CN102830630A - Coal bed gas multilateral well recovery control stimulation device - Google Patents
Coal bed gas multilateral well recovery control stimulation device Download PDFInfo
- Publication number
- CN102830630A CN102830630A CN2012103729692A CN201210372969A CN102830630A CN 102830630 A CN102830630 A CN 102830630A CN 2012103729692 A CN2012103729692 A CN 2012103729692A CN 201210372969 A CN201210372969 A CN 201210372969A CN 102830630 A CN102830630 A CN 102830630A
- Authority
- CN
- China
- Prior art keywords
- coal
- branch
- pressure
- gas
- air
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000003245 coal Substances 0.000 title claims abstract description 106
- 238000011084 recovery Methods 0.000 title 1
- 230000000638 stimulation Effects 0.000 title 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 78
- 238000004088 simulation Methods 0.000 claims abstract description 36
- 239000000843 powder Substances 0.000 claims abstract description 7
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 32
- 238000001914 filtration Methods 0.000 claims description 10
- 239000007789 gas Substances 0.000 claims 14
- 230000000740 bleeding effect Effects 0.000 claims 4
- 230000008676 import Effects 0.000 claims 2
- 238000000605 extraction Methods 0.000 abstract description 27
- 238000004519 manufacturing process Methods 0.000 abstract description 25
- 230000005540 biological transmission Effects 0.000 abstract description 9
- 230000035699 permeability Effects 0.000 abstract description 9
- 238000002474 experimental method Methods 0.000 description 17
- 238000011161 development Methods 0.000 description 8
- 230000001105 regulatory effect Effects 0.000 description 8
- 230000008859 change Effects 0.000 description 6
- 229920001971 elastomer Polymers 0.000 description 6
- 206010017076 Fracture Diseases 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 208000010392 Bone Fractures Diseases 0.000 description 4
- 238000002347 injection Methods 0.000 description 4
- 239000007924 injection Substances 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 238000005553 drilling Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 239000005341 toughened glass Substances 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 2
- 239000002817 coal dust Substances 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 238000003795 desorption Methods 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 208000013201 Stress fracture Diseases 0.000 description 1
- 208000027418 Wounds and injury Diseases 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 239000002274 desiccant Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 208000014674 injury Diseases 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 230000005514 two-phase flow Effects 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
Images
Landscapes
- Sampling And Sample Adjustment (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
本发明公开了一种煤层气分支井排采控制模拟装置,包括主管路和至少两个分支管路,主管路的前端连接用于模拟排采控制的抽气装置,主管路的后端连通连接所有分支管路的前端,所有分支管路的后端连通后连接水压输入装置和/或气压输入装置,主管路和分支管路结构相同均为煤储层模拟管路,煤储层模拟管路上从前至后依次设有流量计、煤粉过滤装置和煤样容器。本发明是针对多分支水平井排采时压力传递变化复杂,产水量、产气量忽大忽小,排采难以控制的前提,研制出一种煤层气分支井排采控制模拟装置,模拟不同煤体结构、不同水文地质条件、不同渗透性、不同储层压力情况,以便查明不同情况下排采时压力传递半径、产水量、产气量、煤粉等的变化。
The invention discloses a coalbed gas branch well drainage control simulation device, which comprises a main pipeline and at least two branch pipelines, the front end of the main pipeline is connected to a gas extraction device for simulating drainage control, and the rear end of the main pipeline is connected to the The front ends of all branch pipelines and the back ends of all branch pipelines are connected to the water pressure input device and/or air pressure input device. The main pipeline and branch pipelines have the same structure and are coal reservoir simulation pipelines. There are flow meters, pulverized coal filter devices and coal sample containers in sequence from front to back on the road. The present invention is aimed at the premise that the pressure transmission changes complicatedly during the multi-branch horizontal well drainage, the water production and gas production are large and small, and the drainage is difficult to control. A coalbed gas branch well drainage control simulation device is developed to simulate different coal Body structure, different hydrogeological conditions, different permeability, and different reservoir pressure conditions, in order to find out the changes in pressure transmission radius, water production, gas production, coal powder, etc. during drainage under different conditions.
Description
技术领域 technical field
本发明涉及一种煤层气分支井排采控制模拟装置。 The invention relates to a coalbed gas branch well drainage control simulation device.
背景技术 Background technique
我国煤层气资源非常丰富,最新一轮(2009年)全国油气资源评价结果显示,目前中国埋深2000米以浅煤层气地质资源量36.81万亿立方米,1500米以浅煤层气可采资源量10.9万亿立方米。煤层气资源量远远超过美国,但目前实际利用的煤层气产量却是微乎其微,其主要原因有两方面:一是我国煤层大多数是低孔、低渗、低压、低的流体渗流动能;二是开展不同开发技术的系列化试验研究力度不够,导致开发工程技术一直没有突破。 my country's coalbed methane resources are very rich. The latest round (2009) of national oil and gas resource evaluation results show that China's current geological resources of shallow coalbed methane buried below 2,000 meters are 36.81 trillion cubic meters, and the recoverable resources of shallow coalbed methane below 1,500 meters are 109,000. One hundred million cubic meters. The amount of coalbed methane resources far exceeds that of the United States, but the actual utilization of coalbed methane production is negligible. There are two main reasons for this: first, most of the coalbeds in my country are low-porosity, low-permeability, low-pressure, and low fluid seepage kinetic energy; It is because the series of experimental researches on different development technologies is not enough, resulting in no breakthrough in development engineering technology.
垂直井和水平井是目前地面煤层气开发的两种主要井型。煤层气垂直井钻井技术简单,技术成熟,对于我国大多数的低渗透煤层,常规直井开发技术永远摆脱不了“点”的局限性,通常以有限的井筒影响范围来设计钻井和完井方案以及储层改造措施。实际上煤层气的产出更要考虑“面”的影响,要综合考虑整个气藏范围内微裂隙分布规律、储层地应力场、流体渗流动力场的互动影响。多分支水平井正是利用面积快速排水降压来大规模提高产量,相比直井压裂技术,具有一定的优势。 Vertical wells and horizontal wells are the two main well types for surface coalbed methane development at present. CBM vertical well drilling technology is simple and mature. For most of the low-permeability coal seams in my country, conventional vertical well development technology can never get rid of the limitation of "point". Usually, the drilling and completion plan and storage area are designed with a limited range of wellbore influence. layer transformation measures. In fact, the influence of "surface" should be considered more in the production of coalbed methane, and the interaction effects of micro-fracture distribution law, reservoir stress field and fluid seepage dynamic field in the whole gas reservoir should be considered comprehensively. Multi-branch horizontal wells use rapid water drainage and depressurization to increase production on a large scale. Compared with vertical well fracturing technology, they have certain advantages.
目前的多分支水平井的水平段钻井后,一般未采取任何的防护措施(比如下筛管等),因煤层裂隙相对比较发育,弹性模量比较低,导致钻井结束后水平段的井眼很不稳定,很容易坍塌。当下入排采设备进行排采时,多分支水平井的供液面积相对比较大,且煤层是非均匀质较强的储层,而且由于分支数目比较多,压力传递变化规律比较复杂,造成各个分支中水的流出难以预测,增加了排采控制的难度。若排采时排采工作制度控制不当,很容易造成流出的水忽多忽少,造成煤储层中煤粉的移动,导致渗透率下降,影响后期的产气量;当煤层气井产气后,各个分支中压力传递半径的不统一,解吸半径的不同,导致其分支中产气量的不同,若排采工作制度不当,可能引起产气量忽大忽小,引起煤粉的移动,煤储层渗透率的变化,有些伤害甚至是致命的,可能导致后期不产气或产气很少。如何针对不同的水文地质条件、压力传递半径、解吸半径的不同、煤体结构等的不同,制定相对比较合理的排采工作制度,是维持较好的储层渗透性,提高分支井产气量的关键。 After the horizontal section of the current multi-branch horizontal well is drilled, generally no protective measures (such as lower screens, etc.) are taken. Because the coal seam fractures are relatively developed and the elastic modulus is relatively low, the wellbore in the horizontal section after drilling is very difficult. Unstable and prone to collapse. When the drainage equipment is lowered for drainage, the liquid supply area of the multi-branch horizontal well is relatively large, and the coal seam is a reservoir with strong heterogeneity, and because of the large number of branches, the change law of pressure transmission is relatively complicated, resulting in The outflow of reclaimed water is unpredictable, which increases the difficulty of drainage control. If the drainage work system is not properly controlled during drainage, it is easy to cause more and less outflow of water, resulting in the movement of coal powder in the coal reservoir, resulting in a decrease in permeability and affecting the gas production in the later stage; The inconsistency of the pressure transmission radius and the difference in the desorption radius in each branch lead to the difference in the gas production in the branches. If the drainage system is not proper, the gas production may fluctuate, causing the movement of coal powder and the permeability of coal reservoirs. Some injuries are even fatal, which may lead to no or very little gas production in the later stage. How to formulate a relatively reasonable drainage system according to different hydrogeological conditions, pressure transmission radius, desorption radius, and coal structure is the key to maintain good reservoir permeability and increase gas production of branch wells. The essential.
发明内容 Contents of the invention
本发明的目的是针对多分支水平井排采时压力传递变化复杂,产水量、产气量忽大忽小,排采难以控制的前提,研制出一种煤层气分支井排采控制模拟装置,模拟不同煤体结构、不同水文地质条件、不同渗透性、不同储层压力情况,以便查明不同储层地质条件情况下、不同排采工作制度下、排采时压力传递半径、产水量、产气量、煤粉等的变化,得出不同情况下相对合理的排采工作制度,尽量降低对储层的伤害,延长煤层气分支井的产气高峰,为提高多分支水平井产气量提供理论指导。 The purpose of the present invention is to develop a coalbed methane branch well drainage control simulation device for the premise that the pressure transmission changes complicatedly when the multi-branch horizontal well is drained, the water production rate and the gas production rate are large and small, and the drainage is difficult to control. Different coal body structures, different hydrogeological conditions, different permeability, and different reservoir pressure conditions, so as to find out the pressure transmission radius, water production rate, and gas production rate during drainage under different geological conditions of reservoirs and different drainage systems. Based on the changes of , pulverized coal, etc., it is concluded that a relatively reasonable drainage work system under different circumstances can minimize the damage to the reservoir, prolong the gas production peak of CBM branch wells, and provide theoretical guidance for increasing the gas production of multi-branch horizontal wells.
为实现上述目的,本发明采用如下技术方案:一种煤层气分支井排采控制模拟装置,包括主管路和至少两个分支管路,主管路的后端连接所有分支管路的前端,所有分支管路的后端连通后连接水压输入装置和/或气压输入装置,主管路和分支管路结构相同均为煤储层模拟管路,煤储层模拟管路上从前至后依次设有流量计、煤粉过滤装置和煤样容器。 In order to achieve the above object, the present invention adopts the following technical scheme: a coalbed methane branch well drainage control simulation device, including a main pipeline and at least two branch pipelines, the rear end of the main pipeline is connected to the front ends of all branch pipelines, and all branch pipelines The back end of the pipeline is connected to the water pressure input device and/or the air pressure input device. The main pipeline and branch pipelines have the same structure and are coal reservoir simulation pipelines. Flowmeters are arranged on the coal reservoir simulation pipelines from front to back. , Coal filter device and coal sample container.
所述煤样容器通过管子连接围压泵,管子上设有压力表,围压泵为用于向煤样容器内增加气压以模拟煤储层所受围压的气泵。 The coal sample container is connected to a confining pressure pump through a pipe, and the pipe is provided with a pressure gauge. The confining pressure pump is an air pump used to increase the air pressure in the coal sample container to simulate the confining pressure of the coal reservoir.
煤粉过滤装置包括带有进、出口的过滤容器,过滤容器内设滤网,滤网将过滤容器分成两腔室,过滤容器的进、出口分别位于滤网的两侧。 The pulverized coal filtering device includes a filter container with an inlet and an outlet, and a filter screen is arranged in the filter container, and the filter screen divides the filter container into two chambers, and the inlet and outlet of the filter container are respectively located on both sides of the filter screen.
所述水压输入装置为水压输入管路,水压输入管路上从前至后依次设有压力传感器、PID调节阀、开关阀、注水泵和水箱。 The water pressure input device is a water pressure input pipeline, and the water pressure input pipeline is provided with a pressure sensor, a PID regulating valve, a switch valve, a water injection pump and a water tank in sequence from front to back.
主管路的前端连接用于模拟排采控制的抽气装置。 The front end of the main pipeline is connected to the extraction device for simulated drainage control.
所述气压输入装置为气压输入管路,气压输入管路上从前至后依次设有压力传感器、空气压缩机、PID调节阀、减压阀、开关阀和高压气瓶。 The air pressure input device is an air pressure input pipeline, and the air pressure input pipeline is provided with a pressure sensor, an air compressor, a PID regulating valve, a pressure reducing valve, an on-off valve and a high-pressure gas cylinder in sequence from front to back.
所有流量计、压力表以及压力传感器均连接计算机数据采集系统。 All flow meters, pressure gauges and pressure sensors are connected to the computer data acquisition system.
所述主管路的前端通过回压阀连接抽气缸,抽气缸再连接抽气装置,抽气缸的侧壁还分别通过两连接管分别连通有气囊和集水瓶,连接管上也均设有流量计。 The front end of the main pipeline is connected to the air extraction cylinder through the back pressure valve, and the air extraction cylinder is connected to the air extraction device. The side walls of the air extraction cylinder are respectively connected to the air bag and the water collection bottle through two connecting pipes, and the connecting pipes are also equipped with flow meters. .
所述抽气装置为柱塞式抽气装置,其包括滑动连接在抽气缸内的柱塞和连接柱塞的动力装置,所述煤样容器为胶套管。 The air extraction device is a plunger type air extraction device, which includes a plunger slidingly connected in the air extraction cylinder and a power device connected to the plunger, and the coal sample container is a rubber sleeve.
所述高压气瓶中设置高压气体为CO2或者N2或者He或者瓦斯气体。 The high-pressure gas set in the high-pressure gas cylinder is CO 2 or N 2 or He or gas.
本发明所述的煤层气分支井排采控制模拟装置具有如下有益效果:所有分支管路汇合到一起并与主管路串联,并且主管路和分支管路均为煤储层模拟管路,这样就组成了整个分支井煤储层模拟系统。其中,气压输入装置主要用以模拟排采时储层中游离气的气压及模拟产出的气量;水压输入装置模拟排采时储层中的水的压力及水的流量。煤储层模拟管路主要用于模拟不同裂隙发育程度的煤和煤所处的应力状态。抽气装置主要是模拟排采控制,使模拟排采时的压力变化,是主管路与分支管路的前后产生压差,把煤样中的水和气体能抽出来,进而来控制气压、水压、气流量、水流量。计算机数据采集系统主要用于把采集的数据在计算机上进行显示。 The coalbed methane branch well drainage control simulation device of the present invention has the following beneficial effects: all branch pipelines are merged together and connected in series with the main pipeline, and both the main pipeline and the branch pipelines are coal reservoir simulation pipelines, so that Composed of the whole branch well coal reservoir simulation system. Among them, the air pressure input device is mainly used to simulate the air pressure of free gas in the reservoir during drainage and the simulated gas output; the water pressure input device simulates the pressure and flow of water in the reservoir during drainage. The coal reservoir simulation pipeline is mainly used to simulate the stress state of coal and coal with different degrees of fracture development. The air extraction device is mainly for simulated drainage control, so that the pressure change during the simulated drainage is the pressure difference between the main pipeline and the branch pipeline, and the water and gas in the coal sample can be pumped out to control the air pressure and water pressure. pressure, air flow, water flow. The computer data acquisition system is mainly used to display the collected data on the computer.
综上,本发明的优点为:(1)本发明可以在不同煤体变形特征、不同排采阶段、不同分支数目、不同围压、不同排采强度下模拟分支井排采过程中各物性参数的变化规律。 In summary, the advantages of the present invention are: (1) The present invention can simulate various physical parameters in the drainage process of branch wells under different coal deformation characteristics, different drainage stages, different branch numbers, different confining pressures, and different drainage intensities change rule.
(2)本发明可为煤层气分支井不同煤体变形特征、不同排采阶段、不同分支数目、不同围压下合理排采工作制度的制定提供理论指导。 (2) The present invention can provide theoretical guidance for the formulation of reasonable drainage working systems under different coal body deformation characteristics, different drainage stages, different branch numbers, and different confining pressures of coalbed methane branch wells.
附图说明 Description of drawings
图1是本发明的结构示意图; Fig. 1 is a structural representation of the present invention;
图2是滤网的结构示意图。 Fig. 2 is a structural schematic diagram of the filter screen.
具体实施方式 Detailed ways
由图1和图2所示的一种煤层气分支井排采控制模拟装置,包括主管路9和三个分支管路29。 A coalbed methane branch well drainage control simulation device shown in FIG. 1 and FIG. 2 includes a main pipeline 9 and three branch pipelines 29 .
主管路9的前端连接用于模拟排采控制的抽气装置,并且为主管路9的前端通过回压阀18先连接一抽气缸21,抽气缸21再连接抽气装置,抽气缸21的侧壁还分别通过两连接管分别连通有气囊27和集水瓶28,连接管上均设有流量计16A。所述抽气装置为柱塞式抽气装置,柱塞式抽气装置包括滑动连接在抽气缸21内的柱塞和连接柱塞的动力装置,所述动力装置为电机26,电机26的输出轴通过带传动装置24带动一转轴23,转轴23通过一曲柄滑块机构22带动柱塞杆20上下运动,柱塞杆20的底端设有滑块19,滑块19的外壁与抽气缸21的内壁相贴合,这样,转轴23转动时,可带动柱塞杆20在抽气缸21内上下滑动,进行抽气。电机26的输出轴上设有速度传感器25。当然,本发明不拘泥于上述形式,动力装置也可用气压缸或者液压缸代替或者直接手动上下提升也可,能实现带动柱塞杆20上下运动均可,并且抽气装置也可直接用与连接抽气缸21连接的抽气泵代替也可。
The front end of the main pipeline 9 is connected to an air extraction device for simulating drainage control, and the front end of the main pipeline 9 is first connected to an
抽气装置构成了排采控制模拟系统,排采控制模拟系统将通过煤储层模拟系统主管路9、分支管路29的煤样10中的气和水排出,并为主管路9和分支管路29的前侧部分提供一定的压值。其中电机26转速可根据实验需求进行调整,为保证排采过程中样品装置系统压降的连续性,特在主管路9前安装回压阀18。
The gas extraction device constitutes a drainage control simulation system, and the drainage control simulation system discharges the gas and water in the coal sample 10 passing through the main pipeline 9 and the branch pipeline 29 of the coal reservoir simulation system, and provides the main pipeline 9 and the branch pipeline The front part of the road 29 provides a certain pressure value. The rotation speed of the
主管路9的后端连接所有分支管路29的前端,并且为所有分支管路29的前端先连通后再接入主管路9的后端。所有分支管路29的后端先连通后再同时连接水压输入装置和气压输入装置,水压输入装置和气压输入装置用于向各分支管路29输入必要的气压和水压。所述水压输入装置为水压输入管路30,水压输入管路30的高压管线上从前至后依次设有压力传感器8、PID调节阀6、开关阀3、注水泵5和水箱1,水箱1为3m×3m×2m。所述气压输入装置为气压输入管路31,气压输入管路31的管线上从前至后依次设有压力传感器8、空气压缩机7、PID调节阀6、减压阀4、开关阀3和高压气瓶2,高压气瓶2中设置的高压气体为CO2,或者N2或者He或者瓦斯气体。
The rear end of the main pipeline 9 is connected to the front ends of all the branch pipelines 29 , and the front ends of all the branch pipelines 29 are first communicated and then connected to the rear end of the main pipeline 9 . The rear ends of all the branch pipelines 29 are first connected and then connected to the water pressure input device and the air pressure input device at the same time. The water pressure input device and the air pressure input device are used to input necessary air pressure and water pressure to each branch pipeline 29. The water pressure input device is a water
气压输入装置和水压输入装置构成压力控制系统,通过两装置主要模拟排采时不同的排采阶段产出物及排采时的压力变化,可实现单一水相、单一气相或气、水混合相在不同压力下的流动。水压输入装置的水箱1主要用于存储水,注水泵5用来将水箱1中的水注入煤储层模拟系统中,并提供一定的水压值(最高水压可根据实验需要进行设定),水压输入装置的 PID调节阀6主要实现的是调节压差,即抽气装置对主管路9以及分支管路29的前侧提供一定压值,气压输入装置和水压输入装置对主管路9以及分支管路29的后侧提供一定压力,当两边压力差达到一定值后,PID阀门打开,让水通过,压差值可根据具体情况自由设定,压差可从0.1MPa~10MPa不等,PID阀门可满足10MPa以下的压力。水压输入装置的开关阀3的作用主要是控制水压输入管路30处于开启或关闭状态,通过PID调节阀6和开关阀3,实现单一水的流动,不同压差下水的流动。同时通过水流量计16来记录水的流动,并实时传递到计算机上。
The air pressure input device and the water pressure input device constitute a pressure control system. Through the two devices, the output of different drainage stages and the pressure change during drainage can be simulated, and a single water phase, a single gas phase or a mixture of gas and water can be realized. Phase flow at different pressures. The
气压控制装置的高压气瓶2与空气压缩机进行连接,提供实验所需的气压。当高压气瓶2中的压力能满足实验时,则不需要空气压缩机运行,当压力不能满足实验时,则通过空气压缩机以便提供实验所需的压力,达到模拟储层中的气压的目的。气压控制装置的PID调节阀6、开关阀3及气流量计16与水压控制系统的作用相似,在此不再赘述。
The high-pressure cylinder 2 of the air pressure control device is connected with the air compressor to provide the air pressure required for the experiment. When the pressure in the high-pressure gas cylinder 2 can meet the experiment, the air compressor is not needed to run, and when the pressure cannot meet the experiment, the air compressor is used to provide the pressure required for the experiment to achieve the purpose of simulating the air pressure in the reservoir . The PID regulating valve 6, on-off valve 3 and
主管路9和分支管路29结构相同均为煤储层模拟管路,煤储层模拟管路上从前至后依次设有流量计16、开关阀3A、煤粉过滤装置14、开关阀3B、煤样容器11和开关阀3C。所述煤样容器11为胶套管,胶套管内装煤样10,胶套管的两端口分别接入煤储层模拟管路,煤样容器11的侧壁通过管子连接围压泵13,管子上设有压力表12,围压泵13为用于向煤样容器11内增加气压以模拟煤储层所受围压的气泵。所述煤粉过滤装置14包括带有进、出口的密闭设置的过滤容器,过滤容器由透明的钢化玻璃制成,过滤容器也通过其进、出口连接在煤储层模拟管路上,过滤容器内设滤网15,滤网15将过滤容器分成两个腔室,过滤容器的进、出口分别位于滤网15的两侧,即过滤容器的进、出口分别位于两个腔室的过滤容器壁上。
The main pipeline 9 and the branch pipeline 29 have the same structure and are coal reservoir simulation pipelines. The coal reservoir simulation pipeline is provided with
主管路9与分支管路29构成煤储层模拟系统,煤储层模拟系统主要用来模拟不同裂隙发育程度的煤、多分支水平井水平段的井身结构及煤所处的应力状态,以便得出与实际更加相近的排采工作制度结果。三路煤储层模拟管路构成三个分支管路用以模拟分支井的各个分支,并且分支数量可根据实际情况进行增删,三路煤储层模拟管路采用并联的方式进行连接,通过各自的控制阀既可以实现一路气、水流动,也可以实现多路气、水流动,用来模拟不同排采阶段、不同压力传递下的气、水变化对渗透性的影响。通过煤粉过滤装置14来收集煤储层模拟装置中产出的煤粉,煤粉过滤装置14中采用的透明的钢化玻璃,能实时观察煤粉量的变化;三路煤储层模拟管路再汇合到一起,与另一煤储层模拟管路——主管路9串联,组成整个煤储层模拟系统。三路煤储层模拟装置中,可装同一种煤体结构、变形程度、裂隙发育程度大致相似的煤,也可以装不同煤体结构、裂隙发育程度相差比较大的煤,煤样10用胶套管紧密包裹,围压泵13主要是向胶套管内的煤样10提供不同的气压以模拟煤样10受到的围压,来模拟煤储层所受的应力大小。
The main pipeline 9 and the branch pipelines 29 constitute a coal reservoir simulation system, which is mainly used to simulate the coal with different degrees of fracture development, the wellbore structure of the horizontal section of the multi-branched horizontal well and the stress state of the coal, so that The results of the drainage work system that are closer to the actual situation are obtained. The three-way coal reservoir simulation pipeline constitutes three branch pipelines to simulate each branch of the branch well, and the number of branches can be added or deleted according to the actual situation. The three-way coal reservoir simulation pipeline is connected in parallel, through their respective The control valve can not only realize one-way gas and water flow, but also realize multi-way gas and water flow, which is used to simulate the influence of gas and water changes on permeability under different drainage stages and different pressure transmissions. The pulverized coal produced in the coal reservoir simulation device is collected through the pulverized
煤粉过滤装置14、气囊27和集水瓶28构成数据采集及产出物收集系统,主要是对实验过程中气、水流动造成的主支以及各分支煤样10的煤粉排出量进行收集,并对实验过程中产出的水和甲烷气体进行收集。其中,煤粉可通过煤粉过滤装置14来收集,煤粉过滤装置14设计为一个透明的耐高压的钢化玻璃瓶,瓶中有固定槽,能够将过滤网15固定在瓶中,同时可随时观察出煤粉过滤装置14中的煤粉量,当煤粉量较多时,应暂停试验并将煤粉过滤装置14前、后的开关阀3A、3B关紧,然后旋开煤粉过滤装置14,将煤粉转移出去,用干燥剂对煤粉进行干燥处理,然后用天平称重,可得出实验过程中主支及各分支的煤粉产量。其中,煤粉过滤装置14中所固定的滤网15可用不同规格的筛网,即可为60目的,也可以为40目、20目和80目的,根据实验需要,可选择不同的筛网。实验过程中产出的甲烷气体可通过气囊27收集,水可通过集水瓶28收集。
The pulverized
所有流量计16、16A、压力表12以及压力传感器8、速度传感器25均连接计算机数据采集系统17,流量计16、压力表12、压力传感器8、速度传感器25以及计算机数据采集系统17构成数据采集显示系统,主要是对压力系统中提供的水压和气压、流经各分支样品装置及主支样品装置的气水流量、排采过程中总计产水量和产气量、电机26转速等数据通过计算机自动读取并记录。其中压力系统中提供的水压和气压的自动读取是通过压力传感器8与计算机相连接,发动机转速的自动读取则是通过输出轴上的速度传感器25与计算机相连接而实现的。
All
当然,本发明不拘泥于上述形式,水压输入装置和气压输入装置可根据需要设置任一也可,并且分支管路29的数量也可根据实际情况设置两个或者两个以上。并且高压气瓶2中设置的高压气体也可为N2或者He或者瓦斯气体,使用高压瓦斯气体时,应注意安全。 Of course, the present invention is not limited to the above-mentioned form, and any of the water pressure input device and the air pressure input device can be provided according to needs, and the number of branch pipelines 29 can also be provided with two or more according to actual conditions. And the high-pressure gas that is provided with in the high-pressure gas cylinder 2 also can be N Or He or gas, when using high-pressure gas, should pay attention to safety.
本发明所述的煤层气分支井排采控制模拟装置,具体操作步骤如下: The coalbed methane branch well drainage control simulation device described in the present invention has specific operation steps as follows:
(1)煤样10制备 (1) Preparation of coal sample 10
根据实验要求采集煤样10,既可以制成Φ50cm×50 cm的圆柱体煤样10,也可以不制备煤样10,直接将煤块放入胶套管中。 The coal sample 10 is collected according to the requirements of the experiment. The coal sample 10 can be made into a cylindrical coal sample 10 of Φ50cm×50 cm, or the coal sample 10 can not be prepared, and the coal block can be directly put into the rubber casing.
(2)气密性检查 (2) Air tightness inspection
按照系统连接装置示意图连接管路,并向系统中注入少量气体,检查装置的气密性。 Connect the pipeline according to the schematic diagram of the system connection device, and inject a small amount of gas into the system to check the airtightness of the device.
(3)分支样品装置数目选择 (3) Selection of the number of branch sample devices
按照实验需求可分别选择2个分支管路29并联、3个分支管路29并联、4个分支管路29并联等多个分支管路29进行模拟实验。 According to experimental requirements, multiple branch pipelines 29 such as two branch pipelines 29 connected in parallel, three branch pipelines 29 connected in parallel, and four branch pipelines 29 connected in parallel can be selected for simulation experiments.
(4)设置PID调节阀6的阀值 (4) Set the threshold of PID control valve 6
根据实验要求,设置PID调节阀6的阀值,即当压差超过此值时,PID阀门自动开启。 According to the requirements of the experiment, set the threshold value of the PID regulating valve 6, that is, when the pressure difference exceeds this value, the PID valve will automatically open.
(5)设置围压 (5) Set the confining pressure
根据实验所需,把围压泵13的围压设置到预定压力。 According to the requirements of the experiment, the confining pressure of the confining pressure pump 13 is set to a predetermined pressure.
(6)加压实验 (6) Pressure test
多分支管路29模拟多分支井不同排采阶段物性参数的变化特征实验可以通过控制水箱1以及高压气瓶2的阀门来实现。饱和水单相流阶段,可只将水箱1的阀门打开,利用注水泵5提供一定的水压;非饱和水单相流阶段,在提供一定水压的基础上微量打开高压气瓶2阀门;气-水两相流阶段,同时提供水压和气压,随着实验的进行可适当的降低所提供的水压。
The multi-branch pipeline 29 simulates the change characteristics of the physical parameters of the multi-branch well at different drainage stages. The experiment can be realized by controlling the valves of the
(7)排采速度选择 (7) Selection of drainage speed
启动电机26,根据实验需要设定电机26转速,进行排采实验模拟。
Start the
(8)排采过程煤粉的采集 (8) Collection of pulverized coal during drainage
当选择不同排采阶段、不同分支数目、不同围压、不同排采速度进行实验时,应先关闭电机26,暂停实验,打开主管路9及各分支管路29的煤粉过滤装置14,将煤粉分别进行收集、烘干并称重,将称重结果进行记录。在打开煤粉过滤装置14的时候一定要关紧其前、后两个开关阀3A、3B,以保证整个系统的气密性。
When selecting different drainage stages, different branch numbers, different confining pressures, and different drainage speeds to carry out the experiment, the
(9)数据处理 (9) Data processing
根据计算机数据采集系统17收集到的各种数据,对不同条件下的主管路9及各分支管路29的煤样10渗透率进行计算,在此基础上做出不同排采阶段、不同分支数目、不同围压下产气量、产水量、煤粉量、渗透率等参数与排采速度的关系图。 According to the various data collected by the computer data acquisition system 17, the permeability of the coal sample 10 of the main pipeline 9 and each branch pipeline 29 under different conditions is calculated, and on this basis, different drainage stages and different branch numbers are calculated. , Relational diagram of parameters such as gas production, water production, pulverized coal volume, permeability and drainage speed under different confining pressures.
(10)耦合分析 (10) Coupling Analysis
耦合分析不同排采阶段、不同分支数目、不同围压下排采速度与产气量、产水量、产煤粉量、煤样10渗透性等参数的关系,得出分支井不同排采阶段、不同分支数目、不同围压下最为合理的排采速度。 Coupling analysis of the relationship between different drainage stages, different numbers of branches, and drainage speed under different confining pressures, gas production, water production, coal powder production, coal sample 10 permeability and other parameters, it is concluded that branch wells at different drainage stages, different The number of branches and the most reasonable drainage speed under different confining pressures.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210372969.2A CN102830630B (en) | 2012-09-29 | 2012-09-29 | Coal seam gas branch well mining control simulation device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210372969.2A CN102830630B (en) | 2012-09-29 | 2012-09-29 | Coal seam gas branch well mining control simulation device |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102830630A true CN102830630A (en) | 2012-12-19 |
CN102830630B CN102830630B (en) | 2016-01-20 |
Family
ID=47333804
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201210372969.2A Expired - Fee Related CN102830630B (en) | 2012-09-29 | 2012-09-29 | Coal seam gas branch well mining control simulation device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102830630B (en) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103015975A (en) * | 2012-12-31 | 2013-04-03 | 河南理工大学 | Gas production rate testing simulation device of coal-bed gas vertical well |
CN103048431A (en) * | 2013-01-22 | 2013-04-17 | 河南理工大学 | Hydrofracture propping agent settlement and permeability testing device |
CN103075144A (en) * | 2013-01-09 | 2013-05-01 | 中国石油大学(北京) | Visual experimental device, system and method for coal dust settling in shaft of coal-bed gas well |
CN103114851A (en) * | 2013-03-01 | 2013-05-22 | 河南理工大学 | Gas generating contribution capacity testing device of coal seams with different fracture development levels |
CN103291251A (en) * | 2013-07-02 | 2013-09-11 | 河南理工大学 | Coal reservoir fracture gas and water conductivity dynamic change simulation testing device |
CN107255700A (en) * | 2017-08-10 | 2017-10-17 | 河南理工大学 | Coal bed gas well mining process coal dust output simulating test device and its method of testing |
CN108169098A (en) * | 2018-01-15 | 2018-06-15 | 河南理工大学 | The reasonable mining speed simulator of coal bed gas straight well single-phase flow |
CN108316916A (en) * | 2018-01-15 | 2018-07-24 | 河南理工大学 | Mining pressure drop under different conditions of coal bed gas reservoir controls simulation experiment method |
CN108333093A (en) * | 2018-01-29 | 2018-07-27 | 中国矿业大学 | Three-dimensional fracture network rock mass two-phase medium seepage flow test device under a kind of stress |
CN109209474A (en) * | 2018-09-27 | 2019-01-15 | 太原理工大学 | A kind of method that dual-lateral well extracts lower coal seam and top more goaf gas and ponding |
CN110082280A (en) * | 2019-06-17 | 2019-08-02 | 河南理工大学 | Coalbed Methane Productivity change modeling test device and method caused by discontinuous mining |
CN110514527A (en) * | 2019-09-11 | 2019-11-29 | 河南理工大学 | A method for obtaining air pressure and water pressure in coal reservoir pressure |
CN111205898A (en) * | 2020-01-19 | 2020-05-29 | 中国石油天然气股份有限公司 | In-situ purification treatment system and method for associated gas direct supply gas boiler of low-sulfur oil field |
CN111650083A (en) * | 2019-03-04 | 2020-09-11 | 中国石油天然气股份有限公司 | Core high-pressure gas and water flow metering device and method |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110501255A (en) * | 2019-09-04 | 2019-11-26 | 山西工程技术学院 | Coal dust content monitor control system and its working method during coal bed gas well mining |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060146345A1 (en) * | 2004-04-29 | 2006-07-06 | Robertson Eric P | Methods and apparatus for measurement of a dimensional characteristic and methods of predictive modeling related thereto |
CN101487834A (en) * | 2009-02-06 | 2009-07-22 | 煤炭科学研究总院重庆研究院 | Combined test apparatus for coal and gas burst |
CN102080518A (en) * | 2011-01-17 | 2011-06-01 | 河南理工大学 | Method for extracting gas from coal seam roof complex branched well |
CN102134993A (en) * | 2011-01-22 | 2011-07-27 | 河南理工大学 | Simulation experiment device for controlling production of coal bed methane vertical well |
CN102168575A (en) * | 2011-03-28 | 2011-08-31 | 河南理工大学 | Loose blasting gas extraction technology of horizontal branch well of coal seam floor |
CN102279420A (en) * | 2011-04-15 | 2011-12-14 | 河南理工大学 | Development simulation test system of coal metamorphism evolution fissure system |
CN202081909U (en) * | 2011-06-14 | 2011-12-21 | 河南理工大学 | Dynamic monitoring simulating device for influence radius during coal bed methane well extraction |
WO2012058028A1 (en) * | 2010-10-27 | 2012-05-03 | Exxonmobil Upstream Research Company | Method and system for fracturing a formation |
CN102621043A (en) * | 2012-03-31 | 2012-08-01 | 中联煤层气有限责任公司 | Device for testing corrosion performance of carbon dioxide injection to coal rocks and detection method |
-
2012
- 2012-09-29 CN CN201210372969.2A patent/CN102830630B/en not_active Expired - Fee Related
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060146345A1 (en) * | 2004-04-29 | 2006-07-06 | Robertson Eric P | Methods and apparatus for measurement of a dimensional characteristic and methods of predictive modeling related thereto |
CN101487834A (en) * | 2009-02-06 | 2009-07-22 | 煤炭科学研究总院重庆研究院 | Combined test apparatus for coal and gas burst |
WO2012058028A1 (en) * | 2010-10-27 | 2012-05-03 | Exxonmobil Upstream Research Company | Method and system for fracturing a formation |
CN102080518A (en) * | 2011-01-17 | 2011-06-01 | 河南理工大学 | Method for extracting gas from coal seam roof complex branched well |
CN102134993A (en) * | 2011-01-22 | 2011-07-27 | 河南理工大学 | Simulation experiment device for controlling production of coal bed methane vertical well |
CN102168575A (en) * | 2011-03-28 | 2011-08-31 | 河南理工大学 | Loose blasting gas extraction technology of horizontal branch well of coal seam floor |
CN102279420A (en) * | 2011-04-15 | 2011-12-14 | 河南理工大学 | Development simulation test system of coal metamorphism evolution fissure system |
CN202081909U (en) * | 2011-06-14 | 2011-12-21 | 河南理工大学 | Dynamic monitoring simulating device for influence radius during coal bed methane well extraction |
CN102621043A (en) * | 2012-03-31 | 2012-08-01 | 中联煤层气有限责任公司 | Device for testing corrosion performance of carbon dioxide injection to coal rocks and detection method |
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103015975B (en) * | 2012-12-31 | 2015-06-24 | 河南理工大学 | Gas production rate testing simulation device of coal-bed gas vertical well |
CN103015975A (en) * | 2012-12-31 | 2013-04-03 | 河南理工大学 | Gas production rate testing simulation device of coal-bed gas vertical well |
CN103075144A (en) * | 2013-01-09 | 2013-05-01 | 中国石油大学(北京) | Visual experimental device, system and method for coal dust settling in shaft of coal-bed gas well |
CN103075144B (en) * | 2013-01-09 | 2015-08-05 | 中国石油大学(北京) | Coal bed gas well pit shaft coal dust sedimentation visual experimental apparatus, system and method thereof |
CN103048431A (en) * | 2013-01-22 | 2013-04-17 | 河南理工大学 | Hydrofracture propping agent settlement and permeability testing device |
CN103114851A (en) * | 2013-03-01 | 2013-05-22 | 河南理工大学 | Gas generating contribution capacity testing device of coal seams with different fracture development levels |
CN103114851B (en) * | 2013-03-01 | 2016-01-20 | 河南理工大学 | Different cranny development coal seams aerogenesis contribution capacity of water testing arrangement |
CN103291251A (en) * | 2013-07-02 | 2013-09-11 | 河南理工大学 | Coal reservoir fracture gas and water conductivity dynamic change simulation testing device |
CN103291251B (en) * | 2013-07-02 | 2015-11-04 | 河南理工大学 | Simulation test device for dynamic change of coal reservoir fracture gas and water conductivity |
CN107255700B (en) * | 2017-08-10 | 2023-03-24 | 河南理工大学 | Coal bed gas well discharge and production process pulverized coal output simulation test device and test method thereof |
CN107255700A (en) * | 2017-08-10 | 2017-10-17 | 河南理工大学 | Coal bed gas well mining process coal dust output simulating test device and its method of testing |
CN108169098A (en) * | 2018-01-15 | 2018-06-15 | 河南理工大学 | The reasonable mining speed simulator of coal bed gas straight well single-phase flow |
CN108316916A (en) * | 2018-01-15 | 2018-07-24 | 河南理工大学 | Mining pressure drop under different conditions of coal bed gas reservoir controls simulation experiment method |
CN108333093A (en) * | 2018-01-29 | 2018-07-27 | 中国矿业大学 | Three-dimensional fracture network rock mass two-phase medium seepage flow test device under a kind of stress |
CN109209474A (en) * | 2018-09-27 | 2019-01-15 | 太原理工大学 | A kind of method that dual-lateral well extracts lower coal seam and top more goaf gas and ponding |
CN109209474B (en) * | 2018-09-27 | 2020-07-28 | 太原理工大学 | Method for extracting gas and accumulated water from coal seam and upper multi-goaf by double branch well |
CN111650083A (en) * | 2019-03-04 | 2020-09-11 | 中国石油天然气股份有限公司 | Core high-pressure gas and water flow metering device and method |
CN111650083B (en) * | 2019-03-04 | 2023-04-25 | 中国石油天然气股份有限公司 | Device and method for metering air flow and water flow under high pressure of rock core |
CN110082280A (en) * | 2019-06-17 | 2019-08-02 | 河南理工大学 | Coalbed Methane Productivity change modeling test device and method caused by discontinuous mining |
CN110082280B (en) * | 2019-06-17 | 2024-04-12 | 河南理工大学 | Device and method for simulating and testing coalbed methane productivity change caused by discontinuous drainage |
CN110514527A (en) * | 2019-09-11 | 2019-11-29 | 河南理工大学 | A method for obtaining air pressure and water pressure in coal reservoir pressure |
CN110514527B (en) * | 2019-09-11 | 2022-07-08 | 河南理工大学 | Method for obtaining air pressure and water pressure in coal reservoir pressure |
CN111205898A (en) * | 2020-01-19 | 2020-05-29 | 中国石油天然气股份有限公司 | In-situ purification treatment system and method for associated gas direct supply gas boiler of low-sulfur oil field |
Also Published As
Publication number | Publication date |
---|---|
CN102830630B (en) | 2016-01-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102830630B (en) | Coal seam gas branch well mining control simulation device | |
CN108333098B (en) | Shale gas reservoir microcrack high-temperature high-pressure visual gas-water two-phase seepage experimental device | |
CN102778554B (en) | Experimental device for improving permeability of shale gas storage layer in supercritical CO2 fracturing process | |
CN103615241B (en) | The visual displacement simulation experimental system of the full three-dimensional artificial of fracture-pore reservoir | |
CN103132971B (en) | Carbon dioxide injection improves the test simulator of coal bed methane recovery rate | |
CN102865064B (en) | Gas and water flow condition and effect simulation device of coal bed gas well discharging and mining process | |
CN103148888B (en) | A kind of coalbed methane reservoir bilayer closes adopts High Temperature High Pressure mining dynamic estimation system | |
CN103760064B (en) | Coal sample gas adsorption desorption experimental apparatus and method under the conditions of transformation | |
CN109826621A (en) | An experimental device and test method for two-phase seepage of gas and water in multi-layer commingled production of coalbed methane | |
CN105699273B (en) | A kind of test device and method of steam drive coal gas Desorption And Seepage | |
CN203787002U (en) | Gas injection displacement coal seam gas physical similarity simulation experiment platform | |
CN102749223B (en) | A multi-stage monitoring well pneumatic pump sampling system device and method | |
CN105298487B (en) | Gas-liquid two-phase seepage flow Jamin effect simulation experiment method in a kind of coal seam reservoirs | |
CN108316916B (en) | Discharge and production pressure drop control simulation test method under different coal reservoir conditions | |
CN100445741C (en) | Intelligent high-temperature high-voltage experimental instrument for dynamic leak stopping evaluation | |
CN106812523B (en) | Physical simulation device for multi-coal-bed gas well drainage and mining and experimental method thereof | |
CN109882149B (en) | Experimental device and method for simulating production dynamics of fracture-cavity carbonate condensate gas reservoir | |
CN104373106A (en) | Experimental method and experimental system of gas sealing performance of underground packer | |
CN103048431A (en) | Hydrofracture propping agent settlement and permeability testing device | |
CN207703850U (en) | A kind of tight sandstone reservoir guanidine gum fracturing fluid absorption damage experiment evaluating apparatus | |
CN110306964A (en) | A method for visualization of cracks in hydraulic fracturing coal seam and evaluation of anti-reflection effect | |
CN104697887B (en) | The isothermal constant pressure experimentation device of gas-dynamic desorption flowing in danks | |
CN108169098B (en) | Simulation device for reasonable drainage and production speed in single-phase flow stage of coalbed methane vertical well | |
CN203249841U (en) | Transient Pressure Pulse Permeability Measuring Device for Low-permeability Rock | |
CN201965070U (en) | Gas desorption experiment device under external liquid invasion condition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20160120 Termination date: 20190929 |
|
CF01 | Termination of patent right due to non-payment of annual fee |