, the inner loop is for drilling speed control, and the outer loop is for drill pressure control.

钻进控制模块1包括内环和外环,内环包括内环模糊控制器单元125、内环性能评价单元135、内环参数校正单元145、内环决策单元155;外环包括外环模糊控制器单元126、外环性能评价单元136、外环参数校正单元146、外环决策单元156。内环的钻速控制由内环模糊控制器单元125、内环性能评价单元135、内环参数校正单元145、内环决策单元155等四个部分,内环的输出控制钻机的钻具旋转单元31。外环的钻压控制包括外环模糊控制器单元126、外环性能评价单元136、外环参数校正单元146、外环决策单元156等四个部分,外环的输出控制钻机的钻具起升单元32。The drilling control module 1 includes an inner ring and an outer ring, the inner ring includes an inner ring fuzzy controller unit 125, an inner ring performance evaluation unit 135, an inner ring parameter correction unit 145, and an inner ring decision-making unit 155; the outer ring includes an outer ring fuzzy control unit The controller unit 126, the outer loop performance evaluation unit 136, the outer loop parameter correction unit 146, and the outer loop decision unit 156. The drilling speed control of the inner ring consists of four parts: the inner ring fuzzy controller unit 125, the inner ring performance evaluation unit 135, the inner ring parameter correction unit 145, and the inner ring decision-making unit 155. The output of the inner ring controls the drilling tool rotation unit of the drilling rig 31. The weight-on-bit control of the outer ring includes four parts: the outer ring fuzzy controller unit 126, the outer ring performance evaluation unit 136, the outer ring parameter correction unit 146, and the outer ring decision-making unit 156. The output of the outer ring controls the lifting of the drilling rig. Unit 32.

内环模糊控制器单元125存储有内环比例因子、内环量化因子和期望的性能指标,该内环比例因子和内环量化因子具有一个相同的可调系数P。The inner-loop fuzzy controller unit 125 stores an inner-loop scale factor, an inner-loop quantization factor and an expected performance index. The inner-loop scale factor and the inner-loop quantization factor have the same adjustable coefficient P.

所述内环比例因子是指内环模糊控制器单元中,将钻速模糊控制量转换为钻速数字控制量的一个参数。The inner-loop proportional factor refers to a parameter in the inner-loop fuzzy controller unit that converts the drilling speed fuzzy control quantity into the drilling speed digital control quantity.

式中,Ku为内环比例因子,yu为钻速数字控制量,L为钻速模糊控制量的论域的上确界。 In the formula, K u is the proportional factor of the inner ring, y u is the numerical control variable of drilling speed, and L is the supremum of the discourse domain of the fuzzy control variable of drilling speed.

所述内环量化因子是指内环模糊控制器单元中,将期望输出的钻速模糊控制量与实际输出的钻速模糊控制量之间的误差变量转换为相应的钻速误差的模糊输入量的一个参数。The quantization factor of the inner loop refers to the fuzzy input quantity that converts the error variable between the expected output fuzzy control amount of the drilling speed and the actual output of the drilling speed fuzzy control amount into the corresponding drilling speed error in the inner ring fuzzy controller unit a parameter of .

式中,Ke为内环量化因子,xe为误差变量的基本论域的上确界,n为误差变量的模糊子集的论域的上确界。 In the formula, K e is the quantization factor of the inner ring, x e is the supremum of the basic domain of discourse of the error variable, and n is the supremum of the domain of discourse of the fuzzy subset of the error variable.

该内环模糊控制器单元125用于根据所述钻速检测单元26输入的转速以及该内环比例因子、内环量化因子计算得到钻速模糊输入量,并对该钻速模糊输入量进行模糊推理,获得钻速模糊控制量,并根据该钻速模糊控制量计算用于控制钻具旋转单元32的钻速数字控制量,输出到该钻具旋转单元32。The inner loop fuzzy controller unit 125 is used to calculate the fuzzy input amount of the drilling speed according to the rotational speed input by the drilling speed detection unit 26, the inner loop scaling factor, and the inner loop quantization factor, and fuzzy the drilling speed fuzzy input amount. Inference, obtain the drilling speed fuzzy control quantity, calculate the drilling speed digital control quantity for controlling the drilling tool rotation unit 32 according to the drilling speed fuzzy control quantity, and output to the drilling tool rotation unit 32 .

内环性能评价单元135用于根据所述内环模糊控制器单元125存储的期望的性能指标和由所述钻进检测模块2检测的实际的钻机钻进过程中的参数,计算一个性能评价函数V(x),该性能评价函数V(x)用于评价所检测的参数与期望性能指标的符合程度。The inner loop performance evaluation unit 135 is used to calculate a performance evaluation function according to the expected performance index stored by the inner loop fuzzy controller unit 125 and the parameters in the actual drilling process detected by the drilling detection module 2 V(x), the performance evaluation function V(x) is used to evaluate the degree of compliance between the detected parameters and the expected performance indicators.

内环参数校正单元145用于根据钻速数字控制量计算所述可调系数P的修正量ΔP。The inner ring parameter correction unit 145 is used to calculate the correction amount ΔP of the adjustable coefficient P according to the digital control amount of the drilling speed.

内环决策单元155用于根据所述当前时刻t的可调系数Pt及所述修正量ΔP,比较可调系数P在Pt、Pt+ΔP、Pt-ΔP时的所述评价函数V(x)、V+(x)、V-(x),选择最大值所对应的可调系数,作为下一时刻t+1的内环比例因子和内环量化因子的可调系数。The inner loop decision-making unit 155 is used to compare the evaluation function of the adjustable coefficient P at P t , P t +ΔP, and P t −ΔP according to the adjustable coefficient P t at the current moment t and the correction amount ΔP V(x), V + (x), V- ( x), select the adjustable coefficient corresponding to the maximum value as the adjustable coefficient of the inner ring scale factor and the inner ring quantization factor at the next moment t+1.

外环模糊控制器单元126存储有外环比例因子、外环量化因子和期望的性能指标,该外环比例因子和外环量化因子具有一个相同的可调系数P。The outer-loop fuzzy controller unit 126 stores the outer-loop scale factor, the outer-loop quantization factor and the expected performance index, and the outer-loop scale factor and the outer-loop quantization factor have the same adjustable coefficient P.

所述外环比例因子是指外环模糊控制器单元中,将钻压模糊控制量转换为钻压数字控制量的一个参数。The outer loop proportional factor refers to a parameter in the outer loop fuzzy controller unit that converts the fuzzy control amount of the weight on bit into the digital control amount of the bit pressure.

所述外环量化因子是指外环模糊控制器单元中,将期望输出的钻压模糊控制量与实际输出的钻压模糊控制量之间的误差转换为相应的钻压速误差的模糊输入量的一个参数。The outer ring quantization factor refers to the fuzzy input amount of the outer ring fuzzy controller unit, which converts the error between the expected output fuzzy control amount of bit pressure and the actual output bit pressure fuzzy control amount into the corresponding bit rate error a parameter of .

该外环模糊控制器单元125用于根据所述钻压检测单元23输入的钻压以及该外环比例因子、外环量化因子计算得到钻压模糊输入量,并对该钻压模糊输入量进行模糊推理,获得钻压模糊控制量,并根据该钻压模糊控制量计算用于控制钻具起升单元31的钻压数字控制量,输出到该钻具起升单元31。The outer ring fuzzy controller unit 125 is used to calculate the weight on bit fuzzy input amount according to the weight on bit input by the weight on bit detection unit 23, the outer ring scaling factor, and the outer ring quantization factor, and perform the fuzzy input amount of the weight on bit Fuzzy inference obtains the weight-on-bit fuzzy control amount, and calculates the digital control amount of the weight-on-bit for controlling the drilling tool hoisting unit 31 according to the bit weight fuzzy control amount, and outputs it to the drilling tool hoisting unit 31 .

外环性能评价单元136用于根据所述外环模糊控制器单元126存储的期望的性能指标和由所述钻进检测模块2检测的实际参数计算一个性能评价函数V(x),该性能评价函数V(x)用于评价实际性能指标与期望性能指标的符合程度。The outer loop performance evaluation unit 136 is used to calculate a performance evaluation function V (x) according to the expected performance index stored by the outer ring fuzzy controller unit 126 and the actual parameters detected by the drilling detection module 2, the performance evaluation The function V(x) is used to evaluate the degree of conformity between the actual performance index and the expected performance index.

外环参数校正单元146用于根据钻压数字控制量计算所述可调系数P的修正量ΔP。The outer ring parameter correction unit 146 is used to calculate the correction amount ΔP of the adjustable coefficient P according to the digital control amount of the weight on bit.

外环决策单元156用于根据所述当前时刻t的可调系数Pt及所述修正量ΔP,比较可调系数P在Pt、Pt+ΔP、Pt-ΔP时的所述评价函数V(x)、V+(x)、V-(x),选择最大值所对应的可调系数,作为下一时刻t+1的外环比例因子和外环量化因子的可调系数。The outer loop decision unit 156 is used to compare the evaluation function of the adjustable coefficient P at P t , P t +ΔP, and P t −ΔP according to the adjustable coefficient P t at the current moment t and the correction amount ΔP V(x), V + (x), V- ( x), select the adjustable coefficient corresponding to the maximum value as the adjustable coefficient of the outer ring scale factor and the outer ring quantization factor at the next moment t+1.

图5所示为本发明的智能钻进控制系统的自适应控制方法的流程图。如上所述,本发明的方法由钻进控制模块1的内环和外环实现,总体来说,本发明首先建立模糊控制器单元的初始控制参数,然后再基于增强学习算法进行模糊控制器单元的参数调整。Fig. 5 is a flow chart of the adaptive control method of the intelligent drilling control system of the present invention. As mentioned above, the method of the present invention is realized by the inner loop and the outer loop of the drilling control module 1. Generally speaking, the present invention first establishes the initial control parameters of the fuzzy controller unit, and then performs the fuzzy controller unit based on the reinforcement learning algorithm. parameter adjustment.

下面以钻速控制回路中的内环模糊控制器单元125的参数调整为例描述本发明的方法,钻压控制回路中的外环模糊控制器单元126的参数调整的步骤相类似。The method of the present invention is described below by taking the parameter adjustment of the inner fuzzy controller unit 125 in the drilling speed control loop as an example, and the steps of parameter adjustment of the outer fuzzy controller unit 126 in the drilling pressure control loop are similar.

内环控制方法包括:Inner loop control methods include:

A1:初始化内环模糊控制器单元125的控制参数,优选地,控制参数包括内环比例因子和内环量化因子。A1: Initialize the control parameters of the inner loop fuzzy controller unit 125, preferably, the control parameters include the inner loop scaling factor and the inner loop quantization factor.

A2:内环模糊控制器单元125接收由钻速检测单元26提供的钻速,并根据所述内环比例因子的初始值和内环量化因子的初始值,将输入的钻速变成内环模糊控制器单元125要求的钻速模糊输入量;A2: The inner-ring fuzzy controller unit 125 receives the drilling speed provided by the drilling speed detection unit 26, and according to the initial value of the inner-ring scale factor and the initial value of the inner-ring quantization factor, the input drilling speed becomes an inner ring The drilling speed fuzzy input required by the fuzzy controller unit 125;

A3:内环模糊控制器单元125根据一个模糊规则库,对钻速模糊输入量进行模糊推理,获得钻速模糊控制量。A3: The inner-loop fuzzy controller unit 125 performs fuzzy reasoning on the fuzzy input quantity of the drilling speed according to a fuzzy rule base to obtain the fuzzy control quantity of the drilling speed.

A4:内环模糊控制器单元125将模糊推理得到的钻速模糊控制量变换为实际用于控制钻具旋转单元32的钻速数字控制量,然后输出到钻具旋转单元32。A4: The inner-loop fuzzy controller unit 125 transforms the drilling speed fuzzy control quantity obtained by fuzzy inference into the drilling speed digital control quantity actually used to control the drilling tool rotation unit 32 , and then outputs it to the drilling tool rotation unit 32 .

A5:调整内环模糊控制器单元125的其内环比例因子和内环量化因子。A5: Adjust the inner-loop scale factor and inner-loop quantization factor of the inner-loop fuzzy controller unit 125 .

内环比例因子和内环量化因子的调整方法将在下面说明。The adjustment method of the inner ring scale factor and the inner ring quantization factor will be described below.

A6:返回步骤A2。A6: Return to step A2.

图6所示为本发明的内环模糊控制器单元125的内环比例因子和内环量化因子的调整方法流程图。FIG. 6 is a flow chart of the method for adjusting the inner-loop scale factor and the inner-loop quantization factor of the inner-loop fuzzy controller unit 125 of the present invention.

根据本发明,内环量化因子和内环比例因子具有一个相同的可调系数P。通过调整P,便可以得到调整后的内环比例因子和内环量化因子。具体的步骤如下描述:According to the present invention, the inner ring quantization factor and the inner ring scale factor have the same adjustable coefficient P. By adjusting P, the adjusted inner ring scale factor and inner ring quantization factor can be obtained. The specific steps are described as follows:

B1:设置内环模糊控制器单元125的期望的性能指标,优选的可以设置模糊控制器单元125的阶跃响应的上升时间、超调量和振幅。B1: Set the desired performance index of the inner-loop fuzzy controller unit 125, preferably the rise time, overshoot and amplitude of the step response of the fuzzy controller unit 125 can be set.

B2:内环性能评价单元135用于根据所述内环模糊控制器单元125的期望的性能指标和由所述钻进检测模块2检测的实际性能指标计算一个性能评价函数V(x),该性能评价函数V(x)用于评价实际性能指标与期望性能指标的符合程度。B2: the inner loop performance evaluation unit 135 is used to calculate a performance evaluation function V (x) according to the desired performance index of the inner loop fuzzy controller unit 125 and the actual performance index detected by the drilling detection module 2, the The performance evaluation function V(x) is used to evaluate the degree of conformity between the actual performance index and the expected performance index.

优选的,所述评价函数V(x)的计算公式如下:Preferably, the calculation formula of the evaluation function V(x) is as follows:

VV (( xx )) == expexp (( -- (( xx rr -- xx rr dd ββ 11 )) 22 -- (( xx oo -- xx oo dd ββ 22 )) 22 -- (( xx aa -- xx aa dd ββ 33 )) ))

其中,β1、β2、β3为设置的评价函数的宽度;x0、xr、xa分别是阶跃响应实际的上升时间、超调量和振幅,xd o、xd r、xd r分别是期望的上升时间、超调量和振幅;评价函数V(x)∈[0,1]。Among them, β 1 , β 2 , β 3 are the width of the set evaluation function; x 0 , x r , x a are the actual rise time, overshoot and amplitude of the step response respectively; x d o , x d r , x d r are the expected rise time, overshoot and amplitude respectively; evaluation function V(x)∈[0,1].

B3:内环参数调节单元145根据钻速数字控制量计算可调系数P的修正量ΔP。优选的,修正量ΔP的计算如下式:B3: The inner loop parameter adjustment unit 145 calculates the correction amount ΔP of the adjustable coefficient P according to the digital control amount of the drilling speed. Preferably, the calculation of the correction amount ΔP is as follows:

ΔPΔP == αα 00 (( 11 -- VV tt )) (( VV tt -- VV tt -- 11 )) 22 PP tt -- PP tt -- 11

其中,ΔP是系数P的修正量,α0是初始学习率,Vt是t时刻的评价函数值,Pt是t时刻的模糊控制器的可调系数。Among them, ΔP is the correction amount of the coefficient P, α 0 is the initial learning rate, V t is the evaluation function value at time t, and P t is the adjustable coefficient of the fuzzy controller at time t.

B4:内环决策单元根据所述当前时刻t的可调系数Pt及所述修正量ΔP,比较可调系数P在Pt、Pt+ΔP、Pt-ΔP时的所述评价函数V(x)、V+(x)、V-(x),选择最大值所对应的可调系数P,作为下一时刻t+1的内环比例因子和内环量化因子的可调系数P。B4: The inner loop decision-making unit compares the evaluation function V of the adjustable coefficient P at P t , P t +ΔP, and P t -ΔP according to the adjustable coefficient P t at the current moment t and the correction amount ΔP (x), V + (x), V - (x), select the adjustable coefficient P corresponding to the maximum value as the adjustable coefficient P of the inner ring scale factor and the inner ring quantization factor at the next moment t+1.

外环控制方法包括:Outer loop control methods include:

C1:初始化外环模糊控制器单元126的控制参数,优选地,控制参数包括外环比例因子和外环量化因子。C1: Initialize the control parameters of the outer loop fuzzy controller unit 126, preferably, the control parameters include the outer loop scaling factor and the outer loop quantization factor.

C2:外环模糊控制器单元126接收由钻压检测单元23提供的钻压,并根据所述外环比例因子的初始值和外环量化因子的初始值,将输入的钻压变成外环模糊控制器单元126要求的钻压模糊输入量;C2: The outer ring fuzzy controller unit 126 receives the WOB provided by the WOB detection unit 23, and according to the initial value of the outer ring scale factor and the initial value of the outer ring quantization factor, the input WOB is changed into an outer ring The fuzzy input amount of WOB required by the fuzzy controller unit 126;

C3:外环模糊控制器单元126根据一个模糊规则库,对钻压模糊输入量进行模糊推理,获得钻压模糊控制量。C3: The outer ring fuzzy controller unit 126 performs fuzzy reasoning on the fuzzy input quantity of the weight on bit according to a fuzzy rule base to obtain the fuzzy control amount of the bit pressure.

C4:外环模糊控制器单元126将模糊推理得到的钻压模糊控制量变换为实际用于控制钻具起升单元31的钻压数字控制量,然后输出到钻压起升单元31。C4: The outer ring fuzzy controller unit 126 converts the weight-on-bit fuzzy control amount obtained by fuzzy reasoning into the digital control amount of the weight-on-bit actually used to control the drilling tool lifting unit 31 , and then outputs it to the weight-on-bit lifting unit 31 .

C5:调整外环模糊控制器单元126的其外环比例因子和外环量化因子。C5: Adjust the outer loop scale factor and outer loop quantization factor of the outer loop fuzzy controller unit 126 .

调整外环比例因子和外环量化因子的步骤与调整内环比例因子和外环量化因子的步骤相仿,在此不再赘述。The steps of adjusting the scale factor of the outer loop and the quantization factor of the outer loop are similar to the steps of adjusting the scale factor of the inner loop and the quantization factor of the outer loop, and will not be repeated here.

C6:返回步骤C2。C6: return to step C2.

以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The specific embodiments described above have further described the purpose, technical solutions and beneficial effects of the present invention in detail. It should be understood that the above descriptions are only specific embodiments of the present invention, and are not intended to limit the present invention. Within the spirit and principles of the present invention, any modifications, equivalent replacements, improvements, etc., shall be included in the protection scope of the present invention.

Claims (4)

1.一种钻机的智能钻进控制系统,所述钻机包括用于钻进的钻头,其特征在于,所述智能钻进控制系统包括钻进控制模块(1)、钻进检测模块(2)、钻进驱动模块(3);1. an intelligent drilling control system of a drilling rig, the drilling rig comprises a drill bit for drilling, it is characterized in that the intelligent drilling control system comprises a drilling control module (1), a drilling detection module (2) , drilling drive module (3); 钻进检测模块(2)用于获取钻机钻进过程中的参数,所述参数包括钻头的振动量、钻压钮矩、钻速和钻井液的参数,该钻进检测模块(2)包括钻速检测单元(26)和钻压检测模块(23),所述钻速检测单元(26)根据下式计算钻速:The drilling detection module (2) is used to obtain the parameters in the drilling process of the drilling rig, and the parameters include the vibration amount of the drill bit, the drilling pressure button moment, the drilling speed and the parameters of the drilling fluid. The drilling detection module (2) includes the drilling Speed detection unit (26) and drilling pressure detection module (23), described drilling speed detection unit (26) calculates drilling speed according to following formula: 其中APR表示钻速,PR表示钻头转速,PP表示钻头的钻压,RP表示钻头的扭矩; Among them, APR represents the drilling speed, PR represents the speed of the drill bit, PP represents the drilling pressure of the drill bit, and RP represents the torque of the drill bit; 所述钻压检测模块(23)用于实时测量钻头与井下岩层之间的接触压力;The pressure-on-bit detection module (23) is used to measure the contact pressure between the drill bit and the downhole formation in real time; 钻进控制模块(1)用于根据钻进检测模块(2)获取的所述参数,计算出钻头期望的钻压和期望的钻速;The drilling control module (1) is used to calculate the expected drilling pressure and expected drilling speed of the drill bit according to the parameters obtained by the drilling detection module (2); 钻进驱动模块(3)根据所述期望的钻压和期望的钻速,驱动所述钻机钻进,该钻进驱动模块(3)包括钻具起升单元(31)和钻具旋转单元(32),所述钻具起升单元(31)用于悬持钻头和控制钻压,所述钻具旋转单元(32)用于驱动钻头旋转;The drilling driving module (3) drives the drilling rig to drill according to the expected drilling pressure and expected drilling speed, and the drilling driving module (3) includes a drilling tool lifting unit (31) and a drilling tool rotating unit ( 32), the drilling tool lifting unit (31) is used to suspend the drill bit and control the drilling pressure, and the drilling tool rotating unit (32) is used to drive the drill bit to rotate; 该钻进控制模块(1)包括内环和外环,所述内环用于控制所述钻具旋转单元(31),所述外环用于控制所述钻具起升单元(32);The drilling control module (1) includes an inner ring and an outer ring, the inner ring is used to control the drilling tool rotation unit (31), and the outer ring is used to control the drilling tool lifting unit (32); 所述内环包括内环模糊控制器单元(125)、内环性能评价单元(135)、内环参数校正单元(145)和内环决策单元(155),所述内环模糊控制器单元(125)存储有内环比例因子、内环量化因子和期望的性能指标,用于根据所述钻速检测单元(26)输入的钻速以及该内环比例因子、内环量化因子计算得到钻速模糊输入量,并对该钻速模糊输入量进行模糊推理,获得钻速模糊控制量,并根据该钻速模糊控制量计算用于控制钻具旋转单元(32)的钻速数字控制量,输出到该钻具旋转单元(32),所述内环比例因子和内环量化因子具有一个相同的可调系数P;所述内环性能评价单元(135)用于根据所述内环模糊控制器单元(125)存储的期望的性能指标和由所述钻进检测模块(2)检测的所述参数计算一个性能评价函数V(x),该性能评价函数用于评价所检测的参数与期望性能指标的符合程度;所述内环参数校正单元(145)用于根据所述钻速数字控制量计算所述可调系数P的修正量ΔP;所述内环决策单元(155)用于根据所述当前时刻t的可调系数Pt及所述修正量ΔP,比较可调系数P在Pt、Pt+ΔP、Pt-ΔP时的所述性能评价函数V(x)、V+(x)、V-(x),选择最大值所对应的可调系数,作为下一时刻t+1的内环比例因子和内环量化因子的可调系数;The inner loop comprises an inner loop fuzzy controller unit (125), an inner loop performance evaluation unit (135), an inner loop parameter correction unit (145) and an inner loop decision unit (155), and the inner loop fuzzy controller unit ( 125) storing the inner ring scale factor, the inner ring quantization factor and the expected performance index, which are used to calculate the drilling speed according to the drilling speed input by the drilling speed detection unit (26) and the inner ring scaling factor and the inner ring quantization factor Fuzzy input quantity, and carry out fuzzy reasoning on the fuzzy input quantity of the drilling speed, obtain the drilling speed fuzzy control quantity, and calculate the drilling speed digital control quantity for controlling the drilling tool rotation unit (32) according to the drilling speed fuzzy control quantity, and output To the drilling tool rotation unit (32), the inner ring scaling factor and the inner ring quantization factor have the same adjustable coefficient P; the inner ring performance evaluation unit (135) is used to The expected performance index stored by the unit (125) and the parameters detected by the drilling detection module (2) calculate a performance evaluation function V (x), and this performance evaluation function is used to evaluate the detected parameters and expected performance The degree of conformity of the index; the inner ring parameter correction unit (145) is used to calculate the correction amount ΔP of the adjustable coefficient P according to the drilling speed digital control amount; the inner ring decision unit (155) is used to The adjustable coefficient P t at the current moment t and the correction amount ΔP are compared with the performance evaluation functions V( x ), V + ( x), V- ( x), select the adjustable coefficient corresponding to the maximum value as the adjustable coefficient of the inner ring scale factor and the inner ring quantization factor at the next moment t+1; 所述外环包括外环模糊控制器单元(126)、外环性能评价单元(136)、内环参数校正单元(146)和内环决策单元(156),所述外环模糊控制器单元(126)存储有外环比例因子、外环量化因子和期望的性能指标,用于根据所述钻压检测模块(23)输入的钻压以及该外环比例因子、外环量化因子计算得到钻压模糊输入量,并对该钻压模糊输入量进行模糊推理,获得钻压模糊控制量,并根据该钻压模糊控制量计算用于控制钻具起升单元(31)的钻压数字控制量,输出到该钻具起升单元(31),所述外环比例因子和外环量化因子具有一个相同的可调系数P;所述外环性能评价单元(136)用于根据所述外环模糊控制器单元(126)存储的期望的性能指标和由所述钻进检测模块(2)检测的所述参数计算一个性能评价函数V(x),该性能评价函数用于评价所检测的参数与期望性能指标的符合程度;所述外环参数校正单元(146)用于根据所述钻压数字控制量计算所述可调系数P的修正量ΔP;所述外环决策单元(155)用于根据所述当前时刻t的可调系数Pt及所述修正量ΔP,比较可调系数P在Pt、Pt+ΔP、Pt-ΔP时的所述性能评价函数V(x)、V+(x)、V-(x),选择最大值所对应的可调系数,作为下一时刻t+1的外环比例因子和外环量化因子的可调系数;The outer loop comprises an outer loop fuzzy controller unit (126), an outer loop performance evaluation unit (136), an inner loop parameter correction unit (146) and an inner loop decision unit (156), and the outer loop fuzzy controller unit ( 126) storing the outer ring scale factor, the outer ring quantization factor and the expected performance index, which are used to calculate the weight on bit according to the weight on bit input by the weight-on-bit detection module (23) and the outer ring scale factor and the outer ring quantization factor fuzzy input amount, and perform fuzzy reasoning on the fuzzy input amount of the weight-on-bit to obtain the fuzzy control amount of the weight-on-bit, and calculate the digital control amount of the weight-on-bit for controlling the drilling tool lifting unit (31) according to the fuzzy control amount of the weight-on-bit, Output to the drilling tool lifting unit (31), the outer ring scale factor and the outer ring quantization factor have the same adjustable coefficient P; the outer ring performance evaluation unit (136) is used to The expected performance index stored by the controller unit (126) and the parameters detected by the drilling detection module (2) calculate a performance evaluation function V (x), which is used to evaluate the detected parameters and The degree of compliance with the expected performance index; the outer ring parameter correction unit (146) is used to calculate the correction amount ΔP of the adjustable coefficient P according to the digital control value of the weight-on-bit; the outer ring decision unit (155) is used to According to the adjustable coefficient P t at the current moment t and the correction amount ΔP , compare the performance evaluation functions V( x ), V + (x), V- ( x), select the adjustable coefficient corresponding to the maximum value as the adjustable coefficient of the outer ring scale factor and the outer ring quantization factor at the next moment t+1; 所述修正量ΔP的计算如下式:The calculation of the correction amount ΔP is as follows: ΔΔ PP == αα 00 (( 11 -- VV tt )) (( VV tt -- VV tt -- 11 )) 22 PP tt -- PP tt -- 11 ,, 其中,ΔP是系数P的修正量,α0是初始学习率,Vt是t时刻的性能评价函数值,Pt为t时刻的模糊控制器的可调系数;Among them, ΔP is the correction amount of coefficient P, α 0 is the initial learning rate, V t is the performance evaluation function value at time t, and P t is the adjustable coefficient of the fuzzy controller at time t; 所述性能评价函数V(x)的计算公式如下:The calculation formula of the performance evaluation function V (x) is as follows: VV (( xx )) == expexp (( -- (( xx rr -- xx rr dd ββ 11 )) 22 -- (( xx oo -- xx oo dd ββ 22 )) 22 -- (( xx aa -- xx aa dd ββ 33 )) )) ,, 其中,β1、β2、β3为设置的性能评价函数的宽度;xo、xr、xa分别是阶跃响应实际的上升时间、超调量和振幅,xd o、xd r、xd r分别是期望的上升时间、超调量和振幅,且性能评价函数V(x)∈[0,1]。Among them, β 1 , β 2 , β 3 are the width of the set performance evaluation function; x o , x r , x a are the actual rise time, overshoot and amplitude of the step response respectively, x d o , x d r , x d r are the expected rise time, overshoot and amplitude respectively, and the performance evaluation function V(x)∈[0,1]. 2.根据权利要求1所述的智能钻进控制系统,其特征在于,所述钻进检测模块(2)还包括振动检测单元(21)、钻井液检测单元(22)和扭矩检测单元(24),其中:2. The intelligent drilling control system according to claim 1, characterized in that, the drilling detection module (2) also includes a vibration detection unit (21), a drilling fluid detection unit (22) and a torque detection unit (24 ),in: 振动检测单元(21)用于实时检测钻头的振动量;The vibration detection unit (21) is used to detect the vibration amount of the drill bit in real time; 钻井液检测模块(22)用于实时检测钻井液的参数;The drilling fluid detection module (22) is used to detect the parameters of the drilling fluid in real time; 扭矩检测单元(24)用于检测所述钻头的扭矩。The torque detecting unit (24) is used for detecting the torque of the drill bit. 3.根据权利要求2所述的智能钻进控制系统,其特征在于,所述钻头的振动量包括钻头的轴向振动力的幅值和频率、钻头的纵向振动力的幅值和频率。3. The intelligent drilling control system according to claim 2, wherein the vibration amount of the drill bit includes the amplitude and frequency of the axial vibration force of the drill bit, and the amplitude and frequency of the longitudinal vibration force of the drill bit. 4.根据权利要求2所述的智能钻进控制系统,其特征在于,所述钻井液的参数包括钻井液的粘度、pH值、温度和钻井液压。4. The intelligent drilling control system according to claim 2, wherein the parameters of the drilling fluid include viscosity, pH value, temperature and drilling hydraulic pressure of the drilling fluid.
CN201210372330.4A 2012-09-28 2012-09-28 A kind of intelligent drilling control system and method for oil-well rig Active CN102852511B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210372330.4A CN102852511B (en) 2012-09-28 2012-09-28 A kind of intelligent drilling control system and method for oil-well rig

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210372330.4A CN102852511B (en) 2012-09-28 2012-09-28 A kind of intelligent drilling control system and method for oil-well rig

Publications (2)

Publication Number Publication Date
CN102852511A CN102852511A (en) 2013-01-02
CN102852511B true CN102852511B (en) 2015-12-09

Family

ID=47399443

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210372330.4A Active CN102852511B (en) 2012-09-28 2012-09-28 A kind of intelligent drilling control system and method for oil-well rig

Country Status (1)

Country Link
CN (1) CN102852511B (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX2016002920A (en) * 2013-09-25 2016-11-07 Halliburton Energy Services Inc Workflow adjustment methods and systems for logging operations.
CN104747079B (en) * 2013-12-31 2017-02-15 中国石油化工集团公司 Rotating guiding tool
CN104675380B (en) * 2015-01-28 2017-12-08 扬州大学 Oil drilling drill string on-line monitoring system and method for diagnosing faults
CN104806226B (en) * 2015-04-30 2018-08-17 北京四利通控制技术股份有限公司 intelligent drilling expert system
CN106287162A (en) * 2015-05-29 2017-01-04 鸿富锦精密工业(深圳)有限公司 Suspension holdfast
CN107689013B (en) * 2016-08-03 2021-06-15 中国石油化工股份有限公司 Method and device for correcting evaluation parameters before drilling of trap resource amount
CN106837295B (en) * 2017-01-25 2020-04-07 河南理工大学 Intelligent safe and efficient automatic drilling control system and control method
CN108643884B (en) * 2018-04-26 2021-05-18 中国矿业大学 A kind of rock bolt drilling rig propulsion and rotation system and its cooperative adaptive control method
CN108956118B (en) * 2018-07-19 2020-11-06 大连海事大学 Test bench capable of realizing non-excavation directional drilling parameter detection
CN110500081B (en) * 2019-08-31 2022-09-16 中国石油集团川庆钻探工程有限公司 Automatic drilling method based on deep learning
CN111878055B (en) * 2020-07-09 2022-03-25 中国石油大学(北京) Control system and control method for drilling speed of drill bit
CN113338892B (en) * 2021-06-01 2023-06-02 北京市政建设集团有限责任公司 A performance monitoring method and device for intelligent shallow buried underground excavation
CN113503153A (en) * 2021-09-13 2021-10-15 四川交达预应力工程检测科技有限公司 Self-adaptive drilling hole-forming method and system
CN115075799B (en) * 2022-07-19 2022-11-08 山东九商工程机械有限公司 Engine rotating speed control method of directional drilling machine for coal mine
CN115853493B (en) * 2022-11-15 2025-01-10 山西新能正源智能装备有限公司 Data acquisition method and system for geological analysis
CN117328850B (en) * 2023-09-22 2024-05-14 安百拓(张家口)建筑矿山设备有限公司 Drilling machine control method, device, terminal and storage medium
CN117313535B (en) * 2023-09-27 2024-04-19 昆明理工大学 Temperature control method for InP single crystal production based on fuzzy control

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2654855Y (en) * 2003-09-04 2004-11-10 杨恩峰 Intelligent controller for petroleum drilling machine
CN101899969A (en) * 2010-03-24 2010-12-01 苏州锐石能源开发技术有限公司 Real-time on-site drilling full parameter optimization method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2462474A1 (en) * 2009-08-07 2012-06-13 Exxonmobil Upstream Research Company Drilling advisory systems and methods utilizing objective functions

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2654855Y (en) * 2003-09-04 2004-11-10 杨恩峰 Intelligent controller for petroleum drilling machine
CN101899969A (en) * 2010-03-24 2010-12-01 苏州锐石能源开发技术有限公司 Real-time on-site drilling full parameter optimization method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
基于自适应模糊控制的自动送钻智能控制方案;赵清杰等;《中南大学学报(自然科学报)》;20070831;第38卷;摘要,第1-2节,图1 *

Also Published As

Publication number Publication date
CN102852511A (en) 2013-01-02

Similar Documents

Publication Publication Date Title
CN102852511B (en) A kind of intelligent drilling control system and method for oil-well rig
US7775297B2 (en) Multiple input scaling autodriller
CA2999087C (en) Surface control system adaptive downhole weight on bit/torque on bit estimation and utilization
US7044239B2 (en) System and method for automatic drilling to maintain equivalent circulating density at a preferred value
CN106437513B (en) A kind of complex structural well antifriction resistance and power drilling tool tool-face method of adjustment
AU2013286986B2 (en) Method for reducing stick-slip during wellbore drilling
CA2975833C (en) Well protection systems and methods
US9650880B2 (en) Waveform anti-stick slip system and method
US20080066958A1 (en) Method of directional drilling with steerable drilling motor
US9874061B2 (en) Tractor traction control for cased hole
RU2732288C1 (en) Methods and systems for drilling boreholes in geological formations
RU2627329C1 (en) Well bend conditions evaluation and calibration
US11624666B2 (en) Estimating downhole RPM oscillations
US20230151725A1 (en) Determination of Drillstring Parameters and Associated Control
CN112539052A (en) Control device, method, medium and equipment for optimizing dropping speed of drilling tool
CN117627615A (en) Petroleum workover rig operation monitoring control system
CN110598248A (en) A Discrimination Method for Killing Stage and End Conditions of Direct Pushing Method
US20140338974A1 (en) Active control of drill bit walking
CN116151101A (en) Horizontal well drilling parameter optimization chart establishing method
CN103775011B (en) wellbore pressure control system and control method
Tang et al. A New Type of Composite String Shale Gas Horizontal Well Free Point Depth Calculation Model
CN118521421A (en) Drilling engineering drawing board generation method and device

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant