CN102840701A - Vacuum tube wall type heat absorber - Google Patents
Vacuum tube wall type heat absorber Download PDFInfo
- Publication number
- CN102840701A CN102840701A CN2012103165327A CN201210316532A CN102840701A CN 102840701 A CN102840701 A CN 102840701A CN 2012103165327 A CN2012103165327 A CN 2012103165327A CN 201210316532 A CN201210316532 A CN 201210316532A CN 102840701 A CN102840701 A CN 102840701A
- Authority
- CN
- China
- Prior art keywords
- heat
- vacuum tube
- straight
- absorbing module
- module
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/40—Solar thermal energy, e.g. solar towers
Landscapes
- Sorption Type Refrigeration Machines (AREA)
Abstract
Description
技术领域 technical field
本发明涉及一种太阳能高温吸热器。The invention relates to a solar high temperature heat absorber.
背景技术 Background technique
塔式太阳能热发电的基本原理是利用众多的定日镜,将太阳辐射反射到置于吸热塔上部的吸热器表面,借助加热工质产生的蒸汽或高温空气,驱动发电机组,产生电能。自20世纪80年代以来,塔式太阳能热发电技术得到了迅猛发展,一批塔式太阳能试验电站先后投入试运行。大量实验和运行数据证明,塔式太阳能热发电技术具有高温,高聚光比和高发电效率的突出优点,在商业化进程中具有重大前景和竞争力。The basic principle of tower solar thermal power generation is to use many heliostats to reflect solar radiation to the surface of the heat absorber placed on the upper part of the heat absorption tower, and use the steam or high-temperature air generated by the heating medium to drive the generator set to generate electricity . Since the 1980s, tower-type solar thermal power generation technology has developed rapidly, and a number of tower-type solar test power stations have been put into trial operation. A large number of experiments and operating data prove that the tower solar thermal power generation technology has the outstanding advantages of high temperature, high concentration ratio and high power generation efficiency, and has great prospects and competitiveness in the process of commercialization.
吸热器是塔式太阳能热发电系统中光-热转换最为核心的部件之一,其主要功能是接受、吸收由定日镜场反射过来的太阳辐射能,并将其转化为热能传递给传热工质。吸热器与吸热塔及相关管路组成吸热系统,其安装在吸热塔一定高度的地方,工质输送管道等设备布置在吸热塔体内部。吸热器主要组成部分包括:由多管路组成的吸热体、吸热器支撑和固定结构、吸热单元之间的联结管路。目前广泛应用的吸热器结构形式主要有腔体式、柱体式和平板式三种形式,其中柱体式和平板式由于采用钢管管路难以有效保温造成较大的高温热损失。而腔体式虽然能够降低一定的热损失,但由于结构复杂,重量大,造成吸热塔的造价高,安全性差。并且目前这些吸热器表面都是裸露在空气中,若采用太阳选择性吸收涂层,其在高温、非真空环境易发生高温氧化,性能老化快,使用寿命较短,难以真正有效的提高吸热器的光-热转换效率。The heat absorber is one of the core components of light-to-heat conversion in the tower solar thermal power generation system. Its main function is to receive and absorb the solar radiation energy reflected by the heliostat field, and convert it into heat energy and transmit it to the Thermal fluid. The heat absorber, the heat absorbing tower and related pipelines form a heat absorbing system, which is installed at a certain height of the heat absorbing tower, and the equipment such as working fluid delivery pipelines is arranged inside the heat absorbing tower. The main components of the heat absorber include: the heat absorber composed of multiple pipelines, the support and fixed structure of the heat absorber, and the connecting pipelines between the heat absorbing units. At present, there are mainly three types of heat sink structures widely used: cavity type, column type and flat plate type. Among them, the column type and flat plate type are difficult to effectively insulate due to the use of steel pipe pipelines, resulting in large high-temperature heat loss. Although the cavity type can reduce a certain amount of heat loss, due to the complex structure and heavy weight, the cost of the heat absorption tower is high and the safety is poor. And at present, the surface of these heat absorbers is exposed in the air. If the solar selective absorption coating is used, it is prone to high-temperature oxidation in high-temperature, non-vacuum environments, and the performance is aging quickly, and the service life is short, so it is difficult to really effectively improve the absorption. Light-to-heat conversion efficiency of the heater.
发明内容 Contents of the invention
本发明的目的在于克服现有塔式太阳能热发电系统的吸热器在高温下吸热效率低、定日镜场聚光精度要求高、吸热器开口小等不足,以及在非真空环境易发生高温氧化,易老化,使用寿命较短的缺点,提出一种真空管墙式吸热器。本发明采用直通式真空管,实现了吸热器的高效真空保温供功能,同时吸热管表面采用镀有耐高温的太阳选择性吸收涂层,提高吸收太阳辐射能效率同时降低吸热器向环境的辐射热损失,显著提高了吸热器的光-热转换效率。The purpose of the present invention is to overcome the shortcomings of the heat absorber of the existing tower type solar thermal power generation system, such as the low heat absorption efficiency at high temperature, the high requirement for the concentration precision of the heliostat field, the small opening of the heat absorber, etc. Occurrence of high-temperature oxidation, easy aging, and short service life, a vacuum tube wall heat absorber is proposed. The invention adopts a straight-through vacuum tube to realize the high-efficiency vacuum heat preservation function of the heat absorber. At the same time, the surface of the heat absorber tube is coated with a high-temperature-resistant solar selective absorption coating, which improves the efficiency of absorbing solar radiation energy and reduces the heat absorber’s leakage to the environment. The radiative heat loss significantly improves the light-to-heat conversion efficiency of the heat absorber.
本发明的技术方案如下:Technical scheme of the present invention is as follows:
本发明真空管墙式吸热器由吸热模块、联结管、进口母管及出口母管组成。多个所述的吸热模块通过联接管路串联连接在一起,联结管的一端与吸热模块进口管焊接联通,联结管的另一端与吸热模块出口管焊接联通。所述进口母管是吸热器的传热工质流入吸热器的总管路,进口母管与位于所述吸热器最外侧的吸热模块进口管焊接联通,流入吸热器的传热工质通过进口母管分配至各个吸热模块中;所述出口母管是吸热器的传热工质流出吸热器的总管路,出口母管与位于所述吸热器最外侧的吸热模块出口管焊接联通,各个吸热模块中的传热工质均经出口母管流出吸热器。所述的吸热器具有混合传热工质的作用。The vacuum tube wall heat absorber of the present invention is composed of a heat absorbing module, a connecting pipe, an inlet main pipe and an outlet main pipe. A plurality of the heat-absorbing modules are connected in series through connecting pipes, one end of the connecting pipe is welded and communicated with the inlet pipe of the heat-absorbing module, and the other end of the connecting pipe is welded and communicated with the outlet pipe of the heat-absorbing module. The inlet main pipe is the main pipeline through which the heat transfer working medium of the heat absorber flows into the heat absorber. The working fluid is distributed to each heat absorption module through the inlet main pipe; the outlet main pipe is the general pipeline for the heat transfer working fluid of the heat absorber to flow out of the heat absorber, and the outlet main pipe is connected with the heat absorber located on the outermost side of the heat absorber. The outlet pipes of the heat modules are welded and connected, and the heat transfer working medium in each heat absorption module flows out of the heat absorber through the outlet main pipe. The heat absorber has the function of mixing heat transfer working fluid.
所述吸热模块由多根直通式真空管串联或并联组成。The heat-absorbing module is composed of a plurality of straight-through vacuum tubes connected in series or in parallel.
多根直通式真空管通过U型连接管串联构成串联式吸热模块。所述的U型连接管位于两根直通式真空管之间,U型连接管的两端分别连接一根直通式真空管。串联式吸热模块最外侧的两根直通式真空管中,此吸热模块进口端的一根直通式真空管的内管与吸热模块进口管一端焊接联通,此串联式吸热模块出口端的一根直通式真空管与吸热模块出口管一端焊接联通。Multiple straight-through vacuum tubes are connected in series through U-shaped connecting tubes to form a series heat-absorbing module. The U-shaped connecting tube is located between two straight-through vacuum tubes, and two ends of the U-shaped connecting tube are respectively connected to a straight-through vacuum tube. Among the two straight-through vacuum tubes on the outermost side of the series-type heat-absorbing module, the inner tube of a straight-through vacuum tube at the inlet end of the heat-absorbing module is welded to one end of the inlet pipe of the heat-absorbing module, and the one end of the outlet end of the series-type heat-absorbing module is straight-through The vacuum tube is welded to one end of the outlet tube of the endothermic module.
多根直通式真空管并联组成并联式吸热模块。并联式吸热模块中,多根直通式真空管垂直排列,直通式真空管的下端与吸热模块进口管焊接联通,直通式真空管的上端与吸热模块出口管焊接联通。A plurality of straight-through vacuum tubes are connected in parallel to form a parallel heat-absorbing module. In the parallel heat-absorbing module, a plurality of straight-through vacuum tubes are arranged vertically, the lower end of the straight-through vacuum tube is welded and connected with the inlet pipe of the heat-absorbing module, and the upper end of the straight-through vacuum tube is welded and connected with the outlet pipe of the heat-absorbing module.
所述真空管墙式吸热器周向布置或单向布置在吸热塔顶部。本发明真空管墙式吸热器与吸热塔及传热工质输送管路组成吸热系统,传热工质上升管的上端与位于真空管墙式吸热器上部的进口母管连接,传热工质上升管的下端连接储存装置。传热工质下降管的上端与位于真空管墙式吸热器下部的出口母管连接,传热工质下降管的下端连接储存装置。所述的吸热系统吸收、转换太阳辐射能为传热工质热能,用于塔式太阳能热发电系统。The vacuum tube wall heat absorber is arranged circumferentially or unidirectionally at the top of the heat absorption tower. The vacuum tube wall heat absorber of the present invention forms a heat absorption system with a heat absorption tower and a heat transfer medium delivery pipeline. The lower end of the working medium ascending pipe is connected with the storage device. The upper end of the heat transfer working medium downcomer is connected to the outlet main pipe located at the lower part of the vacuum tube wall heat absorber, and the lower end of the heat transfer working medium downcomer is connected to the storage device. The heat-absorbing system absorbs and converts solar radiant energy into thermal energy of heat transfer working medium, which is used in a tower-type solar thermal power generation system.
所述的直通式真空管具有玻璃外管和带有太阳选择性吸收涂层的金属内管,玻璃外管与金属内管同轴套装,玻璃外管与金属内管之间形成真空环形空间。通过真空环形空间的保温作用,显著降低吸热器在高温时的热量损失。所述金属内管的太阳选择性吸收膜层在真空环境中能够承受太阳辐射的高温而不被氧化,从而延长了涂层的使用寿命,大大提高了吸热器的光-热转换效率。The straight-through vacuum tube has a glass outer tube and a metal inner tube with a solar selective absorption coating, the glass outer tube and the metal inner tube are coaxially fitted, and a vacuum annular space is formed between the glass outer tube and the metal inner tube. Through the insulation effect of the vacuum annular space, the heat loss of the heat absorber at high temperature is significantly reduced. The solar selective absorption film layer of the metal inner tube can withstand the high temperature of solar radiation without being oxidized in a vacuum environment, thereby prolonging the service life of the coating and greatly improving the light-to-heat conversion efficiency of the heat absorber.
所述的直通式真空管可以根据不同的设计要求采用水平布置、垂直地面布置、倾斜布置或多排并列交错布置等方式。这种模块化的吸热模块构成的墙式吸热器便于吸热器的设计及其空间布局、安装和维修。According to different design requirements, the straight-through vacuum tubes can be arranged horizontally, vertically on the ground, obliquely or in multiple rows side by side and staggered. The wall heat absorber formed by the modularized heat absorbing modules is convenient for the design of the heat absorber and its space layout, installation and maintenance.
组成吸热模块的直通式真空管之间存在一定间距,在直通式真空管之间可以布置有二次聚光器,将未被直通式真空管直接吸收的太阳光再次反射会聚到直通式真空管上,使得投射至吸热器表面的太阳光最大效率的被直通式真空管吸收,提高吸热器的热效率。所述的二次聚光器是复合抛物面聚光器(CPC)、平面或半球面形式的聚光器,复合抛物面聚光器(CPC)的面形为抛物线形状,平面或半球形的聚光器面形为水平面或半球形形状。二次聚光器所采用的材料为耐高温、具有高反射率金属板,如不锈钢板或铝板。在塔式太阳能热发电系统中若聚光较大,则根据需要在所述的二次聚光器的背面增加水冷或风冷装置,避免二次聚光器由于温度过高而损坏。There is a certain distance between the straight-through vacuum tubes that make up the heat-absorbing module, and a secondary concentrator can be arranged between the straight-through vacuum tubes to reflect and converge the sunlight that is not directly absorbed by the straight-through vacuum tubes to the straight-through vacuum tubes again, so that The sunlight projected onto the surface of the heat absorber is absorbed by the straight-through vacuum tube with maximum efficiency, improving the thermal efficiency of the heat absorber. The secondary concentrator is a compound parabolic concentrator (CPC), a concentrator in the form of a plane or a hemisphere, the surface shape of the compound parabolic concentrator (CPC) is a parabolic shape, and the plane or hemispherical The surface shape of the container is a horizontal plane or a hemispherical shape. The material used for the secondary concentrator is a metal plate with high temperature resistance and high reflectivity, such as a stainless steel plate or an aluminum plate. If the concentrated light is large in the tower solar thermal power generation system, a water-cooling or air-cooling device is added on the back of the secondary concentrator as required to avoid damage to the secondary concentrator due to excessive temperature.
所述的真空管墙式吸热器外形可以设计为二维曲面、外置圆柱式和平面式等。吸热器管内的传热工质可以采用水、蒸汽、导热油、熔融盐或空气等流体。该吸热器一般采用直接流动方式,传热工质在泵的驱动下经过传热工质上升管流入吸热器的进口母管,进而分配到各吸热模块的直通式真空管内,并被定日镜反射聚焦的太阳光加热,传热工质在吸热器中加热后汇入出口母管。不同的传热介质运行模式略有所不同。The shape of the vacuum tube wall heat absorber can be designed as a two-dimensional curved surface, an external cylindrical type, a flat type, etc. The heat transfer medium in the heat absorber tube can be fluids such as water, steam, heat transfer oil, molten salt or air. The heat absorber generally adopts the direct flow mode, and the heat transfer working medium flows into the inlet main pipe of the heat absorber through the heat transfer medium rising pipe under the drive of the pump, and then is distributed into the straight-through vacuum tubes of each heat absorbing module, and is The heliostat reflects the focused sunlight for heating, and the heat transfer medium is heated in the heat absorber and then flows into the outlet main pipe. Different heat transfer media operate in slightly different modes.
所述的吸热器可根据塔式太阳能热发电站系统中吸热塔的实际建筑地理位置,选择不同倾向和布局,保证吸热器能够最大限度的吸取太阳辐射能。吸热器可以与地面呈一定倾角或垂直地面安装,吸热器可适应于单向布置和周向布置的定日镜场。The heat absorber can choose different orientations and layouts according to the actual building location of the heat absorbing tower in the tower solar thermal power station system, so as to ensure that the heat absorber can absorb solar radiation energy to the maximum. The heat absorber can be installed at a certain inclination angle to the ground or perpendicular to the ground, and the heat absorber can be adapted to heliostat fields arranged in one direction or in a circumferential direction.
本发明优点在于:The present invention has the advantage that:
1、本发明采用了直通式真空管作为吸热元件,其热损系数低,具有高吸收比和低发射比的特点,吸热器整体光-热转换效率高。1. The present invention adopts a straight-through vacuum tube as the heat absorbing element, which has a low heat loss coefficient, high absorption ratio and low emission ratio, and the overall light-to-heat conversion efficiency of the heat absorber is high.
2、本发明真空管墙式吸热器无需布置保温结构,由于热效率高在相同热功率条件下,对投射至真空管墙式吸热器表面的聚光辐射能流密度相比于传统吸热器要求较低,降低了聚光比,吸热器开口面积可增大,截断效率可以大大提高,降低了对定日镜场聚光精度的要求。2. The vacuum tube wall heat absorber of the present invention does not need to arrange an insulation structure. Due to the high thermal efficiency, under the same thermal power condition, the concentrated radiation energy flux density projected to the surface of the vacuum tube wall heat absorber is compared with the requirements of the traditional heat absorber. The concentration ratio is lower, the opening area of the heat absorber can be increased, the truncation efficiency can be greatly improved, and the requirements for the concentration accuracy of the heliostat field are reduced.
3、本发明吸热器的结构简单,辅助结构少,降低吸热器的重量,降低了吸热塔的承重载荷要求,可降低了吸热塔造价。3. The structure of the heat absorber of the present invention is simple, and there are few auxiliary structures, which reduces the weight of the heat absorber, reduces the load-bearing requirements of the heat absorbing tower, and can reduce the cost of the heat absorbing tower.
4、本发明通过采用二次聚光器,实现了直通式吸热管全表面吸热,减少了直通式吸热管的用量,提高了能量利用效率。4. By adopting the secondary light concentrator, the present invention realizes heat absorption on the entire surface of the straight-through heat-absorbing pipe, reduces the consumption of the straight-through heat-absorbing pipe, and improves energy utilization efficiency.
附图说明 Description of drawings
图1串联式吸热模块;Fig. 1 series heat-absorbing module;
图2串联式吸热模块组成的真空管墙式吸热器;Fig. 2 Vacuum tube wall heat absorber composed of series heat absorbing modules;
图3并联式吸热模块;Fig. 3 Parallel heat-absorbing module;
图4并联式吸热模块组成的真空管墙式吸热器;The vacuum tube wall type heat absorber that Fig. 4 parallel heat absorption module forms;
图5a串联式吸热模块交错布置;图5b并联式吸热模块交错布置;Figure 5a is a staggered arrangement of series heat-absorbing modules; Figure 5b is a staggered arrangement of parallel-connected heat-absorbing modules;
图6串联式吸热模块和并联式吸热模块混合排列的真空管墙式吸热器;Fig. 6 Vacuum tube wall heat absorber with mixed arrangement of serial heat absorption modules and parallel heat absorption modules;
图7二次聚光器工作原理图;Figure 7 is a schematic diagram of the working principle of the secondary concentrator;
图8真空管墙式吸热器单向布置;Figure 8 One-way arrangement of vacuum tube wall heat absorbers;
图9真空管墙式吸热器周向布置;Figure 9 Circumferential arrangement of vacuum tube wall heat absorbers;
图中,1直通式真空管,2U型连接管,3吸热模块进口管,3’最外侧的吸热模块的吸热模块进口管,4吸热模块出口管,4’最外侧的吸热模块的吸热模块出口管,5进口母管,6出口母管,7吸热塔,8传热工质下降管,9传热工质上升管,10定日镜,11联结管,12带有太阳选择性吸收涂层的金属内管,13二次聚光器,14玻璃外管,15真空管墙式吸热器,17串联式吸热模块,18并联式吸热模块。In the figure, 1 straight-through vacuum tube, 2 U-shaped connecting pipe, 3 inlet pipe of the heat absorbing module, 3' inlet pipe of the heat absorbing module of the outermost heat absorbing module, 4 outlet pipe of the heat absorbing module, 4' of the outermost heat absorbing module The outlet pipe of the endothermic module, 5 inlet main pipes, 6 outlet main pipes, 7 heat absorption towers, 8 heat transfer working medium down pipes, 9 heat transfer working medium ascending pipes, 10 heliostats, 11 connecting pipes, 12 with Metal inner tube with solar selective absorption coating, 13 secondary concentrators, 14 glass outer tube, 15 vacuum tube wall absorber, 17 series absorber module, 18 parallel absorber module.
具体实施方式 Detailed ways
以下结合附图和具体实施方式进一步说明本发明。The present invention will be further described below in conjunction with the accompanying drawings and specific embodiments.
本发明真空管墙式吸热器由串联式吸热模块17或并联式吸热模块18、联结管11、进口母管5及出口母管6组成。The vacuum tube wall heat absorber of the present invention is composed of series heat absorption modules 17 or parallel
多个所述的吸热模块17、18通过联接管路11串联连接在一起,联结管路11的一端与吸热模块进口管3焊接联通,联结管路11的另一端与吸热模块出口管4焊接联通。所述进口母管5是吸热器的传热工质流入吸热器的总管路,进口母管5与位于吸热器15最外侧的吸热模块17、18的吸热模块进口管3’焊接联通,流入吸热器的传热工质通过进口母管分配至各个吸热模块中;所述出口母管6是吸热器的传热工质流出吸热器的总管路,出口母管6与位于吸热器15最外侧的吸热模块17、18的吸热模块出口管4’焊接联通,各个吸热模块中的传热工质均经出口母管流出吸热器。所述的吸热器具有混合传热工质的作用。A plurality of the heat-absorbing
所述串联式吸热模块17由多根直通式真空管1通过U型连接管2串联构成。所述的U型连接管2位于两根直通式真空管1之间,U型连接管2的两端分别连接一根直通式真空管1。串联式吸热模块17最外侧的两根真空直通式真空管中,串联式吸热模块17进口端的一根直通式真空管的内管与吸热模块进口管3焊接联通,另外一根串联式吸热模块17出口端的直通式真空管与吸热模块出口管4焊接联通。The series-type heat-absorbing module 17 is composed of a plurality of straight-through
所述并联式吸热模块18由多根直通式真空管1、吸热模块进口管3和吸热模块出口管4组成,多根直通式真空管1垂直排列,直通式真空管1的下端与吸热模块进口管3焊接联通,直通式真空管1的上端与吸热模块出口管4焊接联通。The parallel heat-absorbing
如图1所示,串联式吸热模块17由多根直通式真空管1通过U型连接管2连接组成。U型连接管2位于两根直通式真空管1之间。串联式吸热模块17最外侧的两根真空直通式真空管1中,串联式吸热模块17进口端的一根直通式真空管1内管与吸热模块进口管3焊接联通,另外一根串联式吸热模块17出口端的直通式真空管1与吸热模块出口管4焊接联通。所述吸热模块进口管3与直通式真空管1一端的内管焊接联通,并且吸热模块进口管3的轴线与直通式真空管1的轴线重合。所述吸热模块出口管4与直通式真空管1一端的内管焊接联通,并且吸热模块出口管4的轴线与直通式真空管1的轴线重合。串联式吸热模块17中的直通式真空管1可以与地面平行布置,也可以与地面垂直布置。As shown in FIG. 1 , the series heat absorbing module 17 is composed of a plurality of straight-through
如图2所示,本发明墙式吸热器15由多个串联式吸热模块17、联结管11、进口母管5和出口母管6组成,多个串联式吸热模块17通过联结管11实现串联或者并联连接。联结管11的一端与一个串联式吸热模块17的吸热模块进口管3相连,联结管11的另一端与另外一个串联式吸热模块17吸热模块出口管4相连。位于中间联结管11下部的最外侧的串联式吸热模块17的吸热模块进口管3’与进口母管5焊接,位于中间联结管11上部的最外侧的串联式吸热模块17的吸热模块出口管4’与出口母管6连接。As shown in Figure 2, the wall-
如图3所示,并联式吸热模块18由多根直通式真空管1并联组成。每根直通式真空管1与吸热模块进口管3和吸热模块出口管4之间采用焊接方式连通,吸热模块进口管3与直通式真空管1的下端相连接,吸热模块出口管4与直通式真空管1的上端相连。As shown in FIG. 3 , the parallel
如图4所示,本发明真空管墙式吸热器15由进口母管5、出口母管6和并联式吸热模块18组成,并联式吸热模块18由多个直通式真空管1并联构成。位于联结管11下部的并联式吸热模块18的吸热模块进口管3与进口母管5相连,位于联结管11上部的并联式吸热模块18的吸热模块出口管4与出口母管6相连。两个并联式吸热模块18之间通过联结管11连接,联结管11的一端与一个并联式吸热模块18的吸热模块进口管3相连,另一端与另外一个并联式吸热模块18吸热模块进口管4相连。As shown in FIG. 4 , the vacuum tube
如图5所示,图5a是多个串联式吸热模块17组成所述真空管墙式吸热器15时,串联式吸热模块前后交错布置;图5b是多个并联式吸热模块18组成所述真空管墙式吸热器15时,直通式真空管1前后交错布置,这种布置方式增大接收太阳辐射能面积。As shown in Figure 5, Figure 5a shows that when a plurality of series-connected heat-absorbing modules 17 form the vacuum tube
如图6所示,本发明真空管墙式吸热器15由进口母管5、出口母管6、联结管11、串联式吸热模块17和并联式吸热模块18混合排列组成。串联式吸热模块17和并联式吸热模块18通过联结管11串联,位于吸热器15最外侧串联式吸热模块17上的吸热模块进口管3’与进口母管5焊接联通,位于吸热器15最外侧并联式吸热模块18上的吸热模块出口管4’与出口母管6焊接联通。As shown in FIG. 6 , the vacuum tube
如图7所示,直通式真空管1背面布置二次聚光器13。采用复合抛物面形式的二次聚光器13进行二次聚光,减少太阳能辐射能的溢出,提高聚光比,将投射到直通式真空管1背面的太阳光再次反射聚焦,通过直通式真空管1的玻璃外管14投射到带有太阳选择性吸收涂层的金属内管12上。由于在玻璃外管14与金属内管12之间具有真空环形空间,隔热效果好,可以显著提高光热转换效率。该种复合抛物面形式的二次聚光器13采用了耐高温、具有高反射率的不锈钢板或铝板。同时,根据需要可以在复合抛物面形式的二次聚光器13背面增加水冷或风冷装置,避免聚光能量过高导致二次聚光器13被烧损。As shown in FIG. 7 , a
如图8所示,真空管墙式吸热器单向布置,该布置适用于单向定日镜场。所述的真空管墙式吸热器15与吸热塔7及传热工质上升管8和传热工质下降管9组成吸热系统。真空管墙式吸热器15安装在吸热塔7的顶部,传热工质上升管8安装在吸热塔7内部,传热工质上升管8的上端与真空管墙式吸热器15的入口母管5相连,下端与储存装置相连。传热工质下降管9安装在吸热塔7内部,传热工质下降管9的上端与真空管墙式吸热器15的出口母管6连接,下端与储存装置相连。传热工质在泵的驱动下经传热工质上升管8流入真空管墙式吸热器15的进口母管5,进而分配到各串联式吸热模块17的直通式真空管1内,通过定日镜10反射聚焦的太阳辐射能加热真空管墙式吸热器15中的传热工质,太阳辐射能转换为传热工质的热能,传热工质加热后汇入出口母管6中,进而通过传热工质下降管9输送到塔式太阳能热发电系统中发电。As shown in Figure 8, the vacuum tube wall absorber is arranged in one direction, which is suitable for a one-way heliostat field. The vacuum tube
如图9所示,真空管墙式吸热器周向布置,该布置适用于周向定日镜场。图中A向视图表示在吸热塔7四周布置真空管墙式吸热器15,可以从四个方向吸收太阳辐射。所述的真空管墙式吸热器15与吸热塔7及传热工质上升管8和传热工质下降管9组成吸热系统。真空管墙式吸热器15安装在吸热塔7的顶部,传热工质上升管8安装在吸热塔7内部,传热工质上升管8的上端与真空管墙式吸热器15的入口母管5相连,下端与储存装置相连。传热工质下降管9安装在吸热塔7内部,传热工质下降管9的上端与真空管墙式吸热器15的出口母管6连接,下端与储存装置相连。传热工质在泵的驱动下经传热工质上升管8流入真空管墙式吸热器15的进口母管5,进而分配到各串联式吸热模块17的直通式真空管1内,通过定日镜10反射聚焦的太阳辐射能加热真空管墙式吸热器15中的传热工质,太阳辐射能转换为传热工质的热能,传热工质加热后汇入出口母管6中,进而通过传热工质下降管9输送到塔式太阳能热发电系统中发电。As shown in Figure 9, the vacuum tube wall absorber is arranged circumferentially, which is suitable for a circumferential heliostat field. The view to A in the figure shows that vacuum tube
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2012103165327A CN102840701A (en) | 2012-08-30 | 2012-08-30 | Vacuum tube wall type heat absorber |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2012103165327A CN102840701A (en) | 2012-08-30 | 2012-08-30 | Vacuum tube wall type heat absorber |
Publications (1)
Publication Number | Publication Date |
---|---|
CN102840701A true CN102840701A (en) | 2012-12-26 |
Family
ID=47368297
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2012103165327A Pending CN102840701A (en) | 2012-08-30 | 2012-08-30 | Vacuum tube wall type heat absorber |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102840701A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106839454A (en) * | 2017-01-21 | 2017-06-13 | 江苏双良锅炉有限公司 | A kind of novel tower-type solar energy thermo-power station fused salt heat dump |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5790544A (en) * | 1980-11-25 | 1982-06-05 | Hitachi Ltd | Solar heat collecting apparatus |
JPS58251A (en) * | 1982-05-06 | 1983-01-05 | Fujimi Kenmazai Kogyo Kk | Functional material protection structure |
JPS58213155A (en) * | 1982-06-03 | 1983-12-12 | Showa Alum Corp | Solar heat collector |
JPH058251A (en) * | 1991-07-02 | 1993-01-19 | Japan Steel Works Ltd:The | Sticking method and mold |
JP2004264009A (en) * | 2003-02-12 | 2004-09-24 | Akira Haruhara | Solar water heater |
JP2004317027A (en) * | 2003-04-16 | 2004-11-11 | Matsushita Electric Works Ltd | Solar heat collector |
JP2005098595A (en) * | 2003-09-24 | 2005-04-14 | Matsushita Electric Works Ltd | Pipe connection structure of heat collection panel |
CN201025411Y (en) * | 2007-01-11 | 2008-02-20 | 史外姓 | A new type of solar collector |
CN101298944A (en) * | 2008-03-21 | 2008-11-05 | 中国科学院电工研究所 | Passive molten salt heat absorber |
JP2012026714A (en) * | 2010-06-22 | 2012-02-09 | Toho Gas Co Ltd | Pedestal-integrated heat collector |
CN202304025U (en) * | 2011-10-25 | 2012-07-04 | 长沙锅炉厂有限责任公司 | Four-side light-accepting type thermal absorber single module |
-
2012
- 2012-08-30 CN CN2012103165327A patent/CN102840701A/en active Pending
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5790544A (en) * | 1980-11-25 | 1982-06-05 | Hitachi Ltd | Solar heat collecting apparatus |
JPS58251A (en) * | 1982-05-06 | 1983-01-05 | Fujimi Kenmazai Kogyo Kk | Functional material protection structure |
JPS58213155A (en) * | 1982-06-03 | 1983-12-12 | Showa Alum Corp | Solar heat collector |
JPH058251A (en) * | 1991-07-02 | 1993-01-19 | Japan Steel Works Ltd:The | Sticking method and mold |
JP2004264009A (en) * | 2003-02-12 | 2004-09-24 | Akira Haruhara | Solar water heater |
JP2004317027A (en) * | 2003-04-16 | 2004-11-11 | Matsushita Electric Works Ltd | Solar heat collector |
JP2005098595A (en) * | 2003-09-24 | 2005-04-14 | Matsushita Electric Works Ltd | Pipe connection structure of heat collection panel |
CN201025411Y (en) * | 2007-01-11 | 2008-02-20 | 史外姓 | A new type of solar collector |
CN101298944A (en) * | 2008-03-21 | 2008-11-05 | 中国科学院电工研究所 | Passive molten salt heat absorber |
JP2012026714A (en) * | 2010-06-22 | 2012-02-09 | Toho Gas Co Ltd | Pedestal-integrated heat collector |
CN202304025U (en) * | 2011-10-25 | 2012-07-04 | 长沙锅炉厂有限责任公司 | Four-side light-accepting type thermal absorber single module |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106839454A (en) * | 2017-01-21 | 2017-06-13 | 江苏双良锅炉有限公司 | A kind of novel tower-type solar energy thermo-power station fused salt heat dump |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6280275B2 (en) | Solar thermal power generation method and apparatus by gas endotherm based on characteristic absorption spectrum | |
EP2857775A1 (en) | Solar photo-thermal receiving device | |
CN106160658B (en) | A kind of photovoltaic and photothermal solar association system of the full spectrum of light-focusing type | |
CN201401973Y (en) | Concentration system for disc solar rotary parabolic reflector | |
CN102135334A (en) | Silica glass tube bundle type air heat absorber for solar heat generating station | |
CN201954784U (en) | Gas-liquid double-phase plate type solar heat collector with double illuminated surfaces | |
CN101825348A (en) | Focusing flat plate solar heat collector | |
CN103062743B (en) | A kind of cavity type natural recirculating type solar energy wet steamer | |
CN105042891A (en) | Disk type solar heat collection utilization system | |
CN110686414B (en) | A compound parabolic concentrating power generation-phase change heat storage device | |
CN102102915B (en) | U-shaped channel combined heat pipe receiver | |
CN2384176Y (en) | Heat pipe solar heat collector | |
CN111416549A (en) | Solar cavity thermoelectric power generation device based on micro heat pipe | |
CN201152637Y (en) | Solar energy light-gathering heat collector with seasonal high efficiency | |
CN106712712B (en) | A kind of photovoltaic thermoelectricity integrated comprehensive TRT | |
CN201852314U (en) | Parallel-connection heat collection superconducting flat plate solar collector | |
CN109520155B (en) | Heat collection module, heat collection device and tower type solar power generation system | |
CN102840701A (en) | Vacuum tube wall type heat absorber | |
CN215809384U (en) | Solar heat collecting pipe and solar heat collector thereof | |
CN206281227U (en) | A kind of high temperature degree section step heat utilization system | |
CN201615466U (en) | A single-layer glass tube coaxial sleeve type trough solar collector tube module | |
CN201463326U (en) | A combined solar gas-liquid heat collector | |
CN110567175B (en) | Cavity type gas-liquid two-phase heat absorber | |
CN211925706U (en) | Solar medium-high temperature steam generating device | |
CN109520152A (en) | A kind of dual channel arrangement Salar light-gathering frequency dividing electric heating combined production device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20121226 |