CN102847951B - Process for preparing gold nano particles through reduction of chloroauric acid by catalase - Google Patents
Process for preparing gold nano particles through reduction of chloroauric acid by catalase Download PDFInfo
- Publication number
- CN102847951B CN102847951B CN201210258922.3A CN201210258922A CN102847951B CN 102847951 B CN102847951 B CN 102847951B CN 201210258922 A CN201210258922 A CN 201210258922A CN 102847951 B CN102847951 B CN 102847951B
- Authority
- CN
- China
- Prior art keywords
- catalase
- gold nanoparticles
- solution
- tetrachloroauric acid
- gold
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 102000016938 Catalase Human genes 0.000 title claims abstract description 44
- 108010053835 Catalase Proteins 0.000 title claims abstract description 44
- 230000009467 reduction Effects 0.000 title claims description 5
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 title abstract description 74
- 239000010931 gold Substances 0.000 title abstract description 72
- 229910052737 gold Inorganic materials 0.000 title abstract description 72
- 239000002105 nanoparticle Substances 0.000 title abstract description 71
- 239000002253 acid Substances 0.000 title abstract description 27
- 238000004519 manufacturing process Methods 0.000 title 1
- 238000000034 method Methods 0.000 claims abstract description 25
- 239000000243 solution Substances 0.000 claims abstract description 21
- 239000011259 mixed solution Substances 0.000 claims abstract description 7
- 238000003756 stirring Methods 0.000 claims abstract description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 6
- 239000002245 particle Substances 0.000 claims description 21
- SJUCACGNNJFHLB-UHFFFAOYSA-N O=C1N[ClH](=O)NC2=C1NC(=O)N2 Chemical compound O=C1N[ClH](=O)NC2=C1NC(=O)N2 SJUCACGNNJFHLB-UHFFFAOYSA-N 0.000 claims 5
- 235000021336 beef liver Nutrition 0.000 claims 1
- 238000006243 chemical reaction Methods 0.000 abstract description 9
- 239000003638 chemical reducing agent Substances 0.000 abstract description 5
- 230000009286 beneficial effect Effects 0.000 abstract description 4
- 230000015572 biosynthetic process Effects 0.000 abstract description 4
- 238000003786 synthesis reaction Methods 0.000 abstract description 4
- 150000003839 salts Chemical class 0.000 abstract description 3
- 125000000524 functional group Chemical group 0.000 abstract description 2
- 239000003223 protective agent Substances 0.000 abstract description 2
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 9
- 238000010521 absorption reaction Methods 0.000 description 8
- 239000007864 aqueous solution Substances 0.000 description 6
- 238000002360 preparation method Methods 0.000 description 6
- 230000002776 aggregation Effects 0.000 description 5
- 239000001509 sodium citrate Substances 0.000 description 5
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 description 5
- 241000283690 Bos taurus Species 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 210000004185 liver Anatomy 0.000 description 4
- 238000003760 magnetic stirring Methods 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 238000002211 ultraviolet spectrum Methods 0.000 description 4
- 238000004220 aggregation Methods 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000001000 micrograph Methods 0.000 description 3
- 239000003960 organic solvent Substances 0.000 description 3
- 230000002829 reductive effect Effects 0.000 description 3
- 239000003381 stabilizer Substances 0.000 description 3
- 238000001429 visible spectrum Methods 0.000 description 3
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 238000005054 agglomeration Methods 0.000 description 2
- 238000006555 catalytic reaction Methods 0.000 description 2
- 238000005119 centrifugation Methods 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000002086 nanomaterial Substances 0.000 description 2
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 230000002194 synthesizing effect Effects 0.000 description 2
- MCSXGCZMEPXKIW-UHFFFAOYSA-N 3-hydroxy-4-[(4-methyl-2-nitrophenyl)diazenyl]-N-(3-nitrophenyl)naphthalene-2-carboxamide Chemical compound Cc1ccc(N=Nc2c(O)c(cc3ccccc23)C(=O)Nc2cccc(c2)[N+]([O-])=O)c(c1)[N+]([O-])=O MCSXGCZMEPXKIW-UHFFFAOYSA-N 0.000 description 1
- 239000004475 Arginine Substances 0.000 description 1
- 108010020056 Hydrogenase Proteins 0.000 description 1
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 1
- 239000004472 Lysine Substances 0.000 description 1
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 1
- 239000011668 ascorbic acid Substances 0.000 description 1
- 229960005070 ascorbic acid Drugs 0.000 description 1
- 235000010323 ascorbic acid Nutrition 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- 150000002344 gold compounds Chemical class 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000013110 organic ligand Substances 0.000 description 1
- 238000005502 peroxidation Methods 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 150000003077 polyols Chemical class 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 230000036632 reaction speed Effects 0.000 description 1
- 239000013545 self-assembled monolayer Substances 0.000 description 1
- 230000005476 size effect Effects 0.000 description 1
- 239000012279 sodium borohydride Substances 0.000 description 1
- 229910000033 sodium borohydride Inorganic materials 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 238000000638 solvent extraction Methods 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 125000003396 thiol group Chemical group [H]S* 0.000 description 1
- 230000005641 tunneling Effects 0.000 description 1
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
Abstract
本发明公开了一种过氧化氢酶还原四氯金酸制备金纳米粒子的方法,包括以下步骤:将过氧化氢酶溶液滴加到四氯金酸溶液中,搅拌均匀;调节混合溶液的pH值为碱性,并于20~37℃的水浴条件下发生反应,反应完成后,分离得到金纳米粒子。本发明引入了过氧化氢酶作为还原剂和保护剂,过氧化氢酶上的还原性功能基团在碱性条件下还原性强,有利于金纳米粒子的合成,生成的金纳米粒子在高盐条件下(0.5MNaCl)不会团聚。The invention discloses a method for preparing gold nanoparticles by reducing tetrachloroauric acid with catalase, comprising the following steps: adding catalase solution dropwise into the tetrachloroauric acid solution and stirring evenly; adjusting the pH of the mixed solution The value is alkaline, and the reaction occurs in a water bath at 20-37°C. After the reaction is completed, gold nanoparticles are separated and obtained. The present invention introduces catalase as a reducing agent and a protective agent, and the reducing functional group on the catalase has strong reducibility under alkaline conditions, which is beneficial to the synthesis of gold nanoparticles. Under salt conditions (0.5MNaCl) will not agglomerate.
Description
技术领域 technical field
本发明涉及一种金纳米粒子的制备方法,尤其涉及一种过氧化氢酶还原四氯金酸制备金纳米粒子的方法。The invention relates to a preparation method of gold nanoparticles, in particular to a method for preparing gold nanoparticles by reducing tetrachloroauric acid with catalase.
背景技术 Background technique
金纳米粒子是指粒径在1~100nm的微粒。金纳米粒子具有特殊的表面效应、体积效应、量子尺寸效应和宏观量子隧道效应,在催化、电子与光学器件、生物技术等多个领域有着重要的应用。金纳米粒子在510~550nm可见光谱范围内有一吸收峰,吸收波长随金纳米粒子直径增大而增加。当粒径从小到大时,表观颜色依次呈现出淡橙黄色、葡萄酒色、深红色和蓝紫色变化。Gold nanoparticles refer to particles with a diameter of 1-100 nm. Gold nanoparticles have special surface effects, volume effects, quantum size effects and macroscopic quantum tunneling effects, and have important applications in many fields such as catalysis, electronics and optical devices, and biotechnology. Gold nanoparticles have an absorption peak in the visible spectral range of 510-550nm, and the absorption wavelength increases with the diameter of gold nanoparticles. When the particle size increases from small to large, the apparent color changes from light orange yellow, wine color, deep red and blue purple in sequence.
金纳米粒子表面为原子排列,由于大量的孪晶、位错、层错等晶体缺陷的存在,导致了大量的悬键和不饱和键,使颗粒的表面积和表面活性点数目显著增加,具有不饱和的性质,出现多活化中心,具有很高的化学活性,容易与其他原子相结合而趋于稳定,因此金纳米粒子间存在着容易团聚的问题。金纳米粒子的团聚会进一步影响到金纳米粒子的尺寸,然而金纳米粒子的光学、电学、催化等特殊性能很大程度上受粒子尺寸大小的影响,因此解决金纳米粒子团聚的问题对于提高金纳米材料的性能具有重要的意义。The surface of gold nanoparticles is atomically arranged. Due to the existence of a large number of crystal defects such as twins, dislocations, and stacking faults, a large number of dangling bonds and unsaturated bonds are caused, which significantly increases the surface area and the number of surface active points of the particles. Due to the nature of saturation, there are multiple active centers, which have high chemical activity and are easy to combine with other atoms and tend to be stable. Therefore, there is a problem that gold nanoparticles are easy to agglomerate. The agglomeration of gold nanoparticles will further affect the size of gold nanoparticles. However, the special properties of gold nanoparticles such as optics, electricity, and catalysis are largely affected by the particle size. The properties of nanomaterials are of great significance.
为了解决金纳米粒子的团聚问题,金纳米粒子的合成往往和表面修饰同步进行,首先还原剂将金的化合物还原成金原子,金原子进一步聚集形成金纳米粒子,在形成金纳米粒子的同时,加入表面吸附稳定剂以增加稳定性,或者修饰分子直接组装到它的表面,形成含自组装单分子层的金纳米粒子。所使用的还原剂有柠檬酸钠、硼氢化钠、抗坏血酸、白磷、乙醇或多羟基化合物等,所使用的稳定剂有柠檬酸钠、聚合物、有机配体等。In order to solve the agglomeration problem of gold nanoparticles, the synthesis of gold nanoparticles is often carried out simultaneously with the surface modification. First, the reducing agent reduces the gold compound into gold atoms, and the gold atoms are further aggregated to form gold nanoparticles. While forming gold nanoparticles, add Stabilizers are adsorbed on the surface to increase stability, or modified molecules are assembled directly onto its surface, forming gold nanoparticles with self-assembled monolayers. The reducing agents used include sodium citrate, sodium borohydride, ascorbic acid, white phosphorus, ethanol or polyols, etc., and the stabilizers used include sodium citrate, polymers, organic ligands, etc.
合成金纳米粒子的最经典方法是柠檬酸钠还原法,至今仍广泛使用,利用此方法制备金纳米粒子的过程中,柠檬酸钠不仅作为还原剂还作为稳定剂,通过改变柠檬酸钠与四氯金酸的摩尔比可以控制粒子的尺寸,但随着尺寸的增加,粒子的多分散度也随之增加,粒子形貌表现为椭球或其它不规则形状,粒子稳定性降低,尤其是在批量合成中,很难控制不同批次间的重复性。The most classic method of synthesizing gold nanoparticles is the sodium citrate reduction method, which is still widely used today. In the process of preparing gold nanoparticles by this method, sodium citrate is not only used as a reducing agent but also as a stabilizer. By changing sodium citrate and four The molar ratio of chloroauric acid can control the size of the particles, but as the size increases, the polydispersity of the particles also increases, the particle morphology is ellipsoid or other irregular shapes, and the particle stability decreases, especially in the In batch synthesis, it is difficult to control the repeatability between different batches.
相转移法也是金纳米粒子制备常用方法之一,制备过程中需用有机溶剂抽提,制得有机溶胶,然后经脱水、脱有机溶剂,即制得金纳米材料,此方法制得的金纳米粒子均匀、分散性好,但操作过程复杂,制备过程中有机溶剂消耗较多,对环境影响较大。The phase transfer method is also one of the commonly used methods for the preparation of gold nanoparticles. During the preparation process, organic solvent extraction is required to obtain an organic sol, and then dehydration and removal of organic solvents are used to obtain gold nanomaterials. The gold nanoparticles prepared by this method The particles are uniform and dispersible, but the operation process is complicated, and the organic solvent is consumed in the preparation process, which has a great impact on the environment.
发明内容 Contents of the invention
本发明提供了一种过氧化氢酶还原四氯金酸制备金纳米粒子的方法,该方法解决了传统方法金纳米粒子容易团聚、重复性差、工艺复杂、制备所用试剂对环境影响大的问题。The invention provides a method for preparing gold nanoparticles by reducing tetrachloroauric acid with catalase, and the method solves the problems of easy aggregation of gold nanoparticles, poor repeatability, complex process, and large environmental impact of reagents used in the preparation in the traditional method.
一种过氧化氢酶还原四氯金酸制备金纳米粒子的方法,包括以下步骤:将过氧化氢酶溶液滴加到四氯金酸溶液中,搅拌均匀;调节混合溶液的pH值为碱性,并于20~37℃的水浴条件下发生反应,反应完成后,分离得到金纳米粒子。A method for preparing gold nanoparticles by reducing tetrachloroauric acid with catalase, comprising the following steps: adding the catalase solution dropwise to the tetrachloroauric acid solution and stirring evenly; adjusting the pH value of the mixed solution to be alkaline , and react under a water bath condition of 20-37° C., and separate and obtain gold nanoparticles after the reaction is completed.
过氧化氢酶(Catalase)作为一种蛋白质分子,来源广泛,价格低廉,具有良好的生物相容性,在本发明中用作合成金纳米粒子的模板。过氧化氢酶分子中含有大量氨基、巯基结合位点,可用于固定四氯金酸,给金纳米粒子生长提供了良好空间结构,能有效阻止金纳米粒子在合成过程中聚集;另外,过氧化氢酶中的酪氨酸及含有伯氨基的赖氨酸、精氨酸在碱性条件下具有还原性,可原位还原四氯金酸。As a protein molecule, catalase has a wide range of sources, low price and good biocompatibility, and is used as a template for synthesizing gold nanoparticles in the present invention. The catalase molecule contains a large number of amino and sulfhydryl binding sites, which can be used to fix tetrachloroauric acid, provide a good space structure for the growth of gold nanoparticles, and can effectively prevent the aggregation of gold nanoparticles during the synthesis process; in addition, peroxidation Tyrosine in hydrogenase, lysine and arginine containing primary amino groups are reductive under alkaline conditions, and can reduce tetrachloroauric acid in situ.
所述过氧化氢酶优选为牛肝过氧化氢酶。The catalase is preferably bovine liver catalase.
所述过氧化氢酶溶液浓度优选为5~50mg/mL,更优选为5~20mg/mL,最优选为5mg/mL,过氧化氢酶用量越少,制备成本越低。The concentration of the catalase solution is preferably 5-50 mg/mL, more preferably 5-20 mg/mL, and most preferably 5 mg/mL. The less the catalase is used, the lower the preparation cost.
四氯金酸溶液浓度过高时,会导致金纳米粒子的团聚,最终使金纳米粒子的性能下降,所述四氯金酸溶液的浓度优选为0.1%~1%,更优选为0.5%~1%,最优选为1%。When the concentration of tetrachloroauric acid solution is too high, it will cause the aggregation of gold nanoparticles, and finally the performance of gold nanoparticles will be reduced. The concentration of the tetrachloroauric acid solution is preferably 0.1%~1%, more preferably 0.5%~ 1%, most preferably 1%.
单个过氧化氢酶分子结合位点是有限的,因此过氧化氢酶与四氯金酸之间的摩尔比会影响金纳米粒子的尺寸和产量,过氧化氢酶与四氯金酸之间的摩尔比越高,混合溶液的还原性越强,提供的过氧化氢酶分子结合位点越多,则单个位点上结合的金纳米粒子的量越少,因而形成的金纳米粒子尺寸越小,因此通过调节过氧化氢酶与四氯金酸的摩尔比,可得到尺寸大小可控的金纳米粒子,过氧化氢酶与四氯金酸的摩尔比优选为0.00221∶1~0.221∶1,在此摩尔比范围内,可得到粒径为10~40nm的金纳米粒子,金纳米粒子的粒径范围较窄,而且得到的金纳米粒子具有较好的性能。Binding sites for a single catalase molecule are limited, so the molar ratio between catalase and tetrachloroauric acid affects the size and yield of gold nanoparticles, and the molar ratio between catalase and tetrachloroauric acid The higher the molar ratio, the stronger the reduction of the mixed solution, and the more binding sites of catalase molecules are provided, the less the amount of gold nanoparticles bound to a single site, and thus the smaller the size of the gold nanoparticles formed Therefore, by adjusting the mol ratio of catalase and tetrachloroauric acid, gold nanoparticles with controllable size can be obtained, and the mol ratio of catalase and tetrachloroauric acid is preferably 0.00221: 1~0.221: 1, Within this molar ratio range, gold nanoparticles with a particle size of 10-40 nm can be obtained, the particle size range of the gold nanoparticles is relatively narrow, and the obtained gold nanoparticles have better properties.
过氧化氢酶与四氯金酸的摩尔比更优选为0.00221∶1~0.0885∶1,在此摩尔比范围内,可得到粒径为10~30nm的金纳米粒子,较高摩尔比导致金纳米粒子更多具有酶的性质。The mol ratio of catalase and tetrachloroauric acid is more preferably 0.00221: 1~0.0885: 1, within this molar ratio range, can obtain the gold nanoparticle that particle diameter is 10~30nm, and higher mol ratio causes gold nanoparticle The particles are more of an enzymatic nature.
在碱性条件下,有利于提高过氧化氢酶还原性基团的还原性,所述混合溶液的pH值优选为10~12;更优选为12。Under alkaline conditions, it is beneficial to improve the reducibility of the catalase reducing group, and the pH value of the mixed solution is preferably 10-12; more preferably 12.
所述反应完成是指反应至生成的金纳米粒子溶胶的紫外光谱曲线不发生变化为止,此时说明金纳米粒子的产量达到稳定状态。The completion of the reaction refers to the reaction until the ultraviolet spectrum curve of the generated gold nanoparticle sol does not change, which means that the output of gold nanoparticles has reached a stable state.
所述分离的方法优选为离心,离心时的转速优选为5000~10000r/min,该方法操作简单,可实现金纳米粒子的快速分离,同时对产品影响较小。The separation method is preferably centrifugation, and the rotation speed during centrifugation is preferably 5000-10000 r/min. This method is easy to operate, can realize rapid separation of gold nanoparticles, and has little impact on the product.
与现有技术相比较,本发明的有益效果为:Compared with prior art, the beneficial effects of the present invention are:
(1)本发明引入了过氧化氢酶作为还原剂和保护剂,过氧化氢酶上的还原性功能基团在碱性条件下还原性强,有利于金纳米粒子的合成,生成的金纳米粒子在高盐条件下(0.5MNaCl)不会团聚。(1) The present invention introduces catalase as reducing agent and protective agent, and the reductive functional group on the catalase has strong reducibility under alkaline condition, is beneficial to the synthetic of gold nanoparticle, and the gold nanoparticle of generation Particles will not agglomerate under high salt conditions (0.5MNaCl).
(2)本发明中过氧化氢酶价格低廉,制备金纳米粒子的成本低。(2) The price of catalase in the present invention is low, and the cost of preparing gold nanoparticles is low.
(3)本发明操作步骤简便,重复性好,反应速度快,反应条件温和,所用试剂环境友好,制备的金纳米粒子具有良好的生物相容性。(3) The present invention has simple operation steps, good repeatability, fast reaction speed, mild reaction conditions, environmentally friendly reagents, and the prepared gold nanoparticles have good biocompatibility.
附图说明 Description of drawings
图1为本发明实施例1制得的金纳米粒子透射电镜图,标尺为10nm。FIG. 1 is a transmission electron microscope image of gold nanoparticles prepared in Example 1 of the present invention, and the scale bar is 10 nm.
图2为本发明实施例1制得的金纳米粒子加入0.5MNaCl前后的对照图。Fig. 2 is a comparison diagram of gold nanoparticles prepared in Example 1 of the present invention before and after adding 0.5M NaCl.
图3为本发明实施例2制得的金纳米粒子透射电镜图,标尺为20nm。Fig. 3 is a transmission electron microscope image of gold nanoparticles prepared in Example 2 of the present invention, and the scale bar is 20nm.
图4为本发明实施例3制得的金纳米粒子透射电镜图,标尺为50nm。Fig. 4 is a transmission electron microscope image of gold nanoparticles prepared in Example 3 of the present invention, and the scale bar is 50nm.
图5为本发明在不同过氧化氢酶/四氯金酸摩尔比(0.00221∶1,0.0221∶1,0.0885∶1)条件下制得的金纳米粒子的可见光谱图。Fig. 5 is a visible spectrum diagram of gold nanoparticles prepared under different catalase/tetrachloroauric acid molar ratios (0.00221:1, 0.0221:1, 0.0885:1) according to the present invention.
具体实施方式 Detailed ways
实施例1Example 1
(1)磁力搅拌条件下,将浓度为5mg/mL的牛肝过氧化氢酶(阿拉丁试剂有限公司)水溶液滴加到浓度为1%的四氯金酸水溶液中,直至过氧化氢酶和四氯金酸的摩尔比为0.00221∶1,磁力搅拌4h;(1) under magnetic stirring condition, the bovine liver catalase (Aladdin Reagent Co., Ltd.) aqueous solution that concentration is 5mg/mL is added dropwise in the tetrachloroauric acid aqueous solution that concentration is 1%, until catalase and The mol ratio of tetrachloroauric acid is 0.00221: 1, magnetic stirring 4h;
(2)向(1)中所得溶液中加入1mol/L氢氧化钠溶液,调节溶液pH至10,在25℃的水浴中搅拌,至反应生成的金纳米粒子溶胶紫外光谱曲线不发生变化为止,将所得金纳米粒子溶胶在8000r/min的转速下,离心分离后,即得金纳米粒子。(2) Add 1mol/L sodium hydroxide solution to the solution obtained in (1), adjust the pH of the solution to 10, stir in a water bath at 25°C, until the UV spectrum curve of the gold nanoparticle sol generated by the reaction does not change, The obtained gold nanoparticle sol is centrifuged at a rotational speed of 8000 r/min to obtain gold nanoparticles.
从图1可以看出,所得材料为粒径介于10-20nm之间的金纳米粒子;图2显示生成的金纳米粒子在高盐条件下(0.5MNaCl)不会团聚。It can be seen from Figure 1 that the obtained material is gold nanoparticles with a particle size between 10-20nm; Figure 2 shows that the generated gold nanoparticles will not agglomerate under high salt conditions (0.5MNaCl).
实施例2Example 2
(1)磁力搅拌条件下,将浓度为5mg/mL的牛肝过氧化氢酶水溶液滴加到浓度为0.1%的四氯金酸水溶液中,直至过氧化氢酶和四氯金酸的摩尔比为0.0221∶1,磁力搅拌2h;(1) under magnetic stirring condition, be that the bovine liver catalase aqueous solution of 5mg/mL is added dropwise in the tetrachloroauric acid aqueous solution of concentration by 5mg/mL, until the mol ratio of catalase and tetrachloroauric acid 0.0221:1, magnetically stirred for 2h;
(2)向1)中所得溶液中加入1mol/L氢氧化钠溶液,调节溶液pH至11,在30℃的水浴中搅拌,至反应生成金纳米粒子溶胶紫外光谱曲线不发生变化为止,将所得金纳米粒子溶胶在8000r/min的转速下,离心分离后,即得金纳米粒子。(2) Add 1mol/L sodium hydroxide solution to the solution obtained in 1), adjust the pH of the solution to 11, stir in a water bath at 30°C, until the reaction generates gold nanoparticles sol UV spectrum curve does not change, and the obtained The gold nanoparticle sol is centrifuged at a speed of 8000 r/min to obtain gold nanoparticles.
从图3可以看出,所得材料为粒径介于10-40nm之间的金纳米粒子。It can be seen from FIG. 3 that the obtained material is gold nanoparticles with a particle size between 10-40 nm.
实施例3Example 3
(1)磁力搅拌条件下,将浓度为20mg/mL的牛肝过氧化氢酶水溶液滴加到浓度为0.1%的四氯金酸水溶液中,直至过氧化氢酶和四氯金酸的摩尔比为0.0885∶1,磁力搅拌60min;(1) under magnetic stirring condition, be that the bovine liver catalase aqueous solution of 20mg/mL is added dropwise in the tetrachloroauric acid aqueous solution of concentration by 20mg/mL, until the mol ratio of catalase and tetrachloroauric acid 0.0885:1, magnetically stirred for 60 minutes;
(2)向(1)中所得溶液中加入2mol/L氢氧化钠溶液,调节溶液pH至10,在35℃的水浴中搅拌,至反应生成金纳米粒子溶胶紫外光谱曲线不发生变化为止,将所得金纳米粒子溶胶在8000r/min的转速下,离心分离后,即得金纳米粒子。(2) Add 2mol/L sodium hydroxide solution to the solution obtained in (1), adjust the pH of the solution to 10, stir in a water bath at 35°C, until the reaction generates gold nanoparticles sol UV spectrum curve does not change, the The obtained gold nanoparticle sol is centrifuged at a rotational speed of 8000 r/min to obtain gold nanoparticles.
从图4可以看出,所得材料为粒径介于10-40nm之间的金纳米粒子。It can be seen from FIG. 4 that the obtained material is gold nanoparticles with a particle size between 10-40 nm.
图5中,三条曲线分别对应实施例1~3,是不同过氧化氢酶/四氯金酸摩尔比条件下制得的金纳米粒子的可见光谱吸收曲线,三条光谱吸收曲线的吸收峰与金纳米粒子特征的等离子体吸收峰一致,证明了过氧化氢酶对四氯金酸的有效还原和金纳米粒子的生成,而且当过氧化氢酶与四氯金酸摩尔比为0.0221∶1时,可见光谱曲线吸收峰对应的吸收值最大,说明此摩尔比条件下生成的金纳米粒子浓度最高。Among Fig. 5, three curves correspond to embodiment 1~3 respectively, are the visible spectrum absorption curves of the gold nanoparticles that make under different catalase/tetrachloroauric acid molar ratio conditions, the absorption peaks of three spectrum absorption curves and gold The plasma absorption peaks of nanoparticle characteristics are consistent, which proves the effective reduction of catalase to tetrachloroauric acid and the generation of gold nanoparticles, and when the molar ratio of catalase to tetrachloroauric acid is 0.0221: 1, The absorption value corresponding to the absorption peak of the visible spectrum curve is the largest, indicating that the concentration of gold nanoparticles generated under this molar ratio is the highest.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210258922.3A CN102847951B (en) | 2012-07-24 | 2012-07-24 | Process for preparing gold nano particles through reduction of chloroauric acid by catalase |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210258922.3A CN102847951B (en) | 2012-07-24 | 2012-07-24 | Process for preparing gold nano particles through reduction of chloroauric acid by catalase |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102847951A CN102847951A (en) | 2013-01-02 |
CN102847951B true CN102847951B (en) | 2015-01-28 |
Family
ID=47395153
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201210258922.3A Active CN102847951B (en) | 2012-07-24 | 2012-07-24 | Process for preparing gold nano particles through reduction of chloroauric acid by catalase |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102847951B (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104275492B (en) * | 2013-07-02 | 2016-06-22 | 济南大学 | A kind of preparation method of the one-dimensional golden nanometer particle of sugarcoated haws on a stick shape |
CN104275493B (en) * | 2013-07-02 | 2016-07-06 | 济南大学 | A kind of method preparing gold nano dish for reducing agent with aminoacid |
CN103940765A (en) * | 2014-04-25 | 2014-07-23 | 厦门大学 | Bio-functionalized nanometer microsphere particle combined chloroauric acid-gold nanoparticle probe as well as preparation method and application thereof |
CN103978225A (en) * | 2014-05-14 | 2014-08-13 | 广西师范大学 | Method for quickly preparing stable nano-gold sol |
CN105823775B (en) * | 2016-03-22 | 2017-06-30 | 中国石油大学(华东) | Group thiophosphate organophosphorus pesticide residue detection kit and its application process |
CN111975010A (en) * | 2019-05-21 | 2020-11-24 | 中国药科大学 | Preparation of gold nanoparticles based on D-arabinose reduction |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1513631A (en) * | 2003-07-15 | 2004-07-21 | 武汉大学 | A kind of preparation method of gold nanoparticle |
CN1876292A (en) * | 2006-06-02 | 2006-12-13 | 中国科学院长春应用化学研究所 | Nanometer gold grain microwave synthesis method |
-
2012
- 2012-07-24 CN CN201210258922.3A patent/CN102847951B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1513631A (en) * | 2003-07-15 | 2004-07-21 | 武汉大学 | A kind of preparation method of gold nanoparticle |
CN1876292A (en) * | 2006-06-02 | 2006-12-13 | 中国科学院长春应用化学研究所 | Nanometer gold grain microwave synthesis method |
Non-Patent Citations (1)
Title |
---|
蒋庆哲.化学还原法.《表面活性剂科学与应用》.中国石化出版社,2006,第387页. * |
Also Published As
Publication number | Publication date |
---|---|
CN102847951A (en) | 2013-01-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102847951B (en) | Process for preparing gold nano particles through reduction of chloroauric acid by catalase | |
US9410950B2 (en) | Luminescent gold nanomaterial functionalized by N-(4-aminobutyl)-N-ethylisoluminol, preparation and application thereof | |
CN103990812B (en) | A kind of preparation method of surface enhanced Raman substrate | |
CN105199717B (en) | 2 mercaptoimidazole bovine serum albumin(BSA) fluorescent au nanocluster materials and preparation method thereof | |
CN103990814B (en) | A kind of preparation method of gold nano grain | |
CN106563814B (en) | A kind of controllable method for preparing of light inducible to silver nanoparticle triangular plate | |
CN109019659B (en) | A kind of synthetic method of chiral copper oxide nanoparticles | |
CN102838984B (en) | Preparation method of chymotrypsin protected fluorescent au nanocluster material | |
Ding et al. | Protein-directed approaches to functional nanomaterials: a case study of lysozyme | |
CN107556999A (en) | Gold nano cluster and its preparation method and application | |
CN105170995A (en) | Method for wrapping gold-silver alloy nanometer particles through silicon dioxide | |
CN109110819B (en) | Synthesis method of chiral manganese oxide nanoparticles | |
CN104308182B (en) | A kind of assemble method of the gold nanoparticle dimer with FRET effect | |
CN105328203B (en) | 1 H, 1,2,4 triazoles, 3 mercaptan bovine serum albumin(BSA) fluorescent au nanocluster material and preparation method thereof | |
CN101905328B (en) | A kind of preparation method of water-soluble Au10 nano-cluster molecule | |
CN110669506A (en) | Preparation method of water-soluble gold nanocluster fluorescent material co-protected by cysteamine and N-acetyl L-cysteine | |
CN100425372C (en) | Preparation method of monodisperse gold nanometer particle for immunological chromatography test | |
CN103862036A (en) | Method for preparing silicon dioxide coated noble metal nanocrystalline | |
Premkumar et al. | Polysorbate 80 as a tool: synthesis of gold nanoparticles | |
CN105368447A (en) | 1-methyl-5-tetrazole-thione-bovine serum albumin-gold nanocluster fluorescent material and preparation method thereof | |
CN107603604A (en) | A kind of copper nanocluster fluorescent material and preparation method thereof | |
Ge et al. | Fast synthesis of fluorescent SiO 2@ CdTe nanoparticles with reusability in detection of H 2 O 2 | |
CN114105107B (en) | Highly monodisperse MoSe with different morphologies 2 Method for preparing nano material | |
CN1508192A (en) | A kind of preparation method of nano iron oxide red | |
Wang et al. | Photoluminescent crystalline-assembly of gold nanoclusters: Facile preparation with the mediation of hydroxyl-terminated hyperbranched polyethylenimine and its reversible response to CO2 adsorption and desorption |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right |
Effective date of registration: 20200831 Address after: 710000 Shaanxi Xi'an economic and Technological Development Zone, Fengcheng four road, Ming Guang road, southeast corner of the new business building 1808 Patentee after: SHAANXI ZHUANYI INTELLECTUAL PROPERTY OPERATION CO.,LTD. Address before: Hangzhou City, Zhejiang province 310018 Xiasha Higher Education Park No. 2 Street No. 5 Patentee before: ZHEJIANG SCI-TECH University |
|
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20201021 Address after: Room a1309, No. 109, Shazhou West Road, yangshe Town, Zhangjiagang City, Suzhou City, Jiangsu Province Patentee after: Suzhou yifanghua Intellectual Property Operation Co.,Ltd. Address before: 710000 Shaanxi Xi'an economic and Technological Development Zone, Fengcheng four road, Ming Guang road, southeast corner of the new business building 1808 Patentee before: SHAANXI ZHUANYI INTELLECTUAL PROPERTY OPERATION Co.,Ltd. |
|
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20240919 Address after: 413, Floor 4, Building B, Innovation Building, Linyi Hi tech Industrial Development Zone, Shandong Province, 276000 Patentee after: Linyi High tech Zone Jinlanling Labor Service Co.,Ltd. Country or region after: China Address before: 215600 room a1309, 109 Shazhou West Road, yangshe Town, Zhangjiagang City, Suzhou City, Jiangsu Province Patentee before: Suzhou yifanghua Intellectual Property Operation Co.,Ltd. Country or region before: China |
|
TR01 | Transfer of patent right |