CN102827446A - Temperature response type injectable hydrogel and preparation method and usage thereof - Google Patents
Temperature response type injectable hydrogel and preparation method and usage thereof Download PDFInfo
- Publication number
- CN102827446A CN102827446A CN2012103403039A CN201210340303A CN102827446A CN 102827446 A CN102827446 A CN 102827446A CN 2012103403039 A CN2012103403039 A CN 2012103403039A CN 201210340303 A CN201210340303 A CN 201210340303A CN 102827446 A CN102827446 A CN 102827446A
- Authority
- CN
- China
- Prior art keywords
- component
- preparation
- hydrogel
- cyclodextrin
- response type
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000017 hydrogel Substances 0.000 title claims abstract description 26
- 238000002360 preparation method Methods 0.000 title claims abstract description 15
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 28
- WHGYBXFWUBPSRW-FOUAGVGXSA-N beta-cyclodextrin Chemical group OC[C@H]([C@H]([C@@H]([C@H]1O)O)O[C@H]2O[C@@H]([C@@H](O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O3)[C@H](O)[C@H]2O)CO)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@@H]3O[C@@H]1CO WHGYBXFWUBPSRW-FOUAGVGXSA-N 0.000 claims abstract description 27
- 239000000463 material Substances 0.000 claims abstract description 13
- 239000003937 drug carrier Substances 0.000 claims abstract description 4
- 208000005189 Embolism Diseases 0.000 claims abstract description 3
- 229920000858 Cyclodextrin Polymers 0.000 claims description 24
- 239000001116 FEMA 4028 Substances 0.000 claims description 24
- 235000011175 beta-cyclodextrine Nutrition 0.000 claims description 24
- 229960004853 betadex Drugs 0.000 claims description 24
- 238000000034 method Methods 0.000 claims description 15
- 238000002347 injection Methods 0.000 claims description 12
- 239000007924 injection Substances 0.000 claims description 12
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 claims description 9
- 239000000203 mixture Substances 0.000 claims description 9
- 238000000502 dialysis Methods 0.000 claims description 7
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 claims description 6
- -1 cholesteryl ester Chemical class 0.000 claims description 5
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 claims description 4
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 claims description 4
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 claims description 4
- 239000002253 acid Substances 0.000 claims description 4
- 239000007864 aqueous solution Substances 0.000 claims description 4
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 claims description 4
- KHIWWQKSHDUIBK-UHFFFAOYSA-N periodic acid Chemical compound OI(=O)(=O)=O KHIWWQKSHDUIBK-UHFFFAOYSA-N 0.000 claims description 4
- 239000000047 product Substances 0.000 claims description 4
- FYSNRJHAOHDILO-UHFFFAOYSA-N thionyl chloride Chemical compound ClS(Cl)=O FYSNRJHAOHDILO-UHFFFAOYSA-N 0.000 claims description 4
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 claims description 3
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Substances [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 claims description 3
- 239000011230 binding agent Substances 0.000 claims description 2
- 238000005660 chlorination reaction Methods 0.000 claims description 2
- 150000001875 compounds Chemical class 0.000 claims description 2
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 claims description 2
- 239000000376 reactant Substances 0.000 claims description 2
- 229910000029 sodium carbonate Inorganic materials 0.000 claims description 2
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 claims 7
- 238000005576 amination reaction Methods 0.000 claims 3
- 238000007037 hydroformylation reaction Methods 0.000 claims 3
- 229920003171 Poly (ethylene oxide) Polymers 0.000 claims 2
- 125000004423 acyloxy group Chemical group 0.000 claims 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims 1
- 238000006386 neutralization reaction Methods 0.000 claims 1
- 235000015320 potassium carbonate Nutrition 0.000 claims 1
- 239000002244 precipitate Substances 0.000 claims 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 claims 1
- 235000017550 sodium carbonate Nutrition 0.000 claims 1
- 230000008961 swelling Effects 0.000 claims 1
- 239000000499 gel Substances 0.000 abstract description 47
- 239000004698 Polyethylene Substances 0.000 abstract description 14
- 229920000573 polyethylene Polymers 0.000 abstract description 14
- 229920002307 Dextran Polymers 0.000 abstract description 8
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 abstract description 6
- 230000004043 responsiveness Effects 0.000 abstract description 2
- 238000004132 cross linking Methods 0.000 description 11
- 239000003814 drug Substances 0.000 description 11
- 229940079593 drug Drugs 0.000 description 9
- 239000003431 cross linking reagent Substances 0.000 description 8
- 238000011065 in-situ storage Methods 0.000 description 7
- 239000002202 Polyethylene glycol Substances 0.000 description 5
- 230000003993 interaction Effects 0.000 description 5
- 229920001400 block copolymer Polymers 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 239000012530 fluid Substances 0.000 description 4
- 229920001223 polyethylene glycol Polymers 0.000 description 4
- 238000010382 chemical cross-linking Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 231100000331 toxic Toxicity 0.000 description 3
- 230000002588 toxic effect Effects 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000036760 body temperature Effects 0.000 description 2
- HVYWMOMLDIMFJA-DPAQBDIFSA-N cholesterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 HVYWMOMLDIMFJA-DPAQBDIFSA-N 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- 238000004108 freeze drying Methods 0.000 description 2
- KJFMBFZCATUALV-UHFFFAOYSA-N phenolphthalein Chemical compound C1=CC(O)=CC=C1C1(C=2C=CC(O)=CC=2)C2=CC=CC=C2C(=O)O1 KJFMBFZCATUALV-UHFFFAOYSA-N 0.000 description 2
- 102000004169 proteins and genes Human genes 0.000 description 2
- 108090000623 proteins and genes Proteins 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000013268 sustained release Methods 0.000 description 2
- 239000012730 sustained-release form Substances 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- FALRKNHUBBKYCC-UHFFFAOYSA-N 2-(chloromethyl)pyridine-3-carbonitrile Chemical compound ClCC1=NC=CC=C1C#N FALRKNHUBBKYCC-UHFFFAOYSA-N 0.000 description 1
- BRLQWZUYTZBJKN-UHFFFAOYSA-N Epichlorohydrin Chemical compound ClCC1CO1 BRLQWZUYTZBJKN-UHFFFAOYSA-N 0.000 description 1
- RVGRUAULSDPKGF-UHFFFAOYSA-N Poloxamer Chemical compound C1CO1.CC1CO1 RVGRUAULSDPKGF-UHFFFAOYSA-N 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 150000001263 acyl chlorides Chemical class 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 210000004204 blood vessel Anatomy 0.000 description 1
- 150000007942 carboxylates Chemical class 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 235000012000 cholesterol Nutrition 0.000 description 1
- WLNARFZDISHUGS-MIXBDBMTSA-N cholesteryl hemisuccinate Chemical compound C1C=C2C[C@@H](OC(=O)CCC(O)=O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 WLNARFZDISHUGS-MIXBDBMTSA-N 0.000 description 1
- 238000010668 complexation reaction Methods 0.000 description 1
- 238000013267 controlled drug release Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 239000002552 dosage form Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000003073 embolic effect Effects 0.000 description 1
- 230000009969 flowable effect Effects 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229920001477 hydrophilic polymer Polymers 0.000 description 1
- 229920013747 hydroxypolyethylene Polymers 0.000 description 1
- JJTUDXZGHPGLLC-UHFFFAOYSA-N lactide Chemical compound CC1OC(=O)C(C)OC1=O JJTUDXZGHPGLLC-UHFFFAOYSA-N 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 210000005036 nerve Anatomy 0.000 description 1
- 229940044476 poloxamer 407 Drugs 0.000 description 1
- 229920001992 poloxamer 407 Polymers 0.000 description 1
- 229920001420 poly(caprolactone-co-lactic acid) Polymers 0.000 description 1
- 229920001610 polycaprolactone Polymers 0.000 description 1
- 239000004632 polycaprolactone Substances 0.000 description 1
- 229940117828 polylactic acid-polyglycolic acid copolymer Drugs 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 229910000027 potassium carbonate Inorganic materials 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- 229940014800 succinic anhydride Drugs 0.000 description 1
- 238000002054 transplantation Methods 0.000 description 1
Images
Landscapes
- Materials For Medical Uses (AREA)
- Medicinal Preparation (AREA)
Abstract
本发明涉及一种温度响应型可注射水凝胶及其制备方法和用途,所述水凝胶由组分A、组分B和水构成;其中组分A为胆固醇-聚乙二醇-胆固醇;组分B为氨基化β-环糊精接枝醛化葡聚糖。本发明制备过程简便,制备的凝胶有一定的强度和韧性,有自修复性,与现有技术相比改善了凝胶性能的可控性以及进一步提高了凝胶的生物相容性;本发明制备的凝胶具有生物降解性能,能被人体代谢;具有温度响应性及可注射性,可用于药物载体、栓塞材料以及组织工程材料。
The present invention relates to a temperature-responsive injectable hydrogel and its preparation method and application. The hydrogel is composed of component A, component B and water; wherein component A is cholesterol-polyethylene glycol-cholesterol ; Component B is aminated β-cyclodextrin grafted formaldehyde dextran. The preparation process of the present invention is simple and convenient, the prepared gel has certain strength and toughness, has self-healing property, improves the controllability of the gel performance and further improves the biocompatibility of the gel compared with the prior art; The gel prepared by the invention has biodegradability and can be metabolized by the human body; it has temperature responsiveness and injectability, and can be used as a drug carrier, embolism material and tissue engineering material.
Description
技术领域 technical field
本发明涉及高分子材料,特别涉及一种温度响应型可注射水凝胶及其制备方法和用途。 The invention relates to polymer materials, in particular to a temperature-responsive injectable hydrogel and its preparation method and application.
背景技术 Background technique
水凝胶是由亲水性的高分子互相交联而形成的具有三维网状结构的聚集体。它虽不能溶于水,但是这种聚集体上的亲水部分能结合大量的水,从而使整个凝胶溶胀。这种高的水分保持特性以及柔性特征使得水凝胶的结构十分类似于人体组织的结构。水凝胶的材料很容易改性、合成和调节性质,普通的水凝胶可以载入大量的水溶性药物,而改性后对油溶性药物也可以有很好的保持特性,更能载入活的细胞或是组织,作为生长的支架材料。 Hydrogels are aggregates with a three-dimensional network structure formed by cross-linking hydrophilic polymers. Although it is insoluble in water, the hydrophilic part of this aggregate can bind a large amount of water, so that the entire gel swells. Such high water retention properties and flexible characteristics make the structure of the hydrogel very similar to that of human tissue. Hydrogel materials are easy to modify, synthesize, and adjust properties. Ordinary hydrogels can be loaded with a large amount of water-soluble drugs, and after modification, they can also have good retention properties for oil-soluble drugs, and are more capable of loading Living cells or tissues that serve as scaffolding for growth.
原位水凝胶是指凝胶以溶液状态给药,注射入受药部位后,形成比较稳定的三维凝胶网络结构,从而在组织中固定和发挥作用。经典凝胶因为体积过大,医学上使用并不是很方便,被用做载药凝胶或是组织工程材料进行体内包埋或移植的时候必须在生物体表造成大的创口,才可以把凝胶植入体内,这样不仅价格昂贵,而且会给人体带来额外的伤害,也不适合在比较精细和脆弱的如血管和神经集中组织处使用。而原位凝胶,特别是可注射凝胶的出现就满足了药物控释和组织工程的要求,也一直是药剂学的研发热点。 In situ hydrogel means that the gel is administered in a solution state, and after being injected into the receiving site, a relatively stable three-dimensional gel network structure is formed to fix and function in the tissue. The classic gel is not very convenient to use in medicine because of its large volume. When it is used as a drug-loaded gel or tissue engineering material for embedding or transplantation in the body, it must cause a large wound on the surface of the organism to remove the gel. Glue is implanted into the body, which is not only expensive, but also causes additional damage to the human body, and is not suitable for use in relatively delicate and fragile tissues such as blood vessels and nerves. The emergence of in situ gels, especially injectable gels, meets the requirements of controlled drug release and tissue engineering, and has always been a research and development hotspot in pharmacy.
原位水凝胶的形成属于溶液-凝胶的转变,要求它的溶液在注射后立即发生相的转变,由可流动转变为半流动或者不流动。从分子结构上来说,就是高分子链很快地进行交联,形成足够多的交联点而限制链的运动从而限制流体的流动。这就要求有较短的交联时间和强的交联作用力,符合这种特征的交联方法有原位的化学交联和物理交联。 The formation of in situ hydrogel belongs to the solution-gel transition, requiring its solution to undergo a phase transition immediately after injection, from flowable to semi-fluid or immobile. From the perspective of molecular structure, the polymer chains are quickly cross-linked, forming enough cross-linking points to restrict the movement of the chains and thus the flow of fluids. This requires shorter cross-linking time and strong cross-linking force, and cross-linking methods that meet this feature include in-situ chemical cross-linking and physical cross-linking.
原位化学交联就是利用交联剂或可反应基团让分子链之间形成化学键。经典的原位化学交联方法有小分子交联剂交联、光化学交联、络合交联和特殊反应交联等。在用交联剂制备原位化学凝胶的时候,最常用的交联剂有环氧氯丙烷、甲醛和有机硅交联剂等,但因为这些交联剂毒性和残留毒性太大,因此只能在工程材料等方面使用,而不能在医学上应用于人体。 In-situ chemical crosslinking is to use crosslinking agents or reactive groups to form chemical bonds between molecular chains. The classic in-situ chemical cross-linking methods include small molecule cross-linking agent cross-linking, photochemical cross-linking, complexation cross-linking and special reaction cross-linking, etc. When using cross-linking agents to prepare in-situ chemical gels, the most commonly used cross-linking agents are epichlorohydrin, formaldehyde and silicone cross-linking agents, etc., but because these cross-linking agents are too toxic and residual toxic, only It can be used in engineering materials, etc., but cannot be applied to the human body in medicine.
物理交联凝胶就是指凝胶在形成的时候中分子链的交联是由非共价键的交互作用引起的。最常用于水凝胶形成的一些非共价键作用力有电荷交互作用力、氢键作用力、亲疏水作用力和主客体交互作用等等。由于不引入有毒的交联剂,所以在生物医用方面有良好的应用潜力。 Physically cross-linked gel means that the cross-linking of molecular chains in the gel is caused by the interaction of non-covalent bonds when the gel is formed. Some of the non-covalent interactions most commonly used in hydrogel formation are charge interactions, hydrogen bonds, hydrophilic-hydrophobic interactions, and host-guest interactions, among others. Since no toxic cross-linking agent is introduced, it has good application potential in biomedicine.
目前,常用于药物凝胶剂型以及组织工程材料的物理凝胶有poloxamer407(聚乙二醇-聚丙二醇-聚乙二醇的嵌段共聚物)等。当将这类物理凝胶配成水溶胶时,在低温下呈溶液态,可注射使用,在注射后发生溶胶--凝胶转化,粘度增加,流动性降低,变为凝胶态。在注射前混入药物或者是细胞,即可作为载药凝胶、栓塞材料或者是组织工程载体。但是,这类物理凝胶不仅制备和纯化过程较为复杂,更无法被人体所降解,在使用结束后很难从人体的循环系统去除,长期会对人体造成不利影响。另一类可降解的可注射凝胶为PCL-PEG-PCL(聚己内酯-聚乙二醇-聚己内酯嵌段共聚物)、PCLA-PEG-PCLA(丙交酯/己内酯共聚物-聚乙二醇-丙交酯/己内酯共聚物的嵌段共聚物)和PEO-PLGA-PEO[聚乙二醇-(聚乳酸--聚羟基乙酸共聚物)-聚乙二醇的嵌段共聚物]等。这类凝胶同样在注射后可发生溶胶--凝胶转化,但是制作过程复杂,纯化困难,凝胶性能可控性不好。 At present, physical gels commonly used in drug gel dosage forms and tissue engineering materials include poloxamer407 (polyethylene glycol-polypropylene glycol-polyethylene glycol block copolymer) and the like. When this type of physical gel is formulated into a hydrosol, it is in a solution state at low temperature and can be used for injection. After injection, a sol-gel transformation occurs, the viscosity increases, the fluidity decreases, and it becomes a gel state. Mixed with drugs or cells before injection, it can be used as drug-loaded gel, embolic material or tissue engineering carrier. However, the preparation and purification process of this kind of physical gel is not only complicated, but also cannot be degraded by the human body, and it is difficult to remove from the human body's circulatory system after use, which will cause adverse effects on the human body in the long run. Another class of degradable injectable gels are PCL-PEG-PCL (polycaprolactone-polyethylene glycol-polycaprolactone block copolymer), PCLA-PEG-PCLA (lactide/caprolactone Copolymer - block copolymer of polyethylene glycol-lactide/caprolactone copolymer) and PEO-PLGA-PEO [polyethylene glycol-(polylactic acid-polyglycolic acid copolymer)-polyethylene glycol Alcohol block copolymer] and so on. This type of gel can also undergo sol-gel transformation after injection, but the production process is complicated, purification is difficult, and the controllability of the gel performance is not good.
发明内容 Contents of the invention
针对现有技术的不足,本发明提供一种温度响应型可注射水凝胶及其制备方法和用途。 Aiming at the deficiencies of the prior art, the present invention provides a temperature-responsive injectable hydrogel and its preparation method and application.
本发明采取的具体技术方案如下: The concrete technical scheme that the present invention takes is as follows:
一、一种温度响应型可注射水凝胶,其特征在于:由组分A、组分B和水构成;所述组分A和组分B的质量和在水凝胶中的质量百分比为5%-50%,其中组分A为胆固醇-聚乙二醇-胆固醇;组分B为氨基化β-环糊精接枝醛化葡聚糖。 1. A temperature-responsive injectable hydrogel is characterized in that: it is made of component A, component B and water; the mass of the component A and component B and the mass percentage in the hydrogel are 5%-50%, of which component A is cholesterol-polyethylene glycol-cholesterol; component B is aminolated β-cyclodextrin grafted aldodextran.
作为优选项: As a preference:
所述组分A和组分B的质量和在水凝胶中的质量百分比为5%-30%。 The mass of the component A and the component B and the mass percentage in the hydrogel are 5%-30%.
所述组分A和组分B的质量比为组分A/组分B=(0.5-25)/1,组分B中β-环糊精的含量为(0.5-0.6)g/g。 The mass ratio of component A and component B is component A/component B=(0.5-25)/1, and the content of β-cyclodextrin in component B is (0.5-0.6) g/g.
所述水凝胶pH≥5。 The pH of the hydrogel is ≥5.
二、 一种温度响应型可注射水凝胶制备方法,包括如下步骤: 2. A method for preparing a temperature-responsive injectable hydrogel, comprising the following steps:
步骤一、制备胆固醇-聚乙二醇-胆固醇,得组分A,备用; Step 1, prepare cholesterol-polyethylene glycol-cholesterol, obtain component A, set aside;
步骤二、制备氨基化β-环糊精接枝醛化葡聚糖,得组分B,备用; Step 2. Prepare aminoated β-cyclodextrin grafted with aldoglucan to obtain component B for later use;
步骤三、将上步制得的组分A和组分B加水混合溶胀,即得。 Step 3: Mix and swell component A and component B prepared in the previous step with water to obtain the product.
作为优选项: As a preference:
所述组分A和组分B的质量和在水凝胶中的质量百分比为5%-30%; The mass of the component A and the component B and the mass percentage in the hydrogel are 5%-30%;
组分A和组分B的质量比为组分A/组分B=(0.5-25)/1; The mass ratio of component A to component B is component A/component B=(0.5-25)/1;
组分B中β-环糊精的含量为(0.5-0.6)g/g。 The content of β-cyclodextrin in component B is (0.5-0.6) g/g.
所述水凝胶pH≥5。 The pH of the hydrogel is ≥5.
the
上述方案中,胆固醇-聚乙二醇--胆固醇三嵌段化合物采用如下方法制备:用二氯亚砜将单丁二酸胆固醇酯的羧酸酰氯化后,再于二氧六环中与双羟基聚乙二醇或双氨基聚乙二醇反应,加入足够中和反应产生的酸的量的吡啶或三乙胺或碳酸钠或碳酸钾作为催化剂和缚酸剂,反应完全后得到的反应物于乙醚中沉淀、离心和干燥得到。 In the above scheme, the cholesterol-polyethylene glycol-cholesterol triblock compound is prepared by the following method: after the carboxylic acid chlorination of cholesteryl succinate with thionyl chloride, it is mixed with dioxane in dioxane Hydroxypolyethylene glycol or bisaminopolyethylene glycol reaction, adding enough pyridine or triethylamine or sodium carbonate or potassium carbonate as a catalyst and acid-binding agent to neutralize the acid produced by the reaction, the reactant obtained after the reaction is complete It was obtained by precipitation in ether, centrifugation and drying.
the
上述方案中,氨基化β-环糊精接枝醛化葡聚糖采用如下方法配制:将葡聚糖用高碘酸在水中氧化后,以水作介质透析,透析至透析介质的最终电导率低于1 μS/cm后,冷冻干燥制得的产物与氨基化的β-环糊精在水溶液中、30-50oC下反应完全后,以水作介质透析,透析至透析介质的最终电导率低于1 μS/cm后冷冻干燥得到。 In the above scheme, the aminoated β-cyclodextrin grafted aldodextran was prepared by the following method: after the dextran was oxidized with periodic acid in water, it was dialyzed with water as the medium, and dialyzed to the final conductivity of the dialysis medium. When it is lower than 1 μS/cm, the product obtained by freeze-drying and aminated β-cyclodextrin react completely in aqueous solution at 30-50 o C, then dialyze with water as the medium, and dialyze to the final conductivity of the dialysis medium Freeze-dried at a rate below 1 μS/cm.
the
本发明制得的水凝胶有如下特性: The hydrogel that the present invention makes has following characteristics:
1)在组分A和组分B的质量比为组分A/组分B=(0.5-25)/1,组分A和组分B的质量和为总质量的5%-30%时形成稳定凝胶。 1) When the mass ratio of component A and component B is component A/component B=(0.5-25)/1, the mass sum of component A and component B is 5%-30% of the total mass Forms a stable gel.
2)在常温下,总浓度为5-20%时,可通过注射器注射;在浓度为20%以上时,凝胶能脱模稳定存在。 2) At room temperature, when the total concentration is 5-20%, it can be injected through a syringe; when the concentration is above 20%, the gel can be demoulded and exists stably.
3) 在组分A和组分B的质量比为组分A/组分B=(0.5-2.5)/1、浓度为5-15 %时,在50 oC以上呈流动状态,常温下呈凝胶状态,可高温下注射,在体温左右凝胶化。 3) When the mass ratio of component A and component B is component A/component B=(0.5-2.5)/1, and the concentration is 5-15%, it is in a fluid state above 50 o C, and it is In gel state, it can be injected at high temperature and gels at around body temperature.
the
本发明制备过程简便,制备的凝胶有一定的强度和韧性,有自修复性,与现有技术相比改善了凝胶性能的可控性以及进一步提高了凝胶的生物相容性;本发明制备的凝胶具有生物降解性能,能被人体代谢;具有温度响应性及可注射性,可用于药物凝胶载体、栓塞材料以及组织工程材料。 The preparation process of the present invention is simple and convenient, the prepared gel has certain strength and toughness, has self-healing property, improves the controllability of the gel performance and further improves the biocompatibility of the gel compared with the prior art; The gel prepared by the invention has biodegradability and can be metabolized by the human body; it has temperature responsiveness and injectability, and can be used as a drug gel carrier, embolism material and tissue engineering material.
附图说明:Description of drawings:
图1:实施例2制得的凝胶。 Figure 1: Gel prepared in Example 2 .
具体实施方式 Detailed ways
下面结合具体实施例对本发明进一步的描述。本具体实施方式并非对其保护范围的限制。 The present invention will be further described below in conjunction with specific embodiments. This specific embodiment does not limit its protection scope.
实施例1 Example 1
步骤一:选择聚乙二醇2000作为亲水链段,利用琥珀酸酐作为交联剂,将胆固醇的单酯羧酸化,酰氯化和二次酯化得到胆固醇-聚乙二醇-2000-胆固醇,即组分A。 Step 1: Select polyethylene glycol 2000 as the hydrophilic segment, use succinic anhydride as a cross-linking agent, carboxylate the monoester of cholesterol, acyl chloride and secondary esterify to obtain cholesterol-polyethylene glycol-2000-cholesterol, That is component A.
步骤二:将分子量为40 kDa的葡聚糖于高碘酸/糖环摩尔比为20%的高碘酸水溶液中氧化,用去离子水透析至透析介质的最终电导率低于1 μS/cm后,冷冻干燥后制得的产物与氨基化的β-环糊精在水溶液中30-50oC下反应完全后,再次透析至透析介质的最终电导率低于1 μS/cm后冷冻干燥得到。用酚酞探针法测得β-环糊精的含量为0.5-0.6g/g,即组分B。 Step 2: Dextran with a molecular weight of 40 kDa was oxidized in a periodic acid aqueous solution with a periodic acid/sugar ring molar ratio of 20%, and dialyzed with deionized water until the final conductivity of the dialysis medium was lower than 1 μS/cm Finally, the product obtained after lyophilization and aminated β-cyclodextrin reacted completely in aqueous solution at 30-50 o C, and then dialyzed again until the final conductivity of the dialysis medium was lower than 1 μS/cm, and then lyophilized to obtain . The content of β-cyclodextrin measured by the phenolphthalein probe method is 0.5-0.6 g/g, which is component B.
步骤三:按照组分A和组分B的质量比为组分A/组分B=7/3,组分A和组分B的质量和是总质量的30%称取组分A、组分B、水,将组分A和组分B加水混合溶胀,即得得到稳定脱模凝胶,有一定强度和自修复性。 Step 3: According to the mass ratio of component A and component B, component A/component B=7/3, the mass sum of component A and component B is 30% of the total mass and weigh component A, component B Divide B and water, mix components A and B with water to swell, and obtain a stable release gel with certain strength and self-healing properties.
实施例2. Example 2.
按照实施例1的步骤一、步骤二中的方法制得胆固醇-聚乙二醇-2000-胆固醇,即组分A、β-环糊精的含量为0.5-0.6g/g的β-环糊精接枝醛化葡聚糖,即组分B。 Cholesterol-polyethylene glycol-2000-cholesterol is obtained according to the method in step 1 and step 2 of Example 1, that is, component A, β-cyclodextrin whose content of β-cyclodextrin is 0.5-0.6g/g Refined grafted dextran, component B.
按照组分A和组分B的质量比为组分A/组分B=7/3,组分A和组分B的质量和是总质量的20%称取组分A、组分B、水,将组分A和组分B加水混合溶胀,得到稳定凝胶,有一定强度和自修复性,对亲水性和蛋白类药物有缓释作用。 According to the mass ratio of component A and component B, component A/component B=7/3, the mass sum of component A and component B is 20% of the total mass and weigh component A, component B, Water, mix and swell components A and B with water to obtain a stable gel with certain strength and self-healing properties, and has a sustained release effect on hydrophilic and protein drugs.
实施例3. Example 3.
按照实施例1的步骤一、步骤二中的方法制得胆固醇-聚乙二醇-2000-胆固醇,即组分A、β-环糊精的含量为0.5-0.6g/g的β-环糊精接枝醛化葡聚糖,即组分B。 Cholesterol-polyethylene glycol-2000-cholesterol is obtained according to the method in step 1 and step 2 of Example 1, that is, component A, β-cyclodextrin whose content of β-cyclodextrin is 0.5-0.6g/g Refined grafted dextran, component B.
按照组分A和组分B的质量比为组分A/组分B= 1/1,组分A和组分B的质量和是总质量的20%称取组分A、组分B、水,将组分A和组分B加水混合溶胀,得到稳定凝胶,有一定强度、可注射性和自修复性,对亲水性和蛋白类药物有缓释作用。 According to the mass ratio of component A and component B, it is component A/component B=1/1, and the mass sum of component A and component B is 20% of total mass and takes component A, component B, Water, mix and swell components A and B with water to obtain a stable gel with certain strength, injectability and self-healing properties, and has a sustained release effect on hydrophilic and protein drugs.
实施例4. Example 4.
按照实施例1的步骤一、步骤二中的方法制得胆固醇-聚乙二醇-4000-胆固醇,即组分A、β-环糊精的含量为0.5-0.6g/g的β-环糊精接枝醛化葡聚糖,即组分B。 Cholesterol-polyethylene glycol-4000-cholesterol is obtained according to the method in step 1 and step 2 of Example 1, that is, component A, β-cyclodextrin whose content of β-cyclodextrin is 0.5-0.6g/g Refined grafted dextran, component B.
按照组分A和组分B的质量比为组分A/组分B= 4/5,组分A和组分B的质量和是总质量的20%称取组分A、组分B、水,将组分A和组分B加水混合溶胀,得到稳定凝胶,有高粘度、自修复性和可注射性,可用于药物载体及组织工程材料。 According to the mass ratio of component A and component B, it is component A/component B=4/5, and the mass sum of component A and component B is 20% of total mass and takes component A, component B, Water, mix and swell component A and component B with water to obtain a stable gel with high viscosity, self-healing and injectability, which can be used as a drug carrier and tissue engineering material.
实施例5. Example 5.
按照实施例1的步骤一、步骤二中的方法制得胆固醇-聚乙二醇-10000-胆固醇,即组分A、β-环糊精的含量为0.5-0.6g/g的β-环糊精接枝醛化葡聚糖,即组分B。 Cholesterol-polyethylene glycol-10000-cholesterol is obtained according to the method in step 1 and step 2 of Example 1, that is, component A, β-cyclodextrin whose content of β-cyclodextrin is 0.5-0.6g/g Refined grafted dextran, component B.
按照组分A和组分B的质量比为组分A/组分B=25/1,组分A和组分B的质量和是总质量的5%称取组分A、组分B、水,将组分A和组分B加水混合溶胀,得到稳定凝胶,此凝胶有一定强度和脆性。 According to the mass ratio of component A and component B, component A/component B=25/1, the mass sum of component A and component B is 5% of the total mass and weigh component A, component B, Water, mix component A and component B with water to swell to obtain a stable gel, which has certain strength and brittleness.
the
实施例6 Example 6
按照实施例1的步骤一、步骤二中的方法制得胆固醇-聚乙二醇2000-胆固醇,即组分A、β-环糊精的含量为0.5-0.6g/g的β-环糊精接枝醛化葡聚糖,即组分B。 Cholesterol-polyethylene glycol 2000-cholesterol was prepared according to the method in step 1 and step 2 of Example 1, that is, component A, β-cyclodextrin with a content of 0.5-0.6 g/g of β-cyclodextrin Graft aldoglucan, ie component B.
按照组分A和组分B的质量比为组分A/组分B=0.5/1,组分A和组分B的质量和是总质量的50%称取组分A、组分B、水,将组分A和组分B加水混合溶胀,得到稳定凝胶,此凝胶有较高强度和一定脆性。 According to the mass ratio of component A and component B, component A/component B=0.5/1, the mass sum of component A and component B is 50% of the total mass and weigh component A, component B, Water, mix and swell components A and B with water to obtain a stable gel with high strength and certain brittleness.
the
实施例7 Example 7
按照实施例1的步骤一、步骤二中的方法制得胆固醇-聚乙二醇-4000-胆固醇,即组分A、β-环糊精的含量为0.5-0.6g/g的β-环糊精接枝醛化葡聚糖,即组分B。 Cholesterol-polyethylene glycol-4000-cholesterol is obtained according to the method in step 1 and step 2 of Example 1, that is, component A, β-cyclodextrin whose content of β-cyclodextrin is 0.5-0.6g/g Refined grafted dextran, component B.
按照组分A和组分B的质量比为组分A/组分B= 1/1,组分A和组分B的质量和是总质量的15 %称取组分A、组分B、水,将组分A和组分B加水混合溶胀,得到稳定凝胶,有一定强度、可注射性和自修复性,在50 oC以上呈流动状态,常温下呈凝胶状态,可高温下注射,在体温左右凝胶化。可用于药物载体及组织工程材料。 According to the mass ratio of component A and component B, component A/component B=1/1, the mass sum of component A and component B is 15% of total mass and weighs component A, component B, Water, mix and swell components A and B with water to obtain a stable gel, which has certain strength, injectability and self-healing properties. It is in a fluid state above 50 o C, and it is in a gel state at room temperature. It can be used at high temperatures. When injected, it gels at body temperature. It can be used as drug carrier and tissue engineering material.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210340303.9A CN102827446B (en) | 2012-09-14 | 2012-09-14 | Temperature response type injectable hydrogel and preparation method and usage thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210340303.9A CN102827446B (en) | 2012-09-14 | 2012-09-14 | Temperature response type injectable hydrogel and preparation method and usage thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102827446A true CN102827446A (en) | 2012-12-19 |
CN102827446B CN102827446B (en) | 2014-06-18 |
Family
ID=47330774
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201210340303.9A Expired - Fee Related CN102827446B (en) | 2012-09-14 | 2012-09-14 | Temperature response type injectable hydrogel and preparation method and usage thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102827446B (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104189960A (en) * | 2014-09-15 | 2014-12-10 | 太原理工大学 | Preparation method for composite hydrogel |
CN105520906A (en) * | 2015-12-24 | 2016-04-27 | 中国药科大学 | Doxorubicin hydrochloride loaded temperature-sensitive self-healing hydrogel and preparation method thereof |
CN105754316A (en) * | 2016-05-03 | 2016-07-13 | 南京邮电大学 | High-strength super-molecular hydrogel and preparation method thereof |
CN105924685A (en) * | 2016-05-03 | 2016-09-07 | 南京邮电大学 | Double-component high-strength hydrogel and preparation method thereof |
CN107233629A (en) * | 2017-06-21 | 2017-10-10 | 深圳市第二人民医院 | Injection aquagel and its preparation and application |
CN107325300A (en) * | 2017-06-21 | 2017-11-07 | 深圳市第二人民医院 | A kind of pH sensitive aquagels and its preparation and application |
CN107754006A (en) * | 2016-08-20 | 2018-03-06 | 天津大学 | The application of the supermolecule copolymer aquagel of temperature-responsive |
CN108210985A (en) * | 2018-01-22 | 2018-06-29 | 陕西科技大学 | A kind of high-strength medical hydrogel based on human-like collagen and preparation method thereof |
CN109734934A (en) * | 2019-01-11 | 2019-05-10 | 闽江学院 | A kind of preparation method of nanocellulose thermosensitive gel |
CN110559470A (en) * | 2019-08-19 | 2019-12-13 | 浙江大学 | A kind of hydrogel vascular embolization material and shape memory embolization processing method |
CN115990134A (en) * | 2022-11-08 | 2023-04-21 | 四川大学华西医院 | Injectable hydrogel/nanogel drug-loaded slow-release system and preparation method and application thereof |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101066457A (en) * | 2007-06-11 | 2007-11-07 | 武汉大学 | A kind of injectable thermosensitive chitosan/methylcellulose gel and preparation method thereof |
CN101371933A (en) * | 2008-07-23 | 2009-02-25 | 武汉大学 | A temperature-sensitive biodegradable hydrogel and its preparation method and application |
CN101864069A (en) * | 2010-06-10 | 2010-10-20 | 武汉大学 | A kind of biodegradable hydrogel and its synthesis method |
-
2012
- 2012-09-14 CN CN201210340303.9A patent/CN102827446B/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101066457A (en) * | 2007-06-11 | 2007-11-07 | 武汉大学 | A kind of injectable thermosensitive chitosan/methylcellulose gel and preparation method thereof |
CN101371933A (en) * | 2008-07-23 | 2009-02-25 | 武汉大学 | A temperature-sensitive biodegradable hydrogel and its preparation method and application |
CN101864069A (en) * | 2010-06-10 | 2010-10-20 | 武汉大学 | A kind of biodegradable hydrogel and its synthesis method |
Non-Patent Citations (2)
Title |
---|
《Langmuir》 20081002 Frank van de Manakker,et al. Rheological behavior of self-assembling PEG-beta-cyclodextrin/PEG-cholesterol hydrogels 第12559-12567页 1-10 第24卷, * |
FRANK VAN DE MANAKKER,ET AL.: "Rheological behavior of self-assembling PEG-β-cyclodextrin/PEG-cholesterol hydrogels", 《LANGMUIR》, vol. 24, 2 October 2008 (2008-10-02), pages 12559 - 12567 * |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104189960B (en) * | 2014-09-15 | 2015-08-12 | 太原理工大学 | A kind of preparation method of composite aquogel |
CN104189960A (en) * | 2014-09-15 | 2014-12-10 | 太原理工大学 | Preparation method for composite hydrogel |
CN105520906B (en) * | 2015-12-24 | 2018-12-04 | 中国药科大学 | A kind of temperature sensitive self-healing hydrogel and preparation method thereof being loaded with doxorubicin hydrochloride |
CN105520906A (en) * | 2015-12-24 | 2016-04-27 | 中国药科大学 | Doxorubicin hydrochloride loaded temperature-sensitive self-healing hydrogel and preparation method thereof |
CN105754316A (en) * | 2016-05-03 | 2016-07-13 | 南京邮电大学 | High-strength super-molecular hydrogel and preparation method thereof |
CN105924685A (en) * | 2016-05-03 | 2016-09-07 | 南京邮电大学 | Double-component high-strength hydrogel and preparation method thereof |
CN105754316B (en) * | 2016-05-03 | 2017-12-29 | 南京邮电大学 | A kind of high intensity supramolecular hydrogel and preparation method thereof |
CN105924685B (en) * | 2016-05-03 | 2018-04-20 | 南京邮电大学 | A kind of double-component high-strength hydrogel and preparation method thereof |
CN107754006B (en) * | 2016-08-20 | 2020-11-27 | 天津大学 | Application of temperature-responsive supramolecular copolymer hydrogels |
CN107754006A (en) * | 2016-08-20 | 2018-03-06 | 天津大学 | The application of the supermolecule copolymer aquagel of temperature-responsive |
CN107233629B (en) * | 2017-06-21 | 2020-02-14 | 深圳市第二人民医院 | Injectable hydrogels and their preparation and use |
CN107325300B (en) * | 2017-06-21 | 2019-12-27 | 深圳市第二人民医院 | pH sensitive hydrogel and preparation and application thereof |
CN107325300A (en) * | 2017-06-21 | 2017-11-07 | 深圳市第二人民医院 | A kind of pH sensitive aquagels and its preparation and application |
CN107233629A (en) * | 2017-06-21 | 2017-10-10 | 深圳市第二人民医院 | Injection aquagel and its preparation and application |
CN108210985A (en) * | 2018-01-22 | 2018-06-29 | 陕西科技大学 | A kind of high-strength medical hydrogel based on human-like collagen and preparation method thereof |
CN109734934A (en) * | 2019-01-11 | 2019-05-10 | 闽江学院 | A kind of preparation method of nanocellulose thermosensitive gel |
CN109734934B (en) * | 2019-01-11 | 2021-11-02 | 闽江学院 | A kind of preparation method of nanocellulose thermosensitive gel |
CN110559470A (en) * | 2019-08-19 | 2019-12-13 | 浙江大学 | A kind of hydrogel vascular embolization material and shape memory embolization processing method |
CN115990134A (en) * | 2022-11-08 | 2023-04-21 | 四川大学华西医院 | Injectable hydrogel/nanogel drug-loaded slow-release system and preparation method and application thereof |
CN115990134B (en) * | 2022-11-08 | 2024-05-10 | 四川大学华西医院 | An injectable hydrogel/nanogel drug-carrying sustained-release system and its preparation method and use |
Also Published As
Publication number | Publication date |
---|---|
CN102827446B (en) | 2014-06-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102827446B (en) | Temperature response type injectable hydrogel and preparation method and usage thereof | |
Teng et al. | Recent development of alginate-based materials and their versatile functions in biomedicine, flexible electronics, and environmental uses | |
Zhang et al. | Hydrogels based on pH-responsive reversible carbon–nitrogen double-bond linkages for biomedical applications | |
Banks et al. | Chemical modification of alginate for controlled oral drug delivery | |
Mortisen et al. | Tailoring thermoreversible hyaluronan hydrogels by “click” chemistry and RAFT polymerization for cell and drug therapy | |
Li et al. | Designing hydrogels for controlled drug delivery | |
Tan et al. | Controlled gelation and degradation rates of injectable hyaluronic acid‐based hydrogels through a double crosslinking strategy | |
C Patel et al. | Recent patents on stimuli responsive hydrogel drug delivery system | |
CN102585303B (en) | A kind of chitosan/polylysine in situ gel and preparation method thereof | |
Aminabhavi et al. | Production of chitosan-based hydrogels for biomedical applications | |
Lu et al. | On-demand dissoluble diselenide-containing hydrogel | |
KR101379380B1 (en) | Drug Delivery Composition Comprising Biocompatible Crosslinked Hyaluronic Acid | |
CN106832342B (en) | A kind of preparation method of the aldehyde hydrazine cross-linking type injectable PNIPAM hydrogel of nano-starch particle reinforcement | |
KR102180045B1 (en) | dual-mode drug release hydrogel and method of fabricating the same | |
S. Verma et al. | Xanthan gum a versatile biopolymer: current status and future prospectus in hydro gel drug delivery | |
Marković et al. | Alginates and similar exopolysaccharides in biomedical application and pharmacy: Controled delivery of drugs | |
Nonsuwan et al. | Amino-carrageenan@ polydopamine microcomposites as initiators for the degradation of hydrogel by near-infrared irradiation for controlled drug release | |
Ishikawa et al. | N-hydroxysuccinimide bifunctionalized triblock cross-linker having hydrolysis property for a biodegradable and injectable hydrogel system | |
CN113599507A (en) | Preparation method of glucose-triggered active oxygen response injection type composite hydrogel | |
Chen et al. | Adhesive submucosal injection material based on the nonanal group-modified poly (vinyl alcohol)/α-cyclodextrin inclusion complex for endoscopic submucosal dissection | |
Shen et al. | Fabrication of low-temperature fast gelation β-cyclodextrin-based hydrogel-loaded medicine for wound dressings | |
Khan et al. | smart and active hydrogels in biotechnology—synthetic techniques and applications | |
CN107056983B (en) | Prepare orthogonal regulation mechanical performance and medicine-releasing performance double-network hydrogel method | |
JP2014528406A (en) | Multilayer implant for delivering therapeutic agents | |
Joshy et al. | An overview of the recent developments in hydrogels |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20140618 Termination date: 20160914 |
|
CF01 | Termination of patent right due to non-payment of annual fee |