CN102828094A - Deforming magnesium alloy and preparation method thereof - Google Patents
Deforming magnesium alloy and preparation method thereof Download PDFInfo
- Publication number
- CN102828094A CN102828094A CN2012103444039A CN201210344403A CN102828094A CN 102828094 A CN102828094 A CN 102828094A CN 2012103444039 A CN2012103444039 A CN 2012103444039A CN 201210344403 A CN201210344403 A CN 201210344403A CN 102828094 A CN102828094 A CN 102828094A
- Authority
- CN
- China
- Prior art keywords
- magnesium
- alloy
- gadolinium
- neodymium
- yttrium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910000861 Mg alloy Inorganic materials 0.000 title claims abstract description 58
- 238000002360 preparation method Methods 0.000 title claims abstract description 15
- 239000000956 alloy Substances 0.000 claims abstract description 89
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 88
- 239000011777 magnesium Substances 0.000 claims abstract description 80
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims abstract description 54
- 229910052749 magnesium Inorganic materials 0.000 claims abstract description 54
- 239000011701 zinc Substances 0.000 claims abstract description 38
- 229910052779 Neodymium Inorganic materials 0.000 claims abstract description 37
- 229910052727 yttrium Inorganic materials 0.000 claims abstract description 35
- 229910052726 zirconium Inorganic materials 0.000 claims abstract description 33
- QEFYFXOXNSNQGX-UHFFFAOYSA-N neodymium atom Chemical compound [Nd] QEFYFXOXNSNQGX-UHFFFAOYSA-N 0.000 claims abstract description 31
- UIWYJDYFSGRHKR-UHFFFAOYSA-N gadolinium atom Chemical compound [Gd] UIWYJDYFSGRHKR-UHFFFAOYSA-N 0.000 claims abstract description 30
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 claims abstract description 30
- 229910052725 zinc Inorganic materials 0.000 claims abstract description 29
- 229910052688 Gadolinium Inorganic materials 0.000 claims abstract description 27
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims abstract description 24
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims abstract description 24
- 239000012535 impurity Substances 0.000 claims abstract description 17
- 239000003795 chemical substances by application Substances 0.000 claims description 44
- 238000007670 refining Methods 0.000 claims description 31
- 230000032683 aging Effects 0.000 claims description 23
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 claims description 12
- 230000001681 protective effect Effects 0.000 claims description 8
- 238000005266 casting Methods 0.000 claims description 7
- 239000011780 sodium chloride Substances 0.000 claims description 6
- DFIYZNMDLLCTMX-UHFFFAOYSA-N gadolinium magnesium Chemical compound [Mg].[Gd] DFIYZNMDLLCTMX-UHFFFAOYSA-N 0.000 claims description 5
- MIOQWPPQVGUZFD-UHFFFAOYSA-N magnesium yttrium Chemical compound [Mg].[Y] MIOQWPPQVGUZFD-UHFFFAOYSA-N 0.000 claims description 4
- 229910052751 metal Inorganic materials 0.000 claims description 4
- 239000002184 metal Substances 0.000 claims description 4
- 238000003723 Smelting Methods 0.000 claims description 3
- QRNPTSGPQSOPQK-UHFFFAOYSA-N magnesium zirconium Chemical compound [Mg].[Zr] QRNPTSGPQSOPQK-UHFFFAOYSA-N 0.000 claims description 3
- PEFIIJCLFMFTEP-UHFFFAOYSA-N [Nd].[Mg] Chemical compound [Nd].[Mg] PEFIIJCLFMFTEP-UHFFFAOYSA-N 0.000 claims description 2
- 238000010792 warming Methods 0.000 claims 2
- 229910052761 rare earth metal Inorganic materials 0.000 abstract description 14
- 239000002244 precipitate Substances 0.000 abstract description 11
- 239000007787 solid Substances 0.000 abstract description 6
- 230000015572 biosynthetic process Effects 0.000 abstract description 4
- 230000003993 interaction Effects 0.000 abstract description 4
- 239000011159 matrix material Substances 0.000 abstract description 4
- 238000001125 extrusion Methods 0.000 description 22
- 238000003756 stirring Methods 0.000 description 14
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 12
- 239000007789 gas Substances 0.000 description 11
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 10
- 238000002844 melting Methods 0.000 description 10
- 230000008018 melting Effects 0.000 description 10
- 239000000203 mixture Substances 0.000 description 10
- 239000002994 raw material Substances 0.000 description 10
- 238000000034 method Methods 0.000 description 8
- 239000000155 melt Substances 0.000 description 7
- 239000000243 solution Substances 0.000 description 7
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 6
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 6
- 229910018503 SF6 Inorganic materials 0.000 description 6
- 229910052786 argon Inorganic materials 0.000 description 6
- SFZCNBIFKDRMGX-UHFFFAOYSA-N sulfur hexafluoride Chemical compound FS(F)(F)(F)(F)F SFZCNBIFKDRMGX-UHFFFAOYSA-N 0.000 description 6
- 229960000909 sulfur hexafluoride Drugs 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 229910002092 carbon dioxide Inorganic materials 0.000 description 5
- 239000001569 carbon dioxide Substances 0.000 description 5
- 229910052802 copper Inorganic materials 0.000 description 5
- 239000010949 copper Substances 0.000 description 5
- 238000001035 drying Methods 0.000 description 5
- 229910052742 iron Inorganic materials 0.000 description 5
- 229910052759 nickel Inorganic materials 0.000 description 5
- -1 rare earth compound Chemical class 0.000 description 5
- 229910052710 silicon Inorganic materials 0.000 description 5
- 239000002893 slag Substances 0.000 description 5
- 239000003921 oil Substances 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 229910001093 Zr alloy Inorganic materials 0.000 description 3
- 238000005275 alloying Methods 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 229910000838 Al alloy Inorganic materials 0.000 description 2
- 229910018137 Al-Zn Inorganic materials 0.000 description 2
- 229910018573 Al—Zn Inorganic materials 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 230000005496 eutectics Effects 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 229910000851 Alloy steel Inorganic materials 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910003023 Mg-Al Inorganic materials 0.000 description 1
- 229910017706 MgZn Inorganic materials 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000003483 aging Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000007123 defense Effects 0.000 description 1
- 238000005238 degreasing Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005242 forging Methods 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 238000004626 scanning electron microscopy Methods 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
Images
Landscapes
- Extrusion Of Metal (AREA)
- Continuous Casting (AREA)
Abstract
本发明提供了一种变形镁合金及其制备方法,以质量百分数计,变形镁合金包括0.1%~10%的钕,10%~12%的钆,3%~5%的钇,0.5%~2%的锌,0.3%~0.8%的锆,余量的镁及不可避免的杂质。与现有技术WE54相比,本发明在Mg-Zn-Zr镁合金中加入稀土元素钕、钆和钇。首先,加入锌后合金晶界处形成大量长条Mg12YZn析出相,可以阻止晶界高温下的滑移,提高了合金的高温稳定性,并且该析出相沿挤压方向统一排列,能够阻碍基面位错滑移,提高了合金的力学性能;其次,添加了钆、钇和钕三种稀土元素,可以利用稀土元素间的交互作用降低钆、钇和钕在镁基体中的固溶度,促进析出相的形成,提高了合金的力学性能。
The invention provides a deformed magnesium alloy and a preparation method thereof. In terms of mass percentage, the deformed magnesium alloy includes 0.1%~10% neodymium, 10%~12% gadolinium, 3%~5% yttrium, 0.5%~ 2% zinc, 0.3%~0.8% zirconium, the rest magnesium and unavoidable impurities. Compared with the prior art WE54, the present invention adds rare earth elements neodymium, gadolinium and yttrium into the Mg-Zn-Zr magnesium alloy. Firstly, after the addition of zinc, a large number of elongated Mg 12 YZn precipitates are formed at the grain boundaries of the alloy, which can prevent the slippage of the grain boundary at high temperature and improve the high temperature stability of the alloy. The plane dislocation slip improves the mechanical properties of the alloy; secondly, three rare earth elements, gadolinium, yttrium and neodymium are added, and the interaction between rare earth elements can be used to reduce the solid solubility of gadolinium, yttrium and neodymium in the magnesium matrix, Promote the formation of precipitated phases and improve the mechanical properties of the alloy.
Description
技术领域 technical field
本发明属于金属材料技术领域,尤其涉及一种变形镁合金及其制备方法。The invention belongs to the technical field of metal materials, and in particular relates to a deformed magnesium alloy and a preparation method thereof.
背景技术 Background technique
镁合金是重量最轻的结构用金属材料,密度为1.75~1.90g/cm3,仅为铝合金的2/3,钢铁的1/4。与其他金属结构材料相比,镁合金具有高比强度、比刚度,减震性、电磁屏蔽性和抗辐射能力强,易切削加工、易回收等一系列有点,在汽车、电子电器、通讯、航空航天和国防军事工业领域具有及其重要的应用价值和广阔的应用前景,是继钢铁和铝合金之后发展起来的第三类金属结构材料。根据加工方式的不同,镁合金材料主要分为铸造镁合金与变形镁合金两大类。变形镁合金是指可用挤压、轧制、锻造和冲击等塑性成形方法加工的镁合金,其可通过材料组织的控制和热处理工艺的应用,获得比铸造镁合金材料更高的强度,更好的延展性,更多样化的力学性能,从而满足更多结构件的需要。Magnesium alloy is the lightest structural metal material with a density of 1.75~1.90g/cm 3 , which is only 2/3 of aluminum alloy and 1/4 of steel. Compared with other metal structural materials, magnesium alloy has a series of advantages such as high specific strength, specific stiffness, shock absorption, electromagnetic shielding and radiation resistance, easy cutting, easy recycling, etc. It is widely used in automobiles, electronic appliances, communications, The aerospace and national defense military industry has extremely important application value and broad application prospects. It is the third type of metal structural material developed after steel and aluminum alloy. According to different processing methods, magnesium alloy materials are mainly divided into two categories: cast magnesium alloy and wrought magnesium alloy. Deformed magnesium alloys refer to magnesium alloys that can be processed by plastic forming methods such as extrusion, rolling, forging, and impact. Through the control of material structure and the application of heat treatment processes, higher strength and better Excellent ductility and more diverse mechanical properties to meet the needs of more structural parts.
变形镁合金主要有Mg-Al系、Mg-Zn系、Mg-RE系、Mg-Zr系等合金系,其中最为常见的合金系是Mg-Al-Zn系和Mg-Zn-Zr系合金。Mg-Al-Zn系镁合金是目前室温系应用最广泛的合金系,其主要特点是强度高,能够进行热处理强化,并有良好的铸造性能,但该系镁合金中的Mg17Al22相在高温条件下迅速长大,从而导致合金机械性能下降,无法作为高温结构件使用。Mg-Zn-Zr系合金的晶界处分布着大量的块状共晶相Mg7Zn3、MgZn等,共晶相的熔点均低于340℃,其软化后则无法钉扎晶界,阻碍错位运动,从而导致Mg-Zn-Zr系合金的高温性能较差。Wrought magnesium alloys mainly include Mg-Al, Mg-Zn, Mg-RE, Mg-Zr and other alloy systems, among which the most common alloy systems are Mg-Al-Zn and Mg-Zn-Zr alloys. Mg-Al-Zn series magnesium alloy is currently the most widely used alloy system at room temperature. Its main characteristics are high strength, heat treatment strengthening, and good casting performance. However, the Mg 17 Al 22 phase in this series magnesium alloy It grows rapidly under high temperature conditions, which leads to a decrease in the mechanical properties of the alloy and cannot be used as a high temperature structural part. There are a large number of massive eutectic phases Mg 7 Zn 3 , MgZn, etc. distributed at the grain boundaries of Mg-Zn-Zr alloys. The melting points of the eutectic phases are all lower than 340°C. After softening, they cannot pin the grain boundaries and hinder Dislocation movement, resulting in poor high temperature performance of Mg-Zn-Zr alloys.
稀土作为改善变形镁合金耐热性能的合金化元素已得到广泛的应用,大部分稀土元素在镁中具有较大的固溶度极限,且随温度下降,固溶度急剧减少,可以得到较大的过饱和度,从而在随后的时效过程中析出弥散的、高熔点的稀土化合物相;稀土元素还可以细化晶粒、提高室温强度,且分布在晶内和晶界的弥散的、高熔点稀土化合物,在高温时仍能钉扎晶内错位和晶界滑移,从而提高了镁合金的高温强度。Rare earth elements have been widely used as alloying elements to improve the heat resistance of wrought magnesium alloys. Most rare earth elements have a large solid solubility limit in magnesium, and the solid solubility decreases sharply as the temperature decreases, and a larger solid solubility limit can be obtained. The degree of supersaturation, so that in the subsequent aging process, the dispersed, high melting point rare earth compound phase is precipitated; the rare earth element can also refine the grain, improve the strength at room temperature, and distribute in the grain and grain boundary. Rare earth compounds can still pin the intragranular dislocation and grain boundary slip at high temperature, thereby improving the high temperature strength of the magnesium alloy.
其中,WE54是一种典型的含钕的稀土镁合金,其成分为Mg-5.1%Y-3.2%RE(1.5%~2%Nd)-0.5%Zr,是目前已商业化性能较好的镁合金,耐热温度可达300℃,且经热处理后,耐蚀性能也由于其他高温镁合金,但耐热性能不够稳定,高温时强度下降较多,并且其力学性能也有待提高。Among them, WE54 is a typical rare earth magnesium alloy containing neodymium, and its composition is Mg-5.1%Y-3.2%RE(1.5%~2%Nd)-0.5%Zr, which is currently a commercially available magnesium alloy. Alloy, the heat-resistant temperature can reach 300 ℃, and after heat treatment, the corrosion resistance is also better than other high-temperature magnesium alloys, but the heat resistance is not stable enough, the strength drops more at high temperatures, and its mechanical properties need to be improved.
发明内容 Contents of the invention
有鉴于此,本发明要解决的技术问题在于提供一种变形镁合金及其制备方法,该变形镁合金具有较好的高温稳定性及较高的力学性能。In view of this, the technical problem to be solved by the present invention is to provide a wrought magnesium alloy and a preparation method thereof, the wrought magnesium alloy has better high temperature stability and higher mechanical properties.
本发明提供了一种变形镁合金,包括:0.1wt%~10wt%的钕,10wt%12wt%的钆,3wt%~5wt%的钇,0.5wt%~2wt%的锌,0.3wt%~0.8wt%的锆,余量的镁以及不可避免的杂质。The invention provides a deformed magnesium alloy, comprising: 0.1wt%-10wt% neodymium, 10wt%-12wt% gadolinium, 3wt%-5wt% yttrium, 0.5wt%-2wt% zinc, 0.3wt%-0.8 wt% of zirconium, the balance of magnesium and unavoidable impurities.
本发明提供了一种变形镁合金的制备方法,包括以下步骤:The invention provides a method for preparing a deformed magnesium alloy, comprising the following steps:
A)将镁锭、锌锭、钆源、钕源、钇源和锆源进行熔融合金化,精炼后得到镁熔体,所述镁熔体包括0.1wt%10wt%的钕,10wt%~12wt%的钆,3wt%~5wt%的钇,0.5wt%~2wt%的锌,0.3wt%~0.8wt%的锆,余量的镁以及不可避免的杂质;A) Melt and alloy magnesium ingots, zinc ingots, gadolinium sources, neodymium sources, yttrium sources and zirconium sources, and obtain magnesium melts after refining. The magnesium melts include 0.1wt% 10wt% neodymium, 10wt%~12wt% % gadolinium, 3wt%~5wt% yttrium, 0.5wt%~2wt% zinc, 0.3wt%~0.8wt% zirconium, the rest magnesium and unavoidable impurities;
B)将所述镁熔体浇铸,挤压后,得到变形镁合金。B) Casting the magnesium melt and extruding it to obtain a deformed magnesium alloy.
优选的,所述钆源为钆锭和/或镁钆中间合金锭。Preferably, the gadolinium source is gadolinium ingot and/or magnesium-gadolinium master alloy ingot.
优选的,所述钕源为钕锭和/或镁钕中间合金锭。Preferably, the neodymium source is a neodymium ingot and/or a magnesium-neodymium master alloy ingot.
优选的,所述钇源为钇锭和/或镁钇中间合金锭。Preferably, the yttrium source is yttrium ingot and/or magnesium-yttrium master alloy ingot.
优选的,所述锆源为锆锭和/或镁锆中间合金锭。Preferably, the zirconium source is a zirconium ingot and/or a magnesium-zirconium master alloy ingot.
优选的,所述步骤B具体为:Preferably, the step B is specifically:
将所述镁熔体浇铸,固溶处理,挤压,进行时效处理后,得到变形镁合金。The magnesium melt is cast, solid solution treated, extruded, and subjected to aging treatment to obtain a deformed magnesium alloy.
优选的,所述步骤A具体为:Preferably, the step A is specifically:
在保护气氛下,将镁锭、锌锭与覆盖剂加至熔炼炉,升温至730℃~750℃,加入钆源和钕源,继续升温至760℃~780℃,加入钇源、锆源和精炼剂精炼后得到镁熔体;所述镁熔体包括0.1wt%~10wt%的钕,10wt%~12wt%的钆,3wt%~5wt%的钇,0.5wt%~2wt%的锌,0.3wt%~0.8wt%的锆,余量的镁以及不可避免的杂质。Under a protective atmosphere, add magnesium ingots, zinc ingots and covering agent to the melting furnace, heat up to 730°C~750°C, add gadolinium source and neodymium source, continue to heat up to 760°C~780°C, add yttrium source, zirconium source and A magnesium melt is obtained after refining with a refining agent; the magnesium melt includes 0.1wt%-10wt% neodymium, 10wt%-12wt% gadolinium, 3wt%-5wt% yttrium, 0.5wt%-2wt% zinc, 0.3 wt%~0.8wt% zirconium, the rest magnesium and unavoidable impurities.
优选的,所述覆盖剂包含30~40wt%的MgCl2,15~25wt%的KCl/NaCl,15~25wt%的CaF/NaF和余量的BaCl2。Preferably, the covering agent comprises 30-40wt% of MgCl 2 , 15-25wt% of KCl/NaCl, 15-25wt% of CaF/NaF and the balance of BaCl 2 .
优选的,所述精炼剂包含50~60wt%的KCl/NaCl,15~20wt%的BaCl2,20~30wt%的CaCl2和余量的MgCO3/Na2CO3。Preferably, the refining agent comprises 50-60wt% KCl/NaCl, 15-20wt% BaCl 2 , 20-30wt% CaCl 2 and the balance MgCO 3 /Na 2 CO 3 .
本发明提供了一种变形镁合金及其制备方法,该变形镁合金包括0.1wt%~10wt%的钕,10wt%~12wt%的钆,3wt%~5wt%的钇,0.5wt%~2wt%的锌,0.3wt%~0.8wt%的锆,余量的镁以及不可避免的杂质。与现有技术WE54相比,本发明在Mg-Zn-Zr三元镁合金中加入稀土元素钕、钆和钇。首先,加入锌后合金中晶界处形成大量长条状的Mg12YZn析出相,可以阻止晶界在高温条件下的滑移,提高了合金的高温稳定性,并且该析出相沿挤压方向统一排列,能够阻碍基面位错滑移,提高了合金的力学性能;其次,添加了钆、钇和钕三种稀土元素,可以利用稀土元素间的交互作用降低钆、钇和钕在镁基体中的固溶度,促进析出相的形成,提高了合金的力学性能。The invention provides a wrought magnesium alloy and a preparation method thereof. The wrought magnesium alloy includes 0.1wt% to 10wt% of neodymium, 10wt% to 12wt% of gadolinium, 3wt% to 5wt% of yttrium, and 0.5wt% to 2wt% zinc, 0.3wt%~0.8wt% zirconium, the rest of magnesium and unavoidable impurities. Compared with the prior art WE54, the present invention adds rare earth elements neodymium, gadolinium and yttrium into the Mg-Zn-Zr ternary magnesium alloy. First, after the addition of zinc, a large number of elongated Mg 12 YZn precipitates are formed at the grain boundaries in the alloy, which can prevent the grain boundary from slipping under high temperature conditions, improve the high temperature stability of the alloy, and the precipitates are uniform along the extrusion direction arrangement, which can hinder the slippage of basal plane dislocations and improve the mechanical properties of the alloy; secondly, three rare earth elements, gadolinium, yttrium and neodymium, can be used to reduce the interaction between gadolinium, yttrium and neodymium in the magnesium matrix. The solid solubility promotes the formation of precipitated phases and improves the mechanical properties of the alloy.
实验结果表明,本发明制备的变形镁合金室温(25℃)的抗拉强度大于420MPa,屈服强度大于320MPa,200℃时的抗拉强度大于380MPa,屈服强度大于300MPa,250℃时的抗拉强度大于350MPa,屈服强度大于290MPa,300℃时的抗拉强度大于225MPa,屈服强度大于190MPa。The experimental results show that the tensile strength of the deformed magnesium alloy prepared by the present invention at room temperature (25°C) is greater than 420MPa, the yield strength is greater than 320MPa, the tensile strength at 200°C is greater than 380MPa, the yield strength is greater than 300MPa, and the tensile strength at 250°C Greater than 350MPa, the yield strength is greater than 290MPa, the tensile strength at 300°C is greater than 225MPa, and the yield strength is greater than 190MPa.
附图说明 Description of drawings
图1为本发明实施例2制备的变形镁合金的挤压态金相组织图;Fig. 1 is the extruded metallographic structure diagram of the wrought magnesium alloy prepared in Example 2 of the present invention;
图2为本发明实施例2制备的变形镁合金的透射电镜显微组织图。Fig. 2 is a transmission electron microscope microstructure diagram of the deformed magnesium alloy prepared in Example 2 of the present invention.
具体实施方式 Detailed ways
本发明提供了一种变形镁合金,包括0.1wt%~10wt%的钕,10wt%~12wt%的钆,3wt%~5wt%的钇,0.5wt%~2wt%的锌,0.3wt%~0.8wt%的锆,余量的镁以及不可避免的杂质。The invention provides a deformed magnesium alloy, comprising 0.1wt%-10wt% neodymium, 10wt%-12wt% gadolinium, 3wt%-5wt% yttrium, 0.5wt%-2wt% zinc, 0.3wt%-0.8 wt% of zirconium, the balance of magnesium and unavoidable impurities.
其中,所述钕的含量优选为0.5wt%~8wt%,更优选为0.5wt%~6wt%,再优选为0.5wt%~4wt%;所述钆的含量优选为10wt%~11.5wt%;所述钇的含量优选为3.5wt%~5wt%,更优选为3.5wt%~4.5wt%;所述锌的含量优选为0.5wt%~1.5wt%,更优选为0.5wt%~1wt%;所述锆的含量优选为0.4wt%~0.8wt%,更优选为0.4wt%~0.6wt%,再优选为0.5wt%~0.6wt%;所述杂质的含量小于0.02%,所述杂质为本领域技术人员熟知的不可避免的杂质,通常包括元素硅、铁、铜和镍。Wherein, the content of the neodymium is preferably 0.5wt%~8wt%, more preferably 0.5wt%~6wt%, more preferably 0.5wt%~4wt%; the content of the gadolinium is preferably 10wt%~11.5wt%; The content of the yttrium is preferably 3.5wt% ~ 5wt%, more preferably 3.5wt% ~ 4.5wt%; the content of the zinc is preferably 0.5wt% ~ 1.5wt%, more preferably 0.5wt% ~ 1wt%; The content of the zirconium is preferably 0.4wt% ~ 0.8wt%, more preferably 0.4wt% ~ 0.6wt%, more preferably 0.5wt% ~ 0.6wt%; the content of the impurity is less than 0.02%, the impurity is Unavoidable impurities, well known to those skilled in the art, typically include elemental silicon, iron, copper and nickel.
本发明还提供了一种变形镁合金的制备方法,包括以下步骤:A)将镁锭、锌锭、钆源、钕源、钇源和锆源进行熔融合金化,精炼后得到镁熔体,所述镁熔体包括0.1wt%~10wt%的钕,10wt%~12wt%的钆,3wt%~5wt%的钇,0.5wt%~2wt%的锌,0.3wt%~0.8wt%的锆,余量的镁以及不可避免的杂质,所述所述杂质的含量小于0.02%;B)将所述镁熔体浇铸,挤压后,得到变形镁合金。The present invention also provides a method for preparing a deformed magnesium alloy, which includes the following steps: A) melting and alloying magnesium ingots, zinc ingots, gadolinium sources, neodymium sources, yttrium sources and zirconium sources, and obtaining a magnesium melt after refining, The magnesium melt includes 0.1wt%~10wt% of neodymium, 10wt%~12wt% of gadolinium, 3wt%~5wt% of yttrium, 0.5wt%~2wt% of zinc, 0.3wt%~0.8wt% of zirconium, The remaining magnesium and unavoidable impurities, the content of which is less than 0.02%; B) casting the magnesium melt and extruding it to obtain a deformed magnesium alloy.
为了清楚说明本发明,以下分别对步骤A和步骤B的实验过程进行详细描述。In order to clearly illustrate the present invention, the experimental processes of step A and step B are described in detail below respectively.
按照本发明所述步骤A具体为:在保护气氛下,将镁锭、锌锭与覆盖剂加至熔炼炉,升温至730℃~750℃,优选为730℃~740℃,加入钆源和钕源,继续升温至760℃~780℃,优选为770℃~780℃,加入钇源和锆源,降温至730℃~750℃,优选为730℃~740℃,加入精炼剂,精炼后得到镁熔体,所述镁熔体包括上述镁合金所述的各种元素及含量,在此不再赘述。According to the step A of the present invention, it is as follows: under a protective atmosphere, add magnesium ingots, zinc ingots and covering agent to the melting furnace, raise the temperature to 730°C~750°C, preferably 730°C~740°C, add gadolinium source and neodymium source, continue to heat up to 760°C~780°C, preferably 770°C~780°C, add yttrium source and zirconium source, cool down to 730°C~750°C, preferably 730°C~740°C, add refining agent, and obtain magnesium after refining Melt, the magnesium melt includes the various elements and contents described above for the magnesium alloy, which will not be repeated here.
按照此加料顺序,可减少不同元素之间相互作用形成化合物的可能,从而保证合金成分的准确性,提高了合金的质量。According to this feeding sequence, the possibility of compound formation by interaction between different elements can be reduced, thereby ensuring the accuracy of the alloy composition and improving the quality of the alloy.
所述保护气氛为本领域技术人员熟知的保护气氛,优选为体积分数为99%的二氧化碳与1%的六氟化硫的混合气体。六氟化硫对镁合金具有良好的保护效果,可在镁熔体表面形成一厚层较稳定的具有良好保护作用的MgF2化合物保护膜。The protective atmosphere is a protective atmosphere well known to those skilled in the art, preferably a mixed gas with a volume fraction of 99% carbon dioxide and 1% sulfur hexafluoride. Sulfur hexafluoride has a good protective effect on magnesium alloys, and can form a thick layer of relatively stable MgF 2 compound protective film with good protective effect on the surface of magnesium melt.
其中,所述钆源为钆锭和/或镁钆中间合金锭,优选为含20wt%镁的镁钆中间合金锭;所述钕源为钕锭和/或镁钕中间合金锭,优选为含20wt%镁的镁钕中间合金锭;所述钇源为钇锭和/或镁钇中间合金锭,优选为含20wt%镁的镁钇中间合金锭;所述锆源为锆锭和/或镁锆中间合金锭,优选为含30wt%镁的镁锆中间合金锭。Wherein, the gadolinium source is a gadolinium ingot and/or a magnesium-gadolinium master alloy ingot, preferably a magnesium-gadolinium master alloy ingot containing 20wt% magnesium; the neodymium source is a neodymium ingot and/or a magnesium-gadolinium master alloy ingot, preferably containing Magnesium-Nd master alloy ingot with 20wt% magnesium; the yttrium source is yttrium ingot and/or magnesium-yttrium master alloy ingot, preferably a magnesium-yttrium master alloy ingot containing 20wt% magnesium; the zirconium source is zirconium ingot and/or magnesium The zirconium master alloy ingot is preferably a magnesium-zirconium master alloy ingot containing 30wt% magnesium.
按照本发明,所述镁锭、锌锭及各种中间合金锭优选经过分割、去除氧化皮、除油和干燥等步骤进行处理。所述镁锭优选为含镁99.9wt%以上的纯镁锭,所述锌锭优选为含锌99.9wt%以上的纯锌锭。According to the present invention, the magnesium ingots, zinc ingots and various intermediate alloy ingots are preferably processed through the steps of dividing, descaling, degreasing and drying. The magnesium ingot is preferably a pure magnesium ingot containing more than 99.9 wt% of magnesium, and the zinc ingot is preferably a pure zinc ingot containing more than 99.9 wt% of zinc.
所述覆盖剂为本领域技术人员熟知的覆盖剂,优选为包含30~40wt%的MgCl2,优选为35~40wt%,15~25wt%的KCl或NaCl,优选为18~22wt%,15~25wt%的CaF或NaF,优选为18~22wt%和余量的BaCl2。所述覆盖剂的质量为合金原料总重量的2%~5%,优选为2%~3%,其主要作用是保护熔体不被氧化,同时,由于镁易燃其也可作为灭火剂而使用。The covering agent is a covering agent well known to those skilled in the art, preferably containing 30~40wt% of MgCl 2 , preferably 35~40wt%, 15~25wt% of KCl or NaCl, preferably 18~22wt%, 15~ 25wt% of CaF or NaF, preferably 18-22wt% and the balance of BaCl 2 . The quality of the covering agent is 2% to 5% of the total weight of the alloy raw material, preferably 2% to 3%. Its main function is to protect the melt from oxidation. At the same time, because magnesium is flammable, it can also be used as a fire extinguishing agent. use.
所述精炼剂为本领域技术人员熟知的精炼剂,优选包含50~60wt%的KCl或NaCl,优选为52~56wt%,15~20wt%的BaCl2,优选为16~19wt%,20~30wt%的CaCl2,优选为22~26wt%及余量的MgCO3或Na2CO3。所述精炼剂的质量为合金原料总重量的2%~5%,优选为2%~3%,在本发明中其主要作用是提高合金的熔炼质量。The refining agent is a refining agent well known to those skilled in the art, preferably comprising 50-60wt% of KCl or NaCl, preferably 52-56wt%, 15-20wt% of BaCl 2 , preferably 16-19wt%, 20-30wt% % CaCl 2 , preferably 22~26wt% and the balance of MgCO 3 or Na 2 CO 3 . The quality of the refining agent is 2% to 5% of the total weight of the alloy raw material, preferably 2% to 3%, and its main function in the present invention is to improve the smelting quality of the alloy.
熔炼过程中,合金元素采用中间合金的方式加入,同时加入覆盖剂和精炼剂,能够降低合金的熔炼温度,并能去除夹杂、气体等,提高熔体的纯净度。During the smelting process, the alloying elements are added in the form of an intermediate alloy, and the covering agent and refining agent are added at the same time, which can reduce the melting temperature of the alloy, remove inclusions, gases, etc., and improve the purity of the melt.
按照本发明,所述步骤A中精炼具体为:加入精炼剂后,搅拌10~15min,优选为12~14min,吹入氩气10~20min,优选为15~18min,升温至750℃~780℃,优选为755℃~770℃,保温20~30min,优选为25~30min,降温至730℃~750℃,优选为730℃~740℃,保温10~20min,优选为15~18min。通入氩气可以排除熔体中的其他有害气体如氯气和氧气等,并且也可以达到搅拌熔体的作用使得熔体中溶质分布更加均匀,避免偏析等铸造缺陷的产生。According to the present invention, the refining in step A is as follows: after adding the refining agent, stir for 10-15 minutes, preferably 12-14 minutes, blow in argon for 10-20 minutes, preferably 15-18 minutes, and heat up to 750°C-780°C , preferably 755°C~770°C, keep warm for 20~30min, preferably 25~30min, cool down to 730°C~750°C, preferably 730°C~740°C, keep warm for 10~20min, preferably 15~18min. The introduction of argon can eliminate other harmful gases in the melt such as chlorine and oxygen, and can also achieve the effect of stirring the melt to make the solute distribution in the melt more uniform and avoid casting defects such as segregation.
所述步骤B具体为:将所述镁熔体进行扒渣处理,在690℃~730℃优选为710℃~730℃,通过事先预热至200℃~300℃的水模具浇铸成圆棒,优选为200℃~250℃,车削后,固溶处理,挤压成型,进行时效处理后,得到变形镁合金。The step B specifically includes: performing slag removal treatment on the magnesium melt at 690°C-730°C, preferably 710°C-730°C, and casting it into a round rod through a water mold preheated to 200°C-300°C, The temperature is preferably 200° C. to 250° C. After turning, solution treatment, extrusion molding, and aging treatment, a deformed magnesium alloy is obtained.
水模具能够加速铸锭冷却速率,细化晶粒,有利于大规模的工业化生产。The water mold can accelerate the cooling rate of the ingot and refine the grains, which is beneficial to large-scale industrial production.
所述固溶处理的温度为500℃~550℃,优选为520℃~540℃,时间为2~32h,优选为20~32h。The temperature of the solution treatment is 500°C~550°C, preferably 520°C~540°C, and the time is 2~32h, preferably 20~32h.
所述挤压成型的条件为380℃~480℃优选为400℃~460℃,预热30~120min后挤压,优选为60~100min。The extrusion molding conditions are 380°C-480°C, preferably 400°C-460°C, preheating for 30-120 minutes and then extrusion, preferably 60-100 minutes.
在挤压成型前进行固溶处理并预热,有利于挤压过程的顺利进行,避免“挤不动”现象的产生,同时也能降低挤压温度。Solution treatment and preheating before extrusion molding are beneficial to the smooth progress of the extrusion process, avoiding the phenomenon of "not being squeezed", and reducing the extrusion temperature.
加入锌后合金中晶界处形成大量长条状的Mg12YZn析出相,可以阻止晶界在高温条件下的滑移,提高了合金的高温稳定性;并且该析出相沿挤压方向统一排列,而变形镁合金的晶体结构为六方结构,室温主要滑移系为(0001)基面滑移系,因此有序排列的Mg12YZn析出相能够在挤压方向起到强化作用,阻碍基面位错滑移,提高了合金的力学性能。After the addition of zinc, a large number of elongated Mg 12 YZn precipitates are formed at the grain boundaries in the alloy, which can prevent the grain boundaries from slipping under high temperature conditions and improve the high temperature stability of the alloy; and the precipitates are uniformly arranged along the extrusion direction, The crystal structure of wrought magnesium alloy is hexagonal, and the main slip system at room temperature is (0001) basal slip system. Therefore, the ordered Mg 12 YZn precipitates can strengthen in the extrusion direction and hinder the basal plane. The mis-slip improves the mechanical properties of the alloy.
所述时效处理优选为人工时效,所述人工时效的时效温度为185℃~250℃,优选为200℃~240℃,时效时间为2~100h,优选为60~80h。The aging treatment is preferably artificial aging, the aging temperature of the artificial aging is 185°C-250°C, preferably 200°C-240°C, and the aging time is 2-100h, preferably 60-80h.
人工时效后,镁基体中会产生大量均匀分布的纳米尺寸的Mg-RE相,其能够阻碍基面位错滑移,降低合金变形的能力,提高合金的力学性能。本发明采用多种稀土元素钆、钇和钕作为添加稀土元素,可以利用稀土元素间的相互作用,降低此三种元素在镁基体中的固溶度,提高时效硬化特征,峰值时时效样品的硬度达到130Hv,并能促进Mg-RE析出相的形成,提高合金的室温及高温的力学性能。After artificial aging, a large number of uniformly distributed nano-sized Mg-RE phases will be produced in the magnesium matrix, which can hinder the dislocation slip of the basal plane, reduce the deformation ability of the alloy, and improve the mechanical properties of the alloy. The present invention adopts multiple rare earth elements gadolinium, yttrium and neodymium as the added rare earth elements, and can utilize the interaction between the rare earth elements to reduce the solid solubility of these three elements in the magnesium matrix, improve the age hardening characteristics, and the aging sample at the peak The hardness reaches 130Hv, and can promote the formation of Mg-RE precipitates, and improve the mechanical properties of the alloy at room temperature and high temperature.
为了进一步说明本发明,以下结合实施例对本发明提供的一种变形镁合金及其制备方法进行详细描述。In order to further illustrate the present invention, a wrought magnesium alloy provided by the present invention and a preparation method thereof are described in detail below in conjunction with examples.
以下实施例中所用的试剂均为市售。The reagents used in the following examples are all commercially available.
实施例1Example 1
1.1将纯Mg锭、纯Zn锭、20%Mg-Gd中间合金、20%Mg-Y中间合金、20%Mg-Nd中间合金和30%Mg-Zr中间合金进行分割、去除氧化皮、除油和干燥,按元素含量Gd 10wt%,Y 4wt%,Zn 1wt%,Nd 0.5wt%,Zr 0.4wt%,余量为Mg的配比取料。配制覆盖剂:将40wt%的MgCl2,20wt%的KCl,20wt%的CaF与20wt%的BaCl2混合得到覆盖剂;配制精炼剂:将54wt%的KCl,18wt%的BaCl2,24wt%的Cacl2与4wt%的MgCO3混合得到精炼剂。1.1 Divide pure Mg ingots, pure Zn ingots, 20%Mg-Gd master alloys, 20%Mg-Y master alloys, 20%Mg-Nd master alloys and 30%Mg-Zr master alloys, remove scale and oil And drying, according to the element content Gd 10wt%, Y 4wt%, Zn 1wt%, Nd 0.5wt%, Zr 0.4wt%, the balance is the proportioning of Mg. Prepare covering agent: mix 40wt% MgCl 2 , 20wt% KCl, 20wt% CaF and 20wt% BaCl 2 to obtain covering agent; prepare refining agent: mix 54wt% KCl, 18wt% BaCl 2 , 24wt% Cacl 2 was mixed with 4wt% MgCO 3 to obtain a refining agent.
1.2在99%二氧化碳与1%六氟化硫混合气体保护的条件下,将2wt%合金原料的1.1中配制的覆盖剂、1.1中称取的纯Mg锭与纯Zn锭加至熔炼炉中,升温至750℃,加入1.1中称取的Mg-Gd中间合金和Mg-Nd中间合金,搅拌2min,升温至780℃,加入Mg-Y中间合金和Mg-Zr中间合金,搅拌2min,降温至750℃,加入2wt%合金原料的1.1中配制的精炼剂,搅拌12min后,吹入氩气精炼15min,升温至750℃,保温静置25min,降温至730℃保温静置15min,对镁熔体进行扒渣后,在730℃通过预热至200℃的水模具浇铸成圆棒,车削后535℃固溶处理24h,420℃预热60min后挤压成型,挤压温度为420℃,挤压比为13,挤压速率恒定。对挤压后的合金进行人工时效处理,时效温度为200℃,时效时间为72h,得到变形镁合金,包含Gd 10wt%,Y 4wt%,Zn 1wt%,Nd 0.5wt%,Zr 0.4wt%,杂质元素Si、Fe、Cu和Ni的总量小于0.02%,余量为Mg。1.2 Under the protection of 99% carbon dioxide and 1% sulfur hexafluoride mixed gas, add the covering agent prepared in 1.1 with 2wt% alloy raw materials, the pure Mg ingot and pure Zn ingot weighed in 1.1 into the melting furnace, Raise the temperature to 750°C, add the Mg-Gd master alloy and Mg-Nd master alloy weighed in 1.1, stir for 2 minutes, raise the temperature to 780°C, add the Mg-Y master alloy and Mg-Zr master alloy, stir for 2 minutes, and cool down to 750°C ℃, add the refining agent prepared in 1.1 of 2wt% alloy raw material, stir for 12 minutes, blow in argon gas for refining for 15 minutes, heat up to 750 ℃, keep it for 25 minutes, cool down to 730 ℃ for 15 minutes, and conduct the magnesium melt After removing the slag, it is cast into a round bar at 730°C through a water mold preheated to 200°C. After turning, it is solution treated at 535°C for 24 hours, and then extruded after preheating at 420°C for 60 minutes. The extrusion temperature is 420°C, and the extrusion ratio is 13, the extrusion rate is constant. Artificial aging treatment was carried out on the extruded alloy, the aging temperature was 200°C, and the aging time was 72h to obtain a deformed magnesium alloy, which contained Gd 10wt%, Y 4wt%, Zn 1wt%, Nd 0.5wt%, Zr 0.4wt%, The total amount of impurity elements Si, Fe, Cu and Ni is less than 0.02%, and the balance is Mg.
对1.2中得到的变形镁合金进行力学性能测试,得到其测试结果,见表1。The mechanical properties of the deformed magnesium alloy obtained in 1.2 were tested, and the test results were obtained, as shown in Table 1.
表1实施例1中变形镁合金的室温及高温力学性能Room temperature and high temperature mechanical properties of deformed magnesium alloy in Table 1 Example 1
实施例2Example 2
2.1将纯Mg锭、纯Zn锭、20%Mg-Gd中间合金、20%Mg-Y中间合金、20%Mg-Nd中间合金和30%Mg-Zr中间合金进行分割、去除氧化皮、除油和干燥,按元素含量Gd 11wt%,Y 5wt%,Zn 1.5wt%,Nd 1wt%,Zr 0.8wt%,余量为Mg的配比取料。配制覆盖剂:将40wt%的MgCl2,20wt%的KCl,20wt%的CaF与20wt%的BaCl2混合得到覆盖剂;配制精炼剂:将54wt%的KCl,18wt%的BaCl2,24wt%的Cacl2与4wt%的MgCO3混合得到精炼剂。2.1 Divide pure Mg ingots, pure Zn ingots, 20%Mg-Gd master alloys, 20%Mg-Y master alloys, 20%Mg-Nd master alloys and 30%Mg-Zr master alloys, remove scale and oil And drying, according to the element content Gd 11wt%, Y 5wt%, Zn 1.5wt%, Nd 1wt%, Zr 0.8wt%, the balance is the ratio of Mg. Prepare covering agent: mix 40wt% MgCl 2 , 20wt% KCl, 20wt% CaF and 20wt% BaCl 2 to obtain covering agent; prepare refining agent: mix 54wt% KCl, 18wt% BaCl 2 , 24wt% Cacl 2 was mixed with 4wt% MgCO 3 to obtain a refining agent.
2.2在99%二氧化碳与1%六氟化硫混合气体保护的条件下,将2wt%合金原料的2.1中配制的覆盖剂、2.1中称取的纯Mg锭与纯Zn锭加至熔炼炉中,升温至730℃,加入2.1中称取的Mg-Gd中间合金和Mg-Nd中间合金,搅拌2min,升温至780℃,加入Mg-Y中间合金和Mg-Zr中间合金,搅拌2min,降温至730℃,加入2wt%合金原料的2.1中配制的精炼剂,搅拌12min后,吹入氩气精炼15min,升温至780℃,保温静置25min,降温至750℃保温静置15min,对镁熔体进行扒渣后,在720℃通过预热至200℃的水模具浇铸成圆棒,车削后535℃固溶处理24h,410℃预热60min后挤压成型,挤压温度为410℃,挤压比为13,挤压速率恒定。对挤压后的合金进行人工时效处理,时效温度为200℃,时效时间为72h,得到变形镁合金,包含Gd 11wt%,Y 5wt%,Zn 1.5wt%,Nd 1wt%,Zr 0.8wt%,杂质元素Si、Fe、Cu和Ni的总量小于0.02%,余量为Mg。2.2 Under the protection of the mixed gas of 99% carbon dioxide and 1% sulfur hexafluoride, add the covering agent prepared in 2.1 with 2wt% alloy raw materials, the pure Mg ingot and the pure Zn ingot weighed in 2.1 into the melting furnace, Raise the temperature to 730°C, add the Mg-Gd master alloy and Mg-Nd master alloy weighed in 2.1, stir for 2 minutes, raise the temperature to 780°C, add the Mg-Y master alloy and Mg-Zr master alloy, stir for 2 minutes, and cool down to 730°C ℃, add the refining agent prepared in 2.1 of 2wt% alloy raw material, stir for 12 minutes, blow in argon gas for 15 minutes, heat up to 780 ℃, keep the temperature for 25 minutes, cool down to 750 ℃ for 15 minutes, and conduct the magnesium melt After removing the slag, it is cast into a round bar at 720°C through a water mold preheated to 200°C. After turning, it is solution treated at 535°C for 24 hours, and then extruded after preheating at 410°C for 60 minutes. The extrusion temperature is 410°C, and the extrusion ratio is 13, the extrusion rate is constant. The extruded alloy was subjected to artificial aging treatment, the aging temperature was 200°C, and the aging time was 72h to obtain a deformed magnesium alloy, including Gd 11wt%, Y 5wt%, Zn 1.5wt%, Nd 1wt%, Zr 0.8wt%, The total amount of impurity elements Si, Fe, Cu and Ni is less than 0.02%, and the balance is Mg.
对2.2中得到的变形镁合金进行力学性能测试,得到其测试结果,见表2。The mechanical properties of the deformed magnesium alloy obtained in 2.2 were tested, and the test results were obtained, as shown in Table 2.
表2实施例2中变形镁合金的室温及高温力学性能Room temperature and high temperature mechanical properties of deformed magnesium alloy in Table 2 Example 2
利用扫面电镜对2.2中得到的变形镁合金进行分析,得到其挤压态金相组织图,如图1所示。图中A为长条状的Mg12YZn析出相,B为Mg-RE析出相(Mg5Gd)。The deformed magnesium alloy obtained in 2.2 was analyzed by scanning electron microscopy, and the metallographic structure diagram of the extruded state was obtained, as shown in Figure 1. In the figure, A is the elongated Mg 12 YZn precipitate, and B is the Mg-RE precipitate (Mg 5 Gd).
利用透射电镜对2.2中得到的变形镁合金进行分析,得到其透射电镜显微组织图,如图2所示。图中A为长条状的Mg12YZn析出相,B为Mg-RE析出相(Mg5Gd)。The deformed magnesium alloy obtained in 2.2 was analyzed by transmission electron microscope, and its transmission electron microscope microstructure was obtained, as shown in Fig. 2 . In the figure, A is the elongated Mg 12 YZn precipitate, and B is the Mg-RE precipitate (Mg 5 Gd).
实施例3Example 3
3.1将纯Mg锭、纯Zn锭、20%Mg-Gd中间合金、20%Mg-Y中间合金、20%Mg-Nd中间合金和30%Mg-Zr中间合金进行分割、去除氧化皮、除油和干燥,按元素含量Gd 10wt%,Y 4wt%,Zn 0.5wt%,Nd 2wt%,Zr 0.5wt%,余量为Mg的配比取料。配制覆盖剂:将40wt%的MgCl2,20wt%的KCl,20wt%的CaF与20wt%的BaCl2混合得到覆盖剂;配制精炼剂:将54wt%的KCl,18wt%的BaCl2,24wt%的Cacl2与4wt%的MgCO3混合得到精炼剂。3.1 Divide pure Mg ingots, pure Zn ingots, 20%Mg-Gd master alloys, 20%Mg-Y master alloys, 20%Mg-Nd master alloys and 30%Mg-Zr master alloys, remove scale and oil And drying, according to the element content Gd 10wt%, Y 4wt%, Zn 0.5wt%, Nd 2wt%, Zr 0.5wt%, the balance is the proportioning of Mg. Prepare covering agent: mix 40wt% MgCl 2 , 20wt% KCl, 20wt% CaF and 20wt% BaCl 2 to obtain covering agent; prepare refining agent: mix 54wt% KCl, 18wt% BaCl 2 , 24wt% Cacl 2 was mixed with 4wt% MgCO 3 to obtain a refining agent.
3.2在99%二氧化碳与1%六氟化硫混合气体保护的条件下,将2wt%合金原料的3.1中配制的覆盖剂、3.1中称取的纯Mg锭与纯Zn锭加至熔炼炉中,升温至730℃,加入3.1中称取的Mg-Gd中间合金和Mg-Nd中间合金,搅拌2min,升温至780℃,加入Mg-Y中间合金和Mg-Zr中间合金,搅拌2min,降温至730℃,加入2wt%合金原料的3.1中配制的精炼剂,搅拌12min后,吹入氩气精炼15min,升温至750℃,保温静置25min,降温至730℃保温静置15min,对镁熔体进行扒渣后,在690℃通过预热至300℃的水模具浇铸成圆棒,车削后550℃固溶处理24h,450℃预热60min后挤压成型,挤压温度为450℃,挤压比为33,挤压速率恒定。对挤压后的合金进行人工时效处理,时效温度为200℃,时效时间为72h,得到变形镁合金,包含Gd 10wt%,Y 4wt%,Zn 0.5wt%,Nd 2wt%,Zr 0.5wt%,杂质元素Si、Fe、Cu和Ni的总量小于0.02%,余量为Mg。3.2 Under the protection of the mixed gas of 99% carbon dioxide and 1% sulfur hexafluoride, add the covering agent prepared in 3.1 with 2wt% alloy raw material, the pure Mg ingot and the pure Zn ingot weighed in 3.1 into the melting furnace, Raise the temperature to 730°C, add the Mg-Gd master alloy and Mg-Nd master alloy weighed in 3.1, stir for 2 minutes, raise the temperature to 780°C, add the Mg-Y master alloy and Mg-Zr master alloy, stir for 2 minutes, and cool down to 730°C ℃, add the refining agent prepared in 3.1 of 2wt% alloy raw material, stir for 12 minutes, blow in argon gas for 15 minutes, heat up to 750 ℃, keep the temperature for 25 minutes, cool down to 730 ℃ and keep the temperature for 15 minutes, and conduct the magnesium melt After removing the slag, it is cast into a round bar at 690°C through a water mold preheated to 300°C. After turning, it is solution treated at 550°C for 24 hours, and then extruded after preheating at 450°C for 60 minutes. The extrusion temperature is 450°C and the extrusion ratio is 33, and the extrusion rate is constant. The extruded alloy was subjected to artificial aging treatment, the aging temperature was 200°C, and the aging time was 72h to obtain a deformed magnesium alloy, including Gd 10wt%, Y 4wt%, Zn 0.5wt%, Nd 2wt%, Zr 0.5wt%, The total amount of impurity elements Si, Fe, Cu and Ni is less than 0.02%, and the balance is Mg.
对3.2中得到的变形镁合金进行力学性能测试,得到其测试结果,见表3。The mechanical properties of the deformed magnesium alloy obtained in 3.2 were tested, and the test results were obtained, as shown in Table 3.
表3实施例3中变形镁合金的室温及高温力学性能Room temperature and high temperature mechanical properties of deformed magnesium alloy in Table 3 Example 3
实施例4Example 4
4.1将纯Mg锭、纯Zn锭、20%Mg-Gd中间合金、20%Mg-Y中间合金、20%Mg-Nd中间合金和30%Mg-Zr中间合金进行分割、去除氧化皮、除油和干燥,按元素含量Gd 12wt%,Y 3wt%,Zn 2wt%,Nd 3wt%,Zr 0.6wt%,余量为Mg的配比取料。配制覆盖剂:将40wt%的MgCl2,20wt%的KCl,20wt%的CaF与20wt%的BaCl2混合得到覆盖剂;配制精炼剂:将54wt%的KCl,18wt%的BaCl2,24wt%的Cacl2与4wt%的MgCO3混合得到精炼剂。4.1 Divide pure Mg ingots, pure Zn ingots, 20%Mg-Gd master alloys, 20%Mg-Y master alloys, 20%Mg-Nd master alloys and 30%Mg-Zr master alloys, remove scale and oil And drying, according to the element content Gd 12wt%, Y 3wt%, Zn 2wt%, Nd 3wt%, Zr 0.6wt%, the balance is the ratio of Mg. Prepare covering agent: mix 40wt% MgCl 2 , 20wt% KCl, 20wt% CaF and 20wt% BaCl 2 to obtain covering agent; prepare refining agent: mix 54wt% KCl, 18wt% BaCl 2 , 24wt% Cacl 2 was mixed with 4wt% MgCO 3 to obtain a refining agent.
4.2在99%二氧化碳与1%六氟化硫混合气体保护的条件下,将2wt%合金原料的4.1中配制的覆盖剂、4.1中称取的纯Mg锭与纯Zn锭加至熔炼炉中,升温至730℃,加入4.1中称取的Mg-Gd中间合金和Mg-Nd中间合金,搅拌2min,升温至780℃,加入Mg-Y中间合金和Mg-Zr中间合金,搅拌2min,降温至730℃,加入2wt%合金原料的4.1中配制的精炼剂,搅拌12min后,吹入氩气精炼15min,升温至780℃,保温静置25min,降温至730℃保温静置15min,对镁熔体进行扒渣后,在690℃通过预热至200℃的水模具浇铸成圆棒,车削后500℃固溶处理24h,430℃预热60min后挤压成型,挤压温度为430℃,挤压比为33,挤压速率恒定。对挤压后的合金进行人工时效处理,时效温度为200℃,时效时间为72h,得到变形镁合金,包含Gd 12wt%,Y 3wt%,Zn 2wt%,Nd 3wt%,Zr 0.6wt%,杂质元素Si、Fe、Cu和Ni的总量小于0.02%,余量为Mg。4.2 Under the protection of 99% carbon dioxide and 1% sulfur hexafluoride mixed gas, add the covering agent prepared in 4.1 with 2wt% alloy raw materials, the pure Mg ingot and pure Zn ingot weighed in 4.1 into the melting furnace, Raise the temperature to 730°C, add the Mg-Gd master alloy and Mg-Nd master alloy weighed in 4.1, stir for 2 minutes, raise the temperature to 780°C, add the Mg-Y master alloy and Mg-Zr master alloy, stir for 2 minutes, and cool down to 730°C ℃, add the refining agent prepared in 4.1 of 2wt% alloy raw material, stir for 12 minutes, blow in argon gas for refining for 15 minutes, heat up to 780 ℃, keep it for 25 minutes, cool down to 730 ℃ for 15 minutes, and conduct the magnesium melt After removing the slag, it is cast into a round bar at 690°C through a water mold preheated to 200°C. After turning, it is solution treated at 500°C for 24 hours, and then extruded after preheating at 430°C for 60 minutes. The extrusion temperature is 430°C, and the extrusion ratio is 33, and the extrusion rate is constant. The extruded alloy was subjected to artificial aging treatment, the aging temperature was 200°C, and the aging time was 72h to obtain a deformed magnesium alloy containing Gd 12wt%, Y 3wt%, Zn 2wt%, Nd 3wt%, Zr 0.6wt%, impurities The total amount of elements Si, Fe, Cu and Ni is less than 0.02%, and the balance is Mg.
对4.2中得到的变形镁合金进行力学性能测试,得到其测试结果,见表4。The mechanical properties of the deformed magnesium alloy obtained in 4.2 were tested, and the test results were obtained, as shown in Table 4.
表4实施例4中变形镁合金的室温及高温力学性能Room temperature and high temperature mechanical properties of deformed magnesium alloy in Table 4 Example 4
对比例comparative example
表5英国Elektron公司WE54的力学性能Table 5 Mechanical properties of WE54 from Elektron, UK
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。The above is only a preferred embodiment of the present invention, it should be pointed out that, for those of ordinary skill in the art, without departing from the principle of the present invention, some improvements and modifications can also be made, and these improvements and modifications can also be made. It should be regarded as the protection scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210344403.9A CN102828094B (en) | 2012-09-17 | 2012-09-17 | Deforming magnesium alloy and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210344403.9A CN102828094B (en) | 2012-09-17 | 2012-09-17 | Deforming magnesium alloy and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102828094A true CN102828094A (en) | 2012-12-19 |
CN102828094B CN102828094B (en) | 2014-10-22 |
Family
ID=47331400
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201210344403.9A Active CN102828094B (en) | 2012-09-17 | 2012-09-17 | Deforming magnesium alloy and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102828094B (en) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104328319A (en) * | 2014-10-30 | 2015-02-04 | 华南理工大学 | Biomedical degradable Mg-Gd-Nd-Zn-Zr alloy, and preparation method and application thereof |
CN104651692A (en) * | 2013-11-20 | 2015-05-27 | 沈阳工业大学 | High-strength and -toughness rare earth magnesium alloy and preparation method thereof |
CN104651693A (en) * | 2013-11-22 | 2015-05-27 | 北京有色金属研究总院 | Microscale Al-containing rare earth wrought magnesium alloy and preparation method thereof |
CN107354356A (en) * | 2017-06-28 | 2017-11-17 | 中国科学院长春应用化学研究所 | A kind of sand casting magnesium alloy and preparation method thereof |
CN107354357A (en) * | 2017-06-28 | 2017-11-17 | 中国科学院长春应用化学研究所 | A kind of wrought magnesium alloy and preparation method thereof |
CN107858616A (en) * | 2017-12-12 | 2018-03-30 | 重庆市科学技术研究院 | A kind of high-strength high-plasticity Mg Gd Y Zn Nd Zr cast magnesium alloys and preparation method thereof |
CN108411176A (en) * | 2018-06-20 | 2018-08-17 | 中国科学院长春应用化学研究所 | A kind of heat resisting magnesium-rare earth alloy and preparation method thereof |
CN109023182A (en) * | 2018-08-02 | 2018-12-18 | 安徽恒利增材制造科技有限公司 | A kind of ZK60 magnesium alloy heat treatment process and its performance study |
CN109594028A (en) * | 2019-01-18 | 2019-04-09 | 北京工业大学 | A kind of deformation heat treatment method of high-performance deformation magnesium-rare earth toughening |
CN109666832A (en) * | 2019-02-22 | 2019-04-23 | 中国科学院长春应用化学研究所 | High-intensity thermal deformation resistant magnesium alloy and preparation method thereof |
CN111719099A (en) * | 2020-05-15 | 2020-09-29 | 江苏科技大学 | Aging Microstructure Control Method of Mg-RE Alloy Based on Pre-deformation |
CN115029595A (en) * | 2022-06-13 | 2022-09-09 | 镁高镁诺奖(铜川)新材料有限公司 | Magnesium alloy wire and preparation method thereof |
CN115449685A (en) * | 2022-09-28 | 2022-12-09 | 洛阳理工学院 | Wrought magnesium alloy and preparation method thereof |
RU2812104C1 (en) * | 2023-04-07 | 2024-01-22 | Федеральное государственное бюджетное учреждение науки Институт металлургии и материаловедения им. А.А. Байкова Российской академии наук (ИМЕТ РАН) | Method for processing magnesium alloys with yttrium and gadolinium |
CN117660819A (en) * | 2024-01-25 | 2024-03-08 | 龙南龙钇重稀土科技股份有限公司 | Gao Jiangke magnesium alloy and preparation method thereof |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1241642A (en) * | 1999-07-09 | 2000-01-19 | 上海交通大学 | Plastic-deformation fireproof magnesium alloy and its smelting and plastic deformation process |
CN1587430A (en) * | 2004-08-12 | 2005-03-02 | 上海交通大学 | Deformed magnesium alloy and its casting and deforming processing process |
CN101008060A (en) * | 2006-11-30 | 2007-08-01 | 中国科学院长春应用化学研究所 | Heat-proof magnesium-base rare earth alloy and its preparation method |
CN101191168A (en) * | 2006-11-23 | 2008-06-04 | 北京有色金属研究总院 | Magnesium alloy and preparation method thereof |
CN101255517A (en) * | 2007-11-28 | 2008-09-03 | 兰州理工大学 | a magnesium alloy |
CN101760683A (en) * | 2008-12-24 | 2010-06-30 | 沈阳铸造研究所 | High-strength casting magnesium alloy and melting method thereof |
CN101857934A (en) * | 2010-06-23 | 2010-10-13 | 周天承 | Heat-resistant magnesium alloy and preparation method thereof |
CN101880806A (en) * | 2010-06-23 | 2010-11-10 | 周天承 | Heatproof magnesium alloy and preparation method thereof |
CN102330006A (en) * | 2010-07-13 | 2012-01-25 | 比亚迪股份有限公司 | Wrought magnesium alloy and preparation method thereof |
CN102337441A (en) * | 2011-10-27 | 2012-02-01 | 哈尔滨工业大学 | Ultrahigh-strength rare earth-magnesium alloy board and preparation method thereof |
CN102392165A (en) * | 2011-12-28 | 2012-03-28 | 东北大学 | Wrought magnesium alloy with high intensity and method for preparing its extruded material |
KR20120079638A (en) * | 2011-01-05 | 2012-07-13 | 강호길 | Mg alloy and the manufacturing method of the same |
-
2012
- 2012-09-17 CN CN201210344403.9A patent/CN102828094B/en active Active
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1241642A (en) * | 1999-07-09 | 2000-01-19 | 上海交通大学 | Plastic-deformation fireproof magnesium alloy and its smelting and plastic deformation process |
CN1587430A (en) * | 2004-08-12 | 2005-03-02 | 上海交通大学 | Deformed magnesium alloy and its casting and deforming processing process |
CN101191168A (en) * | 2006-11-23 | 2008-06-04 | 北京有色金属研究总院 | Magnesium alloy and preparation method thereof |
CN101008060A (en) * | 2006-11-30 | 2007-08-01 | 中国科学院长春应用化学研究所 | Heat-proof magnesium-base rare earth alloy and its preparation method |
CN101255517A (en) * | 2007-11-28 | 2008-09-03 | 兰州理工大学 | a magnesium alloy |
CN101760683A (en) * | 2008-12-24 | 2010-06-30 | 沈阳铸造研究所 | High-strength casting magnesium alloy and melting method thereof |
CN101857934A (en) * | 2010-06-23 | 2010-10-13 | 周天承 | Heat-resistant magnesium alloy and preparation method thereof |
CN101880806A (en) * | 2010-06-23 | 2010-11-10 | 周天承 | Heatproof magnesium alloy and preparation method thereof |
CN102330006A (en) * | 2010-07-13 | 2012-01-25 | 比亚迪股份有限公司 | Wrought magnesium alloy and preparation method thereof |
KR20120079638A (en) * | 2011-01-05 | 2012-07-13 | 강호길 | Mg alloy and the manufacturing method of the same |
CN102337441A (en) * | 2011-10-27 | 2012-02-01 | 哈尔滨工业大学 | Ultrahigh-strength rare earth-magnesium alloy board and preparation method thereof |
CN102392165A (en) * | 2011-12-28 | 2012-03-28 | 东北大学 | Wrought magnesium alloy with high intensity and method for preparing its extruded material |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104651692A (en) * | 2013-11-20 | 2015-05-27 | 沈阳工业大学 | High-strength and -toughness rare earth magnesium alloy and preparation method thereof |
CN104651693A (en) * | 2013-11-22 | 2015-05-27 | 北京有色金属研究总院 | Microscale Al-containing rare earth wrought magnesium alloy and preparation method thereof |
CN104651693B (en) * | 2013-11-22 | 2017-05-17 | 北京有色金属研究总院 | Microscale Al-containing rare earth wrought magnesium alloy and preparation method thereof |
CN104328319A (en) * | 2014-10-30 | 2015-02-04 | 华南理工大学 | Biomedical degradable Mg-Gd-Nd-Zn-Zr alloy, and preparation method and application thereof |
CN107354356A (en) * | 2017-06-28 | 2017-11-17 | 中国科学院长春应用化学研究所 | A kind of sand casting magnesium alloy and preparation method thereof |
CN107354357A (en) * | 2017-06-28 | 2017-11-17 | 中国科学院长春应用化学研究所 | A kind of wrought magnesium alloy and preparation method thereof |
CN107354357B (en) * | 2017-06-28 | 2019-10-25 | 中国科学院长春应用化学研究所 | A kind of wrought magnesium alloy and preparation method thereof |
CN107858616A (en) * | 2017-12-12 | 2018-03-30 | 重庆市科学技术研究院 | A kind of high-strength high-plasticity Mg Gd Y Zn Nd Zr cast magnesium alloys and preparation method thereof |
CN108411176A (en) * | 2018-06-20 | 2018-08-17 | 中国科学院长春应用化学研究所 | A kind of heat resisting magnesium-rare earth alloy and preparation method thereof |
CN109023182A (en) * | 2018-08-02 | 2018-12-18 | 安徽恒利增材制造科技有限公司 | A kind of ZK60 magnesium alloy heat treatment process and its performance study |
CN109594028B (en) * | 2019-01-18 | 2020-10-16 | 北京工业大学 | A deformation heat treatment method for toughening of high-performance deformed rare earth magnesium alloy |
CN109594028A (en) * | 2019-01-18 | 2019-04-09 | 北京工业大学 | A kind of deformation heat treatment method of high-performance deformation magnesium-rare earth toughening |
CN109666832A (en) * | 2019-02-22 | 2019-04-23 | 中国科学院长春应用化学研究所 | High-intensity thermal deformation resistant magnesium alloy and preparation method thereof |
CN111719099A (en) * | 2020-05-15 | 2020-09-29 | 江苏科技大学 | Aging Microstructure Control Method of Mg-RE Alloy Based on Pre-deformation |
CN115029595A (en) * | 2022-06-13 | 2022-09-09 | 镁高镁诺奖(铜川)新材料有限公司 | Magnesium alloy wire and preparation method thereof |
CN115449685A (en) * | 2022-09-28 | 2022-12-09 | 洛阳理工学院 | Wrought magnesium alloy and preparation method thereof |
CN115449685B (en) * | 2022-09-28 | 2024-04-05 | 洛阳理工学院 | A deformed magnesium alloy and a preparation method thereof |
RU2812104C1 (en) * | 2023-04-07 | 2024-01-22 | Федеральное государственное бюджетное учреждение науки Институт металлургии и материаловедения им. А.А. Байкова Российской академии наук (ИМЕТ РАН) | Method for processing magnesium alloys with yttrium and gadolinium |
CN117660819A (en) * | 2024-01-25 | 2024-03-08 | 龙南龙钇重稀土科技股份有限公司 | Gao Jiangke magnesium alloy and preparation method thereof |
CN117660819B (en) * | 2024-01-25 | 2024-05-07 | 龙南龙钇重稀土科技股份有限公司 | Gao Jiangke magnesium-dissolving alloy and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
CN102828094B (en) | 2014-10-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102828094A (en) | Deforming magnesium alloy and preparation method thereof | |
CN102978460B (en) | Al-Fe-Ni-RE aluminum alloy, and preparation method and power cable thereof | |
CN102732763B (en) | High-strength Mg-Gd-Y-Zn-Mn alloy | |
CN104018050B (en) | A kind of preparation method of rare earth magnesium alloy | |
Wang et al. | A high strength and ductility Mg–Zn–Al–Cu–Mn magnesium alloy | |
CN103103382B (en) | Al-Fe-Rh-RE aluminium alloy and preparation method thereof and power cable | |
CN103103396B (en) | Al-Fe-Hf-RE aluminium alloy and preparation method thereof and power cable | |
CN103103388B (en) | Al-Fe-Cr-RE aluminium alloy and preparation method thereof and power cable | |
CN102978478B (en) | Al-Fe-Mn-RE aluminium alloy and preparation method thereof and power cable | |
CN102978471B (en) | Al-Fe-Ga-RE aluminium alloy and preparation method thereof and power cable | |
CN108330360B (en) | high-Zn-content high-strength-toughness extrusion deformation aluminum-lithium alloy and preparation method thereof | |
CN113737071B (en) | Heat-resistant magnesium alloy and preparation method and application thereof | |
CN104032195A (en) | Efficiently-extrudable low-cost high-performance heat-conducting magnesium alloy and preparation method thereof | |
CN109837438B (en) | Low-cost high-strength wrought magnesium alloy and preparation method thereof | |
CN107201472A (en) | Sand casting magnesium-rare earth and preparation method thereof | |
CN102383013A (en) | Wrought magnesium alloy and preparation method thereof as well as wrought magnesium alloy product and preparation method thereof | |
CN108130443A (en) | Rare earth Al-Ti-B alloy and preparation method thereof | |
CN102978477B (en) | Al-Fe-Ru-RE aluminium alloy and preparation method thereof and power cable | |
CN111254333B (en) | A kind of multi-element high-strength corrosion-resistant deformed magnesium alloy and preparation method thereof | |
CN105154733B (en) | A kind of non-rare earth cast magnesium alloy and preparation method thereof | |
CN102978456B (en) | Al-Fe-Li-RE aluminium alloy and preparation method thereof and power cable | |
CN102978464B (en) | Al-Fe-Ti-RE aluminum alloy, and preparation method and power cable thereof | |
CN109930044A (en) | High-toughness heat-resistant Mg-Gd-Y alloy and preparation method thereof suitable for gravitational casting | |
CN103014419B (en) | Al-Fe-Ge-RE aluminium alloy and preparation method thereof as well as power cable | |
CN102277521A (en) | High-temperature high-tenacity single-phase solid-solution magnesium rare earth base alloy and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |