CN102816216A - Polypeptide capable of inducing granulation and application thereof - Google Patents
Polypeptide capable of inducing granulation and application thereof Download PDFInfo
- Publication number
- CN102816216A CN102816216A CN2011101546372A CN201110154637A CN102816216A CN 102816216 A CN102816216 A CN 102816216A CN 2011101546372 A CN2011101546372 A CN 2011101546372A CN 201110154637 A CN201110154637 A CN 201110154637A CN 102816216 A CN102816216 A CN 102816216A
- Authority
- CN
- China
- Prior art keywords
- protein
- mip1
- peptide
- polypeptide
- mip2
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Peptides Or Proteins (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
Abstract
Description
技术领域 technical field
本发明涉及一种可使目标蛋白发生聚集或颗粒化的多肽(Multimerization-Inducing Peptide,MIP),利用所述多肽形成的聚集体(aggregate)或颗粒可应用于疫苗研制、诊断信号放大、纳米颗粒制作等用途。具体而言,本发明提供了一种可使目标蛋白发生聚集或颗粒化的多肽,其序列和相关编码序列,其用于使目标蛋白发生聚集或颗粒化的方法和用途,根据所述方法获得的蛋白颗粒,以及这些颗粒用于疫苗、诊断或纳米技术的用途。本发明还提供这类颗粒的体外组装机制和方法,及其用于疫苗、颗粒抗原或纳米颗粒的制备用途。The invention relates to a polypeptide (Multimerization-Inducing Peptide, MIP) that can aggregate or granulate a target protein. The aggregate or particle formed by the polypeptide can be used in vaccine development, diagnostic signal amplification, nanoparticle production etc. Specifically, the present invention provides a polypeptide capable of aggregating or granulating a target protein, its sequence and related coding sequences, and its method and use for aggregating or granulating a target protein. According to the method, protein particles, and the use of these particles for vaccines, diagnostics or nanotechnology. The invention also provides the in vitro assembly mechanism and method of such particles, and their preparation application for vaccines, particle antigens or nanoparticles.
背景技术 Background technique
在生物有机体的生命活动中,蛋白质-蛋白质相互作用普遍存在,如病毒组装过程中的单体-单体、子粒-子粒间、免疫系统中的抗原-抗体、生化反应中的酶-底物、信号传导中的效应分子-受体、病毒感染中的病毒-细胞受体以及等等,均是通过蛋白质-蛋白质的相互作用发挥其特有的生物学功能。生物化学和结构生物学揭示,蛋白质-蛋白质相互作用可通过疏水相互作用、范德华力、静电相互作用等形式进行,一般具有很高的特异性,其还可能诱发变构现象、级联效应。相互作用过程也是热力学和动力学的过程,伴随着熵、焓和自由能的变化。In the life activities of biological organisms, protein-protein interactions are ubiquitous, such as monomer-monomer, particle-particle in the virus assembly process, antigen-antibody in the immune system, enzyme-substrate in biochemical reactions, Effector molecules-receptors in signal transduction, virus-cell receptors in virus infection, etc., all exert their unique biological functions through protein-protein interactions. Biochemistry and structural biology have revealed that protein-protein interactions can be carried out through hydrophobic interactions, van der Waals forces, electrostatic interactions, etc., generally with high specificity, which may also induce allosteric phenomena and cascade effects. Interaction processes are also thermodynamic and kinetic processes, accompanied by changes in entropy, enthalpy and free energy.
在诸多的蛋白相互作用形式中,病毒衣壳独特地以少数的衣壳蛋白或包膜蛋白进行有序的排列聚集,可形成数十纳米甚至数百纳米的颗粒形式,其组装过程受到了严格的调控,从而,行使包裹基因组DNA/RNA,识别宿主细胞上的病毒受体、发生构象变化、脱衣壳等生物学功能。这些衣壳有不同的形态结构,如:球形、杆状、弹状、砖形、冠状、杯状、环状、轮状、肾形和嵌沙样等。但基本形态的对称型可分为4种,即螺旋对称、立体对称(主要为二十面体对称)、复合对称和复杂对称。其中以等二十面体对称最为普遍。Among the many forms of protein interaction, the virus capsid is uniquely arranged and aggregated with a small number of capsid proteins or envelope proteins, which can form particles of tens of nanometers or even hundreds of nanometers. The assembly process is strictly controlled. Therefore, it performs biological functions such as encapsulating genomic DNA/RNA, recognizing virus receptors on host cells, undergoing conformational changes, and uncapsiding. These capsids have different morphological structures, such as spherical, rod-shaped, elastic, brick-shaped, crown-shaped, cup-shaped, ring-shaped, wheel-shaped, kidney-shaped, and sand-embedded. However, the symmetry of the basic form can be divided into four types, namely spiral symmetry, three-dimensional symmetry (mainly icosahedral symmetry), compound symmetry and complex symmetry. Among them, the icosahedral symmetry is the most common.
人们通过基因工程的手段利用各种表达系统,如大肠杆菌、酵母、昆虫细胞、CHO细胞和哺乳动物细胞等,外源表达病毒的全部或部分衣壳蛋白,可模拟病毒进行衣壳的组装,获得类似于病毒形态和结构的人工衣壳,亦称病毒样颗粒(Virus Like Particle,VLP)。VLP具有与其来源的病毒相类似的结构特征和抗原性,且不含有病毒基因组核酸,具有良好的安全性,因此是一种理想的疫苗形式,如已经取得成功的基因工程重组乙肝疫苗、人乳头瘤病毒疫苗等。VLP还被证明可以插入或融合异源的抗原序列,产生嵌合颗粒并将外源抗原暴露展示在颗粒的表面。VLP还可经由化学偶联方法连接外源抗原,包括蛋白组分和非蛋白组分(如糖基),VLP这时也被称为载体。比起一般的单体或寡聚抗原,颗粒化抗原更易被机体的免疫系统识别而诱导相应的体液或细胞免疫(Grgacic EV,Ander son DA.Methods.2006.40:60-65)。VLP的大小属于纳米级别,已被证明可与金属原子结合而制备成纳米颗粒,可能具有与化学制备的纳米颗粒相同的性质,且具有病毒抗原的特性。People use various expression systems through genetic engineering, such as Escherichia coli, yeast, insect cells, CHO cells, and mammalian cells, to express all or part of the capsid protein of the virus exogenously, which can simulate the assembly of the virus capsid, Obtain artificial capsids similar to virus morphology and structure, also known as virus-like particles (Virus Like Particle, VLP). VLP has similar structural characteristics and antigenicity to the virus it is derived from, and does not contain viral genome nucleic acid, and has good safety, so it is an ideal form of vaccine, such as the genetically engineered recombinant hepatitis B vaccine, human papilla tumor virus vaccines, etc. VLPs have also been shown to insert or fuse heterologous antigen sequences, resulting in chimeric particles and displaying foreign antigens on the surface of the particles. VLP can also be linked to exogenous antigens via chemical coupling methods, including protein components and non-protein components (such as sugar groups), and VLP is also called a carrier at this time. Compared with general monomeric or oligomeric antigens, granulated antigens are more likely to be recognized by the body's immune system and induce corresponding humoral or cellular immunity (Grgacic EV, Anderson DA. Methods. 2006.40: 60-65). The size of VLP belongs to the nanometer level, and it has been proved that it can be combined with metal atoms to form nanoparticles, which may have the same properties as chemically prepared nanoparticles and have the characteristics of viral antigens.
VLP是一种有序的聚集形式,因此,可能存在关键的核心聚集元件。本发明就是基于这样的假设,而发明了通用的可诱导目标蛋白发生聚集和颗粒化的多肽。蛋白质的结构包括了多个行使不同功能的结构域。例如,HEV的衣壳蛋白包括S壳结构域、P1突出结构域和P2外突出结构域(Yamashita T,et al.PNAS.2009.106(31):12986-12991.Guu TS,et al.PNAS.2009.106(31):12992-12997)。一般认为,S结构域构成了衣壳的基层结构,而P结构域突出于颗粒表面,形成了抗原表位的结构域。VLPs are an ordered form of aggregation, therefore, there may be key core aggregation elements. The present invention is based on such a hypothesis, and invented a general-purpose polypeptide that can induce aggregation and granulation of target proteins. The structure of a protein includes multiple domains that perform different functions. For example, the capsid protein of HEV includes S shell domain, P1 protruding domain and P2 outer protruding domain (Yamashita T, et al.PNAS.2009.106 (31): 12986-12991.Guu TS, et al.PNAS.2009.106 (31): 12992-12997). It is generally believed that the S domain constitutes the basic structure of the capsid, while the P domain protrudes from the surface of the particle and forms the domain of the antigenic epitope.
蛋白质在外源表达时,某些N端的氨基酸序列或者N端融合多肽的引入常常有利于增加蛋白质的表达量以及改善蛋白质的折叠性质。某些多肽,如GST(谷胱甘肽S-转移酶)、Trx(硫氧还蛋白)、MBP(麦芽糖结合蛋白)、His Tag(串联组氨酸标签)等,常被用作融合蛋白与目标多肽进行融合表达,所获得的蛋白经常具有较高的产量、得以较好的折叠,且有利于进行亲和层析。这些融合蛋白的对应的商售pGEX、pTrxFUS、pMAL、pET质粒载体就是利用融合蛋白进行高效表达和纯化。本发明构建的表达载体中的MIP多肽能够辅助蛋白高产量表达和正确折叠,且诱发形成的颗粒能够从分子大小的性质上与一般的蛋白相区分,易于通过基于分子大小进行分离的纯化方式达到纯化的目的,如使用分子筛层析、非变性聚丙烯酰胺/琼脂糖电泳、超速离心等方法进行分离纯化。When the protein is expressed exogenously, the introduction of certain N-terminal amino acid sequences or N-terminal fusion polypeptides is often beneficial to increase the expression of the protein and improve the folding properties of the protein. Some polypeptides, such as GST (glutathione S-transferase), Trx (thioredoxin), MBP (maltose binding protein), His Tag (tandem histidine tag), etc., are often used as fusion proteins and The target polypeptide is expressed in fusion, and the obtained protein often has a higher yield, is better folded, and is conducive to affinity chromatography. The corresponding commercially available pGEX, pTrxFUS, pMAL, and pET plasmid vectors of these fusion proteins use fusion proteins for high-efficiency expression and purification. The MIP polypeptide in the expression vector constructed by the present invention can assist high-yield protein expression and correct folding, and the induced particles can be distinguished from general proteins in terms of molecular size, and can be easily achieved by purification methods based on molecular size separation. The purpose of purification, such as using molecular sieve chromatography, non-denaturing polyacrylamide/agarose electrophoresis, ultracentrifugation and other methods for separation and purification.
发明内容 Contents of the invention
在本发明中,除非另有说明,否则本文中使用的科学和技术名词具有本领域技术人员所通常理解的含义。并且,本文中所用的细胞培养、分子遗传学、核酸化学、免疫学实验室操作步骤均为相应领域内广泛使用的常规步骤。同时,为了更好地理解本发明,下面提供相关术语的定义和解释。In the present invention, unless otherwise specified, the scientific and technical terms used herein have the meanings commonly understood by those skilled in the art. Moreover, the laboratory operation steps of cell culture, molecular genetics, nucleic acid chemistry, and immunology used herein are all routine steps widely used in the corresponding fields. Meanwhile, in order to better understand the present invention, definitions and explanations of relevant terms are provided below.
根据本发明,术语“大肠杆菌表达系统”是指由大肠杆菌(菌株)与载体组成的表达系统,其中大肠杆菌(菌株)来源于市场上可得到的菌株,例如但不限于:GI698,ER2566,BL21(DE 3),B834(DE3),BLR(DE3)。According to the present invention, the term "Escherichia coli expression system" refers to an expression system composed of Escherichia coli (bacterial strain) and vector, wherein Escherichia coli (bacterial strain) is derived from commercially available bacterial strains, such as but not limited to: GI698, ER2566, BL21(DE 3), B834(DE3), BLR(DE3).
根据本发明,术语“载体(vector)”是指,可将多聚核苷酸插入其中的一种核酸运载工具。当载体能使插入的多核苷酸编码的蛋白获得表达时,载体称为表达载体。载体可以通过转化,转导或者转染导入宿主细胞,使其携带的遗传物质元件在宿主细胞中获得表达。载体是本领域技术人员公知的,包括但不限于:质粒;噬菌体;柯斯质粒等等。According to the present invention, the term "vector" refers to a nucleic acid delivery vehicle into which a polynucleotide can be inserted. When the vector is capable of achieving expression of the protein encoded by the inserted polynucleotide, the vector is called an expression vector. A vector can be introduced into a host cell by transformation, transduction or transfection, so that the genetic material elements it carries can be expressed in the host cell. Vectors are well known to those skilled in the art, including but not limited to: plasmids; bacteriophages; cosmids and the like.
根据本发明,术语“HEV ORF2”是指人戊型肝炎病毒(HEV)的ORF2,其序列是本领域公知的(参见,例如DDBJ数据登录号:D11092)。在本发明中,当涉及HEV ORF2的序列时,其使用DDBJ数据登录号:D11092所示的序列来进行描述。例如,表述“HEV ORF2编码的多肽的第370-435位氨基酸残基”中的第370-435位氨基酸残基是指,D11092编码的多肽的第370-435位氨基酸残基。然而,本领域技术人员理解,在HEV ORF2或其编码的多肽中,可天然产生或人工引入突变或变异(包括但不限于,置换,缺失和/或添加),而不影响其生物学功能。因此,在本发明中,术语“HEV ORF2”应包括所有此类序列,包括例如D11092所示的序列以及其天然或人工的变体。并且,当描述HEV ORF2(或其编码的多肽)的序列片段时,其不仅包括D11092(或其编码的多肽)的序列片段,还包括D11092(或其编码的多肽)的天然或人工变体中的相应序列片段。例如,表述“HEV ORF2编码的多肽的第370-435位氨基酸残基”包括,D11092编码的多肽的第370-435位氨基酸残基,以及D11092编码的多肽的变体(天然或人工)中的相应片段。根据本发明,表述“相应序列片段”或“相应片段”是指,当对序列进行最优比对时,即当序列进行比对以获得最高百分数同一性时,进行比较的序列中位于等同位置的片段。According to the present invention, the term "HEV ORF2" refers to the ORF2 of human hepatitis E virus (HEV), the sequence of which is known in the art (see, for example, DDBJ Data Accession No.: D11092). In the present invention, when referring to the sequence of HEV ORF2, it is described using the sequence shown in DDBJ data accession number: D11092. For example, the 370-435 amino acid residues in the expression "the 370-435 amino acid residues of the polypeptide encoded by HEV ORF2" refer to the 370-435 amino acid residues of the polypeptide encoded by D11092. However, those skilled in the art understand that in HEV ORF2 or its encoded polypeptide, mutations or variations (including but not limited to, substitutions, deletions and/or additions) can be naturally produced or artificially introduced without affecting its biological function. Therefore, in the present invention, the term "HEV ORF2" shall include all such sequences, including for example the sequence shown in D11092 and its natural or artificial variants. And, when describing the sequence fragments of HEV ORF2 (or its encoded polypeptides), it not only includes the sequence fragments of D11092 (or its encoded polypeptides), but also includes the natural or artificial variants of D11092 (or its encoded polypeptides). corresponding sequence fragments. For example, the expression "amino acid residues 370-435 of the polypeptide encoded by HEV ORF2" includes amino acid residues 370-435 of the polypeptide encoded by D11092, and the variants (natural or artificial) of the polypeptide encoded by D11092 corresponding fragment. According to the present invention, the expression "corresponding sequence fragment" or "corresponding fragment" means, when the sequences are optimally aligned, i.e. when the sequences are aligned for the highest percentage identity, the equivalent positions in the compared sequences fragments.
根据本发明,当在蛋白/多肽的背景中使用时,术语“变体”是指这样的蛋白,其氨基酸序列与参照蛋白/多肽(例如,本发明的MIP多肽)的氨基酸序列具有一个或多个(例如1-10个或1-5个或1-3个)氨基酸差异(例如,保守氨基酸置换),或者具有至少60%,80%,85%,90%,95%,96%,97%,98%,或99%的同一性,并且其保留了参照蛋白/多肽的必要特性。在本发明中,蛋白/多肽(例如,本发明的MIP多肽)的必要特性可以指,使与其融合或缀合的蛋白发生聚集或颗粒化的能力。According to the present invention, when used in the context of a protein/polypeptide, the term "variant" refers to a protein whose amino acid sequence has one or more differences from the amino acid sequence of a reference protein/polypeptide (e.g., a MIP polypeptide of the invention). (e.g. 1-10 or 1-5 or 1-3) amino acid differences (e.g. conservative amino acid substitutions), or have at least 60%, 80%, 85%, 90%, 95%, 96%, 97% %, 98%, or 99% identity, and it retains the essential properties of the reference protein/polypeptide. In the present invention, the essential property of the protein/polypeptide (eg, the MIP polypeptide of the present invention) may refer to the ability to aggregate or granulate the protein fused or conjugated thereto.
根据本发明,术语“同一性”用于指两个多肽之间或两个核酸之间序列的匹配情况。当两个进行比较的序列中的某个位置都被相同的碱基或氨基酸单体亚单元占据时(例如,两个DNA分子的每一个中的某个位置都被腺嘌呤占据,或两个多肽的每一个中的某个位置都被赖氨酸占据),那么各分子在该位置上是同一的。两个序列之间的“百分数同一性”是由这两个序列共有的匹配位置数目除以进行比较的位置数目×100的函数。例如,如果两个序列的10个位置中有6个匹配,那么这两个序列具有60%的同一性。例如,DNA序列CTGACT和CAGGTT共有50%的同一性(总共6个位置中有3个位置匹配)。通常,在将两个序列比对以产生最大同一性时进行比较。这样的比对可通过使用,例如,可通过计算机程序例如Align程序(DNAstar,Inc.)方便地进行的Needleman等人(1970)J.Mol.Biol.48:443-453的方法来实现。还可使用已整合入ALIGN程序(版本2.0)的E.Meyers和W.Miller(Comput.Appl Biosci.,4:11-17(1988))的算法,使用PAM120权重残基表(weight residue table)、12的缺口长度罚分和4的缺口罚分来测定两个氨基酸序列之间的百分数同一性。此外,可使用已整合入GCG软件包(可在www.gcg.com上获得)的GAP程序中的Needleman和Wunsch(J MoI Biol.48:444-453(1970))算法,使用Blossum 62矩阵或PAM250矩阵以及16、14、12、10、8、6或4的缺口权重(gap weight)和1、2、3、4、5或6的长度权重来测定两个氨基酸序列之间的百分数同一性。According to the present invention, the term "identity" is used to refer to the matching of sequences between two polypeptides or between two nucleic acids. When a position in both sequences being compared is occupied by the same base or amino acid monomer subunit (for example, a position in each of the two DNA molecules is occupied by an adenine, or both a position in each of the polypeptides is occupied by lysine), then the molecules are identical at that position. "Percent identity" between two sequences is a function of the number of matching positions shared by the two sequences divided by the number of positions being compared x 100. For example, two sequences are 60% identical if 6 out of 10 positions match. For example, the DNA sequences CTGACT and CAGGTT share 50% identity (3 out of a total of 6 positions match). Typically, comparisons are made when two sequences are aligned for maximum identity. Such alignments can be achieved using, for example, the method of Needleman et al. (1970) J. Mol. Biol. 48:443-453 which can be conveniently performed by computer programs such as the Align program (DNAstar, Inc.). The algorithm of E. Meyers and W. Miller (Comput. Appl Biosci., 4: 11-17 (1988)), which has been incorporated into the ALIGN program (version 2.0), can also be used, using the PAM120 weight residue table , a gap length penalty of 12, and a gap penalty of 4 to determine the percent identity between two amino acid sequences. In addition, the algorithm of Needleman and Wunsch (J MoI Biol. 48:444-453 (1970)) in the GAP program that has been incorporated into the GCG software package (available at www.gcg.com) can be used, using the Blossum 62 matrix or PAM250 matrix with a gap weight of 16, 14, 12, 10, 8, 6, or 4 and a length weight of 1, 2, 3, 4, 5, or 6 to determine percent identity between two amino acid sequences .
如本文中使用的,术语“保守置换”意指不会不利地影响或改变包含氨基酸序列的蛋白/多肽的生物学活性的氨基酸置换。例如,可通过本领域内已知的标准技术例如定点诱变和PCR介导的诱变引入保守置换。保守氨基酸置换包括用具有相似侧链的氨基酸残基替代氨基酸残基的置换,例如用在物理学上或功能上与相应的氨基酸残基相似(例如具有相似大小、形状、电荷、化学性质,包括形成共价键或氢键的能力等)的残基进行的置换。已在本领域内定义了具有相似侧链的氨基酸残基的家族。这些家族包括具有碱性侧链(例如,赖氨酸、精氨酸和组氨酸)、酸性侧链(例如天冬氨酸、谷氨酸)、不带电荷的极性侧链(例如甘氨酸、天冬酰胺、谷氨酰胺、丝氨酸、苏氨酸、酪氨酸、半胱氨酸、色氨酸)、非极性侧链(例如丙氨酸、缬氨酸、亮氨酸、异亮氨酸、脯氨酸、苯丙氨酸、甲硫氨酸)、β分支侧链(例如,苏氨酸、缬氨酸、异亮氨酸)和芳香族侧链(例如,酪氨酸、苯丙氨酸、色氨酸、组氨酸)的氨基酸。因此,优选用来自相同侧链家族的另一个氨基酸残基替代相应的氨基酸残基。鉴定氨基酸保守置换的方法在本领域内是熟知的(参见,例如,Brummell等人,Biochem.32:1180-1187(1993);Kobayashi等人Protein Eng.12(10):879-884(1999);和Burks等人Proc.Natl Acad.Set USA 94:412-417(1997),其通过引用并入本文)。As used herein, the term "conservative substitution" means an amino acid substitution that does not adversely affect or alter the biological activity of the protein/polypeptide comprising the amino acid sequence. For example, conservative substitutions can be introduced by standard techniques known in the art, such as site-directed mutagenesis and PCR-mediated mutagenesis. Conservative amino acid substitutions include substitutions for amino acid residues with amino acid residues that have similar side chains, e.g., are physically or functionally similar (e.g., have similar size, shape, charge, chemical properties, including Substitution of residues with the ability to form covalent or hydrogen bonds, etc.). Families of amino acid residues having similar side chains have been defined in the art. These families include those with basic side chains (e.g., lysine, arginine, and histidine), acidic side chains (e.g., aspartic acid, glutamic acid), uncharged polar side chains (e.g., glycine) , asparagine, glutamine, serine, threonine, tyrosine, cysteine, tryptophan), non-polar side chains (such as alanine, valine, leucine, isoleucine amino acid, proline, phenylalanine, methionine), beta branched side chains (e.g. threonine, valine, isoleucine) and aromatic side chains (e.g. tyrosine, phenylalanine, tryptophan, histidine) amino acids. Therefore, it is preferred to replace the corresponding amino acid residue with another amino acid residue from the same side chain family. Methods for identifying amino acid conservative substitutions are well known in the art (see, e.g., Brummell et al., Biochem. 32:1180-1187 (1993); Kobayashi et al. Protein Eng. 12(10):879-884 (1999) and Burks et al. Proc. Natl Acad. Set USA 94:412-417 (1997), which are incorporated herein by reference).
根据本发明,MIP肽与目标蛋白的连接可包括例如融合和缀合等。特别地,MIP多肽可通过接头与目标蛋白连接。根据本发明,术语“接头”是指用于连接两个分子(例如蛋白)的短肽。通常,通过将编码该短肽的多核苷酸序列引入(例如,通过PCR扩增或连接酶)分别编码所要连接的两种目的蛋白的2个DNA片段之间,并进行蛋白质表达来获得融合蛋白,例如目的蛋白1-接头-目的蛋白2。如本领域技术人员公知的,接头包括但不限于柔性连接肽,例如Gly-Gly-Gly-Gly,Gly-Gly-Gly-Gly-Ser,Gly-Gly-Ser-Ser和(Gly-Gly-Gly-Gly-Ser)3。According to the present invention, linking of MIP peptides to target proteins may include, for example, fusion and conjugation. In particular, a MIP polypeptide can be linked to a protein of interest via a linker. According to the invention, the term "linker" refers to a short peptide used to link two molecules, such as proteins. Usually, the fusion protein is obtained by introducing (for example, by PCR amplification or ligase) the polynucleotide sequence encoding the short peptide between two DNA fragments respectively encoding the two target proteins to be linked, and performing protein expression , such as target protein 1-linker-
特别地,如本发明中使用的,术语“缀合”是指,2个或多个分子(例如蛋白与蛋白,蛋白与多糖,蛋白与标记等)通过共价方式(例如化学偶联)或非共价方式(例如吸附)进行连接。因此,在本发明中,术语“缀合物”是指通过共价方式(例如化学偶联)或非共价方式(例如吸附)连接在一起的2个或多个分子。例如,本发明的缀合物可以指例如,通过共价方式或非共价方式连接在一起的MIP肽与目标蛋白。In particular, as used in the present invention, the term "conjugation" means that two or more molecules (such as protein and protein, protein and polysaccharide, protein and label, etc.) are covalently (such as chemical coupling) or Non-covalent means (such as adsorption) for attachment. Thus, in the present invention, the term "conjugate" refers to two or more molecules linked together by covalent means (eg chemical coupling) or non-covalent means (eg adsorption). For example, the conjugate of the present invention may refer to, for example, a MIP peptide and a target protein linked together by covalent means or non-covalent means.
根据本发明,术语“蛋白质变性(denaturation)”是指,蛋白质因受某些物理或化学因素的影响,分子的空间构象被破坏,从而导致其理化性质发生改变并失去原有的生物学活性的现象。变性作用并不引起蛋白质一级结构的破坏,而是二级结构以上的高级结构的破坏,变性后的蛋白质称为变性蛋白。According to the present invention, the term "protein denaturation (denaturation)" means that the protein is affected by certain physical or chemical factors, and the spatial conformation of the molecule is destroyed, resulting in changes in its physical and chemical properties and loss of its original biological activity. Phenomenon. Denaturation does not cause the destruction of the primary structure of the protein, but the destruction of the higher structure above the secondary structure. The denatured protein is called denatured protein.
如果变性条件剧烈持久,蛋白质的变性是不可逆的。如果变性条件不剧烈,这种变性作用是可逆的,蛋白质分子内部结构的变化不大。这时,如果除去变性因素,变性蛋白质可在适当条件下恢复其天然构象和生物活性,这种现象称为蛋白质的复性(renaturation)。Denaturation of proteins is irreversible if denaturing conditions are severe and prolonged. If the denaturation conditions are not severe, this denaturation is reversible, and the internal structure of the protein molecule does not change much. At this time, if the denaturing factors are removed, the denatured protein can recover its natural conformation and biological activity under appropriate conditions. This phenomenon is called protein renaturation.
根据本发明,术语“疏水相互作用”是指,非极性分子之间的一种弱的、非共价的相互作用。这些非极性分子(如一些中性氨基酸残基,也称为疏水残基)在水相环境中具有避开水而相互聚集的倾向。疏水相互作用是通过疏水物的疏水基与水相互排斥作用而发生的,疏水基一般是非极性基。这种作用使疏水基相互靠拢,同时使水相互集中并更大程度地结构化。通过疏水相互作用,有时能产生笼形水合物,它是一种包合物。疏水相互作用对大多数蛋白质的结构和性质非常关键。According to the invention, the term "hydrophobic interaction" refers to a weak, non-covalent interaction between non-polar molecules. These non-polar molecules (such as some neutral amino acid residues, also known as hydrophobic residues) have a tendency to avoid water and aggregate with each other in an aqueous environment. The hydrophobic interaction occurs through the mutual repulsion between the hydrophobic group of the hydrophobe and water, and the hydrophobic group is generally a non-polar group. This action brings the hydrophobic groups closer to each other while allowing the water to concentrate and structure to a greater extent. Through hydrophobic interactions, clathrate hydrates, which are clathrates, can sometimes be produced. Hydrophobic interactions are critical to the structure and properties of most proteins.
根据本发明,除了本领域知晓的一般结构生物学和病毒学的颗粒组装含义之外,本发明的颗粒组装还指通过将MIP多肽的聚集作为颗粒的结构基础,从而使外源蛋白或其他物质(如糖类、脂类、化合物、金属离子等)以此为基础呈现为颗粒形式。这种颗粒组装主要通过MIP的疏水相互作用发生,还可能伴随着其他作用力(如氢键、范德华力等)的作用。因此,诱导疏水相互作用发生的因素均可诱导颗粒的组装,如往溶液中加入一定离子强度的盐类,在疏水表面启动疏水相互作用的发生,利用疏水相互作用层析进行结合等等。因此,根据本发明,术语“颗粒”是指至少两个的蛋白质单体或其衍生物通过各种相互作用方式进行聚集而形成的蛋白或其衍生物的复合物,其包括但不限于病毒样颗粒。根据本发明,术语“病毒样颗粒”通常是指病毒的衣壳蛋白在体内或体外依靠蛋白相互作用力形成的类似于天然病毒结构的颗粒。例如,等二十面体对称的病毒样颗粒将按照5∶3∶2的柏拉图立体几何原理进行近似等积(quasi-equivalent)地聚集,颗粒中可含有60T个(T=h2+k2+hk,其中h、k为非负整数)的蛋白单体,如60聚体、180聚体、420聚体等等。According to the present invention, in addition to the meaning of particle assembly in general structural biology and virology known in the art, particle assembly in the present invention also refers to the assembly of foreign proteins or other substances by using the aggregation of MIP polypeptides as the structural basis of particles. (such as sugars, lipids, compounds, metal ions, etc.) are presented as particles based on this. This particle assembly mainly occurs through the hydrophobic interactions of MIPs, and may also be accompanied by other forces (such as hydrogen bonds, van der Waals forces, etc.). Therefore, factors that induce hydrophobic interactions can induce the assembly of particles, such as adding salts with a certain ionic strength to the solution, initiating the occurrence of hydrophobic interactions on the hydrophobic surface, using hydrophobic interaction chromatography for binding, and so on. Therefore, according to the present invention, the term "particle" refers to a complex of proteins or derivatives thereof formed by aggregation of at least two protein monomers or derivatives thereof through various interaction methods, including but not limited to virus-like particles. According to the present invention, the term "virus-like particle" generally refers to a particle similar to a natural virus structure formed by the capsid protein of a virus in vivo or in vitro by virtue of protein interaction. For example, virus-like particles with icosahedral symmetry will be aggregated in an approximately equal area (quasi-equivalent) according to the Platonic solid geometry principle of 5:3:2, and the particles may contain 60T (T=h 2 +k 2 + hk, wherein h and k are non-negative integers) protein monomers, such as 60-mer, 180-mer, 420-mer, etc.
根据本发明,术语“聚集体”是指通过非共价键缔合在一起的多个蛋白质。当呈现颗粒或聚集体形式的蛋白用作抗原时,其将更易被机体的免疫系统识别而诱导相应的体液或细胞免疫。因此,特别有利地,本发明的颗粒或聚集体可用作抗原,用于制备疫苗。这种呈现颗粒或聚集体形式的抗原也称为“颗粒抗原”或“颗粒化抗原”。此外,当本发明的颗粒或聚集体(例如颗粒抗原)的大小为纳米级别时,其可具有与化学制备的纳米颗粒相同的性质,从而也可被称为和用作“纳米颗粒”。According to the invention, the term "aggregate" refers to a plurality of proteins associated together by non-covalent bonds. When proteins in the form of particles or aggregates are used as antigens, they will be more easily recognized by the body's immune system to induce corresponding humoral or cellular immunity. Thus, particularly advantageously, the particles or aggregates according to the invention can be used as antigens for the preparation of vaccines. Such antigens in the form of particles or aggregates are also referred to as "particulate antigens" or "particulated antigens". Furthermore, when the particle or aggregate (eg, particulate antigen) of the present invention is nanoscale in size, it may have the same properties as a chemically prepared nanoparticle, and thus may also be referred to and used as a "nanoparticle".
根据本发明,术语“免疫原性(immunogenicity)”是指,能够刺激机体形成特异抗体或致敏淋巴细胞的能力。其既指,抗原能刺激特定的免疫细胞,使免疫细胞活化、增殖、分化,最终产生免疫效应物质如抗体和致敏淋巴细胞的特性,也指抗原刺激机体后,机体免疫系统能形成抗体或致敏T淋巴细胞的特异性免疫应答。According to the present invention, the term "immunogenicity" refers to the ability to stimulate the body to form specific antibodies or sensitize lymphocytes. It not only refers to the characteristics that antigens can stimulate specific immune cells to activate, proliferate, and differentiate immune cells, and finally produce immune effect substances such as antibodies and sensitized lymphocytes, but also means that after antigens stimulate the body, the immune system of the body can form antibodies or Specific immune response of sensitized T lymphocytes.
在本发明中,氨基酸通常用本领域公知的单字母和三字母缩写来表示。例如,丙氨酸可用A或Ala表示。In the present invention, amino acids are generally represented by single-letter and three-letter abbreviations known in the art. For example, alanine can be represented by A or Ala.
在本发明中,术语“多肽”和“蛋白质”具有相同的含义,可互换使用。特别地,在本发明中,目标蛋白/多肽可以是任何蛋白,例如病毒蛋白,例如AIV蛋白,HIV蛋白,HBV蛋白等等。In the present invention, the terms "polypeptide" and "protein" have the same meaning and can be used interchangeably. In particular, in the present invention, the target protein/polypeptide can be any protein, such as viral protein, such as AIV protein, HIV protein, HBV protein and the like.
本发明至少部分基于发明人的发现:当将本发明的MIP肽与目标多肽/蛋白连接在一起(例如融合或缀合)时,本发明的MIP肽能诱使目标多肽/蛋白发生聚集或颗粒化,形成聚集体或颗粒,并且所获得的聚集体或颗粒具有多种优良的性质,从而可广泛应用于生物学和医学领域。The present invention is based at least in part on the inventors' discovery that when the MIP peptides of the invention are linked (e.g., fused or conjugated) to the polypeptide/protein of interest, the MIP peptides of the invention induce aggregation or particle formation of the polypeptide/protein of interest , forming aggregates or particles, and the obtained aggregates or particles have a variety of excellent properties, so they can be widely used in the fields of biology and medicine.
因此,在一个方面,本发明提供了一种能使目标蛋白发生聚集或颗粒化的肽(其本申请中也称为MIP多肽或MIP肽),其包含Therefore, in one aspect, the present invention provides a peptide capable of aggregating or granulating a target protein (also referred to as a MIP polypeptide or MIP peptide in this application), comprising
(1)氨基酸序列,所述氨基酸序列是HEV ORF2编码的多肽的片段,并且至少包含HEV ORF2编码的多肽的第370-435位氨基酸残基;(1) an amino acid sequence, the amino acid sequence being a fragment of a polypeptide encoded by HEV ORF2, and at least comprising amino acid residues 370-435 of the polypeptide encoded by HEV ORF2;
(2)(1)中所定义的氨基酸序列的变体,所述变体与(1)中所定义的氨基酸序列的不同在于缺失、替代、和/或添加了1-20个(如1-15,1-10,1-5,1,2,3,或4个)氨基酸残基;或(2) A variant of the amino acid sequence defined in (1), the difference between the variant and the amino acid sequence defined in (1) lies in the deletion, substitution, and/or addition of 1-20 (such as 1- 15, 1-10, 1-5, 1, 2, 3, or 4) amino acid residues; or
(3)(1)中所定义的氨基酸序列的变体,所述变体与(1)中所定义的氨基酸序列具有至少80%(如至少85%,90%,91%,92%,93%,94%,95%,96%,97%,98%,或99%)的同一性。(3) A variant of the amino acid sequence defined in (1), which has at least 80% (such as at least 85%, 90%, 91%, 92%, 93%) of the amino acid sequence defined in (1). %, 94%, 95%, 96%, 97%, 98%, or 99%) identity.
在一个优选实施方案中,(1)中所定义的氨基酸序列的N端位于HEV ORF2编码的多肽的第345-370位(例如第345-368位)氨基酸残基之间,和/或其C端位于HEV ORF2编码的多肽的第435-460位(例如第451-460位)氨基酸残基之间。In a preferred embodiment, the N-terminal of the amino acid sequence defined in (1) is located between the 345-370 (such as 345-368) amino acid residues of the polypeptide encoded by HEV ORF2, and/or its C The end is located between amino acid residues 435-460 (eg, 451-460) of the polypeptide encoded by HEV ORF2.
在另一个优选实施方案中,(1)中所定义的氨基酸序列包含HEVORF2编码的多肽的第368-451位或第368-460位氨基酸残基,或者由HEV ORF2编码的多肽的第368-451位或第368-460位氨基酸残基组成。In another preferred embodiment, the amino acid sequence defined in (1) comprises amino acid residues 368-451 or 368-460 of the polypeptide encoded by HEVORF2, or amino acid residues 368-451 of the polypeptide encoded by HEV ORF2 or 368-460 amino acid residues.
在另一个优选实施方案中,(2)中所定义的变体与(1)中所定义的氨基酸序列的不同在于12A10表位被删除或突变。在另一个优选实施方案中,(2)中所定义的变体是,包含由HEV ORF2编码的多肽的第368-460位氨基酸残基并且其12A10表位被删除或突变的肽。12A10表位是本领域已知的,其由HEV ORF2编码的多肽的第423-438位氨基酸残基组成,参见例如,He等JGV,2008,其通过引用并入本文。In another preferred embodiment, the variant as defined in (2) differs from the amino acid sequence as defined in (1) in that the 12A10 epitope is deleted or mutated. In another preferred embodiment, the variant as defined in (2) is a peptide comprising amino acid residues 368-460 of the polypeptide encoded by HEV ORF2 and whose 12A10 epitope is deleted or mutated. The 12A10 epitope is known in the art and consists of amino acid residues 423-438 of the polypeptide encoded by HEV ORF2, see, eg, He et al. JGV, 2008, which is incorporated herein by reference.
在另一个优选实施方案中,(2)或(3)中所定义的变体与(1)中所定义的氨基酸序列的不同在于一个或多个保守氨基酸置换,例如1-20个(如1-15,1-10,1-5,1,2,3,或4个)保守氨基酸置换。In another preferred embodiment, the variant as defined in (2) or (3) differs from the amino acid sequence as defined in (1) by one or more conservative amino acid substitutions, for example 1-20 (such as 1 -15, 1-10, 1-5, 1, 2, 3, or 4) conservative amino acid substitutions.
在另一个优选实施方案中,本发明的MIP肽由HEV ORF2编码的多肽的第368-451位或第368-460位氨基酸残基组成。In another preferred embodiment, the MIP peptide of the present invention consists of amino acid residues 368-451 or 368-460 of the polypeptide encoded by HEV ORF2.
在另一个方面,本发明提供了一种融合蛋白,其包含如上所定义的MIP肽和目标多肽(或称目标蛋白)。任选地,在本发明的融合蛋白中,根据本发明的MIP肽通过接头连接至目标多肽。In another aspect, the present invention provides a fusion protein comprising the above-defined MIP peptide and a target polypeptide (or called target protein). Optionally, in the fusion protein of the present invention, the MIP peptide according to the present invention is connected to the target polypeptide through a linker.
在一个优选实施方案中,目标多肽连接至根据本发明的MIP肽的N端。在另一个优选实施方案中,目标多肽连接至根据本发明的MIP肽的C端。在又一个优选实施方案中,目标多肽连接至根据本发明的MIP肽的N端和C端。In a preferred embodiment, the polypeptide of interest is linked to the N-terminus of the MIP peptide according to the invention. In another preferred embodiment, the polypeptide of interest is linked to the C-terminus of the MIP peptide according to the invention. In yet another preferred embodiment, the polypeptide of interest is linked to the N- and C-terminus of the MIP peptide according to the invention.
在另一个优选实施方案中,接头是柔性连接肽,例如Gly-Gly-Gly-Gly,Gly-Gly-Ser-Ser,(Gly-Gly-Gly-Gly-Ser)3等。此类接头是本领域公知的,并且其选择完全在本领域技术人员的能力范围之内。In another preferred embodiment, the linker is a flexible linker peptide, such as Gly-Gly-Gly-Gly, Gly-Gly-Ser-Ser, (Gly-Gly-Gly-Gly-Ser)3 and the like. Such linkers are well known in the art and their selection is well within the purview of those skilled in the art.
在另一个方面,本发明提供了一种缀合物,其包含根据本发明的MIP肽和目标多肽(或称目标蛋白),其中根据本发明的MIP肽与目标多肽共价连接(任选地,通过接头进行连接)或非共价连接。In another aspect, the present invention provides a conjugate comprising a MIP peptide according to the present invention and a target polypeptide (or target protein), wherein the MIP peptide according to the present invention is covalently linked to the target polypeptide (optionally , via a linker) or non-covalently.
可通过各种方式将根据本发明的MIP肽与目标多肽连接在一起,从而实现本发明的益处,例如使目标多肽颗粒化。这些连接方式是本领域公知的,包括但不限于融合和缀合等。因此,通过这些方式而连接在一起的根据本发明的MIP肽和目标多肽构成了本发明的又一方面。The benefits of the present invention can be achieved by linking the MIP peptide according to the present invention to the target polypeptide in various ways, such as granulating the target polypeptide. These linking means are well known in the art, including but not limited to fusion and conjugation and the like. Therefore, the MIP peptide according to the invention and the target polypeptide linked together by these means constitute a further aspect of the invention.
在另一个方面,本发明提供了编码如上所定义的肽或融合蛋白的多核苷酸。还提供的是包含此类多核苷酸的构建体。In another aspect, the invention provides a polynucleotide encoding a peptide or fusion protein as defined above. Also provided are constructs comprising such polynucleotides.
在另一个方面,本发明提供了一种载体,其包含编码如上所定义的肽或融合蛋白的多核苷酸或者含有此类多核苷酸的构建体。本发明的载体可以是克隆载体,也可以是表达载体。In another aspect, the invention provides a vector comprising a polynucleotide encoding a peptide or fusion protein as defined above or a construct comprising such a polynucleotide. The vector of the present invention can be a cloning vector or an expression vector.
在一个优选实施方案中,本发明的载体是例如质粒,粘粒,噬菌体,柯斯质粒等等。In a preferred embodiment, the vectors of the invention are eg plasmids, cosmids, phages, cosmids and the like.
在另一个方面,还提供了包含本发明的多核苷酸或构建体或载体的宿主细胞或者生物体。此类宿主细胞包括但不限于,原核细胞例如大肠杆菌细胞,以及真核细胞例如酵母细胞,昆虫细胞,植物细胞和动物细胞(如哺乳动物细胞,例如小鼠细胞、人细胞等)。本发明的细胞还可以是细胞系,例如293T细胞。在一个实施方案中,所述生物体是植物或者动物。In another aspect, there is also provided a host cell or organism comprising a polynucleotide or construct or vector of the invention. Such host cells include, but are not limited to, prokaryotic cells such as E. coli cells, and eukaryotic cells such as yeast cells, insect cells, plant cells, and animal cells (such as mammalian cells, such as mouse cells, human cells, etc.). The cells of the invention may also be cell lines, such as 293T cells. In one embodiment, the organism is a plant or an animal.
在另一个方面,本发明提供了一种聚集体或颗粒,其包含至少2个本发明的融合蛋白或缀合物,或者,由至少2个本发明的融合蛋白或者缀合物组成。优选地,本发明的颗粒是纳米颗粒。In another aspect, the present invention provides an aggregate or particle comprising, or consisting of, at least 2 fusion proteins or conjugates of the present invention. Preferably, the particles of the invention are nanoparticles.
本发明的颗粒和聚集体具有多种优点,例如,具有更高的免疫反应性和/或免疫原性;具有更高的酶促作用;更易于被分辨等等,从而可广泛应用于生物学和医学领域。例如,在本发明的颗粒和聚集体中,蛋白单体的分子数大大增加,活性位点或结合位点也相应增加且被聚集。因此,在本发明的颗粒和聚集体中,如果聚集的目标蛋白是酶分子,那么其局部的作用浓度将大大提高从而具有更高的酶促作用;如果目标蛋白是发光蛋白或者标记了发光物质,则其将更易于被分辨;如果目标蛋白是抗原分子,则其可具有更高的免疫反应性和/或免疫原性,从而可用作颗粒抗原和用于制备疫苗。此外,在具有与化学制备的纳米颗粒相同的尺寸和性质的情况下,本发明的颗粒和聚集体也可用作纳米颗粒。The particles and aggregates of the present invention have various advantages, for example, have higher immunoreactivity and/or immunogenicity; have higher enzymatic action; are easier to be resolved, etc., and thus can be widely used in biology and the medical field. For example, in the particles and aggregates of the present invention, the number of protein monomer molecules is greatly increased, and the active sites or binding sites are correspondingly increased and aggregated. Therefore, in the particles and aggregates of the present invention, if the aggregated target protein is an enzyme molecule, its local action concentration will be greatly increased to have a higher enzymatic effect; if the target protein is a photoprotein or labeled with a luminescent substance , it will be easier to distinguish; if the target protein is an antigenic molecule, it may have higher immunoreactivity and/or immunogenicity, so it can be used as particle antigen and for preparing vaccines. Furthermore, the particles and aggregates of the invention can also be used as nanoparticles, provided they have the same size and properties as chemically prepared nanoparticles.
因此,在另一个方面,还提供了本发明的MIP肽的用途,其可用于提高目标蛋白/多肽的活性、或者提高目标蛋白/多肽的免疫原性、或者产生目标蛋白/多肽的聚集体或颗粒、或者使目标蛋白/多肽颗粒化或形成聚集体。Therefore, in another aspect, the use of the MIP peptide of the present invention is also provided, which can be used to improve the activity of the target protein/polypeptide, or improve the immunogenicity of the target protein/polypeptide, or produce aggregates of the target protein/polypeptide or Particles, or granulate or form aggregates of the target protein/polypeptide.
在另一个方面,本发明提供了用于提高目标蛋白/多肽的活性、或者提高目标蛋白/多肽的免疫原性、或者产生目标蛋白/多肽的聚集体或颗粒、或者使目标蛋白/多肽颗粒化或形成聚集体的方法,其包括将所述目标蛋白/多肽和本发明的MIP肽连接在一起,例如缀合或者融合(任选地使用接头,例如柔性连接肽)。In another aspect, the present invention provides methods for improving the activity of the target protein/polypeptide, or improving the immunogenicity of the target protein/polypeptide, or producing aggregates or particles of the target protein/polypeptide, or granulating the target protein/polypeptide Or a method of forming an aggregate comprising linking said protein/polypeptide of interest and a MIP peptide of the invention together, such as conjugation or fusion (optionally using a linker, such as a flexible linker peptide).
在另一个方面,本发明提供了用于制备颗粒抗原或疫苗的方法,其包括使作为抗原的多肽和本发明的MIP肽连接在一起,例如缀合或者融合(任选地使用接头,例如柔性连接肽),之后形成颗粒抗原或疫苗。In another aspect, the present invention provides a method for preparing a particulate antigen or vaccine comprising linking, e.g. conjugating or fusing, a polypeptide as an antigen and a MIP peptide of the present invention (optionally using a linker, e.g. a flexible linking peptide), followed by the formation of particulate antigens or vaccines.
在另一个方面,本发明提供了用于制备纳米颗粒的方法,其包括使目标多肽和本发明的MIP肽连接在一起,例如缀合或者融合(任选地使用接头,例如柔性连接肽),之后形成纳米颗粒。In another aspect, the invention provides a method for preparing nanoparticles comprising linking, e.g. conjugating or fusing (optionally using a linker, e.g. a flexible linker peptide), a polypeptide of interest and a MIP peptide of the invention, Nanoparticles are then formed.
在本发明中,目标多肽可以是任意感兴趣的多肽,包括但不限于抗原、酶和荧光蛋白等。例如,目标多肽可以是抗原例如病毒蛋白(例如衣壳蛋白、包膜蛋白和表面蛋白),标记蛋白例如荧光蛋白(例如绿色荧光蛋白、红色荧光蛋白和蓝色荧光蛋白),或本领域已知的各种酶例如萤光素酶。病毒蛋白可以衍生自,例如但不限于流感病毒(例如H5亚型禽流感病毒)、人免疫缺陷病毒(HIV,例如HIV-1)、乙肝病毒(HBV)、人乳头瘤病毒(HPV)等。此外,在本发明中,目标多肽/蛋白可以是任何来源的,例如病毒来源的。本领域技术人员将会理解,本发明的MIP肽和方法可应用于任何蛋白/多肽,并获得本发明的益处。In the present invention, the target polypeptide can be any polypeptide of interest, including but not limited to antigens, enzymes, and fluorescent proteins. For example, the polypeptide of interest can be an antigen such as a viral protein (e.g., capsid protein, envelope protein, and surface protein), a marker protein such as a fluorescent protein (e.g., green fluorescent protein, red fluorescent protein, and blue fluorescent protein), or a protein known in the art. various enzymes such as luciferase. Viral proteins can be derived from, for example, but not limited to, influenza viruses (eg, H5 subtype avian influenza virus), human immunodeficiency virus (HIV, eg, HIV-1), hepatitis B virus (HBV), human papillomavirus (HPV), and the like. Furthermore, in the present invention, the target polypeptide/protein may be of any origin, such as virus origin. Those skilled in the art will understand that the MIP peptides and methods of the present invention can be applied to any protein/polypeptide and obtain the benefits of the present invention.
特别地,在本发明中,目标蛋白/多肽可以是,例如病毒蛋白,例如流感病毒蛋白,HIV蛋白,HBV蛋白和HPV蛋白。In particular, in the present invention, the protein/polypeptide of interest may be, for example, viral proteins, such as influenza virus proteins, HIV proteins, HBV proteins and HPV proteins.
在另一个方面,本发明还提供了通过上述方法获得的蛋白颗粒。优选地,此类蛋白颗粒是纳米颗粒。In another aspect, the present invention also provides protein particles obtained by the above method. Preferably, such protein particles are nanoparticles.
发明的有益效果Beneficial Effects of the Invention
目前常用的颗粒化载体包括:HBV核心颗粒、HPV等。这些颗粒化载体均在完整的病毒样颗粒的特定位置上插入较小的短肽片段,通常仅适用于多肽的展示。如果在这些载体中插入较长的多肽片段或完整蛋白结构域,则往往会影响颗粒的组装,并且目标肽片段由于需使用颗粒本身的结构也难以进行正确折叠。Currently commonly used granulation carriers include: HBV core granules, HPV, etc. These granulated vectors are all inserted into small short peptide fragments at specific positions of the complete virus-like particle, and are usually only suitable for displaying polypeptides. If longer polypeptide fragments or complete protein domains are inserted into these vectors, the assembly of the particles is often affected, and the target peptide fragments are difficult to fold correctly due to the need to use the structure of the particles themselves.
本发明的MIP多肽自身可形成颗粒,其N或C末端暴露在颗粒外围可供与目标蛋白融合,融合后的蛋白仍可自由地进行折叠,不受颗粒的影响。此外,本发明提供了柔性伸展臂的选择,并尝试了两种不同长度的柔性连接。本领域技术人员理解,在实际应用中还可对柔性连接进行适当调整以获得较优的目标蛋白支撑距离,从而保证能够获得颗粒形成和蛋白的正确折叠及反应活性。适当的柔性伸展臂还可能具有保持颗粒稳定性和防止被酶解的功能。由于柔性伸展臂的存在,目标蛋白被颗粒化后仍可保持单体、二聚体或多聚体的天然聚体形式,从而维系天然的表位构象。The MIP polypeptide of the present invention can form particles by itself, and its N or C terminal is exposed on the periphery of the particles for fusion with the target protein, and the fused protein can still fold freely without being affected by the particles. In addition, the present invention provides a choice of flexible extension arms, and two different lengths of flexible connections are tried. Those skilled in the art understand that in practical applications, the flexible link can also be properly adjusted to obtain a better supporting distance of the target protein, so as to ensure the formation of particles and the correct folding and reactivity of the protein. Appropriate flexible stretching arms may also have the function of maintaining particle stability and preventing enzymatic degradation. Due to the existence of flexible extension arms, the target protein can still maintain the natural polymer form of monomer, dimer or multimer after being granulated, thereby maintaining the natural epitope conformation.
免疫学的抗原递呈理论显示,颗粒化的抗原易被呈递细胞递呈从而激发机体产生高滴度的抗体。如果抗原中存在免疫优势的表位,则会激发机体产生免疫优势的抗体;如果这些免疫优势的表位同时也是病毒、细菌等病原体的中和表位,那么颗粒化的抗原就可激发机体产生高滴度的中和抗体。这些中和抗体可抵御病原体的感染,从而使得本发明构建的颗粒化抗原具有更优的疫苗的效应。The theory of antigen presentation in immunology shows that granulated antigens are easily presented by presenting cells to stimulate the body to produce high-titer antibodies. If there are immunodominant epitopes in the antigen, the body will be stimulated to produce immunodominant antibodies; if these immunodominant epitopes are also neutralizing epitopes for pathogens such as viruses and bacteria, then the granulated antigens can stimulate the body to produce High titers of neutralizing antibodies. These neutralizing antibodies can resist the infection of pathogens, so that the granulated antigen constructed in the present invention has a better vaccine effect.
此外,颗粒化的蛋白还有多种用途。In addition, granulated protein has a variety of uses.
例如,经颗粒化的蛋白的分子数大大增加,活性位点或结合位点也相应增加且被聚集。因此,如果目标蛋白是酶分子,那么其局部的作用浓度将大大提高从而具有更高的酶促作用;如果目标蛋白是发光蛋白或者标记了发光物质,则其将更易于被分辨;如果目标蛋白是抗原分子,则颗粒化的抗原可同时结合多个和/或多种抗体,使单体蛋白可用于免疫夹心法或免疫沉淀法或胶体金法等抗体或抗原的检测方法,并且结合了标记酶的抗体分子还可增强酶的信号放大作用。For example, the number of molecules of the granulated protein is greatly increased, and the active or binding sites are correspondingly increased and aggregated. Therefore, if the target protein is an enzyme molecule, its local concentration will be greatly increased to have a higher enzymatic effect; if the target protein is a photoprotein or labeled with a luminescent substance, it will be easier to be distinguished; if the target protein If it is an antigen molecule, the granulated antigen can be combined with multiple and/or multiple antibodies at the same time, so that the monomeric protein can be used for antibody or antigen detection methods such as immunosandwich method or immunoprecipitation method or colloidal gold method, and combined with markers Antibody molecules to enzymes can also enhance the signal amplification of enzymes.
颗粒化的蛋白还可用于结构解析,尤其是冰冻电镜的单颗粒结构解析。特别地,蛋白通过本发明的方法被聚集后,用于结构重建的蛋白分子数目得以有序地、有效地叠加。结构学上,可利用MIP多肽作为骨架进行病毒样颗粒的构建。颗粒化的蛋白还可被制成纳米颗粒用于其他相关的工业领域。Granulated proteins can also be used for structure elucidation, especially single particle structure elucidation by cryo-EM. In particular, after the protein is aggregated by the method of the present invention, the number of protein molecules used for structural reconstruction can be stacked orderly and effectively. Structurally, the MIP polypeptide can be used as a backbone for the construction of virus-like particles. The granulated protein can also be made into nanoparticles for other related industrial fields.
MIP多肽还可作为引导肽构建成为蛋白表达载体,如同已有的GST,MPL麦芽糖结合蛋白,pTrx,His标签,信号肽,定位肽等,有利于目标蛋白的表达、折叠和纯化。MIP polypeptide can also be used as a guide peptide to construct a protein expression vector, like the existing GST, MPL maltose binding protein, pTrx, His tag, signal peptide, positioning peptide, etc., which is conducive to the expression, folding and purification of the target protein.
此外,如果目标分子是多糖分子,则可通过化学偶联方法将多糖分子缀合在MIP多肽形成的颗粒表面,或者在MIP上融合糖基化位点,通过真核表达系统或改造的可糖基化的原核表达系统,进行多糖结合MIP结合物的表达,并利用MIP的诱使颗粒化性质进行颗粒组装,从而研制多糖结合疫苗。In addition, if the target molecule is a polysaccharide molecule, the polysaccharide molecule can be conjugated to the surface of the particle formed by the MIP polypeptide by chemical conjugation, or the glycosylation site can be fused on the MIP. Based on the prokaryotic expression system, the expression of polysaccharide-conjugated MIP conjugates is carried out, and the particle assembly is carried out by using the inducing granulation property of MIP, so as to develop polysaccharide-conjugated vaccines.
总之,本发明提供一种可使蛋白或其他分子有效聚集成为颗粒的肽和方法,其可实现将目标蛋白或其他分子在空间上进行颗粒形式排列从而行使其功能的应用意图。In conclusion, the present invention provides a peptide and method that can effectively aggregate proteins or other molecules into particles, which can realize the application intention of spatially arranging target proteins or other molecules in the form of particles to perform their functions.
下面将结合附图和实施例对本发明的实施方案进行详细描述,但是本领域技术人员将理解,下列附图和实施例仅用于说明本发明,而不是对本发明的范围的限定。根据附图和优选实施方案的下列详细描述,本发明的各种目的和有利方面对于本领域技术人员来说将变得显然。Embodiments of the present invention will be described in detail below with reference to the drawings and examples, but those skilled in the art will understand that the following drawings and examples are only for illustrating the present invention, rather than limiting the scope of the present invention. Various objects and advantages of this invention will become apparent to those skilled in the art from the accompanying drawings and the following detailed description of the preferred embodiment.
附图说明 Description of drawings
图1:融合MIP1或MIP2的各种目标多肽的克隆设计。I272N,aa272(aa表示氨基酸,其置于数字n前面时表示第n个氨基酸(例如,aa272表示第272个氨基酸),置于数字之后时则表示多肽长度为n个氨基酸,下同。)的Ile突变成Gln;N63,蛋白的N末端63个氨基酸被删除(N后面的数字表示被删除的N端氨基酸的数目,下同);C46,蛋白的C末端46个氨基酸被删除(C后面的数字表示被删除的C端氨基酸的数目,下同);Linker,柔性连接肽,其氨基酸序列为GGGGSGGGGSGGGGS;MIP1h,MIP1上的aa423-438(对应于12A10表位)突变成为16个串联的组氨酸;MIP1Δ,MIP1上的aa423-438(对应于12A10表位)被删除;MIP1n,目标多肽与MIP1的N末端融合;MIP1nL,目标多肽通过柔性连接肽融合于MIP1的N末端;MIP1nLc,目标多肽通过柔性连接肽融合于MIP1的N末端,同时也与MIP1的C末端融合。Figure 1: Cloning design of various target polypeptides fused to MIP1 or MIP2. I272N, aa272 (aa represents an amino acid, when it is placed before the number n, it means the nth amino acid (for example, aa272 means the 272nd amino acid), when it is placed after the number, it means that the length of the polypeptide is n amino acids, the same below.) Ile is mutated into Gln; N63, 63 amino acids at the N-terminal of the protein are deleted (the number behind N indicates the number of N-terminal amino acids deleted, the same below); C46, 46 amino acids at the C-terminal of the protein are deleted (behind C The numbers in the numbers indicate the number of deleted C-terminal amino acids, the same below); Linker, the flexible connecting peptide, its amino acid sequence is GGGGSGGGGSGGGGS; MIP1h, aa423-438 on MIP1 (corresponding to the 12A10 epitope) is mutated into 16 concatenated groups MIP1Δ, aa423-438 on MIP1 (corresponding to the 12A10 epitope) was deleted; MIP1n, the target polypeptide was fused to the N-terminus of MIP1; MIP1nL, the target polypeptide was fused to the N-terminus of MIP1 through a flexible linker peptide; MIP1nLc, the target The polypeptide is fused to the N-terminus of MIP1 through a flexible connecting peptide, and is also fused to the C-terminus of MIP1.
图2:融合MIP1或MIP2的HA1蛋白的SDS-PAGE。A:泳道1和11,蛋白分子量标记;泳道2,MIP1-HA1-I272N菌体超声裂解液;泳道3,MIP1-HA1-I272N的4M尿素溶解上清;泳道4,MIP1-HA1-I272N复性液;泳道5,MIP1-HA1-N63C51菌体超声裂解液;泳道6,MIP1-HA1-N63C51的4M尿素溶解上清;泳道7,MIP1-HA1-N63C51复性液;泳道8,MI P2-HA1-N57C67菌体超声裂解液;泳道9,MIP2-HA1-N57C67的4M尿素溶解上清;泳道10,MIP2-HA1-N57C67复性液;泳道12,MIP1Δ-HA1-N63C51菌体超声裂解液;泳道13,MIP1Δ-HA1-N63C51的4M尿素溶解上清;泳道14,MIP1Δ-HA1-N63C51复性液;泳道15,MIP1n-HA1-N63C51菌体超声裂解液;泳道16,MIP1n-HA1-N63C51的4M尿素溶解上清;泳道17,MIP1n-HA1-N63C51复性液。B:泳道1,MIP1-HA1菌体超声裂解液;泳道2,MIP1-HA1超声上清液;泳道3,MIP1-HA1的4M尿素溶解上清;泳道4,MIP1nL-HA1-N63C51菌体超声裂解液;泳道5,MIP1nL-HA1-N63C51超声上清液;泳道6,MIP1nL-HA1-N63C51的4M尿素溶解上清;泳道7,MIP1nLc-HA1-N63C51菌体超声裂解液;泳道8,MIP1nLc-HA1-N63C51超声上清液;泳道9,MIP1nLc-HA1-N63C51的4M尿素溶解上清;泳道10,MIP1-HA1-N63C46菌体超声裂解液;泳道11,MIP1-HA1-N63C46超声上清液;泳道12,MIP1-HA1-N63C46的4M尿素溶解上清;泳道13,MIP1-HA1-N57C51菌体超声裂解液;泳道14,MIP1-HA1-N57C51超声上清液;泳道15,MIP1-HA1-N57C51的4M尿素溶解上清液;泳道16,MIP1-HA1-N52C51菌体超声裂解液;泳道17,MIP1-HA1-N52C51超声上清液;泳道18,MIP1-HA1-N52C51的4M尿素溶解上清液;泳道19,MIP1-HA1-N63菌体超声裂解液;泳道20,MIP1-HA1-N63超声上清液;泳道21,MIP1-HA1-N63的4M尿素溶解上清;泳道22,MIP1-HA1-N57C67菌体超声裂解液;泳道23,MIP1-HA1-N57C67超声上清液;泳道24,MIP1-HA1-N57C67的4M尿素溶解上清;泳道25,MIP2-HA1-N57C51菌体超声裂解液;泳道26,MIP2-HA1-N57C51超声上清液;泳道27,MIP2-HA1-N57C51的4M尿素溶解上清;泳道28,MIP1-HA1-N15C51菌体超声裂解液;泳道29,MIP1-HA1-N15C51超声上清液;泳道30,MIP1-HA1-N15C51的4M尿素溶解上清;泳道31,MIP1h-HA1-N63C51菌体超声裂解液;泳道32,MIP1h-HA1-N63C51超声上清液;泳道33,MIP1h-HA1-N63C51的4M尿素溶解上清。C:泳道1、6、15和24,蛋白分子量标记;泳道2,MIP1(C45)n-HA1-N63C51菌体超声裂解液;泳道3,MIP1(C45)n-HA1-N63C51超声上清液;泳道4,MIP1(C45)n-HA1-N63C51的4M尿素溶解上清;泳道5,MIP1(C45)n-HA1-N63C51复性液;泳道7,MIP1(C35)n-HA1-N63C51菌体超声裂解液;泳道8,MIP1(C35)n-HA1-N63C51超声上清液;泳道9,MIP1(C35)n-HA1-N63C51的4M尿素溶解上清;泳道10,MIP1(C35)n-HA1-N63C51复性液;泳道11,MIP1(C25)n-HA1-N63C51菌体超声裂解液;泳道12,MIP1(C25)n-HA1-N63C51超声上清液;泳道13,MIP1(C25)n-HA1-N63C51的4M尿素溶解上清;泳道14,MIP1(C25)n-HA1-N63C51复性液;泳道16,MIP1(C20)n-HA1-N63C51菌体超声裂解液;泳道17,MIP1(C20)n-HA1-N63C51超声上清液;泳道18,MIP1(C20)n-HA1-N63C51的4M尿素溶解上清;泳道19,MIP1(C20)n-HA1-N63C51复性液;20,MIP1(C15)n-HA1-N63C51菌体超声裂解液;泳道21,MIP1(C15)n-HA1-N63C51超声上清液;泳道22,MIP1(C15)n-HA1-N63C51的4M尿素溶解上清;泳道23,MIP1(C15)n-HA1-N63C51复性液;泳道25,MIP1(C10)n-HA1-N63C51菌体超声裂解液;泳道26,MIP1(C10)n-HA1-N63C51超声上清液;泳道27,MIP1(C10)n-HA1-N63C51的4M尿素溶解上清;泳道28,MIP1(C10)n-HA1-N63C51复性液;泳道29,MIP1(C5)n-HA1-N63C51菌体超声裂解液;泳道30,MIP1(C5)n-HA1-N63C51超声上清液;泳道31,MIP1(C5)n-HA1-N63C51的4M尿素溶解上清;泳道32,MIP1(C5)n-HA1-N63C51复性液。D:泳道1,蛋白分子量标记;泳道2,HA1-N63C51菌体超声裂解液;泳道3,HA1-N63C51超声上清液;泳道4,HA1-N63C51的4M尿素溶解上清;泳道5,HA1-N63C51复性液。Figure 2: SDS-PAGE of HA1 protein fused to MIP1 or MIP2. A:
图3:融合MIP1/MI P2的HA1蛋白的HPLC分子筛分析。min:分钟,下同。Figure 3: HPLC molecular sieve analysis of HA1 protein fused to MIP1/MIP2. min: minutes, the same below.
图4:融合MIP1/MIP2的HA1蛋白颗粒的电镜观察。条棒(Bar),100nm。Figure 4: Electron microscope observation of HA1 protein particles fused with MIP1/MIP2. Bar, 100 nm.
图5:融合MIP1/MIP2的HA1蛋白与H5特异性单抗的免疫印迹分析。泳道1,MIP1-HA1-N63C51;泳道2,MIP1-HA1-N63C46;泳道3,MIP1-HA1-N57C51;泳道4,MIP1-HA1-N52C51;泳道5,MIP2-HA1-N57C51;泳道6,MIP1nLc-HA1-N63C51;泳道7,HA1-N63C51。Figure 5: Western blot analysis of HA1 protein fused to MIP1/MIP2 with H5-specific mAb.
图6:融合MIP1/MIP2的HA1蛋白MIP1-HA1-N63C51与H5特异性广谱中和单抗的免疫杂交反应。p1-cHA1,MIP1-HA1-N63C51;HA1,酵母表达的HA1。Figure 6: The immunoblot reaction of HA1 protein MIP1-HA1-N63C51 fused with MIP1/MIP2 and H5-specific broad-spectrum neutralizing monoclonal antibody. pl-cHA1, MIP1-HA1-N63C51; HA1, yeast expressed HA1.
图7:融合MIP1/MIP2的HA1蛋白与抗H5单抗的ELISA免疫反应性。HA1(酵母来源的),酵母表达的全长HA1蛋白,作为ELISA反应的对照;A,以各蛋白抗原进行聚类,显示不同融合方式后的蛋白颗粒与各种抗体的反应谱变化;B,以各单抗进行聚类,显示不同单抗与各种融合方式的蛋白颗粒的反应性变化。Figure 7: ELISA immunoreactivity of HA1 protein fused to MIP1/MIP2 with anti-H5 mAb. HA1 (derived from yeast), the full-length HA1 protein expressed by yeast, used as a control for ELISA reaction; A, clustering with each protein antigen, showing the changes in the reaction spectrum of protein particles and various antibodies after different fusion methods; B, Clustering with each monoclonal antibody shows the change in reactivity of different monoclonal antibodies with protein particles of various fusion modes.
图8:融合MIP1/MIP2的HA1蛋白颗粒在小鼠中的免疫原性。Figure 8: Immunogenicity of HA1 protein particles fused with MIP1/MIP2 in mice.
图9:融合MIP1/MIP2的HIV-1-env-gp41-26、gp120-222蛋白的表达与纯化。A:泳道M,标准分子量标记;泳道1,MIP2-gp41-26菌体超声裂解液;泳道2,MIP1-gp41-26菌体超声裂解液;泳道3,MIP2-gp41-26的8M尿素溶解上清;4,MIP1-gp41-26的8M尿素溶解上清;5,MIP2-gp41-26的复性上清;6,MIP1-gp41-26的复性上清。B:泳道M,标准分子量标记;泳道1,MIP2-gp120-222菌体超声裂解液;泳道2,MIP1-gp120-222菌体超声裂解液;泳道3,MIP2-gp120-222的8M尿素溶解上清;泳道4,MIP1-gp120-222的8M尿素溶解上清;泳道5,MIP2-gp120-222的复性上清;泳道6,MIP1-gp120-222的复性上清。Figure 9: Expression and purification of HIV-1-env-gp41-26 and gp120-222 proteins fused with MIP1/MIP2. A: Lane M, standard molecular weight marker;
图10:融合MIP1/MI P2的HIV-1-env-gp41-26、gp120-222蛋白的分子筛层析分析。A:239,p239颗粒对照;H0-HIV-1-env-gp41-26,MIP1-gp41-26蛋白;H09-HIV-1-env-gp41-26,MIP2-gp41-26蛋白。B:239,p239颗粒对照;H0-HIV-1-env-gp120-222,MIP1-gp120-222蛋白;H09-HIV-1-env-gp120-222,MIP2-gp120-222蛋白。Figure 10: Molecular sieve chromatography analysis of HIV-1-env-gp41-26 and gp120-222 proteins fused with MIP1/MIP2. A: 239, p239 particle control; H0-HIV-1-env-gp41-26, MIP1-gp41-26 protein; H09-HIV-1-env-gp41-26, MIP2-gp41-26 protein. B: 239, p239 particle control; H0-HIV-1-env-gp120-222, MIP1-gp120-222 protein; H09-HIV-1-env-gp120-222, MIP2-gp120-222 protein.
图11:融合MIP1/MIP2的HIV-1-env-gp41-26、gp120-222蛋白的动态光散射分析。A:MIP2-gp120-222蛋白;B:MIP1-gp120-222蛋白;C:MIP2-env-gp41-26蛋白;D:MIP1-gp41-26蛋白。Figure 11: Dynamic light scattering analysis of HIV-1-env-gp41-26, gp120-222 proteins fused to MIP1/MIP2. A: MIP2-gp120-222 protein; B: MIP1-gp120-222 protein; C: MIP2-env-gp41-26 protein; D: MIP1-gp41-26 protein.
图12:融合MIP1/MIP2的HIV-1env蛋白的电镜分析。H09-env-gp41-26,MIP2-gp41-26蛋白;H0-env-gp41-26,MIP1-gp41-26蛋白;H09-HIV-1-env-gp120-222,MIP2-gp120-222蛋白;H0-env-gp120-222,MIP1-gp120-222蛋白。条棒,100nm。Figure 12: Electron microscope analysis of HIV-1 env protein fused with MIP1/MIP2. H09-env-gp41-26, MIP2-gp41-26 protein; H0-env-gp41-26, MIP1-gp41-26 protein; H09-HIV-1-env-gp120-222, MIP2-gp120-222 protein; H0 -env-gp120-222, MIP1-gp120-222 protein. Bars, 100 nm.
图13:融合MIP1/MIP2的HIV-1gp41-26蛋白的免疫原性。Figure 13: Immunogenicity of HIV-1 gp41-26 protein fused to MIP1/MIP2.
图14:融合MIP1/MIP2的HIV-1gp120-222蛋白的免疫原性。Figure 14: Immunogenicity of HIV-1 gp120-222 protein fused to MIP1/MIP2.
图15:融合MIP1/MIP2的HIV-1P24蛋白的表达与纯化。泳道M,标准分子量标记;泳道1,MIP2-P24菌体超声裂解液;泳道2,MIP2-P24蛋白的4M尿素溶解上清;泳道3,MIP2-P24的复性上清;泳道4,MIP1-P24菌体超声裂解液;泳道5,MIP1-P24蛋白的4M尿素溶解上清;泳道6,MIP1-P24复性上清。Figure 15: Expression and purification of HIV-1 P24 protein fused with MIP1/MIP2. Lane M, standard molecular weight markers;
图16:融合MIP1/MIP2的HIV-1P24蛋白的分子筛层析分析。239,p239颗粒对照;H0-HIV-1-P24,MIP1-P24蛋白;H09-HIV-1-P24,MIP2-P24蛋白。Figure 16: Molecular sieve chromatography analysis of MIP1/MIP2 fused HIV-1 P24 protein. 239, p239 particle control; H0-HIV-1-P24, MIP1-P24 protein; H09-HIV-1-P24, MIP2-P24 protein.
图17:融合MIP1/MIP2的HIV-1P24蛋白的动态光散射分析。A:MIP1-P24;B:MIP2-P24。Figure 17: Dynamic light scattering analysis of HIV-1 P24 protein fused to MIP1/MIP2. A: MIP1-P24; B: MIP2-P24.
图18:融合MIP1/MIP2的HIV-1P24蛋白的电镜观察。HEV-H0-HIV-1-P24,MIP1-P24蛋白;HEV-H09-HIV-1-P24,MIP2-P24蛋白。条棒,100nm。Figure 18: Electron microscope observation of HIV-1 P24 protein fused with MIP1/MIP2. HEV-H0-HIV-1-P24, MIP1-P24 protein; HEV-H09-HIV-1-P24, MIP2-P24 protein. Bars, 100 nm.
图19:融合MIP1/MI P2的HIV-1P24蛋白的免疫原性。Figure 19: Immunogenicity of HIV-1 P24 protein fused to MIP1/MIP2.
图20:融合MIP2的HBsAg-1021蛋白的纯化。泳道M,标准分子量标记;H 09-HBsAg-1021,MIP2-HBsAg-1021的复性上清。Figure 20: Purification of HBsAg-1021 protein fused to MIP2. Swimming lane M, standard molecular weight markers; H 09-HBsAg-1021, the renatured supernatant of MIP2-HBsAg-1021.
图21:融合MIP2的HBsAg-1021蛋白的动态光散射分析。Figure 21 : Dynamic light scattering analysis of MIP2-fused HBsAg-1021 protein.
图22:融合MIP2的HBsAg-1021蛋白的电镜观察。HEV-H09-HBVSAg-1021,MIP2-HbsAg-1021;条棒,100nm。Figure 22: Electron microscope observation of HBsAg-1021 protein fused with MIP2. HEV-H09-HBVSAg-1021, MIP2-HbsAg-1021; bars, 100 nm.
图23:融合MI P1的HPV16L2C50蛋白的表达与纯化。泳道M,标准分子量标记;泳道1,MIP1-L2C50菌体裂解上清;泳道2,MIP1-L2C50菌体裂解沉淀;泳道3,MIP1-L2C50的4M尿素溶解上清;泳道4,MIP1-L2C50的4M尿素溶解沉淀;泳道5,MIP1-L2C50在4M尿素,20mM磷酸缓冲液pH7.5中;泳道6,MIP1-L2C50的Q-FF层析流穿组分;泳道7,MIP1-L2C50的Q-FF层析80mM NaCl洗脱组分;泳道8,MIP1-L2C50的Q-FF层析150mM NaCl洗脱组分;泳道9,MIP1-L2C50的Q-FF层析500mM NaCl洗脱组分。Figure 23: Expression and purification of HPV16L2C50 protein fused with MIP1. Lane M, standard molecular weight marker;
图24:融合MIP1的HPV16 L2C50蛋白的分子筛层析分析。239,p239颗粒对照;HEV-H0-L2C50,MIP1-L2C50蛋白。Figure 24: Molecular sieve chromatography analysis of HPV16 L2C50 protein fused to MIP1. 239, p239 particle control; HEV-H0-L2C50, MIP1-L2C50 protein.
图25:融合MIP1的HPV16 L2C50蛋白的动态光散射分析。Figure 25: Dynamic light scattering analysis of HPV16 L2C50 protein fused to MIP1.
图26:融合MIP1的HPV16 L2C50蛋白的电镜观察。条棒,100nm。Figure 26: Electron microscope observation of HPV16 L2C50 protein fused with MIP1. Bars, 100 nm.
具体实施方式 Detailed ways
下面结合实施例对本发明进一步举例描述。Below in conjunction with embodiment the present invention is further described by way of example.
除非特别指明,本发明中所使用的分子生物学实验方法和免疫检测法,基本上参照J.Sambrook等人,分子克隆:实验室手册,第2版,冷泉港实验室出版社,1989,以及F.M.Ausubel等人,精编分子生物学实验指南,第3版,John Wiley&Sons,Inc.,1995中所述的方法进行;限制性内切酶的使用依照产品制造商推荐的条件。本领域技术人员知晓,实施例以举例方式描述本发明,且不意欲限制本发明所要求保护的范围。Unless otherwise specified, the molecular biology experiment methods and immunoassay methods used in the present invention are basically with reference to J.Sambrook et al., Molecular Cloning: A Laboratory Manual, 2nd Edition, Cold Spring Harbor Laboratory Press, 1989, and F.M.Ausubel et al., Compiled Molecular Biology Experimental Guide, 3rd Edition, John Wiley & Sons, Inc., 1995 by the method described; restriction endonucleases were used in accordance with the conditions recommended by the product manufacturer. Those skilled in the art understand that the examples describe the present invention by way of example and are not intended to limit the scope of the claimed invention.
实施例1:含有可诱使聚集或颗粒化的多肽的表达载体的构建Example 1: Construction of an expression vector containing a polypeptide that can induce aggregation or granulation
为了便于其他蛋白的融合,首先构建含有可诱使目标蛋白发生聚集或颗粒化的多肽(Multimerization-Inducing Peptide,MIP)的表达载体。根据发明人的设计,该多肽至少包含位于HEV 0RF2(DDBJ数据登录号:D11092)aa368-451区域的氨基酸序列。结合之前的颗粒化研究结果(见授权专利【中国发明专利号:ZL02822218.0,国际发明专利申请号PCT/CN02/00797】的实施例18的结果),该多肽N端位置可位于HEV ORF2aa345到aa370之间。为了适用不同的目的蛋白融合的需要,该多肽C端位置至少可位于HEV ORF2 aa451到aa460之间。当然,多肽C端用于与目的蛋白连接,因此C端短肽(HEV ORF2aa451-460)也可由其他报道的柔性连接肽(flexible linker)所替换,如Gly-Gly-Gly-Gly,Gly-Gly-Ser-Ser,Gly-Gly-Gly-Gly-Ser-Gly-Gly-Gly-Gly-Ser-Gly-Gly-Gly-Gly-Ser等。柔性连接的主要功能是使目的蛋白与本发明的MIP多肽连接后,能够相对独立地进行折叠,以获得高的生物学活性。本实施例示例性构建了2种表达载体,其分别含有两种可诱使聚集或颗粒化的多肽(MIP),即MIP1(HEV ORF2aa368-460)和MIP2(HEV ORF2 aa368-45l)。在应用过程中一般优先尝试具有更长连接链的MIP1载体。本发明还进一步证明,MIP的C端至少可位于HEV ORF2 aa435-460(参见下文实施例4)。In order to facilitate the fusion of other proteins, an expression vector containing a polypeptide (Multimerization-Inducing Peptide, MIP) that can induce aggregation or granulation of the target protein was constructed first. According to the inventor's design, the polypeptide at least comprises the amino acid sequence located in the aa368-451 region of HEV ORF2 (DDBJ data accession number: D11092). Combined with the previous granulation research results (see the results of Example 18 of the authorized patent [China Invention Patent No.: ZL02822218.0, International Invention Patent Application No. PCT/CN02/00797]), the N-terminal position of the polypeptide can be located at HEV ORF2aa345 to between aa370. In order to meet the needs of fusion of different target proteins, the C-terminal position of the polypeptide can be at least located between aa451 and aa460 of HEV ORF2. Of course, the C-terminal of the polypeptide is used to connect with the target protein, so the short C-terminal peptide (HEV ORF2aa451-460) can also be replaced by other reported flexible linkers, such as Gly-Gly-Gly-Gly, Gly-Gly -Ser-Ser, Gly-Gly-Gly-Gly-Ser-Gly-Gly-Gly-Gly-Ser-Gly-Gly-Gly-Gly-Ser, etc. The main function of the flexible link is to enable the target protein to be folded relatively independently after being linked with the MIP polypeptide of the present invention, so as to obtain high biological activity. In this example, two expression vectors were exemplarily constructed, which respectively contained two polypeptides (MIPs) that could induce aggregation or granulation, namely MIP1 (HEV ORF2 aa368-460) and MIP2 (HEV ORF2 aa368-45l). MIP1 vectors with longer linker chains are generally tried preferentially during application. The present invention further proves that the C-terminus of MIP can be located at least at HEV ORF2 aa435-460 (see Example 4 below).
以含有HEV ORF2 aa368-606的pTO-T7-p239质粒(Li et al,J.Biol.Chem.2005,28(5):3400-3406)为模板,以368F(SEQ IDNO:63):5′-CGG GAA TTC CAT ATG ATA GCG CTT ACC CTG TT-3′为正向引物(其5’端引入限制性内切酶Nde I位点(CATATG),ATG为大肠杆菌表达系统中的起始密码子);460R(SEQ ID NO:64):5′-GGA AGA TCT AGA GGA TCC GCG CGA TGG GGC TGG-3′(用于扩增MIP1)或451R(SEQ ID NO:65):5′-GGA AGA TCT ATG GGA TCC CGG TCG GTCCTG CTC-3′(用于扩增MI P2)为反向引物(其中引入限制型内切酶BamHI位点),在PCR热循环仪(Biometra T3)中按照如下条件进行PCR反应:Using the pTO-T7-p239 plasmid (Li et al, J. Biol. Chem. 2005, 28(5): 3400-3406) containing HEV ORF2 aa368-606 as a template, 368F (SEQ ID NO: 63): 5' -CGG GAA TTC CAT ATG ATA GCG CTT ACC CTG TT-3' is the forward primer (its 5' end introduces a restriction endonuclease Nde I site (CATATG), ATG is the start codon in the E. coli expression system ); 460R (SEQ ID NO: 64): 5'-GGA AGA TCT AGA GGA TCC GCG CGA TGG GGC TGG-3' (for amplification of MIP1) or 451R (SEQ ID NO: 65): 5'-GGA AGA TCT ATG GGA TCC CGG TCG GTCCTG CTC-3' (used to amplify MIP2) is the reverse primer (in which the restriction endonuclease BamHI site is introduced), and the PCR thermal cycler (Biometra T3) is carried out according to the following conditions PCR reaction:
扩增产物为300bp左右的DNA片段。将该PCR产物与商售的pMD18-T载体(TAKARA公司生产)连接,经NdeI/BamHI酶切鉴定,得到插MIP1和MIP2基因的阳性克隆质粒pMD 18-T-MIP1和pMD18-T-MIP2。在上海博亚生物工程公司,利用M13(+)引物,对pMD18-T-MIP1和pMD 18-T-MIP2质粒进行测序,结果显示:MIP1和MIP2的核苷酸序列为SEQ ID NO:1和SEQ ID NO:3,其编码的氨基酸序列分别为SEQ ID NO:2和SEQ ID NO:4。The amplified product is a DNA fragment of about 300bp. The PCR product was connected with a commercially available pMD18-T vector (produced by TAKARA Company), and identified by NdeI/BamHI digestion to obtain positive clone plasmids pMD18-T-MIP1 and pMD18-T-MIP2 inserted into MIP1 and MIP2 genes. In Shanghai Boya Bioengineering Company, the pMD18-T-MIP1 and pMD 18-T-MIP2 plasmids were sequenced using M13(+) primers, and the results showed that the nucleotide sequences of MIP1 and MIP2 are SEQ ID NO: 1 and SEQ ID NO: 3, the encoded amino acid sequences are SEQ ID NO: 2 and SEQ ID NO: 4, respectively.
将上述的pMD 18-T-MIP1和pMD 18-T-MIP2质粒用NdeI/BamHI酶切,与经NdeI/BamHI酶切的pTO-T7原核表达载体(罗文新等,生物工程学报,2000,16:53-57)相连接,然后经NdeI/BamHI酶切鉴定得到插入MIP1和MIP2基因片段的阳性表达质粒pTO-T7-MIP1和pTO-T7-MIP2。取1μL质粒(0.15mg/ml)转化40μL以氯化钙法制备的感受态大肠杆菌ER2566(购自Invitrogen公司),将其涂布于含卡那霉素(终浓度100mg/ml,下同)的固体LB培养基(成分:10g/L蛋白胨,5g/L酵母粉,10g/L氯化钠,下同),并37℃静置培养10-12小时至单菌落清晰可辨。挑取单菌落至含4mL液体LB培养基(含卡那霉素)的试管,在37℃180转/分钟下振荡培养10小时,从中取1mL菌液于-70℃保存。The above-mentioned pMD 18-T-MIP1 and pMD 18-T-MIP2 plasmids were digested with NdeI/BamHI, and pTO-T7 prokaryotic expression vector (Luo Wenxin et al., Bioengineering Journal, 2000, 16: 53-57), and then identified by NdeI/BamHI digestion to obtain positive expression plasmids pTO-T7-MIP1 and pTO-T7-MIP2 inserted with MIP1 and MIP2 gene fragments. Take 1 μL of the plasmid (0.15 mg/ml) to transform 40 μL of competent Escherichia coli ER2566 (purchased from Invitrogen) prepared by the calcium chloride method, and spread it on a medium containing kanamycin (
实施例2:融合MIP1/MIP2的H5亚型禽流感病毒HA1蛋白的表达载体的构建Example 2: Construction of the expression vector of the H5 subtype avian influenza virus HA1 protein fused to MIP1/MIP2
本发明涉及可发生疏水相互作用而聚集的MIP1/MIP2,其可诱使与之融合表达的或共价偶联的目标蛋白呈现聚集或颗粒化形式。本实施例显示,目标蛋白可融合于MIP1/MIP2的C端或N端或同时融合于N端和C端,且所得的融合蛋白均可组装成为颗粒形式,并且MIP1/MIP2也可适当进行突变或缺失而仍维持诱使聚集或颗粒化的性质。The present invention relates to MIP1/MIP2 capable of hydrophobic interaction aggregation, which can induce the target protein fused thereto or covalently coupled to assume aggregated or granulated form. This example shows that the target protein can be fused to the C-terminal or N-terminal or both of the N-terminal and C-terminal of MIP1/MIP2, and the resulting fusion protein can be assembled into particles, and MIP1/MIP2 can also be appropriately mutated Or missing while still maintaining the property of inducing aggregation or granulation.
如图1,设计并构建含有MIP1/MIP2与HA1蛋白的构建体,其中目标蛋白可融合于MIP1/MIP2的N端或C端。另外,还通过将MIP1的C末端截短或将MIP1的12A10表位(He等JGV,2008)替代或删除来设计突变的MIP1。在结构上,MIP1比MIP2在C端多了9个氨基酸残基(见实施例1)。为了使目标蛋白能够进行自由的折叠,还使用柔性连接肽(其氨基酸序列为GGGGSGGGGSGGGGS,也可使用其他柔性连接肽,如上文所举例说明的)来连接HA1和MIP1。此外,HA1截短片段还被同时连接于MIP1的N端和C端,并且N端使用柔性连接肽(其氨基酸序列为GGGGSGGGGSGGGGS)来连接。As shown in Figure 1, design and construct a construct containing MIP1/MIP2 and HA1 protein, wherein the target protein can be fused to the N-terminal or C-terminal of MIP1/MIP2. In addition, mutated MIP1 was also designed by truncating the C-terminus of MIP1 or replacing or deleting the 12A10 epitope of MIP1 (He et al. JGV, 2008). Structurally, MIP1 has 9 more amino acid residues at the C-terminus than MIP2 (see Example 1). In order to allow the target protein to fold freely, a flexible linking peptide (whose amino acid sequence is GGGGSGGGGSGGGGS, other flexible linking peptides can also be used, as exemplified above) is also used to link HA1 and MIP1. In addition, the truncated fragment of HA1 was also connected to the N-terminal and C-terminal of MIP1 at the same time, and the N-terminal was connected using a flexible linker peptide (the amino acid sequence of which was GGGGSGGGGSGGGGS).
融合蛋白的基因克隆采用三个PCR反应来进行,使用的初始模板包括pTO-T7-p239质粒(表1中简写为239)(Li,Vaccine,2005),pTO-T7-p239Δ12A10质粒(表1中简写为239-12A10Δ),pTO-T7-p239his12A10质粒(表1中简写为239-12A10)(He,JGV,2008)和HA基因(GenBank登录号:AAT39077,表1中简写为HA1-Yu777)(Chen,JID,2009)。各个PCR反应的模板、引物和退火条件见表1,PCR反应扩增条件设为:94℃变性10分钟,25个循环的(94℃变性50秒,指定温度退火一定时间,72℃延伸50秒),最后72℃延伸10分钟。所使用的PCR引物的序列列于表2。The gene cloning of the fusion protein was carried out using three PCR reactions, and the initial templates used included pTO-T7-p239 plasmid (abbreviated as 239 in Table 1) (Li, Vaccine, 2005), pTO-T7-p239Δ12A10 plasmid (in Table 1 Abbreviated as 239-12A10Δ), pTO-T7-p239his12A10 plasmid (abbreviated as 239-12A10 in Table 1) (He, JGV, 2008) and HA gene (GenBank accession number: AAT39077, abbreviated as HA1-Yu777 in Table 1) ( Chen, JID, 2009). The templates, primers and annealing conditions of each PCR reaction are shown in Table 1. The amplification conditions of the PCR reaction are set as follows: denaturation at 94°C for 10 minutes, 25 cycles (denaturation at 94°C for 50 seconds, annealing at a specified temperature for a certain period of time, extension at 72°C for 50 seconds ), and a final 72°C extension for 10 minutes. The sequences of the PCR primers used are listed in Table 2.
表2:用于构建融合MIP1/MIP2的HA蛋白的引物序列(SEQ ID NO:66-99)Table 2: The primer sequence (SEQ ID NO:66-99) that is used to construct the HA protein of fusion MIP1/MIP2
将扩增的DNA片段终产物与商售的pMD 18-T载体(TAKARA公司生产)连接,经EcoRI/Not I酶切鉴定得到含有目的片段的阳性克隆。再将获得的酶切片段与经EcoRI/NotI酶切的pTO-T7原核表达载体相连接,经NdeI/NotI酶切鉴定得到含有目的蛋白基因片段的阳性表达克隆。在上海博亚生物工程公司,利用T7引物,测得pTO-T7质粒中插入的目的片段的核苷酸序列分别为SEQ ID NO:5、7、9、11、13、15、17、19、21、23、25、27、29、31、33、35、37、39、41、43、45、47、49、51,其编码的氨基酸序列为SEQ ID NO:6、8、10、12、14、16、18、20、22、24、26、28、30、32、34、36、38、40、42、44、46、48、50、52(分别与表1中的24个融合蛋白一一对应)。其中,SEQ ID NO:51编码不融合MI P的HA1蛋白,HA1-N63C51,其作为对照用于研究MIP对HA1蛋白表达的有利作用。The final product of the amplified DNA fragment was connected to a commercially available pMD 18-T vector (manufactured by TAKARA Company), and the positive clone containing the target fragment was identified by EcoRI/Not I digestion. Then, the obtained restriction fragment was connected with the pTO-T7 prokaryotic expression vector digested with EcoRI/NotI, and the positive expression clone containing the target protein gene fragment was obtained through NdeI/NotI digestion. In Shanghai Boya Bioengineering Co., Ltd., using T7 primers, the nucleotide sequences of the target fragments inserted in the pTO-T7 plasmid were measured as SEQ ID NO: 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, the amino acid sequence encoded by it is SEQ ID NO: 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52 (respectively with 24 fusion proteins in Table 1 one-to-one correspondence). Wherein, SEQ ID NO:51 encodes the HA1 protein that does not fuse MIP, HA1-N63C51, which is used as a control to study the beneficial effect of MIP on the expression of HA1 protein.
取1μL的各个上述表达质粒(0.15mg/ml)分别转化40μL以氯化钙法制备的感受态大肠杆菌ER2566,将菌涂布于含卡那霉素(终浓度100mg/ml,下同)的固体LB培养基,37℃静置培养10-12小时至单菌落清晰可辨。挑取单菌落至含4mL液体LB培养基(含卡那霉素)的试管,在37℃250rpm下振荡培养10小时,从中取1mL菌液于-70℃保存。Take 1 μL of each of the above-mentioned expression plasmids (0.15 mg/ml) and transform 40 μL of competent Escherichia coli ER2566 prepared by the calcium chloride method, and spread the bacteria on a medium containing kanamycin (
实施例3:融合MIP1/MIP2的H5型禽流感病毒HA1蛋白的表达与纯化Example 3: Expression and purification of H5 avian influenza virus HA1 protein fused with MIP1/MIP2
融合MIP1/MIP2的H5亚型禽流感病毒HA1蛋白的表达Expression of HA1 protein of H5 subtype avian influenza virus fused with MIP1/MIP2
从-70℃超低温冰箱中取出5μL菌液,接种于5mL含卡那霉素的液体LB培养基中,在37℃250rpm下振荡培养直至OD600达0.5左右,再转接到500mL含卡那霉素的LB培养基中,在37℃250rpm下振荡培养4-5小时。当OD600达1.5左右时,加入IPTG至终浓度0.4mM,在37℃250rpm下振荡诱导4个小时。Take out 5 μL of bacterial liquid from the ultra-low temperature refrigerator at -70°C, inoculate it into 5 mL of liquid LB medium containing kanamycin, culture it with shaking at 37°C and 250 rpm until the OD600 reaches about 0.5, and then transfer it to 500 mL of liquid medium containing kanamycin In the LB medium, shake culture at 37°C and 250rpm for 4-5 hours. When the OD600 reached about 1.5, IPTG was added to a final concentration of 0.4 mM, and induced by shaking at 250 rpm at 37°C for 4 hours.
融合MIP1/MIP2的H5亚型禽流感病毒HA1蛋白的纯化Purification of H5 subtype avian influenza virus HA1 protein fused with MIP1/MIP2
诱导后,以8000rpm离心5min收集菌体,然后按1g菌体对应10mL裂解液(20mM Tris缓冲液pH7.2,300mM NaCl)的比例用裂解液重悬菌体,冰浴,用超声破碎仪(Sonics VCX750型超声破碎仪)处理菌体(处理条件:工作时间15min,脉冲2s,暂停4s,输出功率55%)。菌体裂解液12000rpm,4℃离心5min(下同),弃上清保留沉淀(即包涵体);然后用等体积2%Triton-100洗涤沉淀,振荡30min,离心弃上清;再用Buffer I(20mM Tris-HCl pH8.0,100mM NaCl,5mMEDTA)重悬沉淀,振荡30min,离心弃上清;然后用含2M尿素的BufferI重悬沉淀,37℃振荡30min,离心得上清和沉淀;保留上清,并继续用等体积含4M尿素的Buffer I重悬沉淀,37℃振荡30min,以12000rpm,4℃离心15min得上清和沉淀;保留上清,并继续用等体积含8M尿素的Buffer I重悬沉淀,37℃振荡30min,离心并保留上清。获得的各种级分的SDS-PAGE分析(以考马斯亮蓝染色进行显现,下同,方法参照《分子克隆》第2版)如图2所示。结果表明,融合蛋白均以包涵体的形式存在,并且经过包涵体洗涤步骤后,大部分融合蛋白可溶解于含4M尿素的Buffer I。After induction, collect the thalline by centrifugation at 8000rpm for 5min, then resuspend the thalline with the lysate at the ratio of 1g of the thallus to 10mL lysate (20mM Tris buffer pH 7.2, 300mM NaCl), ice bath, and use an ultrasonic breaker ( Sonics VCX750 Ultrasonic Breaker) to process the bacteria (processing conditions: working time 15min, pulse 2s, pause 4s,
融合MI P1/MIP2的H5亚型禽流感病毒HA1蛋白的复性和颗粒组装Refolding and particle assembly of H5 subtype avian influenza virus HA1 protein fused with MIP1/MIP2
蛋白质复性和颗粒组装采用透析(小量)或使用CENTRASETTE 5切向流装置(PALL公司产品)(大量)来进行,所用膜包截留分子量为30kDa,用20倍样品体积的PBS(含10mM pH 7.45的磷酸盐缓冲液,0.15M NaCl)与4M尿素溶解的上清液进行溶液交换,运行时压力为0.5psi,循环流速为500mL/min,切向流速为200mL/min。交换充分后,样品用0.22μm滤器除菌过滤并保存于4℃。如图2所示,溶解于4M尿素中的蛋白均可以复性至PBS溶液中。Protein refolding and particle assembly are carried out by dialysis (small amount) or using
实施例4:融合MIP1/MIP2的H5亚型禽流感病毒HA1蛋白的颗粒性分析Example 4: Particle analysis of H5 subtype avian influenza virus HA1 protein fused with MIP1/MIP2
融合蛋白的分子筛层析Molecular sieve chromatography of fusion proteins
采用美国安捷伦公司的1120Compact LC高效液相层析系统进行层析,使用的分析型分子筛层析柱为日本TOSOH公司的TSK GelPW5000xl(规格:7.8x300mm)。以2倍柱体积的PBS预先平衡层析柱至280nm处的吸收值无明显的变化,将检测器的吸收值归零。由自动进样器进样并分析结果。如图3所示,除了MIP1(C 35)n-HA1-N63C51和MIP1(C45)n-HA1-N63C51以外,其他复性蛋白在分子筛层析柱的主峰保留时间与239颗粒相当(Li et al,Vaccine,2005),这表明,这些蛋白在去除4M尿素并复性至PBS溶液后均可形成颗粒;而当MIP的C端截短至HEV ORF2aa425或aa415时其不能诱使HA1蛋白发生颗粒化,提示MIP的C端至少可位于aa435。The 1120Compact LC high-performance liquid chromatography system of Agilent Corporation of the United States was used for chromatography, and the analytical molecular sieve chromatography column used was TSK GelPW5000xl (specification: 7.8x300mm) of TOSOH Corporation of Japan. Pre-equilibrate the chromatographic column with 2 times the column volume of PBS until the absorbance at 280 nm does not change significantly, and reset the absorbance of the detector to zero. Samples were injected by an autosampler and the results analyzed. As shown in Figure 3, except for MIP1(C 35)n-HA1-N63C51 and MIP1(C45)n-HA1-N63C51, the retention time of the main peak of other refolding proteins on the molecular sieve chromatography column is comparable to that of 239 particles (Li et al , Vaccine, 2005), which indicated that these proteins could form granules after removing 4M urea and refolding into PBS solution; however, when the C-terminus of MIP was truncated to HEV ORF2aa425 or aa415, it could not induce HA1 protein granulation , suggesting that the C-terminus of MIP can be located at least at aa435.
融合蛋白的透射电镜观察TEM Observation of Fusion Protein
使用的仪器为日本电子公司生产的120kV透射电镜,放大倍数为100,000倍。将颗粒组装后的融合蛋白颗粒用2%磷钨酸pH7.0负染,固定于喷炭的铜网上,进行观察。结果如图4所示,所有融合蛋白在视野中均呈现颗粒组分,其中,MIP1-HA1-N63、MIP1-HA1-N63C51、MIP1Δ-HA1-N63C51、MIP2-HA1-N57C67、MIP1nL-HA1-N63C51和MIP1nLc-HA1-N63C51可形成较好的颗粒形态,直径为20nm左右;而MIP1h-HA1-N63C51、MIP2-HA1-N57C51和MIP1n-HA1-N63C51可形成大量的直径为20-30nm的球状颗粒,形态较为均一且轮廓清晰。这表明,无论以什么样的方式进行融合,甚至进行少量氨基酸的替换,MIP1/MI P2均可诱导HA1的不同大小的片段发生聚集,形成颗粒。当然,聚集可能受到局部构象的影响,形成的颗粒形态也可能不同。连接肽也可能起到分开结构域,有利于蛋白折叠的作用。The instrument used is a 120kV transmission electron microscope produced by Japan Electronics Corporation, with a magnification of 100,000 times. The assembled fusion protein particles were negatively stained with 2% phosphotungstic acid pH 7.0, fixed on a carbon-sprayed copper grid, and observed. The results are shown in Figure 4, all fusion proteins present granular components in the visual field, among them, MIP1-HA1-N63, MIP1-HA1-N63C51, MIP1Δ-HA1-N63C51, MIP2-HA1-N57C67, MIP1nL-HA1-N63C51 and MIP1nLc-HA1-N63C51 can form a better particle shape with a diameter of about 20nm; while MIP1h-HA1-N63C51, MIP2-HA1-N57C51 and MIP1n-HA1-N63C51 can form a large number of spherical particles with a diameter of 20-30nm, The shape is relatively uniform and the outline is clear. This shows that no matter what kind of fusion is performed, even a small amount of amino acid replacement, MIP1/MIP2 can induce the aggregation of fragments of different sizes of HA1 to form particles. Of course, aggregation may be affected by local conformation, and the morphology of the formed particles may also be different. Linker peptides may also act to separate domains and facilitate protein folding.
实施例5:融合MIP1/MIP2的H5亚型禽流感病毒HA1蛋白颗粒的免疫反应性Example 5: Immunoreactivity of H5 subtype avian influenza virus HA1 protein particles fused with MIP1/MIP2
融合蛋白与抗H5特异性单抗的蛋白质印迹(Western blotting)Western blotting of fusion protein and anti-H5 specific monoclonal antibody 免疫反应性immunoreactivity
经复性和颗粒组装的融合蛋白样品经12%的SDS-PAGE分离后转移到硝酸纤维素膜上,用5%脱脂奶室温封闭2h;加入经稀释的单抗(1∶1000),置于室温反应1h(3G4和13D4均为本实验室制备的H5N1特异性抗体,其中,13D4为可以用于治疗禽流感的H5中和抗体,参见Chen等,JID,199(1):49-58,2009,其通过引用并入本文);用TNT溶液(8.765g NaCl、1.21g Tris Base和0.5ml Tween-20,加去离子水至1L,调pH为8.0)洗膜3次,每次10min;然后加入羊抗鼠碱性磷酸酶(1∶5000)(KPL产品),置于室温反应1h;用TNT洗膜3次,每次10min;用NBT(Nitro blue tetrazolium)和BCIP(5-Bromo-4-chloro-3-indolyl phosphate)底物进行显色。如图5所示,蛋白质印迹分析的结果显示,MIP1-HA1-N63C51、MIP1-HA1-N63C46、MIP1-HA1-N57C51、MIP1-HA1-N52C51、MIP2-HA1-N57C51和MI P1nLc-HA1-N63C51均可与特异性的H5单抗3G4和13D4反应,而未融合MIP的HA1-N63C51(泳道7)则无明显的反应。这表明,MIP的融合不仅可诱使HA1蛋白发生聚集,且有利于其形成天然的H5表位构象。After refolding and particle assembly, the fusion protein sample was separated by 12% SDS-PAGE and transferred to a nitrocellulose membrane, blocked with 5% skimmed milk at room temperature for 2 hours; added diluted monoclonal antibody (1:1000), placed in React at room temperature for 1 h (both 3G4 and 13D4 are H5N1-specific antibodies prepared in our laboratory, and 13D4 is an H5 neutralizing antibody that can be used to treat avian influenza, see Chen et al., JID, 199(1): 49-58, 2009, which is incorporated herein by reference); wash the
颗粒形式的融合蛋白与H5广谱中和单抗的点杂交免疫反应性Dot blot immunoreactivity of fusion protein in particulate form with H5 broadly neutralizing monoclonal antibody
与蛋白质印迹法相比,点杂交可保持蛋白的颗粒形式并保留构象性表位。使用美国BioRad公司的P91E型杂交点样器。按标尺剪下一块能覆盖点样器上所有空的膜,剪去一角作为标记。膜预先用灭菌水浸润,然后将MIP1-HA1-N63C51蛋白颗粒(1mg/ml)按照原倍,1/10、1/50、1/250、1/1250、1/6250稀释度进行点膜,每条带的上样量为200μl。以酵母细胞表达的HA1蛋白(其为单体蛋白)为对照。用真空进行抽滤以使颗粒蛋白吸附在膜上。将膜室温放置2h,用5%脱脂奶室温封闭2h;然后加入经5%脱脂奶稀释的H5特异性单抗,室温放置1h;用TNT溶液洗膜3次,每次10分钟;然后加入碱性磷酸酶(AP)标记的羊抗鼠二抗(KPL产品),室温放置30min;然后用TNT溶液洗膜3次,每次10min;然后用NBT和BCIP显色。结果如图6所示,其中MIP1-HA1-N63C51颗粒与H5广谱中和单抗13D4、8G9和10F7(参见Chen等,JID,199(1):49-58,2009,其通过引用并入本文)的反应性不低于HA1单体蛋白,这表明MIP1多肽诱使HA1蛋白形成的颗粒中HA1部分仍维持良好的构象。Compared to western blotting, dot blots maintain the granular form of proteins and preserve conformational epitopes. A P91E hybrid spotter from BioRad, USA was used. Cut off a piece of film that can cover all the voids on the spotter according to the ruler, and cut off a corner as a mark. The membrane was pre-soaked with sterilized water, and then MIP1-HA1-N63C51 protein particles (1mg/ml) were spotted on the membrane according to the original dilution of 1/10, 1/50, 1/250, 1/1250, 1/6250 , the loading volume of each band was 200 μl. The HA1 protein (which is a monomeric protein) expressed by yeast cells was used as a control. Suction filtration was performed with vacuum to adsorb the particulate protein to the membrane. Leave the membrane at room temperature for 2 hours, block with 5% skimmed milk at room temperature for 2 hours; then add H5-specific monoclonal antibody diluted with 5% skimmed milk, and leave it at room temperature for 1 hour; wash the membrane with TNT solution for 3 times, each time for 10 minutes; then add alkali The goat anti-mouse secondary antibody (KPL product) labeled with sex phosphatase (AP) was placed at room temperature for 30 minutes; then the membrane was washed 3 times with TNT solution, 10 minutes each time; and then developed with NBT and BCIP. The results are shown in Figure 6, where MIP1-HA1-N63C51 particles are combined with H5 broad-spectrum neutralizing mAbs 13D4, 8G9 and 10F7 (see Chen et al., JID, 199(1): 49-58, 2009, which is incorporated by reference The reactivity of this article) is not lower than that of the HA1 monomeric protein, which indicates that the HA1 part of the particle formed by the MIP1 polypeptide induces the HA1 protein still maintains a good conformation.
颗粒形式的融合蛋白与H5单抗盘的ELISA免疫反应性ELISA immunoreactivity of fusion protein in particulate form with H5 mAb disc
以碳酸盐缓冲液(20mM Na2CO3,pH9.6)稀释各蛋白至终浓度1ng/μl,然后在96孔板上进行包被(包被体积100μl),37℃温育2h。在37℃封闭2h后,抽干,加入稀释至终浓度100ng/ml的本实验室制备的纯化H5单抗(通过用禽流感病毒免疫小鼠,然后以血凝抑制法进行单抗筛选来获得这些单抗,这些单抗可参见例如中国专利ZL200510007308.X,中国专利申请200710006098.1,中国专利申请200810110869.6,其通过引用并入本文),37℃反应30min;洗板,然后加入HRP标记的抗鼠IgG二抗(KPL产品),37℃反应30min;洗板,37℃显色15min,然后在450nm处读取吸光值(参比波长为620nm)。结果如图7所示。图7A以各蛋白抗原与抗体的反应性进行聚类分析,其中MIP1-HA1-N63C51、MIP1-HA1-N57C51、MIP2-HA1-N57C51和MIP1-HA1-N52C51保持了较好的对H5单抗盘的反应谱,与酵母来源的HA1蛋白的单抗反应谱相当,而对照蛋白未融合MIP的HA1-N63C51则几乎不与单抗盘反应;图7B以各抗体与抗原的反应性进行聚类分析,其中各种抗体与MIP融合蛋白的反应性相当,均高于与对照蛋白未融合MIP的HA1-N63C51的反应性。这表明,MIP在诱导颗粒化的同时有利于蛋白的正确折叠。Each protein was diluted with carbonate buffer (20 mM Na 2 CO 3 , pH 9.6) to a final concentration of 1 ng/μl, then coated on a 96-well plate (
实施例6:融合MIP1/MIP2的H5亚型禽流感病毒HA1蛋白颗粒的免疫原性Example 6: Immunogenicity of H5 subtype avian influenza virus HA1 protein particles fused with MIP1/MIP2
对MIP1-HA1-N63C51、MIP1-HA1-N57C51、MIP2-HA1-N57C51等融合颗粒进行免疫原性实验。实验动物为雌性,6周龄的BALB/c小鼠。免疫方式为四肢三角肌的肌肉注射。将融合颗粒与铝佐剂进行混合,终浓度为5μg/100μl。以相同剂量将未融合MIP的HA1蛋白与弗氏佐剂混合,作为对照。一般认为弗氏佐剂具有比铝佐剂更好的促进免疫应答的作用。在2周和4周时用同等剂量进行加强,每周采集分离血清,用HA1进行血清抗体滴度的ELI SA检测。检测时血清进行如下的稀释:0周血,1∶100稀释;1-5周血,1∶100、1∶300、1∶900、1∶2700系列稀释;6周血,1∶100、1∶400、1∶1600、1∶6400系列稀释。ELISA阳性截断值设为0.3。检测到的抗体滴度的增长曲线如图8所示。结果显示,6周时融合颗粒所诱发的抗体滴度与弗氏佐剂/HA1相当,这表明颗粒化的HA1融合蛋白具有与弗氏佐剂/HA1相当的免疫原性,从而表明MIP1/MI P2诱使的颗粒化可保留并增强目标蛋白的免疫原性。Immunogenicity experiments were performed on fusion particles such as MIP1-HA1-N63C51, MIP1-HA1-N57C51, and MIP2-HA1-N57C51. The experimental animals were female, 6-week-old BALB/c mice. The way of immunization is intramuscular injection into the deltoid muscle of the limbs. Fused particles were mixed with aluminum adjuvant at a final concentration of 5 μg/100 μl. HA1 protein not fused with MIP was mixed with Freund's adjuvant at the same dose as a control. It is generally believed that Freund's adjuvant has a better effect of promoting immune response than aluminum adjuvant. The same dose was used to boost at 2 weeks and 4 weeks, the isolated serum was collected every week, and the serum antibody titer was detected by ELISA with HA1. Serum was diluted as follows: 0 week blood, 1:100 dilution; 1-5 week blood, 1:100, 1:300, 1:900, 1:2700 serial dilution; 6 week blood, 1:100, :400, 1:1600, 1:6400 serial dilutions. The ELISA positive cut-off value was set at 0.3. The growth curve of the detected antibody titers is shown in FIG. 8 . The results showed that the antibody titers elicited by fusion particles at 6 weeks were comparable to those of Freund's adjuvant/HA1, which indicated that the granulated HA1 fusion protein had comparable immunogenicity to Freund's adjuvant/HA1, thus indicating that MIP1/MI P2-induced granulation preserves and enhances the immunogenicity of the target protein.
实施例7:融合MIP1/MIP2的HIV-1 env蛋白片段的表达载体的构建Embodiment 7: the construction of the expression vector of the HIV-1 env protein fragment of fusion MIP1/MIP2
融合MIP1/MIP2的HIV-1-env-gp41-26和HIV-1-env-gp120-222HIV-1-env-gp41-26 and HIV-1-env-gp120-222 fused with MIP1/MIP2 的构建build
以pNL 4-3质粒(本实验室保存,基因登录号:AF 324493)作为PCR反应的模板,以HIV-1-env-gp41-26F(SEQ ID NO:100):5′-GGA TCC GGA AGC ACT ATG GGC GC-3′或HIV-1-env-gp120-222F(SEQ ID NO:102):5′-GGA TCC GAA TCT GTA GAG-3′为正向引物(其5′端引入限制性内切酶BamH I位点(以下划线表示));以HIV-1-env-gp41-26R(SEQ ID NO:101):5′-GAA TTC ACT TGC CCA TTT ATC T-3′或HIV-1-env-gp120-222R(SEQ ID NO:103):5′-GAA TTC CTA TCT TTTTTC TCT CTC-3′为反向引物(其5′端引入限制型内切酶EcoR I位点(以下划线表示)),在PCR热循环仪(Biometra T3)中按照如下条件进行PCR反应。Use the pNL 4-3 plasmid (preserved in our laboratory, gene accession number: AF 324493) as the template for the PCR reaction, and HIV-1-env-gp41-26F (SEQ ID NO: 100): 5′ -GGA TCC GGA AGC ACT ATG GGC GC-3' or HIV-1-env-gp120-222F (SEQ ID NO: 102): 5'- GGA TCC GAA TCT GTA GAG-3' is the forward primer (its 5' end is introduced into a restriction Dicer BamH I site (underlined)); HIV-1-env-gp41-26R (SEQ ID NO: 101): 5'- GAA TTC ACT TGC CCA TTT ATC T-3' or HIV-1- env-gp120-222R (SEQ ID NO: 103): 5'- GAA TTC CTA TCT TTTTTC TCT CTC-3' is a reverse primer (the 5' end introduces a restriction endonuclease EcoR I site (underlined) ), the PCR reaction was carried out in a PCR thermal cycler (Biometra T3) according to the following conditions.
扩增产物分别为700bp和400bp左右的大小特异的DNA片段。将该PCR产物与商售的pMD 18-T载体(TAKARA公司生产)连接,经BamHI/EcoR I酶切鉴定后,获得阳性克隆pMD 18-T-HIV-1-env-gp41-26和pMD 18-T-HIV-1-env-gp120-222。The amplified products were size-specific DNA fragments of about 700bp and 400bp respectively. The PCR product was connected to a commercially available pMD 18-T carrier (produced by TAKARA Company), and after identification by BamHI/EcoR I digestion, positive clones pMD 18-T-HIV-1-env-gp41-26 and
在上海博亚生物工程公司,利用M13(+)/(-)引物,测得pMD 18-T-HIV-1-env-gp41-26质粒中插入的目的片段的核苷酸序列为序列SEQID NO:53,其编码的氨基酸序列为SEQ ID NO:54;pMD 18-T-HIV-1-env-gp120-222质粒中插入的目的片段的核苷酸序列为序列SEQ ID NO:55,其编码的氨基酸序列为序列SEQ ID NO:56。In Shanghai Boya Bioengineering Co., Ltd., using M13(+)/(-) primers, the nucleotide sequence of the target fragment inserted in the pMD 18-T-HIV-1-env-gp41-26 plasmid was measured as sequence SEQID NO : 53, the amino acid sequence encoded by it is SEQ ID NO: 54; the nucleotide sequence of the target fragment inserted in pMD 18-T-HIV-1-env-gp120-222 plasmid is sequence SEQ ID NO: 55, which encode The amino acid sequence is the sequence SEQ ID NO:56.
将上述的pMD 18-T-HIV-1-env-gp41-26、gp120-222质粒用BamHI/EcoR I酶切,获得HIV-1-env-gp41-26、gp120-222基因片段。再将获得的片段与经BamH I/EcoR I酶切的pTO-T7-MIP1和pTO-T7-MIP2表达载体相连接,经BamH I/EcoR I酶切鉴定后,获得阳性表达克隆pTO-T7-MIP1-gp41-26,pTO-T7-MIP2-gp41-26,pTO-T7-MIP1-gp120-222和pTO-T7-MIP2-gp120-222。取1μL质粒(0.15mg/ml)转化40μL以氯化钙法制备的感受态大肠杆菌ER2566(购自Invitrogen公司),将其涂布于含卡那霉素(终浓度100mg/ml,下同)的固体LB培养基,并37℃静置培养10-12小时至单菌落清晰可辨。挑取单菌落至含4mL液体LB培养基(含卡那霉素)的试管,在37℃180rpm下振荡培养10小时,从中取1mL菌液于-70℃保存。The above pMD 18-T-HIV-1-env-gp41-26, gp120-222 plasmids were digested with BamHI/EcoRI to obtain HIV-1-env-gp41-26, gp120-222 gene fragments. Then the obtained fragments were connected with the pTO-T7-MIP1 and pTO-T7-MIP2 expression vectors digested by BamH I/EcoR I, and the positive expression clone pTO-T7- MIP1-gp41-26, pTO-T7-MIP2-gp41-26, pTO-T7-MIP1-gp120-222 and pTO-T7-MIP2-gp120-222. Take 1 μL of the plasmid (0.15 mg/ml) to transform 40 μL of competent Escherichia coli ER2566 (purchased from Invitrogen) prepared by the calcium chloride method, and spread it on a medium containing kanamycin (
实施例8:融合NIP1/MIP2的HIV-1 env蛋白片段的表达和纯化Example 8: Expression and purification of HIV-1 env protein fragments fused to NIP1/MIP2
融合MIP1/MIP2的HIV-1-env-gp41-26、gp120-222蛋白的表达Expression of HIV-1-env-gp41-26 and gp120-222 proteins fused with MIP1/MIP2
从-70℃中取出携带重组质粒pTO-T7-MIP1-gp41-26,pTO-T7-MIP2-gp41-26,pTO-T7-MIP1-gp120-222或pTO-T7-MIP2-gp120-222的大肠杆菌菌液,接种50ml含卡那霉素的LB液体培养基中,在180rpm,37℃下培养大约12小时;然后转接入10瓶500ml含卡那霉素的LB培养基中(每瓶接入5ml菌液),在180rpm,37℃下培养至600nm处的OD值为约1.2;加入500uL IPTG(浓度0.5mM/L),在37℃下振荡培养4小时。Remove large intestine carrying recombinant plasmids pTO-T7-MIP1-gp41-26, pTO-T7-MIP2-gp41-26, pTO-T7-MIP1-gp120-222 or pTO-T7-MIP2-gp120-222 from -70°C Bacteria liquid, inoculated in 50ml of LB liquid medium containing kanamycin, cultivated at 180rpm, 37°C for about 12 hours; then transferred into 10 bottles of 500ml LB medium containing kanamycin (each bottle received Add 5ml bacterial solution), culture at 180rpm at 37°C until the OD value at 600nm is about 1.2; add 500uL IPTG (concentration 0.5mM/L), and shake at 37°C for 4 hours.
融合MIP1/MIP2的HIV-1-env-gp41-26、gp120-222蛋白的纯化和Purification of HIV-1-env-gp41-26, gp120-222 proteins fused to MIP1/MIP2 and 颗粒组装particle assembly
经37℃诱导4小时后,在8000rpm,4℃下离心培养物5min,收集菌体,然后按1g菌体对应10mL裂解液(20mM Tris缓冲液pH 7.2,300mM NaCl)的比例用裂解液重悬菌体,并进行超声破碎。菌体裂解液9500rpm,4℃离心5mi n,保留沉淀(即包涵体);用1%Triton-100和Buffer I洗涤包涵体,然后用4M尿素重悬,搅拌30min,以9500rpm,4℃离心5min;获得的沉淀再用8M尿素重悬,搅拌30min,以12000rpm,4℃离心15min;收获上清(即,8M尿素溶解上清),并将其透析至PBS 以使重组蛋白进行颗粒组装;进一步在12000rpm,4℃下离心15min,收获上清(即,复性上清)。融合蛋白MIP1-gp41-26和MIP2-gp41-26的表达、纯化和颗粒复性的SDS-PAGE分析的结果分别如图9A的泳道2,4,6和泳道1,3,5所示,获得的纯化蛋白的分子量约为30kD,纯度大于70%。融合蛋白MIP1-gp120-222和MIP2-gp120-222的表达、纯化和颗粒复性的SDS-PAGE分析的结果分别如图9B的泳道2,4,6和泳道1,3,5所示,获得的纯化蛋白的分子量约为45kD,纯度大于80%。After being induced at 37°C for 4 hours, centrifuge the culture at 8000rpm and 4°C for 5min, collect the bacteria, and then resuspend with the lysate at the ratio of 1g of the bacteria to 10mL of the lysate (20mM Tris buffer pH 7.2, 300mM NaCl) Bacteria, and ultrasonically disrupted. The cell lysate was centrifuged at 9500rpm at 4°C for 5min, and the precipitate (i.e. the inclusion body) was retained; the inclusion body was washed with 1% Triton-100 and Buffer I, then resuspended with 4M urea, stirred for 30min, and centrifuged at 9500rpm at 4°C for 5min ; The precipitate obtained was resuspended with 8M urea, stirred for 30min, and centrifuged at 12000rpm at 4°C for 15min; harvested supernatant (that is, 8M urea dissolved supernatant), and dialyzed it to PBS so that the recombinant protein was assembled into particles; further Centrifuge at 12000 rpm at 4° C. for 15 min, and harvest the supernatant (ie, renatured supernatant). The results of SDS-PAGE analysis of the expression, purification and renaturation of the fusion proteins MIP1-gp41-26 and MIP2-gp41-26 are shown in
实施例9:融合MIP1/MIP2的HIV-1env蛋白的颗粒性分析Example 9: Particle analysis of HIV-1 env protein fused to MIP1/MIP2
融合蛋白的分子筛层析Molecular sieve chromatography of fusion proteins
采用美国安捷伦公司的1120 Compact LC高效液相色谱系统进行层析,使用的分析柱为TSK Gel PW5000xl 7.8x300mm。以2倍柱体积的PBS预先平衡层析柱至280nm处的吸收值无明显的变化,将检测器的吸收值归零。由自动进样器进样并分析结果。结果如图10所示,MIP1-gp41-26、MIP2-gp41-26、MIP1-gp120-222和MIP2-gp120-222蛋白在分子筛层析柱的主峰保留时间均小于239颗粒(Li et al,Vaccine,2005),这表明这四种融合蛋白均可形成颗粒(在分子筛层析图谱中保留时间越小说明样品的分子量或直径越大)。The 1120 Compact LC high-performance liquid chromatography system of Agilent Corporation of the United States was used for chromatography, and the analytical column used was TSK Gel PW5000xl 7.8x300mm. Pre-equilibrate the chromatographic column with 2 times the column volume of PBS until the absorbance at 280 nm does not change significantly, and reset the absorbance of the detector to zero. Samples were injected by an autosampler and the results analyzed. The results are shown in Figure 10, the main peak retention time of MIP1-gp41-26, MIP2-gp41-26, MIP1-gp120-222 and MIP2-gp120-222 protein in molecular sieve chromatography column is all less than 239 particles (Li et al, Vaccine , 2005), which shows that these four fusion proteins can form particles (the smaller the retention time in the molecular sieve chromatogram, the larger the molecular weight or diameter of the sample).
融合蛋白的动态光散射分析颗粒性Dynamic Light Scattering Analysis of Granularity of Fusion Proteins
使用的仪器为美国Protein Solutions公司生产的DynaPro MS/X型动态光散射仪(含温度控制器),使用的算法为Regulation算法。样品为经颗粒组装的MIP1-gp41-26、MIP2-gp41-26、MIP1-gp120-222和MIP2-gp120-222蛋白。样品经0.22μm滤膜过滤后进行测量。测量结果见图11。结果显示,env蛋白片段gp41-26和gp120-222在与MIP1或MIP2融合后,在溶液中均可形成半径为20-30nm的颗粒组分。The instrument used is DynaPro MS/X dynamic light scattering instrument (including temperature controller) produced by American Protein Solutions Company, and the algorithm used is Regulation algorithm. The samples were particle assembled MIP1-gp41-26, MIP2-gp41-26, MIP1-gp120-222 and MIP2-gp120-222 proteins. The samples were measured after being filtered through a 0.22 μm filter membrane. The measurement results are shown in Figure 11. The results showed that after env protein fragments gp41-26 and gp120-222 were fused with MIP1 or MIP2, they could form particle components with a radius of 20-30 nm in solution.
融合蛋白的颗粒透射电镜观察Particle TEM Observation of Fusion Protein
使用的仪器为日本电子公司生产的120kV透射电镜(型号:JEM2100),放大倍数为100,000倍。将颗粒组装后的融合蛋白MIP1-gp41-26、MIP2-gp41-26、MIP1-gp120-222和MIP2-gp120-222用2%磷钨酸pH7.0负染,固定于喷炭的铜网上,进行观察。电镜结果见图12,其中可见融合蛋白形成大量半径为20nm左右的颗粒。The instrument used is a 120kV transmission electron microscope (model: JEM2100) produced by Japan Electronics Corporation, with a magnification of 100,000 times. The assembled fusion proteins MIP1-gp41-26, MIP2-gp41-26, MIP1-gp120-222 and MIP2-gp120-222 were negatively stained with 2% phosphotungstic acid pH 7.0, and fixed on the carbon-sprayed copper grid. Make observations. The results of the electron microscope are shown in Figure 12, where it can be seen that the fusion protein forms a large number of particles with a radius of about 20 nm.
实施例10:融合MIP1/MIP2的HIV-1env蛋白的免疫原性分析Example 10: Immunogenicity analysis of HIV-1 env protein fused to MIP1/MIP2
MIP1-gp41-26和MIP2-gp41-26颗粒的免疫原性分析Immunogenicity Analysis of MIP1-gp41-26 and MIP2-gp41-26 Particles
实验动物:BALB/c小鼠,雌性,6周龄,每组3只。免疫方式:四肢三角肌肌肉注射。免疫体积:100μl。免疫程序:0周时初次免疫,2周和4周时加强。MIP1-gp41-26和MIP2-gp41-26颗粒分别设0.5μg/无佐剂组(Ad-)和5μg/铝佐剂组(Al+)。以未融合MIP的gp41-26蛋白的0.5μg/无佐剂(Ad-)和0.5μg/弗氏佐剂(F+)为对照。弗氏佐剂实验组初次免疫使用完全弗氏佐剂(1∶1稀释),加强免疫采用不完全弗氏佐剂(1∶1稀释)。铝佐剂的含量为1.6mg/ml。Experimental animals: BALB/c mice, female, 6 weeks old, 3 mice in each group. Immunization method: Intramuscular injection into the deltoid muscle of the limbs. Immunization volume: 100 μl. Immunization schedule: primary immunization at 0 weeks, booster at 2 weeks and 4 weeks. MIP1-gp41-26 and MIP2-gp41-26 particles were respectively set at 0.5 μg/no adjuvant group (Ad-) and 5 μg/aluminum adjuvant group (Al+). 0.5 μg/no adjuvant (Ad-) and 0.5 μg/Freund’s adjuvant (F+) of gp41-26 protein not fused with MIP were used as controls. In the Freund's adjuvant experimental group, complete Freund's adjuvant (1:1 dilution) was used for initial immunization, and incomplete Freund's adjuvant (1:1 dilution) was used for booster immunization. The content of aluminum adjuvant was 1.6mg/ml.
每周进行采血分离血清,以100ng的gp41-26蛋白进行抗体的酶联免疫吸附测定(ELISA),测定抗体的滴度。以每组3只小鼠的抗体滴度的对数平均值对时间作图。结果如图13所示,其中在低剂量0.5μg/无佐剂的条件下,MIP1-gp41-26、MIP2-gp41-26颗粒在第2周即可产生抗体,且经过2次加强后,第5周的抗体滴度可达103.7;而0.5μg/无佐剂对照组在第3周才能产生抗体,且第5周的抗体滴度仅为102.3,0.5μg/弗氏佐剂对照组在第5周也只可产生102.4的抗体滴度。由此可见,MIP诱使的颗粒化可使gp41-26蛋白诱发的抗体滴度提高1个数量级以上,且高于对照蛋白/弗氏佐剂的免疫原性,这表明MIP可显著提高目标蛋白的免疫原性。结果还显示,通过使用可用于人体的铝佐剂辅助MI P融合蛋白并提高免疫剂量至5μg,抗体滴度可再提高一个数量级至105.5。Blood was drawn every week to separate serum, and 100 ng of gp41-26 protein was used to perform antibody enzyme-linked immunosorbent assay (ELISA) to determine the titer of the antibody. The logarithmic mean of the antibody titers from 3 mice per group is plotted against time. The results are shown in Figure 13, where MIP1-gp41-26 and MIP2-gp41-26 particles can produce antibodies in the second week under the condition of low dose of 0.5 μg/no adjuvant, and after two boosters, the The antibody titer of 5 weeks can reach 10 3.7 ; while the 0.5μg/no adjuvant control group can produce antibodies in the 3rd week, and the antibody titer of the 5th week is only 10 2.3 , the 0.5μg/Freund's adjuvant control group Also can only produce the antibody titer of 10 2.4 in the 5th week. It can be seen that the granulation induced by MIP can increase the antibody titer induced by gp41-26 protein by more than 1 order of magnitude, which is higher than the immunogenicity of the control protein/Freund's adjuvant, which indicates that MIP can significantly increase the antibody titer of the target protein immunogenicity. The results also showed that by using the aluminum adjuvant that can be used in humans to assist the MIP fusion protein and increasing the immunization dose to 5 μg, the antibody titer can be increased by another order of magnitude to 10 5.5 .
MIP1-gp120-222和MIP2-gp120-222颗粒的免疫原性分析Immunogenicity Analysis of MIP1-gp120-222 and MIP2-gp120-222 Particles
实验动物:BALB/c小鼠,雌性,6周龄,每组3只。免疫方式:四肢三角肌肌肉注射。免疫体积:100μl。免疫程序:0周时初次免疫,2周和4周时加强。MIP1-gp120-222和MIP2-gp120-222颗粒分别设0.5μg/无佐剂组(Ad-)和5μg/铝佐剂组(Al+)。以未融合MIP的gp120-222蛋白的0.5μg/无佐剂(Ad-)和0.5μg/弗氏佐剂(F+)为对照。弗氏佐剂实验组初次免疫使用完全弗氏佐剂(1∶1稀释),加强免疫采用不完全弗氏佐剂(1∶1稀释)。铝佐剂的含量为1.6mg/ml。Experimental animals: BALB/c mice, female, 6 weeks old, 3 mice in each group. Immunization method: Intramuscular injection into the deltoid muscle of the limbs. Immunization volume: 100 μl. Immunization schedule: primary immunization at 0 weeks, booster at 2 weeks and 4 weeks. MIP1-gp120-222 and MIP2-gp120-222 particles were respectively set at 0.5 μg/no adjuvant group (Ad-) and 5 μg/aluminum adjuvant group (Al+). 0.5 μg/no adjuvant (Ad-) and 0.5 μg/Freund’s adjuvant (F+) of gp120-222 protein not fused with MIP were used as controls. In the Freund's adjuvant experimental group, complete Freund's adjuvant (1:1 dilution) was used for initial immunization, and incomplete Freund's adjuvant (1:1 dilution) was used for booster immunization. The content of aluminum adjuvant was 1.6mg/ml.
每周进行采血分离血清,以100ng的gp120-222蛋白进行抗体的酶联免疫吸附测定(ELISA),测定抗体的滴度。以每组3只小鼠的抗体滴度的对数平均值对免疫时间作图。结果如图14所示,其中在低剂量0.5μg/无佐剂的条件下,MIP1-gp120-222、MIP2-gp120-222颗粒经过2次加强后,在第5周的抗体滴度可达103.5;而0.5μg/无佐剂对照组第5周的抗体滴度仅为102.1,0.5μg/弗氏佐剂对照组也只可产生103.5的抗体滴度。可见,MIP诱使的颗粒化可使gp120-222蛋白诱发的抗体滴度提高1个数量级以上,且与对照蛋白/弗氏佐剂的免疫原性相当,这表明MIP可显著提高目标蛋白的免疫原性。结果还显示,通过使用可用于人体的铝佐剂辅助MIP融合蛋白并提高免疫剂量至5μg,抗体滴度可再提高一个数量级至105左右。Blood was drawn every week to separate serum, and 100 ng of gp120-222 protein was used to perform antibody enzyme-linked immunosorbent assay (ELISA) to determine the titer of the antibody. The logarithmic mean of the antibody titers of 3 mice per group was plotted against the time of immunization. The results are shown in Figure 14, where MIP1-gp120-222 and MIP2-gp120-222 particles were boosted twice at a low dose of 0.5 μg/no adjuvant, and the antibody titers at
实施例11:融合MIP1/MIP2的HIV-1B亚型病毒株(命名为HIV-1-22)P24蛋白的表达和纯化Example 11: Expression and purification of HIV-1B subtype virus strain (named HIV-1-22) P24 protein fused with MIP1/MIP2
融合MIP1/MIP2的HIV-1-22-P24的表达载体的构建Construction of expression vector of HIV-1-22-P24 fused with MIP1/MIP2
HIV-1-22病毒株的P24基因(其编码HIV的衣壳蛋白,又称CA蛋白)从HIV-1阳性血清中克隆获得,其全长为693bp,核苷酸序列如SEQ ID NO:57所示,编码的氨基酸序列如SEQ ID NO:58所示。以上述基因片段为PCR反应的模板,以P24F(SEQ ID NO:104):5′-GGATCC AAT TTC CCT ATA GTG CAG AAC ATC C-3′为正向引物(其5′端引入限制性内切酶BamH I位点);P24R(SEQ ID NO:105):5′-GAATTC TTA TGC CTC AGC CAA TAC TCT TGC-3′为反向引物(其5′端引入限制型内切酶EcoR I位点),在PCR热循环仪(Biometra T3)中按照如下条件进行PCR反应。The P24 gene of HIV-1-22 strain (the capsid protein of its coding HIV, also known as CA protein) is cloned from HIV-1 positive serum, and its full length is 693bp, and its nucleotide sequence is as SEQ ID NO: 57 As shown, the encoded amino acid sequence is shown in SEQ ID NO: 58. The above-mentioned gene fragment was used as the template of the PCR reaction, and P24F (SEQ ID NO: 104): 5′-GGATCC AAT TTC CCT ATA GTG CAG AAC ATC C-3′ was used as the forward primer (the 5′ end of which introduced a restriction endonuclease enzyme BamH I site); P24R (SEQ ID NO: 105): 5'-GAATTC TTA TGC CTC AGC CAA TAC TCT TGC-3' is a reverse primer (its 5' end introduces a restriction endonuclease EcoR I site ), carry out the PCR reaction according to the following conditions in a PCR thermal cycler (Biometra T3).
扩增产物为700bp左右的大小特异的DNA片段。使用与实施例7所述的类似的方法,将该PCR产物插入pTO-T7-MIP1和pTO-T7-MIP2原核表达载体,得到插入了P24蛋白基因片段的阳性表达克隆pTO-T7-MIP1-P24和pTO-T7-MIP2-P24。The amplified product is a size-specific DNA fragment of about 700bp. Using a method similar to that described in Example 7, insert the PCR product into pTO-T7-MIP1 and pTO-T7-MIP2 prokaryotic expression vectors to obtain a positive expression clone pTO-T7-MIP1-P24 inserted with the P24 protein gene fragment and pTO-T7-MIP2-P24.
取1μL质粒(0.15mg/ml)转化40μL以氯化钙法制备的感受态大肠杆菌ER2566(购自Invitrogen公司),将其涂布于含卡那霉素(终浓度100mg/ml,下同)的固体LB培养基,并37℃静置培养10-12小时至单菌落清晰可辨。挑取单菌落至含4mL液体LB培养基(含卡那霉素)的试管,在37℃180rpm下振荡培养10小时,从中取1mL菌液于-70℃保存。Take 1 μL of the plasmid (0.15 mg/ml) to transform 40 μL of competent Escherichia coli ER2566 (purchased from Invitrogen) prepared by the calcium chloride method, and spread it on a medium containing kanamycin (
MIP1-P24和MIP2-P24融合蛋白的表达Expression of MIP1-P24 and MIP2-P24 fusion proteins
从-70℃中取出携带重组质粒pTO-T7-MIP1-P24或pTO-T7-MIP2-P24的大肠杆菌菌液,接种50ml含卡那霉素的LB液体培养基中,在180rpm,37℃下培养大约12小时;然后转接入10瓶500ml含卡那霉素的LB培养基中(每瓶接入5ml菌液),在180rpm,37℃下培养至600nm处的OD值为约1.2;加500uL IPTG(浓度0.5mM/L),在37℃下振荡培养4小时。Take out the Escherichia coli liquid carrying the recombinant plasmid pTO-T7-MIP1-P24 or pTO-T7-MIP2-P24 from -70°C, inoculate 50ml of LB liquid medium containing kanamycin, at 180rpm, 37°C Cultivate for about 12 hours; then transfer to 10 bottles of 500ml kanamycin-containing LB medium (each bottle is inserted with 5ml bacterial solution), cultivate at 180rpm and 37°C until the OD value at 600nm is about 1.2; add 500uL IPTG (concentration 0.5mM/L), shaking culture at 37°C for 4 hours.
MIP1-P24和MIP2-P24融合蛋白的纯化Purification of MIP1-P24 and MIP2-P24 fusion proteins
经37℃诱导4小时后,在8000rpm,4℃下离心培养物5min,收集菌体,然后按1g菌体对应10mL裂解液(20mM Tris缓冲液pH7.2,300mM NaCl)的比例用裂解液重悬菌体,并进行超声破碎。菌体裂解液9500rpm,4℃离心5min,保留沉淀(即包涵体);用1%Triton-100和Buffer I洗涤包涵体,然后用2M尿素重悬,搅拌30min,以9500rpm,4℃离心5min;获得的沉淀再用4M尿素重悬,搅拌30min,以12000rpm,4℃离心15min;收获上清(即,4M尿素溶解上清),并将其透析至PBS以使重组蛋白进行颗粒组装;进一步在12000rpm,4℃下离心15min,收获上清(即,复性上清)。After being induced at 37°C for 4 hours, centrifuge the culture at 8000rpm and 4°C for 5min, collect the cells, and then weigh 1g cells with 10mL lysate (20mM Tris buffer pH 7.2, 300mM NaCl) with the lysate. Suspended bacteria were subjected to ultrasonic disruption. The cell lysate was centrifuged at 9500rpm at 4°C for 5min, and the precipitate (i.e. the inclusion body) was retained; the inclusion body was washed with 1% Triton-100 and Buffer I, then resuspended with 2M urea, stirred for 30min, and centrifuged at 9500rpm at 4°C for 5min; The obtained pellet was resuspended with 4M urea, stirred for 30min, and centrifuged at 12000rpm at 4°C for 15min; the supernatant (that is, 4M urea dissolving supernatant) was harvested and dialyzed into PBS to allow the recombinant protein to be assembled into particles; Centrifuge at 12000 rpm at 4°C for 15 min, and harvest the supernatant (ie, refolding supernatant).
融合蛋白MIP1-P24和MIP2-P24的表达、纯化和颗粒复性的SDS-PAGE分析的结果参见图15,其中泳道1-6显示35kD左右的特征性蛋白条带,泳道3和6显示获得的纯化蛋白的纯度约80%。The results of the SDS-PAGE analysis of the expression, purification and renaturation of the fusion proteins MIP1-P24 and MIP2-P24 are shown in Figure 15, wherein lanes 1-6 show characteristic protein bands around 35kD, and
实施例12:融合MIP1/MIP2的HIV-1P24蛋白的颗粒性分析Example 12: Particle analysis of HIV-1 P24 protein fused to MIP1/MIP2
融合蛋白的分子筛层析分析颗粒性Molecular sieve chromatography analysis of fusion protein granularity
采用美国安捷伦公司的1120Compact LC高效液相色谱系统进行层析,使用的分析柱为TSK Gel PW5000xl 7.8x300mm。以2倍柱体积的PBS预先平衡层析柱至280nm处的吸收值无明显的变化,将检测器的吸收值归零。由自动进样器进样并分析结果。结果如图16所示,MIP1-P24和MIP2-P24融合蛋白的最先出现的蛋白峰与239颗粒的蛋白峰(Li et al,Vaccine,2005)的保留时间相近,这表明融合蛋白均可形成与239颗粒大小相当的颗粒形式,组分含量大约为40%。The 1120Compact LC high-performance liquid chromatography system of Agilent Corporation of the United States was used for chromatography, and the analytical column used was TSK Gel PW5000xl 7.8x300mm. Pre-equilibrate the chromatographic column with 2 times the column volume of PBS until the absorbance at 280 nm does not change significantly, and reset the absorbance of the detector to zero. Samples were injected by an autosampler and the results analyzed. The results are shown in Figure 16, the first protein peaks of MIP1-P24 and MIP2-P24 fusion proteins have a similar retention time to the protein peaks of 239 particles (Li et al, Vaccine, 2005), which indicates that fusion proteins can form In granular form comparable in size to 239, the component content is approximately 40%.
融合蛋白的动态光散射分析颗粒性Dynamic Light Scattering Analysis of Granularity of Fusion Proteins
使用的仪器为美国Protein Solutions公司生产的DynaPro MS/X型动态光散射仪(含温度控制器),使用的算法为Regulation算法。样品为经颗粒组装的MIP1-P24、MIP2-P24蛋白。样品经0.22μm滤膜过滤后进行测量。测量结果见图17。结果显示,P24在与MIP1或MIP2融合后,在溶液中均可形成半径为18nm或24nm左右的颗粒组分。The instrument used is DynaPro MS/X dynamic light scattering instrument (including temperature controller) produced by American Protein Solutions Company, and the algorithm used is Regulation algorithm. The samples are MIP1-P24 and MIP2-P24 proteins assembled by particles. The samples were measured after being filtered through a 0.22 μm filter membrane. The measurement results are shown in Figure 17. The results showed that after fusion with MIP1 or MIP2, P24 could form particle components with a radius of about 18nm or 24nm in solution.
融合蛋白的颗粒透射电镜观察Particle TEM Observation of Fusion Protein
使用的仪器为日本电子公司生产的120kV透射电镜(型号:JEM2100),放大倍数为100,000倍。将融合蛋白MIP1-P24、MIP2-P24颗粒用2%磷钨酸pH7.0负染,固定于喷炭的铜网上,进行观察。电镜结果见图18,其中可见融合蛋白形成大量半径为20nm左右的颗粒。The instrument used is a 120kV transmission electron microscope (model: JEM2100) produced by Japan Electronics Corporation, with a magnification of 100,000 times. The fusion protein MIP1-P24 and MIP2-P24 particles were negatively stained with 2% phosphotungstic acid pH7.0, fixed on the carbon-sprayed copper grid, and observed. The results of the electron microscope are shown in Figure 18, where it can be seen that the fusion protein forms a large number of particles with a radius of about 20 nm.
实施例13:融合MIP1/MIP2的HIV-1 P24蛋白的免疫原性分析Example 13: Immunogenicity analysis of HIV-1 P24 protein fused to MIP1/MIP2
实验动物:BALB/c小鼠,雌性,6周龄,每组3只。免疫方式:四肢三角肌肌肉注射。免疫体积:100μl。免疫程序:0周时初次免疫,2周和4周时加强。MIP1-P24和MI P2-P24颗粒分别设0.5μg/无佐剂组(Ad-)和5μg/铝佐剂组(Al+)。以未融合MIP的P24蛋白的0.5μg/无佐剂(Ad-)和0.5μg/弗氏佐剂(F+)为对照。弗氏佐剂实验组初次免疫使用完全弗氏佐剂(1∶1稀释),加强免疫采用不完全弗氏佐剂(1∶1稀释)。铝佐剂的含量为1.6mg/ml。Experimental animals: BALB/c mice, female, 6 weeks old, 3 mice in each group. Immunization method: Intramuscular injection into the deltoid muscle of the limbs. Immunization volume: 100 μl. Immunization schedule: primary immunization at 0 weeks, booster at 2 weeks and 4 weeks. MIP1-P24 and MIP2-P24 particles were set at 0.5 μg/no adjuvant group (Ad-) and 5 μg/aluminum adjuvant group (Al+), respectively. 0.5 μg/no adjuvant (Ad-) and 0.5 μg/Freund’s adjuvant (F+) of P24 protein not fused with MIP were used as controls. In the Freund's adjuvant experimental group, complete Freund's adjuvant (1:1 dilution) was used for initial immunization, and incomplete Freund's adjuvant (1:1 dilution) was used for booster immunization. The content of aluminum adjuvant was 1.6mg/ml.
每周进行采血分离血清,以100ng的P24蛋白进行抗体的酶联免疫吸附测定(ELISA),测定抗体的滴度。以每组3只小鼠的抗体滴度的对数平均值对时间作图。结果如图19所示,其中在低剂量0.5μg/无佐剂的条件下,MIP1-P24、MIP2-P24颗粒在第2周或第1周即可产生抗体,且经过2次加强后,第5周的抗体滴度可达103.9和104.6;而0.5μg/无佐剂对照组在第3周才能产生抗体,且第5周的抗体仅为103.3,0.5μg/弗氏佐剂对照组在第5周也只可产生102.9的抗体滴度。由此可见,MIP诱使的颗粒化可使P24蛋白诱发的抗体滴度提高1个数量级以上,且高于对照蛋白/弗氏佐剂的免疫原性,这表明MIP可显著提高目标蛋白的免疫原性。结果还显示,通过使用可用于人体的铝佐剂辅助MIP融合蛋白并提高免疫剂量至5μg,抗体滴度可再提高一个数量级至105.4。Blood was drawn every week to separate serum, and 100 ng of P24 protein was used to perform antibody enzyme-linked immunosorbent assay (ELISA) to determine the titer of the antibody. The logarithmic mean of the antibody titers from 3 mice per group is plotted against time. The results are shown in Figure 19, where MIP1-P24 and MIP2-P24 particles can produce antibodies in the second week or the first week under the condition of a low dose of 0.5 μg/no adjuvant, and after two boosters, the The antibody titers at 5 weeks can reach 10 3.9 and 10 4.6 ; while the 0.5μg/no adjuvant control group can only produce antibodies at the 3rd week, and the antibody at the 5th week is only 10 3.3 , 0.5μg/Freund's adjuvant control Group also can only produce the antibody titre of 10 2.9 in the 5th week. It can be seen that the granulation induced by MIP can increase the antibody titer induced by P24 protein by more than 1 order of magnitude, which is higher than the immunogenicity of the control protein/Freund's adjuvant, which indicates that MIP can significantly improve the immunity of the target protein. Originality. The results also showed that by using the aluminum adjuvant that can be used in humans to assist the MIP fusion protein and increasing the immunization dose to 5 μg, the antibody titer can be increased by another order of magnitude to 10 5.4 .
实施例14:融合MIP2的HBV-HBsAg抗原的表达与纯化Example 14: Expression and purification of HBV-HBsAg antigen fused to MIP2
融合MIP2的HBV-HBsAg抗原的表达载体的构建Construction of expression vector of HBV-HBsAg antigen fused with MIP2
以含有HBV-HBs Ag抗原aa 100-165肽段(命名为1021)的编码序列的质粒(参见高毅等,病毒学报,2003,19(1):31-35,其通过引用并入本文)作为PCR反应的模板,以HBVSAg-1021F(SEQ ID NO:106):5′-TTT GGA TCC TAT CAA GGT ATG TTG CCC GTT-3′为正向引物(其5′端引入限制性内切酶BamH I位点);以HBVSAg-1021R(SEQID NO:107):5′-TTT GAA TTC TTA CAC TCC CAT AGG AAT CTT GC-3′为反向引物(其5′端引入限制型内切酶EcoR I位点),在PCR热循环仪(Biometra T3)中按照如下条件进行PCR反应。A plasmid containing the coding sequence of the HBV-HBs Ag antigen aa 100-165 peptide (named 1021) (see Gao Yi et al., Acta Virology, 2003, 19 (1): 31-35, which is incorporated herein by reference) As a template for the PCR reaction, HBVSAg-1021F (SEQ ID NO: 106): 5'-TTT GGA TCC TAT CAA GGT ATG TTG CCC GTT-3' was used as the forward primer (the 5' end of which was introduced with the restriction enzyme BamH I site); with HBVSAg-1021R (SEQID NO: 107): 5'-TTT GAA TTC TTA CAC TCC CAT AGG AAT CTT GC-3' as reverse primer (its 5' end introduces restriction endonuclease EcoR I Site), PCR reaction was carried out in a PCR thermal cycler (Biometra T3) according to the following conditions.
扩增产物为200bp左右的大小特异的DNA片段。使用与实施例7所述的类似的方法,将该PCR产物插入pTO-T7-MIP2原核表达载体,得到插入了HBsAg-1021基因片段的阳性表达克隆pTO-T7-MI P2-HBsAg-1021。插入的目的片段的核苷酸序列如SEQ ID NO:59所示,其编码的氨基酸序列如SEQ ID NO:60所示。The amplified product is a size-specific DNA fragment of about 200 bp. Using a method similar to that described in Example 7, the PCR product was inserted into the pTO-T7-MIP2 prokaryotic expression vector to obtain a positive expression clone pTO-T7-MIP2-HBsAg-1021 inserted with the HBsAg-1021 gene fragment. The nucleotide sequence of the inserted target fragment is shown in SEQ ID NO:59, and the encoded amino acid sequence is shown in SEQ ID NO:60.
除了纯化步骤进行部分改变外,使用与实施例11所述的类似的方法,在大肠杆菌中表达融合MIP2的HBsAg-1021蛋白,并进行纯化。特别地,在纯化步骤中,包涵体沉淀首先用含2%Triton100的20mMTris缓冲液洗涤进行洗涤,然后用2M尿素重悬,搅拌30min,以9500rpm,4℃离心5min;获得的沉淀再用4M尿素,20mM Tris缓冲液,1‰β-巯基乙醇重悬,搅拌30min,以12000rpm,4℃离心15min;收获上清,并将其透析到2M尿素,20mM碳酸盐缓冲液,1‰β-巯基乙醇中,再透析到1M尿素,20mM Tris缓冲液,1‰β-巯基乙醇中,最终透析到10mM磷酸盐缓冲液,pH7.5,0.5M NaCl中;进一步在12000rpm,4℃下离心15min,收获上清(即,复性上清)。复性的MIP2-HBsAg-1021融合蛋白的SDS-PAGE分析结果见图20,其中目标蛋白(17kD左右)的纯度约60%。The HBsAg-1021 protein fused with MIP2 was expressed in Escherichia coli and purified using a method similar to that described in Example 11, except that the purification steps were partially changed. Specifically, in the purification step, the inclusion body pellet was first washed with 20mM Tris buffer containing 2% Triton100, then resuspended with 2M urea, stirred for 30min, and centrifuged at 9500rpm at 4°C for 5min; the obtained pellet was then washed with 4M urea , 20mM Tris buffer, resuspended in 1‰β-mercaptoethanol, stirred for 30min, centrifuged at 12000rpm, 4°C for 15min; harvested the supernatant, and dialyzed it into 2M urea, 20mM carbonate buffer, 1‰β-mercapto Ethanol, then dialyzed into 1M urea, 20mM Tris buffer, 1‰β-mercaptoethanol, and finally dialyzed into 10mM phosphate buffer, pH7.5, 0.5M NaCl; further centrifuged at 12000rpm, 4°C for 15min, The supernatant (ie, renaturation supernatant) was harvested. The SDS-PAGE analysis results of the renatured MIP2-HBsAg-1021 fusion protein are shown in Figure 20, wherein the purity of the target protein (about 17kD) is about 60%.
实施例15:融合MIP2的HBsAg-1021蛋白的颗粒性分析Example 15: Particle analysis of HBsAg-1021 protein fused to MIP2
融合蛋白的动态光散射分析颗粒性Dynamic Light Scattering Analysis of Granularity of Fusion Proteins
使用的仪器为美国Protein Solutions公司生产的DynaPro MS/X型动态光散射仪(含温度控制器),使用的算法为Regulation算法。样品为经颗粒组装的MIP2-HBsAg-1021蛋白。样品经0.22μm滤膜过滤后进行测量。测量结果见图21。结果显示,HBsAg-1021多肽在与MIP2融合后,在溶液中可形成直径为15nm左右的颗粒组分。The instrument used is DynaPro MS/X dynamic light scattering instrument (including temperature controller) produced by American Protein Solutions Company, and the algorithm used is Regulation algorithm. The sample is particle-assembled MIP2-HBsAg-1021 protein. The samples were measured after being filtered through a 0.22 μm filter membrane. The measurement results are shown in Figure 21. The results showed that after HBsAg-1021 polypeptide was fused with MIP2, it could form particle components with a diameter of about 15nm in solution.
融合蛋白的颗粒透射电镜观察Particle TEM Observation of Fusion Protein
使用的仪器为日本电子公司生产的120kV透射电镜(型号:JEM2100),放大倍数为100,000倍。将融合蛋白MIP2-HBsAg-1021颗粒用2%磷钨酸pH7.0负染,固定于喷炭的铜网上,进行观察。电镜结果见图22,其中可见融合蛋白形成大量直径为15-20nm左右的颗粒。The instrument used is a 120kV transmission electron microscope (model: JEM2100) produced by Japan Electronics Corporation, with a magnification of 100,000 times. The particles of the fusion protein MIP2-HBsAg-1021 were negatively stained with 2% phosphotungstic acid pH 7.0, fixed on the carbon-sprayed copper grid, and observed. The electron microscope results are shown in Figure 22, where it can be seen that the fusion protein forms a large number of particles with a diameter of about 15-20 nm.
实施例16:融合MIP1的HPV16L2蛋白片段的表达与纯化Example 16: Expression and purification of HPV16L2 protein fragments fused to MIP1
融合MIP1的HPV16L2蛋白片段的表达载体的构建Construction of Expression Vector of HPV16L2 Protein Fragment Fused with MIP1
HPV16L2蛋白的全长基因(基因登录号:AF125673_7)由上海英骏公司合成。以该合成的基因为模板,以L2FP(SEQ ID NO:108):5′-GGA TCC ATG CGA CAC AAA CG-3′为正向引物(其5′端引入限制性内切酶BamH I位点),以L2RP(SEQ ID NO:109):5′-GTC GAC CTATTG GTC AGT TAT ATT AAT G-3′为反向引物(其5′端引入限制型内切酶Sal I位点),在PCR热循环仪(Biometra T3)中按照如下条件进行PCR反应。The full-length gene of HPV16L2 protein (gene accession number: AF125673_7) was synthesized by Shanghai Yingjun Company. Using the synthetic gene as a template, L2FP (SEQ ID NO: 108): 5'- GGA TCC ATG CGA CAC AAA CG-3' was used as a forward primer (the 5' end of which was introduced into the restriction endonuclease BamH I site ), with L2RP (SEQ ID NO: 109): 5'- GTC GAC CTATTG GTC AGT TAT ATT AAT G-3' as reverse primer (its 5' end introduces restriction endonuclease Sal I site), in PCR The PCR reaction was carried out in a thermal cycler (Biometra T3) according to the following conditions.
扩增产物为1500bp左右的大小特异的DNA片段。使用与实施例7所述的类似的方法,将该PCR产物插入pTO-T7-MIP1原核表达载体,得到插入了目的基因片段的阳性表达克隆pTO-T7-MI P1-L2C50。插入的目的片段的核苷酸序列如SEQ ID NO:61所示,其编码的氨基酸序列如SEQ ID NO:62所示,该氨基酸序列比全长L2蛋白缺少50个C端氨基酸,将对应的蛋白命名为L2C50。The amplified product is a size-specific DNA fragment of about 1500bp. Using a method similar to that described in Example 7, the PCR product was inserted into the pTO-T7-MIP1 prokaryotic expression vector to obtain a positive expression clone pTO-T7-MIP1-L2C50 inserted with the target gene fragment. The nucleotide sequence of the inserted target fragment is shown in SEQ ID NO: 61, and the encoded amino acid sequence is shown in SEQ ID NO: 62. This amino acid sequence lacks 50 C-terminal amino acids compared with the full-length L2 protein, and the corresponding The protein was named L2C50.
除了纯化步骤进行部分改变外,使用与实施例11所述的类似的方法,在大肠杆菌中表达融合MIP1的L2C50蛋白,并进行纯化。特别地,在纯化步骤中,将4M尿素溶解上清透析至20mM磷酸盐缓冲液,pH7.5,4M尿素溶液中;然后用Q-FF阴离子交换层析(介质为GE公司生产的Q Fast Flow Sepharose,仪器为GE公司的Purifier 100液相色谱仪)进行纯化,以20mM磷酸盐缓冲液,pH7.5,4M尿素,80mM NaCl洗脱杂蛋白,以20mM磷酸盐缓冲液,pH7.5,4M尿素,150m M NaCl洗脱目的蛋白;然后将目的蛋白组分透析至PBS中进行复性;进一步在12000rpm,4℃下离心15min,收获上清(即,复性上清)。各纯化步骤的级分的SDS-PAGE分析结果见图23。最终获得的复性的融合蛋白MIP1-L2C50纯度约为70%(图23,泳道8)。The method similar to that described in Example 11 was used to express and purify the L2C50 protein fused with MIP1 in Escherichia coli except that the purification steps were partially changed. Particularly, in the purification step, the 4M urea dissolving supernatant is dialyzed into 20mM phosphate buffer saline, pH7.5, in 4M urea solution; Then use Q-FF anion exchange chromatography (the medium is Q Fast Flow produced by GE Sepharose, the instrument is the
实施例17:融合MIP1的HPV16 L2蛋白片段的颗粒性分析Example 17: Particle analysis of HPV16 L2 protein fragments fused to MIP1
融合蛋白的分子筛层析分析颗粒性Molecular sieve chromatography analysis of fusion protein granularity
采用美国安捷伦公司的1120Compact LC高效液相色谱系统进行层析,使用的分析柱为TSK Gel PW5000xl 7.8x300mm。以2倍柱体积的PBS预先平衡层析柱至280nm处的吸收值无明显的变化,将检测器的吸收值归零。由自动进样器进样并分析结果。结果如图24所示,MIP1-L2C50融合蛋白的最先出现的蛋白峰比239颗粒的蛋白峰(Lietal,Vaccine,2005)的保留时间提前,这表明融合蛋白均可形成颗粒形式,组分含量大约为50%。The 1120Compact LC high-performance liquid chromatography system of Agilent Corporation of the United States was used for chromatography, and the analytical column used was TSK Gel PW5000xl 7.8x300mm. Pre-equilibrate the chromatographic column with 2 times the column volume of PBS until the absorbance at 280 nm does not change significantly, and reset the absorbance of the detector to zero. Samples were injected by an autosampler and the results analyzed. The results are shown in Figure 24, the first protein peak of the MIP1-L2C50 fusion protein is earlier than the retention time of the protein peak of 239 particles (Lietal, Vaccine, 2005), which shows that the fusion protein can form particles, and the component content About 50%.
融合蛋白的动态光散射分析颗粒性Dynamic Light Scattering Analysis of Granularity of Fusion Proteins
使用的仪器为美国Protein Solutions公司生产的DynaPro MS/X型动态光散射仪(含温度控制器),使用的算法为Regulation算法。样品为经颗粒组装的MIP1-L2C50蛋白。样品经0.22μm滤膜过滤后进行测量。测量结果见图25。结果显示,HPV16 L2C50蛋白在与MIP1融合后,在溶液中可形成直径为18nm左右的颗粒组分。The instrument used is DynaPro MS/X dynamic light scattering instrument (including temperature controller) produced by American Protein Solutions Company, and the algorithm used is Regulation algorithm. The sample is particle-assembled MIP1-L2C50 protein. The samples were measured after being filtered through a 0.22 μm filter membrane. The measurement results are shown in Figure 25. The results showed that after HPV16 L2C50 protein was fused with MIP1, it could form particle components with a diameter of about 18nm in solution.
融合蛋白的颗粒透射电镜观察Particle TEM Observation of Fusion Protein
使用的仪器为日本电子公司生产的120kV透射电镜(型号:JEM2100),放大倍数为100,000倍。将融合蛋白MIP1-L2C50颗粒用2%磷钨酸pH 7.0负染,固定于喷炭的铜网上,进行观察。电镜结果见图26,其中可见融合蛋白形成大量直径为20-30nm左右的颗粒。The instrument used is a 120kV transmission electron microscope (model: JEM2100) produced by Japan Electronics Corporation, with a magnification of 100,000 times. The fusion protein MIP1-L2C50 particles were negatively stained with 2% phosphotungstic acid pH 7.0, fixed on the carbon-sprayed copper grid, and observed. The electron microscope results are shown in Figure 26, where it can be seen that the fusion protein forms a large number of particles with a diameter of about 20-30nm.
尽管本发明的具体实施方式已经得到详细的描述,但本领域技术人员将理解:根据已经公开的所有教导,可以对细节进行各种修改和变动,并且这些改变均在本发明的保护范围之内。本发明的全部范围由所附权利要求及其任何等同物给出。Although the specific implementation of the present invention has been described in detail, those skilled in the art will understand that: according to all the teachings that have been disclosed, various modifications and changes can be made to the details, and these changes are all within the protection scope of the present invention . The full scope of the invention is given by the appended claims and any equivalents thereof.
Claims (13)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201110154637.2A CN102816216B (en) | 2011-06-08 | 2011-06-08 | Polypeptide capable of inducing granulation and application thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201110154637.2A CN102816216B (en) | 2011-06-08 | 2011-06-08 | Polypeptide capable of inducing granulation and application thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102816216A true CN102816216A (en) | 2012-12-12 |
CN102816216B CN102816216B (en) | 2015-07-01 |
Family
ID=47300697
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201110154637.2A Active CN102816216B (en) | 2011-06-08 | 2011-06-08 | Polypeptide capable of inducing granulation and application thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102816216B (en) |
-
2011
- 2011-06-08 CN CN201110154637.2A patent/CN102816216B/en active Active
Non-Patent Citations (1)
Title |
---|
无: "[Hepatitis E virus] GenBank: AAD41518.1", 《GEN BANK》 * |
Also Published As
Publication number | Publication date |
---|---|
CN102816216B (en) | 2015-07-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105693865B (en) | Fusion protein comprising diphtheria toxin non-toxic mutant CRM197 or fragment thereof | |
TW201329101A (en) | Influenza virus vaccines and uses thereof | |
US20230340031A1 (en) | Self-assembling protein nanoparticles with built-in six-helix bundle proteins | |
RU2677799C2 (en) | Modified supercoiled proteins with improved properties | |
JP2024016234A (en) | Mutant RSV F protein and its use | |
CN106167518A (en) | Rotavirus vp 4 albumen of truncate and application thereof | |
CN106939042B (en) | A kind of porcine alpha interferon and its application | |
CN109678937B (en) | Mutant of H3N2 subtype influenza virus hemagglutinin protein and application thereof | |
CN104211784B (en) | It is used to prepare the protein and method of Hepatitis E virus sample particle | |
US20160000901A1 (en) | Compositions and Methods for the Production of Virus-Like Particles | |
US9896484B2 (en) | Influenza virus recombinant proteins | |
AU2016313660B2 (en) | Polypeptide carrier for presenting target polypeptide and uses thereof | |
CN109966483B (en) | A multi-antigen universal influenza vaccine based on ferritin and its preparation method and application | |
CN115124626A (en) | Tandem hybrid trimer COVID-19 vaccine | |
KR102332725B1 (en) | Pentamer-based recombinant protein vaccine platform and expressing system there of | |
CN102816216B (en) | Polypeptide capable of inducing granulation and application thereof | |
CN107344969A (en) | A kind of nanometer influenza vaccines and construction method and application | |
JP7531934B2 (en) | Recombinant expression vector for the production of encapsulin-based vaccines and method for its preparation | |
WO2018175560A1 (en) | Nanoparticle immunogens to elicit responses against the influenza receptor binding site on the hemagglutinin head domain | |
Karyagina et al. | Development of a platform for producing recombinant protein components of epitope vaccines for the prevention of COVID-19 | |
WO2019233400A1 (en) | Mutant of human papillomavirus type 66 l1 protein | |
Argentinian AntiCovid Consortium et al. | Production of a highly immunogenic antigen from SARS-CoV-2 by covalent coupling of the receptor binding domain of spike protein to a multimeric carrier | |
CN115197303A (en) | Mutant of receptor binding structural domain of S protein and application thereof | |
KR20240153524A (en) | Recombinant expression vector for production of virus-like particle based multivalent norovirus vaccine and for manufacturing method of the same | |
DK2931896T3 (en) | MODIFIED COILED COIL TYPE WITH IMPROVED PROPERTIES |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |