CN102844891A - 制造基于硅的薄膜太阳能电池的方法 - Google Patents
制造基于硅的薄膜太阳能电池的方法 Download PDFInfo
- Publication number
- CN102844891A CN102844891A CN2010800415724A CN201080041572A CN102844891A CN 102844891 A CN102844891 A CN 102844891A CN 2010800415724 A CN2010800415724 A CN 2010800415724A CN 201080041572 A CN201080041572 A CN 201080041572A CN 102844891 A CN102844891 A CN 102844891A
- Authority
- CN
- China
- Prior art keywords
- layer
- vacuum
- semiconductor layer
- atmosphere
- deposited
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 47
- 229910052710 silicon Inorganic materials 0.000 title claims abstract description 18
- 239000010703 silicon Substances 0.000 title claims abstract description 18
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 title claims abstract description 17
- 239000010409 thin film Substances 0.000 title claims abstract description 12
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 8
- 238000000151 deposition Methods 0.000 claims abstract description 24
- 239000000758 substrate Substances 0.000 claims abstract description 17
- 239000002019 doping agent Substances 0.000 claims abstract description 10
- 239000004065 semiconductor Substances 0.000 claims description 31
- 229910045601 alloy Inorganic materials 0.000 claims description 12
- 239000000956 alloy Substances 0.000 claims description 12
- 230000008021 deposition Effects 0.000 claims description 10
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 5
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 claims description 5
- 239000000203 mixture Substances 0.000 claims description 4
- 229910052799 carbon Inorganic materials 0.000 claims description 3
- 238000009832 plasma treatment Methods 0.000 claims description 3
- 150000003376 silicon Chemical class 0.000 claims description 3
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical class [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims description 2
- 238000009489 vacuum treatment Methods 0.000 claims 5
- 239000013080 microcrystalline material Substances 0.000 claims 1
- 229910021424 microcrystalline silicon Inorganic materials 0.000 claims 1
- 238000004381 surface treatment Methods 0.000 description 8
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 4
- 229910021417 amorphous silicon Inorganic materials 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 239000013081 microcrystal Substances 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 3
- 229910021419 crystalline silicon Inorganic materials 0.000 description 3
- 239000010408 film Substances 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 229910000077 silane Inorganic materials 0.000 description 3
- 229910003481 amorphous carbon Inorganic materials 0.000 description 2
- 238000005137 deposition process Methods 0.000 description 2
- 230000005684 electric field Effects 0.000 description 2
- 239000002159 nanocrystal Substances 0.000 description 2
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 description 2
- 229910010271 silicon carbide Inorganic materials 0.000 description 2
- 239000011787 zinc oxide Substances 0.000 description 2
- 229910000979 O alloy Inorganic materials 0.000 description 1
- 238000001069 Raman spectroscopy Methods 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000001505 atmospheric-pressure chemical vapour deposition Methods 0.000 description 1
- 229910000085 borane Inorganic materials 0.000 description 1
- 230000000739 chaotic effect Effects 0.000 description 1
- 239000002800 charge carrier Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- 239000002241 glass-ceramic Substances 0.000 description 1
- 238000005984 hydrogenation reaction Methods 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000005693 optoelectronics Effects 0.000 description 1
- 230000005622 photoelectricity Effects 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 229920005591 polysilicon Polymers 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000002210 silicon-based material Substances 0.000 description 1
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
- UORVGPXVDQYIDP-UHFFFAOYSA-N trihydridoboron Substances B UORVGPXVDQYIDP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F71/00—Manufacture or treatment of devices covered by this subclass
- H10F71/121—The active layers comprising only Group IV materials
- H10F71/1224—The active layers comprising only Group IV materials comprising microcrystalline silicon
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02436—Intermediate layers between substrates and deposited layers
- H01L21/02439—Materials
- H01L21/02491—Conductive materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02521—Materials
- H01L21/02524—Group 14 semiconducting materials
- H01L21/02532—Silicon, silicon germanium, germanium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02612—Formation types
- H01L21/02617—Deposition types
- H01L21/0262—Reduction or decomposition of gaseous compounds, e.g. CVD
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02656—Special treatments
- H01L21/02658—Pretreatments
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F10/00—Individual photovoltaic cells, e.g. solar cells
- H10F10/10—Individual photovoltaic cells, e.g. solar cells having potential barriers
- H10F10/17—Photovoltaic cells having only PIN junction potential barriers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/545—Microcrystalline silicon PV cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/548—Amorphous silicon PV cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Photovoltaic Devices (AREA)
Abstract
在一种制造基于硅的薄膜太阳能电池的方法中,提供基板;在所述基板上沉积透明导电氧化物的第一电极层。在第一时间间隔期间处理所述透明导电氧化物层的表面。之后在第二时间间隔期间在所处理的表面上沉积掺杂层。在包含气态掺杂物的气氛中执行对透明导电氧化物表面的处理,该气态掺杂物与在用于沉积掺杂层的所述气氛中包含的量不同。除此不同之外,用于执行对透明导电氧化物表面的处理的工艺与用于沉积掺杂层的工艺相同。然而,第一时间间隔比用于沉积掺杂层的时间间隔短得多。
Description
技术领域
本发明涉及改善用于基于硅的薄膜太阳能电池或模块的制造工艺。更具体地,该发明涉及用于在薄膜硅太阳能电池及用于这样的薄膜硅太阳能电池的层结构中的所谓窗层的制造工艺。本发明更特别地涉及对在太阳能电池结构中的电极层的表面处理,该电极层包含透明导电氧化物(TCO)。
背景技术
光伏器件、光电转换器件或太阳能电池是转换光,特别是将太阳光转换为直流(DC)电能的器件。对低成本大量生产而言,薄膜太阳能电池令人感兴趣,这是因其允许使用玻璃、玻璃陶瓷或其它刚性或柔性基板作为基底材料(基板),以代替晶硅或多晶硅。该太阳能电池结构,即负责或能起光伏效应的该层序列沉积在薄层中。这沉积可发生在大气或真空条件下。在本领域沉积技术诸如PVD、CVD、PECVD、APCVD...为人熟知,这些全都用在半导体技术中。
太阳能电池的转换效率是对太阳能电池性能的常见量度,且其由输出功率密度(=开路电压Voc,填充因子FF及电流密度Jsc的积)与1000W/m2的输入功率密度的比来确定。
薄膜太阳能电池一般包含第一电极、一个或多个半导体薄膜p-i-n或n-i-p结,及第二电极,它们顺序堆叠在基板上。每个p-i-n结或薄膜光电转换单元包含夹在正掺杂或p型层及负掺杂或n型层之间的本征或i-型层。该本征半导体层占该薄膜p-i-n结的绝大部分厚度。光电转换主要发生在该i型层中;因此其亦称为有源或吸收体层。
根据该i型层太阳能电池的结晶性,或光电(转换)器件被表征为非晶(a-Si)或微晶(μc-Si)太阳能电池,而不管相邻p及n层的结晶性种类为何。微晶层被认为是在非晶基体中包含至少15%微晶结晶度的拉曼结晶性的层。
p-i-n结中的掺杂层也经常称为窗层。由于该掺杂p/n层所吸收的光会因有源层而损耗,因此,高度透明的窗层期望获得高电流密度(Jsc)。而且,窗层有助于在构成太阳能电池的半导体结中建立电场,该电场协助收集光产生的电荷载流子并获得高Voc及FF值。除此的外,前透明导电氧化物(TCO)与窗层之间的接触应为欧姆的,其具有低电阻率,以便得到好FF值。
现有技术的图1示出基本、简单光伏电池40,该光伏电池40包含透明基板41,其例如为玻璃,在其上沉积有一层透明导电氧化物(TCO)42。该层亦称为前接触,并且作为用于光伏组件的第一电极。下一层43作为有源光伏层,并包含形成p-i-n结的三“子层”。该层43包含氢化微晶(亦称纳米晶体)硅或非晶硅或其组合。子层44(邻近TCO前接触42)是正掺杂的,该邻近子层45是本征的,及该最后子层46是负掺杂的。在替代实施例中,如所述的该层序列p-i-n可以反转为n-i-p,那么,层44被识别为n层,层45再度为本征的,层46为p层。最后,该电池包含可由氧化锌、氧化锡或铟锡氧化物(ITO)制成的背后接触层47(亦称背接触),以及反射层48。替代地,可实现金属背接触,其能结合背反射体48及背接触47的物理特性。为说明,箭头指出照射光。
通常了解,当例如太阳辐射的光照射在光伏器件上时,在i层中产生电子空穴对。来自所产生的对的空穴被导向p区域,而该电子被导向n区域。一般该接触直接或间接地接触p或n区域。只要光继续产生电子空穴对,电流将流经连接这些接触的外部电路。
现有技术的缺点
该窗(p/n型)层一般是由非晶或微晶硅(也叫纳米晶体)或其任何混合物及其与氧、碳、锗等的合金制成。因p/n型层是有很大缺陷的(混乱的),该光产生的电子空穴以高概率复合;因此其无助于器件的光电流,而会造成吸收损耗。因此,该掺杂层的厚度应最小化,以减少这些光学的损耗。然而,当该掺杂层厚度过度减少时,填充因子的值及该开路电压大幅降低。
发明内容
根据所提议的该发明,在用于薄膜硅层堆叠的窗层成长前,应当执行短暂的表面处理,这分别造成非常薄,连续或不连续成核层或TCO表面制备。其示出此种处理改善了稍后的电池的电特性。因此,本发明是有关制造基于硅的薄膜太阳能电池的方法,该太阳能电池包括:
●基板;
●该基板上的第一电极层,其包含透明导电氧化物;
●该第一电极层上的堆叠层,其包含正掺杂半导体层、本征半导体层及负掺杂半导体层以及第二电极层;
由此该方法包含以下步骤:
●提供该基板;
●在该基板上沉积该第一电极层,该第一电极层包含该透明导电氧化物并具有表面;
●在第一时间间隔期间由第一真空处理工艺处理该提及(addressed)的表面;
●由在第二时间间隔期间在包含气态掺杂物的工艺气氛中执行的第二真空工艺在由第一真空处理工艺所处理的提及表面上沉积该正掺杂半导体层及该负掺杂半导体层之一;
●在包含气态掺杂物的工艺气氛中执行该第一真空处理工艺,该气态掺杂物与在该第二真空工艺的气氛中包含的量不同,但是在其它方面执行与第二真空工艺相同的第一真空处理工艺,并选择比该第二时间间隔短的第一时间间隔。
在一个实施例中,根据本发明的方法包括在包含SiH4及H2以及气态掺杂物的气氛中,作为真空等离子体处理工艺执行该第一真空处理工艺,该气态掺杂物浓度介于存在于该第二真空工艺的气氛中的气态掺杂物浓度的0%到80%之间,优选是介于0%到20%之间,由此,优选地由该第二真空工艺沉积该正掺杂半导体层。正如该第一真空处理工艺是在包含SiH4及H2的气氛中的真空等离子体处理工艺,这对于该第二真空工艺也一样是有优势的。
在一个实施例中,根据本发明的方法包括由该第二真空工艺沉积氢化硅的正掺杂半导体层,由此为微晶材料沉积执行该第二真空工艺,及在无气态掺杂物的气氛中执行该第一真空处理工艺,以及优选地在包含氢化碳化硅的工艺气氛中在氢化硅的正掺杂半导体层上沉积硅与碳的合金的非晶正掺杂层,其中进一步优选地该第二真空工艺是真空等离子体工艺并且由此也是第一真空处理工艺。
在根据本发明的方法的一个实施例中,该第二真空工艺(并且由此也是该第一真空处理工艺)是真空等离子体工艺。
在根据本发明的方法的一个实施例中,有优势的是:该第一时间间隔被选择成介于该第一及第二时间间隔的和的5%到20%之间,及其中优选地该第二真空工艺是真空等离子体工艺,及下列至少之一是有效的:
●由该第二真空工艺所沉积的该一个掺杂层是该正掺杂半导体层;
●该一个掺杂半导体层是在包含SiH4对H2的浓度为0.1%至10%,优选为1%至5%的气氛中沉积的;
●该一个掺杂半导体层是在包含SiH4的气氛中沉积的,并且在该气氛中该掺杂物对SiH4的浓度是0.1%到10%,优选为0.05%到0.5%;
●该一个掺杂半导体层是在功率密度为10mW/cm2到1W/cm2,优选地是介于50mW/cm2到300mW/cm2之间沉积的;
●该一个掺杂半导体层是在0.5mbar到12mbar的总压力下沉积的;
●该一个掺杂半导体层是在介于150℃到280℃之间的工艺温度下沉积的;
●该一个掺杂半导体层是以频率为13.56MHz到82MHz的Rf功率沉积的。
具体实施方式
一般,再参考图1,薄膜光伏器件光伏电池40包含基板41,优选为透明玻璃的基板,通常具有0.4mm至5mm的厚度,优选为2mm至4mm;在基板41上作为接触的导电氧化物42;一个或多个半导体层43-46,在曝露于光时,该半导体层产生电荷分离;以及第二导电接触47。
根据本发明的该表面处理包含提供在其上具有TCO接触层42的基板41;提供SiH4、H2的等离子体以及任选地提供气相浓度介于用于沉积后续子层44=p掺杂窗层的浓度的0至80%之间,优选地0至20%之间的掺杂气体(例如,三甲基硼,乙硼烷...)。
在以下例子中,在P层前,以如表1中的参数实施的该表面处理将该太阳能电池的效率增加了2.09%(表3),在电流密度方面(见图4的EQE)达到此增益的一半。
对于标准p层的例子,这里由两个步骤(表1的上部)组成:
1.pμc-Si:H-以适于微晶硅材料的条件沉积p层。
2.p a-SiC:H-沉积非晶硅与碳的合金的p掺杂层。
根据本发明的硅层堆叠,其表面处理包含3个步骤(表1的下部):
1.表面处理:将该TCO层42短暂曝露(5秒)于具有pμc条件的等离子体中,而无掺杂气体,该等离子体条件被选择为与后续步骤2相同,但无任何掺杂气体。
2.pμc-Si:H-在用于微晶材料的条件下,沉积p层65秒。
3.p a-SiC:H-沉积非晶硅和碳的合金的p掺杂层。
表2示出具有“标准p”及本发明的“表面处理+标准p层”的单结非晶太阳能电池的绝对值及该相对增益。
Jsc QE | Voc | FF | 效率 | |
(mA/cm2) | (mV) | (%) | (%) | |
标准<p> | 16.81 | 903.03 | 70.67 | 10.73 |
表面处理+<p> | 16.98 | 911.00 | 70.80 | 10.95 |
相对增益(%) | 1.02 | 0.88 | 0.18 | 2.09 |
表2
表2及图2所述该例子将展示结果,但不是限制性的。该处理温度可在150与280℃间变化,这不包含本发明的要旨。介于13.56MHz与82MHz(13.56MHz的谐波)之间的频率可以顺利地被使用。对该沉积工艺,SiH4、H2与掺杂物(若有)CH4、TMB、PH3间的比率是相关的并且能从表1容易地得到。施加到该工艺腔体中的功率将影响期望的沉积速率,但也将影响该层的结晶性及其稳定性。因在此例中该电池具有1cm2的尺寸,每cm2的相应功率密度能从表1容易地得到。
将了解,该发明工艺应为用于在TCO表面上沉积掺杂硅层的工艺,其包含在第一组工艺参数下执行的第一等离子体处理工艺步骤,以及接在其后的第二等离子体沉积工艺步骤,该第二等离子体沉积工艺步骤具有实质上相同(第一)组的工艺掺数,但包含掺杂气体或前驱物。例如,该p-μc层是以如下条件沉积的:硅烷浓度(SiH4/H2)介于0.1%与10%之间,优选地介于1%与5%之间,掺杂物浓度(掺杂物/硅烷)介于0.01%至1%之间,优选地介于0.05%与0.5%之间,功率密度为10mW/cm2至1W/cm2,优选地介于50mW/cm2与300mW/cm2之间,压力介于0.5与12mbr之间。相对于第一加第二工艺步骤的持续时间的第一工艺步骤所占的时间分数应该是介于5%与20%之间,及/或,以绝对值计,介于3与15秒之间,优选地介于5与10秒之间。该上述参数对于在40MHZ下操作的、具有近似3000cm2的电极表面的KAI-M PECVD反应器是典型的。
此制造工艺可以在从Oerlikon Solar商业获得的KAI 1200或相似的工业反应器中得到提升。该TCO(ZnO)层可在也来自Oerlikon Solar的、称为TCO 1200的系统上沉积。
本发明方法可以有益的方式应用在所有类型的薄膜硅光伏层堆叠上,其中掺杂窗层应被沉积在TCO前接触上。该硅光伏层堆叠可为单结非晶的、串联结非晶/微晶堆叠的(micromorph)、串联结非晶的等。
Claims (5)
1.一种制造基于硅的薄膜太阳能电池的方法,该太阳能电池包括:
●基板;
●所述基板上的第一电极层,其包含透明导电氧化物;
●所述第一电极层上的堆叠层,其包含正掺杂半导体层、本征半导体层及负掺杂半导体层以及第二电极层;
所述方法包含以下步骤:
●提供所述基板;
●在所述基板上沉积所述第一电极层,该第一电极层包含所述透明导电氧化物并具有表面;
●在第一时间间隔期间由第一真空处理工艺处理所述表面;
●由在第二时间间隔期间在包含气态掺杂物的工艺气氛中执行的第二真空工艺在由所述第一真空处理工艺所处理的所述表面上沉积所述正掺杂层及所述负掺杂层之一;
●在包含气态掺杂物的工艺气氛中执行所述第一真空处理工艺,该气态掺杂物与在所述第二真空工艺的所述气氛中包含的量不同,但是在其它方面执行与所述第二真空工艺相同的所述第一真空处理工艺,并选择比所述第二时间间隔短的所述第一时间间隔。
2.如权利要求1的方法,其包含在包含SiH4及H2以及气态掺杂物的气氛中,作为真空等离子体处理工艺执行所述第一真空处理工艺,该气态掺杂物浓度介于存在于所述第二真空工艺的气氛中的气态掺杂物浓度的0%到80%之间,优选是介于0%到20%之间,由此,优选地由所述第二真空工艺沉积所述正掺杂半导体层。
3.如权利要求1的方法,其包含由所述第二真空工艺沉积微晶氢化硅的正掺杂层作为所述一个层,由此执行适于微晶材料沉积的所述第二真空工艺,以及在无气态掺杂物的气氛中执行所述第一真空处理工艺,以及优选地在包含氢化碳化硅的工艺气氛中在所述氢化微晶硅的正掺杂层上沉积硅与碳的合金的非晶正掺杂层,其中进一步优选地所述第二真空工艺是真空等离子体工艺。
4.如权利要求1的方法,其中所述第二真空工艺是真空等离子体工艺。
5.如权利要求1的方法,其中所述第一时间间隔被选择成介于该第一及第二时间间隔的和的5%到20%之间,并且其中优选地所述第二真空工艺是真空等离子体工艺,并且下列至少之一是有效的:
●由所述第二真空工艺所沉积的所述一个掺杂半导体层是所述正掺杂半导体层;
●所述一个掺杂半导体层是在包含SiH4对H2的浓度为0.1%至10%,优选为1%至5%的气氛中沉积的;
●所述一个掺杂半导体层是在包含SiH4的气氛中沉积的,并且在所述气氛中该掺杂物对SiH4的浓度是0.1%到10%,优选为0.05%到0.5%;
●所述一个掺杂半导体层是在功率密度为10mW/cm2到1W/cm2,优选地是介于50mW/cm2到300mW/cm2之间沉积的;
●所述一个掺杂半导体层是在0.5mbar到12mbar的总压力下沉积的;
●所述一个掺杂半导体层是在介于150℃到280℃之间的工艺温度下沉积的;
●所述一个掺杂半导体层是以频率为13.56MHz到82MHz的Rf功率沉积的。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US24364609P | 2009-09-18 | 2009-09-18 | |
US61/243,646 | 2009-09-18 | ||
PCT/EP2010/063208 WO2011032879A2 (en) | 2009-09-18 | 2010-09-09 | Method for manufacturing a thin-film, silicon-based solar cell |
Publications (1)
Publication Number | Publication Date |
---|---|
CN102844891A true CN102844891A (zh) | 2012-12-26 |
Family
ID=43759090
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2010800415724A Pending CN102844891A (zh) | 2009-09-18 | 2010-09-09 | 制造基于硅的薄膜太阳能电池的方法 |
Country Status (3)
Country | Link |
---|---|
CN (1) | CN102844891A (zh) |
TW (1) | TW201126741A (zh) |
WO (1) | WO2011032879A2 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102011052480A1 (de) * | 2011-08-08 | 2013-02-14 | Roth & Rau Ag | Solarzelle und Verfahren zur Herstellung einer Solarzelle |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6242686B1 (en) * | 1998-06-12 | 2001-06-05 | Sharp Kabushiki Kaisha | Photovoltaic device and process for producing the same |
CN101499497A (zh) * | 2008-01-29 | 2009-08-05 | 东捷科技股份有限公司 | 一种具有多能阶的硅基薄膜太阳能电池 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001352081A (ja) * | 2000-06-05 | 2001-12-21 | Sanyo Electric Co Ltd | 光起電力装置の製造方法 |
-
2010
- 2010-09-09 CN CN2010800415724A patent/CN102844891A/zh active Pending
- 2010-09-09 WO PCT/EP2010/063208 patent/WO2011032879A2/en active Application Filing
- 2010-09-16 TW TW099131357A patent/TW201126741A/zh unknown
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6242686B1 (en) * | 1998-06-12 | 2001-06-05 | Sharp Kabushiki Kaisha | Photovoltaic device and process for producing the same |
CN101499497A (zh) * | 2008-01-29 | 2009-08-05 | 东捷科技股份有限公司 | 一种具有多能阶的硅基薄膜太阳能电池 |
Non-Patent Citations (2)
Title |
---|
ARINDAM SARKER, ET AL.: "Lowering of thickness of boron-doped microcrystalline hydrogenated silicon film by seeding technique", 《SOLAR ENERGY MATERIALS & SOLAR CELLS》 * |
E.BÖHMER, ET AL.: "New insights into the ZnO/a-SiC:H(B) interface using XPS analysis", 《 FRESENIUS JOURNAL OF ANALYTICAL CHEMISTRY》 * |
Also Published As
Publication number | Publication date |
---|---|
WO2011032879A2 (en) | 2011-03-24 |
TW201126741A (en) | 2011-08-01 |
WO2011032879A3 (en) | 2012-06-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20070023081A1 (en) | Compositionally-graded photovoltaic device and fabrication method, and related articles | |
US7906723B2 (en) | Compositionally-graded and structurally-graded photovoltaic devices and methods of fabricating such devices | |
CN101609796B (zh) | 薄膜形成方法和薄膜太阳能电池的制造方法 | |
US20120325284A1 (en) | Thin-film silicon tandem solar cell and method for manufacturing the same | |
De Nicolas | a-Si: H/c-Si heterojunction solar cells: back side assessment and improvement | |
CN100338781C (zh) | 半导体器件及其制造方法 | |
Qiu et al. | Function analysis of the phosphine gas flow for n-type nanocrystalline silicon oxide layer in silicon heterojunction solar cells | |
US20120107996A1 (en) | Surface treatment process performed on a transparent conductive oxide layer for solar cell applications | |
CN103563091A (zh) | 具有改善的隧道结的串列太阳能电池 | |
US8652871B2 (en) | Method for depositing an amorphous silicon film for photovoltaic devices with reduced light-induced degradation for improved stabilized performance | |
WO2010023991A1 (ja) | 光電変換装置の製造方法、光電変換装置、及び光電変換装置の製造システム | |
CN104733548B (zh) | 具有量子阱结构的硅基薄膜太阳能电池及其制造方法 | |
CN103107236B (zh) | 异质结太阳能电池及其制作方法 | |
Lien et al. | Fabrication and characteristics of n-Si/c-Si/p-Si heterojunction solar cells using hot-wire CVD | |
CN103238219A (zh) | 用于a-Si单结和多结薄膜硅太阳能电池的改进的a-Si:H吸收层 | |
US20130291933A1 (en) | SiOx n-LAYER FOR MICROCRYSTALLINE PIN JUNCTION | |
CN102844891A (zh) | 制造基于硅的薄膜太阳能电池的方法 | |
CN210156405U (zh) | 具有氢退火tco导电膜的异质结电池结构 | |
CN103107240A (zh) | 多晶硅薄膜太阳能电池及其制作方法 | |
Zan et al. | Crystalline-silicon heterojunction solar cells with graphene incorporation | |
CN118630073B (zh) | 一种电池 | |
CN102782881A (zh) | 高效率非晶硅光伏器件 | |
CN202977496U (zh) | 异质结太阳能电池 | |
CN202977493U (zh) | 多晶硅薄膜太阳能电池 | |
Veneri et al. | Thin film Silicon Solar Cells |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C53 | Correction of patent of invention or patent application | ||
CB02 | Change of applicant information |
Address after: Swiss Te Lui Bach Applicant after: Oerlikon Solar AG, Truebbach Address before: Swiss Te Lui Bach Applicant before: Oerlikon Solar IP AG. Truebbach |
|
COR | Change of bibliographic data |
Free format text: CORRECT: APPLICANT; FROM: OERLIKON SOLAR AG (TRUBBACH) TO: OERLIKON SOLAR AG |
|
C05 | Deemed withdrawal (patent law before 1993) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20121226 |