[go: up one dir, main page]

CN102797031B - Preparation method of pyrite-type ferrous disulfide nanoscale single-crystal semiconductor material - Google Patents

Preparation method of pyrite-type ferrous disulfide nanoscale single-crystal semiconductor material Download PDF

Info

Publication number
CN102797031B
CN102797031B CN201210300304.0A CN201210300304A CN102797031B CN 102797031 B CN102797031 B CN 102797031B CN 201210300304 A CN201210300304 A CN 201210300304A CN 102797031 B CN102797031 B CN 102797031B
Authority
CN
China
Prior art keywords
pyrite
source
iron
solution
ferrous disulfide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201210300304.0A
Other languages
Chinese (zh)
Other versions
CN102797031A (en
Inventor
拜永孝
包琰
魏成蓉
邓爱英
胡新军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lanzhou University
Original Assignee
Lanzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lanzhou University filed Critical Lanzhou University
Priority to CN201210300304.0A priority Critical patent/CN102797031B/en
Publication of CN102797031A publication Critical patent/CN102797031A/en
Application granted granted Critical
Publication of CN102797031B publication Critical patent/CN102797031B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明涉及一种黄铁矿型二硫化亚铁纳米单晶半导体材料的制备方法,该方法包括以下步骤:⑴将铁源与三辛基氧化磷混合,并溶于油胺中,经搅拌且通氩气或氮气除去氧气后,得到铁源前驱体;⑵将铁源前驱体在油浴中加热并搅拌,得到铁源溶液;⑶将硫源溶于油胺中,经搅拌且通氩气或氮气除去氧气后,得到硫源溶液;⑷将硫源溶液加热后用针管抽取,快速注射进铁源溶液中,然后将加热铁源的油浴升温并反应,得到黄铁矿型二硫化亚铁胶体;⑸将黄铁矿型二硫化亚铁胶体冷却至室温时加入三氯甲烷-乙醇混合液进行洗涤、离心处理直至上层离心液为无色,洗涤后的样品封存于氯仿溶液中即可。本发明所得产品具有均一的粒径和形貌,工艺重复性好,质量稳定。The invention relates to a method for preparing a pyrite-type ferrous disulfide nanometer single crystal semiconductor material. The method comprises the following steps: (1) mixing an iron source with trioctyl phosphorus oxide, dissolving them in oleylamine, stirring and After passing argon or nitrogen to remove oxygen, the iron source precursor is obtained; (2) the iron source precursor is heated and stirred in an oil bath to obtain an iron source solution; (3) the sulfur source is dissolved in oleylamine, stirred and argon is passed or nitrogen to remove oxygen to obtain a sulfur source solution; (4) extract the sulfur source solution with a needle after being heated, and quickly inject it into the iron source solution, then heat up the oil bath for heating the iron source and react to obtain pyrite-type disulfide disulfide Iron colloid; (5) When the pyrite-type ferrous disulfide colloid is cooled to room temperature, add chloroform-ethanol mixture to wash and centrifuge until the upper layer of the centrifuge is colorless, and the washed sample can be sealed in chloroform solution. . The product obtained by the invention has uniform particle size and shape, good process repeatability and stable quality.

Description

一种黄铁矿型二硫化亚铁纳米单晶半导体材料的制备方法A kind of preparation method of pyrite type ferrous disulfide nano single crystal semiconductor material

技术领域 technical field

本发明涉及一种黄铁矿型二硫化亚铁单晶制备方法,尤其涉及一种黄铁矿型二硫化亚铁纳米单晶半导体材料的制备方法。 The invention relates to a method for preparing a pyrite-type ferrous disulfide single crystal, in particular to a method for preparing a pyrite-type ferrous disulfide nanometer single crystal semiconductor material.

背景技术 Background technique

自然界中的二硫化亚铁以黄铁矿和白铁矿两种形态存在。黄铁矿型二硫化亚铁是一种优良的半导体材料,其直接禁带宽度为0.95 eV,接近于理想太阳能电池材料1.1 eV的要求(A. Ennaoui, S. Fiechter, C. Pettenkofer,  N. Alonso-Vante, K. Buker, M. Bronold, C. Hopfner and H. Sol. Tributsch, Iron disulphide for solar energy conversion [J]. Energy. Mater. Sol.Cells.1993, 29, 289-370.)。白铁矿型二硫化亚铁是黄铁矿型二硫化亚铁的不稳定变体,并且其直接禁带宽度为0.51 eV,禁带宽度太窄不适合作为太阳能电池材料。黄铁矿型二硫化亚铁的光吸收系数高达5*10,因而40 nm厚度的黄铁矿型二硫化亚铁其光吸收率可以高达90%(Zhubing He, Shu-Hong Yu, Xiaoyuan Zhou, Xiaoguang Li and Jifeng Qu, Magnetic Field Induced Phase-Selective Synthesis of Ferrosulfide Microrods by a Hydrothermal Process: Microstructure Control and Magnetic Properties [J]. Adv. Funct. Mater. 2006, 16, 1105-1111.)。根据科学家对于23种半导体材料的综合分析,发现黄铁矿型二硫化亚铁的潜在发电量比单晶硅还要高,是较理想的光伏材料。此外,黄铁矿型二硫化亚铁还可用于锂离子电池的电极材料等领域。同时由于其在自然界储量丰富,因而成本是这23种材料中最低的,并且这种材料的组成元素无毒,非常适合大规模生产(C. Wadia, A. P. Alivisatos, Materials Availability Expands the Opportunity for Large-Scale Photovoltaics DeploymentEnviron [J]. Sci. Technol. 2009, 43, 2072-2077.)。然而自然界中二硫化亚铁多以黄铁矿和白铁矿共生,相纯度不够高,所以不能直接用于太阳能电池材料,需要人工合成纯黄铁矿相、尺寸均一和可控的二硫化亚铁纳米晶材料,这样有利于载流子的传输,减少载流子的复合,提高其光电转换效率。 Ferrous disulfide in nature exists in two forms of pyrite and marcasite. Pyrite-type ferrous disulfide is an excellent semiconductor material with a direct band gap of 0.95 eV, which is close to the requirement of 1.1 eV for ideal solar cell materials (A. Ennaoui, S. Fiechter, C. Pettenkofer, N. Alonso-Vante, K. Buker, M. Bronold, C. Hopfner and H. Sol. Tributsch, Iron disulphide for solar energy conversion [J]. Energy. Mater. Sol. Cells.1993, 29, 289-370.). Marcasite-type ferrous disulfide is an unstable variant of pyrite-type ferrous disulfide, and its direct band gap is 0.51 eV, which is too narrow to be used as a solar cell material. The optical absorption coefficient of pyrite-type ferrous disulfide is as high as 5*10 5 , so the light absorption rate of pyrite-type ferrous disulfide with a thickness of 40 nm can be as high as 90% (Zhubing He, Shu-Hong Yu, Xiaoyuan Zhou , Xiaoguang Li and Jifeng Qu, Magnetic Field Induced Phase-Selective Synthesis of Ferrosulfide Microrods by a Hydrothermal Process: Microstructure Control and Magnetic Properties [J]. Adv. Funct. Mater. 2006, 16, 1105-1111.). According to the comprehensive analysis of 23 kinds of semiconductor materials by scientists, it is found that the potential power generation capacity of pyrite-type ferrous sulfide is higher than that of single crystal silicon, and it is an ideal photovoltaic material. In addition, pyrite-type ferrous disulfide can also be used in fields such as electrode materials for lithium-ion batteries. At the same time, due to its abundant reserves in nature, the cost is the lowest among the 23 materials, and the constituent elements of this material are non-toxic, which is very suitable for large-scale production (C. Wadia, A. P. Alivisatos, Materials Availability Expands the Opportunity for Large- Scale Photovoltaics DeploymentEnviron [J]. Sci. Technol. 2009, 43, 2072-2077.). However, ferrous disulfide in nature is mostly symbiotic with pyrite and marcasite, and the phase purity is not high enough, so it cannot be directly used as a solar cell material. It is necessary to artificially synthesize pure pyrite phase, uniform size and controllable ferrous disulfide. Iron nanocrystalline material, which is beneficial to the transport of carriers, reduces the recombination of carriers, and improves its photoelectric conversion efficiency.

目前,湿化学法合成黄铁矿型二硫化亚铁时为了避免亚铁离子被氧化,因而水热法通常分两步法进行,先合成前驱体铁硫盐的复合物,再进行水热反应。这样不但增加了反应的步骤,而且所制备产物颗粒尺寸大于500 nm(Xiangying Chen, Zhenghua Wang, Xiong Wang, Junxi Wan, Jianwei Liu, and Yitai QianSingle-Source Approach to Cubic FeS 2  Crystallites and Their Optical and Electrochemical Properties [J]. Inorganic Chem. 2005, 44, 951-954.;Cyrus Wadia, Yue Wu, Sheraz Gul, Steven K. Volkman, Jinghua Guo and A. Paul Alivisatos, Surfactant-Assisted Hydrothermal Synthesis of Single phase Pyrite FeS 2  Nanocrystals [J].Chem. Mater. 2009, 21, 2568-2570.)。溶剂热法制备过程中通常采用乙二醇等作为溶剂,合成的粒子尺寸较大(一般大于200 nm),或者使用苯等高毒性溶剂(D-W. Wang, Q-H. Wang and T-M. Wang, Controlled growth of pyrite FeScrystallites by a facile surfactant-assisted solvothermal method [J]. Cryst. Eng. Comm. 2010, 12, 755-761.;D-W. Wang, Q-H. Wang and T-M. Wang, Shape controlled growth of pyrite FeScrystallites via a polymer-assisted hydrothermal route [J]. Cryst. Eng. Comm. 2010, 12, 3797-3805.)。热注射法是易于合成出单分散、高荧光半导体纳米晶材料的有效方法(Z-T. Zhang, B. Zhao, and L-M. Hu, PVP Protective Mechanism of Ultrafine Silver Powder Synthesized by Chemical Reduction Processes [J]. Journal of solid state chemistry, 1996, 121,105-110.)。科研工作者已经通过热注射法成功地合成出CdTe,CdSe,CdS,ZnS(Celso de Mello Doneg, Peter Liljeroth and Daniel Vanmaekelbergh; Physicochemical Evaluation of the Hot-Injection Method, a Synthesis Route for Monodisperse Nanocrystal [J]. Small. 2005, 1(12), 1152-1162.;C. B. Murray, D. J. Norris and M. G. Bawendi, Synthesis and characterization of nearly monodisperse CdE (E= sulfur, selenium, tellurium) semiconductor nanocrystallites [J]. J. Am. Chem. Soc. 1993, 115, 8706-8715.;Juandria V. Williams, Nicholas A. Kotov and P. E. Savage, A Rapid Hot-Injection Method for the Improved Hydrothermal Synthesis of CdSe Nanoparticles [J]. Ind. Eng. Chem. Res. 2009, 48 (9), 4316-4321.;I. Sondi, O. Siiman, S. Koester and E. Matijevic, Preparation of aminodextran-CdS nanoparticle complexes and biologically active antibody-aminodextran-CdS nanoparticle conjugates [J]. Langmuir. 2000, 16, 3107-3118.)单分散纳米晶材料。Law等分别以十八胺和二苯醚作溶剂通过热注射法制备了球形和椭球形混合形貌的二硫化亚铁纳米晶(J. Puthussery, S. Seefeld, N. Berry, M.Gibbs and M. Law; Colloidal Iron Pyrite (FeS2) Nanocrystal Inks for Thin-Film Photovoltaics [J]. J. Am. Chem. Soc. 2011, 133, 716-719.)。Jinsong Huang等采用硫粉做硫源,通过热注射法制备了立方体形的二硫化亚铁,但其晶粒尺寸大于100 nm(Y. Bi, Y-B. Yuan, C. L. Exstrom, S. A. Darveau  and J-O. Huang, Air Stable, Photosensitive, Phase Pure Iron Pyrite Nanocrystal Thin Films for Photovoltaic Application [J]. Nano Lett. 2011, 11, 4953-4957.)。热注射法采用高沸点溶剂,在较高的反应温度下,将前驱体反应物溶液快速地注射进另一相反应物溶液中进行反应。此方法具有易于合成零缺陷,小尺寸且形貌易于控制的纳米晶材料。目前尚没有硫化物作硫源来合成单分散、单一相、粒径尺寸在50 nm左右的黄铁矿型二硫化亚铁单晶制备方法的报道。 At present, in order to avoid the oxidation of ferrous ions when synthesizing pyrite-type ferrous disulfide by wet chemical method, the hydrothermal method is usually carried out in two steps. First, the precursor iron-sulfur salt complex is synthesized, and then the hydrothermal reaction is carried out . This not only increases the steps of the reaction, but also the particle size of the prepared product is larger than 500 nm (Xianying Chen, Zhenghua Wang, Xiong Wang, Junxi Wan, Jianwei Liu, and Yitai Qian , Single-Source Approach to Cubic FeS 2 Crystallites and Their Optical and Electrochemical Properties [J]. Inorganic Chem. 2005, 44, 951-954.; Cyrus Wadia, Yue Wu , Sheraz Gul, Steven K. Volkman, Jinghua Guo and A. Paul Alivisatos, Surfactant-Assisted Hydrothermal Synthesis of Single phase Pyrite FeS 2 Nanocrystals [J]. Chem. Mater. 2009, 21, 2568-2570.). In the solvothermal preparation process, ethylene glycol is usually used as a solvent, and the size of the synthesized particles is relatively large (generally greater than 200 nm), or highly toxic solvents such as benzene are used (DW. Wang, QH. Wang and TM. Wang, Controlled growth of pyrite FeS 2 crystallites by a facile surfant-assisted solvothermal method [J]. Cryst. Eng. Comm. 2010, 12, 755-761.; DW. Wang, QH. Wang and TM. Wang, Shape controlled growth of pyrite FeS 2 crystallites via a polymer-assisted hydrothermal route [J]. Cryst. Eng. Comm. 2010, 12, 3797-3805.). The thermal injection method is an effective method for easily synthesizing monodisperse and highly fluorescent semiconductor nanocrystalline materials (ZT. Zhang, B. Zhao, and LM. Hu, PVP Protective Mechanism of Ultrafine Silver Powder Synthesized by Chemical Reduction Processes [J]. Journal of solid state chemistry, 1996, 121, 105-110.). Researchers have successfully synthesized CdTe, CdSe, CdS, ZnS by hot injection method (Celso de Mello Doneg, Peter Liljeroth and Daniel Vanmaekelbergh; Physicochemical Evaluation of the Hot-Injection Method, a Synthesis Route for Monodisperse Nanocrystal [J]. Small. 2005, 1(12), 1152-1162.; C. B. Murray, D. J. Norris and M. G. Bawendi, Synthesis and characterization of nearly monodisperse CdE (E= sulfur, selenium, tellurium) semiconductor nanocrystallites [J]. J. Am. Chem . Soc. 1993, 115, 8706-8715.; Juandria V. Williams, Nicholas A. Kotov and P. E. Savage, A Rapid Hot-Injection Method for the Improved Hydrothermal Synthesis of CdSe Nanoparticles [J]. Ind. Eng. Chem. Res . 2009, 48 (9), 4316-4321.; I. Sondi, O. Siiman, S. Koester and E. Matijevic, Preparation of aminodextran-CdS nanoparticle complexes and biologically active antibody-aminodextran-CdS nanoparticle conjugates [J]. Langmuir. 2000, 16, 3107-3118.) Monodisperse nanocrystalline materials. Law et al. prepared ferrous disulfide nanocrystals with spherical and ellipsoidal mixed morphology by hot injection method using octadecylamine and diphenyl ether as solvents (J. Puthussery, S. Seefeld, N. Berry, M.Gibbs and M. Law; Colloidal Iron Pyrite (FeS2) Nanocrystal Inks for Thin-Film Photovoltaics [J]. J. Am. Chem. Soc. 2011, 133, 716-719.). Jinsong Huang et al. used sulfur powder as the sulfur source to prepare cubic ferrous disulfide by thermal injection, but its grain size was larger than 100 nm (Y. Bi, YB. Yuan, C. L. Exstrom, S. A. Darveau and JO. Huang , Air Stable, Photosensitive, Phase Pure Iron Pyrite Nanocrystal Thin Films for Photovoltaic Application [J]. Nano Lett. 2011, 11, 4953-4957.). The hot injection method uses a high boiling point solvent, and at a higher reaction temperature, the precursor reactant solution is quickly injected into another phase reactant solution for reaction. This method has the advantages of easy synthesis of nanocrystalline materials with zero defects, small size and easy controllable morphology. At present, there is no report on the synthesis of pyrite-type ferrous disulfide single crystals with monodisperse, single-phase, and particle sizes around 50 nm using sulfide as a sulfur source.

发明内容 Contents of the invention

本发明所要解决的技术问题是提供一种成本低廉、工艺简单的黄铁矿型二硫化亚铁纳米单晶半导体材料的制备方法。 The technical problem to be solved by the present invention is to provide a method for preparing a pyrite-type ferrous disulfide nanometer single crystal semiconductor material with low cost and simple process.

为解决上述问题,本发明所述的一种黄铁矿型二硫化亚铁纳米单晶半导体材料的制备方法,包括以下步骤: In order to solve the above problems, the preparation method of a kind of pyrite type ferrous disulfide nano-single crystal semiconductor material of the present invention comprises the following steps:

⑴将铁源与三辛基氧化磷(TOPO)按1:2~1:6的摩尔比混合,并溶于油胺中,经搅拌且通纯度为98.5%以上的氩气或氮气除去氧气后,得到铁源前驱体;所述铁源与所述油胺质量体积比为1:100~1:300; ⑴Mix the iron source and trioctylphosphine oxide (TOPO) at a molar ratio of 1:2~1:6, dissolve in oleylamine, stir and pass through argon or nitrogen with a purity of more than 98.5% to remove oxygen , to obtain an iron source precursor; the mass volume ratio of the iron source to the oleylamine is 1:100 to 1:300;

⑵将所述铁源前驱体在油浴中加热到120~170℃并搅拌0.5~1.5小时,得到铁源溶液; (2) heating the iron source precursor to 120-170°C in an oil bath and stirring for 0.5-1.5 hours to obtain an iron source solution;

⑶将硫源溶于油胺中,经搅拌且通纯度为98.5%以上的氩气或氮气除去氧气后,得到硫源溶液;所述硫源与所述油胺质量体积比为1:50~1:100; (3) Dissolving the sulfur source in oleylamine, stirring and passing argon or nitrogen with a purity of more than 98.5% to remove oxygen, to obtain a sulfur source solution; the mass volume ratio of the sulfur source to the oleylamine is 1:50~ 1:100;

⑷将所述硫源溶液加热到60~90℃,然后用针管抽取,快速注射进铁源溶液中,然后将所述加热铁源的油浴升温至180~220℃,并反应1~3小时,得到黄铁矿型二硫化亚铁胶体;所述硫源溶液与所述铁源溶液的体积比为1:2~1:4; (4) Heating the sulfur source solution to 60-90°C, then extracting it with a needle, and quickly injecting it into the iron source solution, then raising the temperature of the oil bath for heating the iron source to 180-220°C, and reacting for 1-3 hours , to obtain pyrite-type ferrous disulfide colloid; the volume ratio of the sulfur source solution to the iron source solution is 1:2 to 1:4;

⑸将所述黄铁矿型二硫化亚铁胶体冷却至室温时加入三氯甲烷-乙醇混合液进行洗涤、离心处理直至上层离心液为无色,洗涤后的样品封存于氯仿溶液中即可;所述三氯甲烷-乙醇混合液中三氯甲烷与乙醇的体积比为1:0.5~1:1;所述黄铁矿型二硫化亚铁胶体与所述三氯甲烷-乙醇混合液的体积比为1:2~1:5。 (5) When the pyrite-type ferrous disulfide colloid is cooled to room temperature, add chloroform-ethanol mixed solution to wash and centrifuge until the upper layer of centrifugate is colorless, and the washed sample can be sealed in chloroform solution; The volume ratio of chloroform to ethanol in the chloroform-ethanol mixed solution is 1:0.5~1:1; the volume of the pyrite-type ferrous disulfide colloid and the chloroform-ethanol mixed solution The ratio is 1:2~1:5.

所述步骤⑴中的铁源是指浓度为0.05~0.5 mol/L的氯化亚铁或硫酸亚铁。 The iron source in the step (1) refers to ferrous chloride or ferrous sulfate whose concentration is 0.05 ~ 0.5 mol/L.

所述步骤⑶中的硫源是指硫粉、硫代乙酰胺、L-半胱氨酸一水盐盐酸物中的任意一种。 The sulfur source in the step (3) refers to any one of sulfur powder, thioacetamide, and L-cysteine monohydrate hydrochloride.

所述步骤⑸三氯甲烷-乙醇混合液中乙醇的质量浓度为50%。 In the step (5), the mass concentration of ethanol in the chloroform-ethanol mixture is 50%.

本发明与现有技术相比具有以下优点: Compared with the prior art, the present invention has the following advantages:

1、本发明无需水热法繁杂的两步反应,不采用苯等高毒性溶剂,而采用高沸点溶剂——油胺,并通过选用不同的硫源、铁源,来大量合成单分散的、颗粒尺寸小于100 nm的均匀立方体形貌的单一相黄铁矿型二硫化亚铁纳米晶材料。 1. The present invention does not need the complicated two-step reaction of the hydrothermal method, does not use highly toxic solvents such as benzene, but uses a high boiling point solvent - oleylamine, and through the selection of different sulfur sources and iron sources, a large amount of monodisperse, A single-phase pyrite-type ferrous disulfide nanocrystalline material with a uniform cubic shape and a particle size of less than 100 nm.

2、本发明所采用原料廉价,因此,大大降低了生产成本。 2. The raw materials used in the present invention are cheap, therefore, the production cost is greatly reduced.

3、本发明制备方法与现有的热注射法相比,具有制备过程简便,铁前驱体制备时间短,硫源选用范围广(不仅可以用硫粉,而且还可以采用硫代乙酰胺、L-半胱氨酸等含硫的化合物做硫源),首次以硫化物为硫源合成了尺寸在50 nm左右的单分散纳米立方体黄铁矿型二硫化亚铁单晶,所合成产品的颗粒尺寸与形貌具有可控性等优点。 3. Compared with the existing thermal injection method, the preparation method of the present invention has the advantages of simple and convenient preparation process, short preparation time of the iron precursor, and a wide range of sulfur sources (not only sulfur powder can be used, but also thioacetamide, L- cysteine and other sulfur-containing compounds as sulfur sources), and for the first time synthesized monodisperse nano-cubic pyrite-type ferrous disulfide single crystals with a size of about 50 nm using sulfide as a sulfur source. The particle size of the synthesized products It has the advantages of controllability and shape.

4、采用本发明方法获得的产品经X射线衍射分析表明,其为单一相的黄铁矿型二硫化亚铁(pyrite)(参见图1、图6、图11),与黄铁矿型二硫化亚铁(pyrite)标准PDF卡片42-1340的峰位完全吻合。 4. The product obtained by the method of the present invention shows through X-ray diffraction analysis that it is a single-phase pyrite type ferrous disulfide (pyrite) (see Fig. 1, Fig. 6, Fig. 11), which is different from pyrite type ferrous disulfide. The peak position of ferrous sulfide (pyrite) standard PDF card 42-1340 is completely consistent.

5、采用本发明方法获得的产品经拉曼光谱分析,可以发现在210,280 cm-1处并没有出现拉曼位移峰位,这说明所合成材料中并没有硫化亚铁(FeS)。谱图上位于339,376 cm-1处的两个强峰是二硫化亚铁的拉曼特征峰。从拉曼谱图的结果进一步证明了本发明通过热注射法制备的二硫化亚铁为单一相的黄铁矿型而没有其它的杂相(参见图16)。 5. The product obtained by the method of the present invention is analyzed by Raman spectrum, and it can be found that there is no Raman shift peak at 210, 280 cm -1 , which shows that there is no ferrous sulfide (FeS) in the synthesized material. The two strong peaks at 339,376 cm -1 on the spectrum are Raman characteristic peaks of ferrous disulfide. The results of the Raman spectrum further prove that the ferrous disulfide prepared by the hot injection method in the present invention is a single-phase pyrite type without other impurity phases (see Figure 16).

6、采用本发明方法获得的产品经紫外-可见-近红外吸收光谱的测试,可以发现在400~600 nm的可见光吸收区样品有着较好的光吸收;其直接禁带宽度为0.90 eV,与理论值0.95eV比较接近,进一步说明本发明所制备的二硫化亚铁的相纯度非常高(参见图17)。 6. The product obtained by the method of the present invention is tested by ultraviolet-visible-near-infrared absorption spectrum, and it can be found that the sample in the visible light absorption region of 400 ~ 600 nm has better light absorption; its direct band gap is 0.90 eV, which is the same as The theoretical value of 0.95eV is relatively close, further indicating that the phase purity of the ferrous disulfide prepared by the present invention is very high (see Figure 17).

7、采用本发明方法获得的产品经X射线衍射测试,可以发现所制备产物为单一相的黄铁矿型二硫化亚铁(参见图1、图6、图11)。 7. The product obtained by the method of the present invention is tested by X-ray diffraction, and it can be found that the prepared product is single-phase pyrite-type ferrous disulfide (see Figure 1, Figure 6, and Figure 11).

8、采用本发明方法获得的产品经扫描电镜测试,可以发现所制备产物为单分散、粒径较均一的立方体形貌黄铁矿型二硫化亚铁(参见图2、图3、图7、图8、图12、图13)。 8. The product obtained by the method of the present invention is tested by scanning electron microscope, and it can be found that the prepared product is a monodisperse, more uniform cube shape pyrite type ferrous disulfide (see Fig. 2, Fig. 3, Fig. 7, Figure 8, Figure 12, Figure 13).

9、采用本发明方法获得的产品经透射电镜测试,可以发现所制备产物为立方体黄铁矿型二硫化亚铁纳米单晶(参见图4、图5、图9、图10、图14、图15)。 9. The product obtained by the method of the present invention is tested by transmission electron microscopy, and it can be found that the prepared product is a cubic pyrite type ferrous disulfide nano single crystal (referring to Fig. 4, Fig. 5, Fig. 9, Fig. 10, Fig. 14, Fig. 15).

10、本发明所得产品具有均一的粒径和形貌,工艺重复性好,质量稳定,可望应用于光伏转换和锂离子电池材料等领域。 10. The product obtained in the present invention has uniform particle size and shape, good process repeatability and stable quality, and is expected to be applied in the fields of photovoltaic conversion and lithium ion battery materials.

附图说明 Description of drawings

下面结合附图对本发明的具体实施方式作进一步详细的说明。 The specific implementation manners of the present invention will be further described in detail below in conjunction with the accompanying drawings.

图1为本发明硫粉作为硫源制备的黄铁矿型二硫化亚铁的X射线衍射谱。 Fig. 1 is the X-ray diffraction spectrum of the pyrite type ferrous disulfide prepared by sulfur powder of the present invention as a sulfur source.

图2为本发明硫粉作为硫源制备的黄铁矿型二硫化亚铁的扫描电镜照片(图中标尺为200nm)。 Fig. 2 is a scanning electron micrograph of pyrite-type ferrous disulfide prepared with sulfur powder of the present invention as a sulfur source (the scale bar in the figure is 200nm).

图3为本发明硫粉作为硫源制备的黄铁矿型二硫化亚铁的扫描电镜照片(图中标尺为100nm)。 Fig. 3 is a scanning electron micrograph of pyrite-type ferrous disulfide prepared with sulfur powder of the present invention as a sulfur source (the scale bar in the figure is 100nm).

图4为本发明硫粉作为硫源制备的黄铁矿型二硫化亚铁的透射电镜照片(图中标尺为50nm)。 Fig. 4 is a transmission electron micrograph of pyrite-type ferrous disulfide prepared with sulfur powder of the present invention as a sulfur source (the scale bar in the figure is 50nm).

图5为本发明硫粉作为硫源制备的黄铁矿型二硫化亚铁的透射电镜照片(图中标尺为50nm)。 Fig. 5 is a transmission electron micrograph of pyrite-type ferrous disulfide prepared with sulfur powder of the present invention as a sulfur source (the scale bar in the figure is 50nm).

图6为本发明硫代乙酰胺作为硫源制备的黄铁矿型二硫化亚铁的X射线衍射谱。 Fig. 6 is an X-ray diffraction spectrum of pyrite-type ferrous disulfide prepared with thioacetamide as a sulfur source in the present invention.

图7为本发明硫代乙酰胺作为硫源制备的黄铁矿型二硫化亚铁的扫描电镜照片(图中标尺为200nm)。 Figure 7 is a scanning electron micrograph of pyrite-type ferrous disulfide prepared with thioacetamide as a sulfur source in the present invention (the scale bar in the figure is 200nm).

图8为本发明硫代乙酰胺作为硫源制备的黄铁矿型二硫化亚铁的扫描电镜照片(图中标尺为100nm)。 Fig. 8 is a scanning electron micrograph of pyrite-type ferrous disulfide prepared with thioacetamide as a sulfur source in the present invention (the scale bar in the figure is 100nm).

图9为本发明硫代乙酰胺作为硫源制备的黄铁矿型二硫化亚铁的透射电镜照片(图中标尺为50nm)。 Fig. 9 is a transmission electron micrograph of pyrite-type ferrous disulfide prepared with thioacetamide as a sulfur source in the present invention (the scale bar in the figure is 50nm).

图10为本发明硫代乙酰胺作为硫源制备的黄铁矿型二硫化亚铁的透射电镜照片(图中标尺为10nm)。 Fig. 10 is a transmission electron micrograph of pyrite-type ferrous disulfide prepared with thioacetamide as a sulfur source in the present invention (the scale bar in the figure is 10nm).

图11为本发明L-半胱氨酸一水盐盐酸物作为硫源制备的黄铁矿型二硫化亚铁的X射线衍射谱。 Fig. 11 is the X-ray diffraction spectrum of pyrite-type ferrous disulfide prepared by using L-cysteine monohydrate hydrochloride as a sulfur source in the present invention.

图12为本发明L-半胱氨酸一水盐盐酸物作为硫源制备的黄铁矿型二硫化亚铁的扫描电镜照片(图中标尺为100nm)。 Fig. 12 is a scanning electron micrograph of pyrite-type ferrous disulfide prepared with L-cysteine monohydrate hydrochloride as a sulfur source in the present invention (the scale bar in the figure is 100nm).

图13为本发明L-半胱氨酸一水盐盐酸物作为硫源制备的黄铁矿型二硫化亚铁的扫描电镜照片(图中标尺为100nm)。 Fig. 13 is a scanning electron micrograph of pyrite-type ferrous disulfide prepared with L-cysteine monohydrate hydrochloride as a sulfur source in the present invention (the scale bar in the figure is 100nm).

图14为本发明L-半胱氨酸一水盐盐酸物作为硫源制备的黄铁矿型二硫化亚铁的透射电镜照片(图中标尺为200nm)。 Fig. 14 is a transmission electron micrograph of pyrite-type ferrous disulfide prepared with L-cysteine monohydrate hydrochloride as a sulfur source in the present invention (the scale bar in the figure is 200nm).

图15为本发明L-半胱氨酸一水盐盐酸物作为硫源制备的黄铁矿型二硫化亚铁的透射电镜照片(图中标尺为100nm)。 Fig. 15 is a transmission electron micrograph of pyrite-type ferrous disulfide prepared with L-cysteine monohydrate hydrochloride as a sulfur source in the present invention (the scale bar in the figure is 100nm).

图16为本发明不同硫源制备的黄铁矿型二硫化亚铁的拉曼光谱(a-硫粉;b-硫代乙酰胺;c- L-半胱氨酸一水盐盐酸物)。 Fig. 16 is the Raman spectrum (a-sulfur powder; b-thioacetamide; c-L-cysteine monohydrate hydrochloride) of pyrite type ferrous disulfide prepared by different sulfur sources of the present invention.

图17为本发明硫粉作为硫源制备的黄铁矿型二硫化亚铁的紫外-可见近红外吸收光谱以及禁带宽度计算图。 Fig. 17 is a calculation diagram of the ultraviolet-visible near-infrared absorption spectrum and forbidden band width of pyrite-type ferrous disulfide prepared by using sulfur powder as a sulfur source in the present invention.

具体实施方式 Detailed ways

实施例1   一种黄铁矿型二硫化亚铁纳米单晶半导体材料的制备方法,包括以下步骤: Embodiment 1 A kind of preparation method of pyrite type ferrous disulfide nano single crystal semiconductor material, comprises the following steps:

⑴将铁源——浓度为0.05 mol/L的氯化亚铁与三辛基氧化磷(TOPO)按1:2的摩尔比混合,并溶于油胺中,经搅拌且通纯度为98.5%以上的氩气或氮气除去氧气后,得到铁源前驱体。 ⑴Mix the iron source—ferrous chloride with a concentration of 0.05 mol/L and trioctylphosphine oxide (TOPO) at a molar ratio of 1:2, and dissolve in oleylamine, stir and pass the purity to 98.5% After removing oxygen from the above argon or nitrogen gas, an iron source precursor is obtained.

其中:铁源与油胺质量体积比(g/ml)为1:100。 Among them: the mass volume ratio (g/ml) of iron source to oleylamine is 1:100.

⑵将铁源前驱体在油浴中加热到120℃并搅拌1.5小时,得到铁源溶液。 (2) Heating the iron source precursor to 120° C. in an oil bath and stirring for 1.5 hours to obtain an iron source solution.

⑶将硫源——硫粉溶于油胺中,经搅拌且通纯度为98.5%以上的氩气或氮气除去氧气后,得到硫源溶液。 (3) Dissolve the sulfur source—sulfur powder in oleylamine, and after stirring and passing argon or nitrogen with a purity of more than 98.5% to remove oxygen, obtain a sulfur source solution.

其中:硫源与油胺质量体积比(g/ml)为1:50。 Among them: the mass volume ratio (g/ml) of sulfur source to oleylamine is 1:50.

⑷将硫源溶液加热到60℃,然后用针管抽取,快速注射进铁源溶液中,然后将加热铁源的油浴升温至180℃,并反应3小时,得到黄铁矿型二硫化亚铁胶体。 (4) Heating the sulfur source solution to 60°C, then extracting it with a needle, quickly injecting it into the iron source solution, then raising the temperature of the oil bath for heating the iron source to 180°C, and reacting for 3 hours to obtain pyrite-type ferrous disulfide colloid.

其中:硫源溶液与铁源溶液的体积比(ml /ml)为1:2。 Among them: the volume ratio of sulfur source solution to iron source solution (ml/ml) is 1:2.

⑸将黄铁矿型二硫化亚铁胶体冷却至室温时加入三氯甲烷-乙醇混合液进行洗涤、离心处理直至上层离心液为无色,洗涤后的样品封存于氯仿溶液中即可。 (5) When the pyrite-type ferrous disulfide colloid is cooled to room temperature, add chloroform-ethanol mixture to wash and centrifuge until the upper centrifugate is colorless, and the washed sample can be sealed in chloroform solution.

其中:三氯甲烷-乙醇混合液中三氯甲烷与乙醇的体积比(ml /ml)为1:0.5;三氯甲烷-乙醇混合液中乙醇的质量浓度为50%。黄铁矿型二硫化亚铁胶体与所述三氯甲烷-乙醇混合液的体积比(ml /ml)为1:2。 Among them: the volume ratio (ml/ml) of chloroform to ethanol in the chloroform-ethanol mixture is 1:0.5; the mass concentration of ethanol in the chloroform-ethanol mixture is 50%. The volume ratio (ml/ml) of the pyrite-type ferrous disulfide colloid to the chloroform-ethanol mixture is 1:2.

实施例2   一种黄铁矿型二硫化亚铁纳米单晶半导体材料的制备方法,包括以下步骤: Embodiment 2 A kind of preparation method of pyrite type ferrous disulfide nano single crystal semiconductor material, comprises the following steps:

⑴将铁源——浓度为0.5 mol/L的氯化亚铁与三辛基氧化磷(TOPO)按1:6的摩尔比混合,并溶于油胺中,经搅拌且通纯度为98.5%以上的氩气或氮气除去氧气后,得到铁源前驱体。 ⑴Mix the iron source—ferrous chloride with a concentration of 0.5 mol/L and trioctylphosphorus oxide (TOPO) at a molar ratio of 1:6, and dissolve in oleylamine, stir and pass the purity to 98.5% After removing oxygen from the above argon or nitrogen gas, an iron source precursor is obtained.

其中:铁源与油胺质量体积比(g/ml)为1:300。 Among them: the mass volume ratio (g/ml) of iron source to oleylamine is 1:300.

⑵将铁源前驱体在油浴中加热到170℃并搅拌0.5小时,得到铁源溶液。 (2) Heating the iron source precursor to 170° C. in an oil bath and stirring for 0.5 hours to obtain an iron source solution.

⑶将硫源——硫代乙酰胺溶于油胺中,经搅拌且通纯度为98.5%以上的氩气或氮气除去氧气后,得到硫源溶液。 (3) Dissolve the sulfur source—thioacetamide in oleylamine, and after stirring and passing argon or nitrogen with a purity of more than 98.5% to remove oxygen, obtain a sulfur source solution.

其中:硫源与油胺质量体积比(g/ml)为1:100。 Among them: the mass volume ratio (g/ml) of sulfur source to oleylamine is 1:100.

⑷将硫源溶液加热到90℃,然后用针管抽取,快速注射进铁源溶液中,然后将加热铁源的油浴升温至220℃,并反应1小时,得到黄铁矿型二硫化亚铁胶体。 (4) Heating the sulfur source solution to 90°C, then extracting it with a needle, quickly injecting it into the iron source solution, then raising the temperature of the oil bath for heating the iron source to 220°C, and reacting for 1 hour to obtain pyrite-type ferrous disulfide colloid.

其中:硫源溶液与铁源溶液的体积比(ml /ml)为1:4。 Among them: the volume ratio of sulfur source solution to iron source solution (ml/ml) is 1:4.

⑸将黄铁矿型二硫化亚铁胶体冷却至室温时加入三氯甲烷-乙醇混合液进行洗涤、离心处理直至上层离心液为无色,洗涤后的样品封存于氯仿溶液中即可。 (5) When the pyrite-type ferrous disulfide colloid is cooled to room temperature, add chloroform-ethanol mixture to wash and centrifuge until the upper centrifugate is colorless, and the washed sample can be sealed in chloroform solution.

其中:三氯甲烷-乙醇混合液中三氯甲烷与乙醇的体积比(ml /ml)为1:1;三氯甲烷-乙醇混合液中乙醇的质量浓度为50%。黄铁矿型二硫化亚铁胶体与所述三氯甲烷-乙醇混合液的体积比(ml /ml)为1:5。 Among them: the volume ratio (ml/ml) of chloroform to ethanol in the chloroform-ethanol mixture is 1:1; the mass concentration of ethanol in the chloroform-ethanol mixture is 50%. The volume ratio (ml/ml) of the pyrite-type ferrous disulfide colloid to the chloroform-ethanol mixture is 1:5.

实施例3   一种黄铁矿型二硫化亚铁纳米单晶半导体材料的制备方法,包括以下步骤: Embodiment 3 A kind of preparation method of pyrite type ferrous disulfide nano single crystal semiconductor material, comprises the following steps:

⑴将铁源——浓度为0.25 mol/L的氯化亚铁与三辛基氧化磷(TOPO)按1:4的摩尔比混合,并溶于油胺中,经搅拌且通纯度为98.5%以上的氩气或氮气除去氧气后,得到铁源前驱体。 ⑴Mix the iron source—ferrous chloride with a concentration of 0.25 mol/L and trioctylphosphine oxide (TOPO) at a molar ratio of 1:4, and dissolve in oleylamine, stir and pass the purity to 98.5% After removing oxygen from the above argon or nitrogen gas, an iron source precursor is obtained.

其中:铁源与油胺质量体积比(g/ml)为1:200。 Among them: the mass volume ratio (g/ml) of iron source and oleylamine is 1:200.

⑵将铁源前驱体在油浴中加热到140℃并搅拌1小时,得到铁源溶液。 (2) Heating the iron source precursor to 140° C. in an oil bath and stirring for 1 hour to obtain an iron source solution.

⑶将硫源——L-半胱氨酸一水盐盐酸物溶于油胺中,经搅拌且通纯度为98.5%以上的氩气或氮气除去氧气后,得到硫源溶液。 (3) Dissolve the sulfur source—L-cysteine monohydrate hydrochloride in oleylamine, and after stirring and passing argon or nitrogen with a purity of more than 98.5% to remove oxygen, obtain a sulfur source solution.

其中:硫源与油胺质量体积比(g/ml)为1:75。 Among them: the mass volume ratio (g/ml) of sulfur source to oleylamine is 1:75.

⑷将硫源溶液加热到75℃,然后用针管抽取,快速注射进铁源溶液中,然后将加热铁源的油浴升温至200℃,并反应2小时,得到黄铁矿型二硫化亚铁胶体。 (4) Heating the sulfur source solution to 75°C, then extracting it with a needle, quickly injecting it into the iron source solution, then raising the temperature of the oil bath for heating the iron source to 200°C, and reacting for 2 hours to obtain pyrite-type ferrous disulfide colloid.

其中:硫源溶液与铁源溶液的体积比(ml /ml)为1:3。 Among them: the volume ratio of sulfur source solution to iron source solution (ml/ml) is 1:3.

⑸将黄铁矿型二硫化亚铁胶体冷却至室温时加入三氯甲烷-乙醇混合液进行洗涤、离心处理直至上层离心液为无色,洗涤后的样品封存于氯仿溶液中即可。 (5) When the pyrite-type ferrous disulfide colloid is cooled to room temperature, add chloroform-ethanol mixture to wash and centrifuge until the upper centrifugate is colorless, and the washed sample can be sealed in chloroform solution.

其中:三氯甲烷-乙醇混合液中三氯甲烷与乙醇的体积比(ml /ml)为1:0.75;三氯甲烷-乙醇混合液中乙醇的质量浓度为50%。黄铁矿型二硫化亚铁胶体与所述三氯甲烷-乙醇混合液的体积比(ml /ml)为1:3.5。 Among them: the volume ratio (ml/ml) of chloroform to ethanol in the chloroform-ethanol mixture is 1:0.75; the mass concentration of ethanol in the chloroform-ethanol mixture is 50%. The volume ratio (ml/ml) of pyrite-type ferrous disulfide colloid to the chloroform-ethanol mixture is 1:3.5.

实施例4   一种黄铁矿型二硫化亚铁纳米单晶半导体材料的制备方法,包括以下步骤: Embodiment 4 A kind of preparation method of pyrite type ferrous disulfide nano single crystal semiconductor material, comprises the following steps:

⑴将铁源——浓度为0.05 mol/L的硫酸亚铁与三辛基氧化磷(TOPO)按1:2的摩尔比混合,并溶于油胺中,经搅拌且通纯度为98.5%以上的氩气或氮气除去氧气后,得到铁源前驱体。 ⑴Mix the iron source—ferrous sulfate with a concentration of 0.05 mol/L and trioctylphosphine oxide (TOPO) at a molar ratio of 1:2, and dissolve in oleylamine, stir and pass the purity to more than 98.5% After removing oxygen from argon or nitrogen, the iron source precursor is obtained.

其中:铁源与油胺质量体积比(g/ml)为1:100。 Among them: the mass volume ratio (g/ml) of iron source to oleylamine is 1:100.

⑵将铁源前驱体在油浴中加热到120℃并搅拌1.5小时,得到铁源溶液。 (2) Heating the iron source precursor to 120° C. in an oil bath and stirring for 1.5 hours to obtain an iron source solution.

⑶将硫源——硫粉溶于油胺中,经搅拌且通纯度为98.5%以上的氩气或氮气除去氧气后,得到硫源溶液。 (3) Dissolve the sulfur source—sulfur powder in oleylamine, and after stirring and passing argon or nitrogen with a purity of more than 98.5% to remove oxygen, obtain a sulfur source solution.

其中:硫源与油胺质量体积比(g/ml)为1:50。 Among them: the mass volume ratio (g/ml) of sulfur source to oleylamine is 1:50.

⑷将硫源溶液加热到60℃,然后用针管抽取,快速注射进铁源溶液中,然后将加热铁源的油浴升温至180℃,并反应3小时,得到黄铁矿型二硫化亚铁胶体。 (4) Heating the sulfur source solution to 60°C, then extracting it with a needle, quickly injecting it into the iron source solution, then raising the temperature of the oil bath for heating the iron source to 180°C, and reacting for 3 hours to obtain pyrite-type ferrous disulfide colloid.

其中:硫源溶液与铁源溶液的体积比(ml /ml)为1:2。 Among them: the volume ratio of sulfur source solution to iron source solution (ml/ml) is 1:2.

⑸将黄铁矿型二硫化亚铁胶体冷却至室温时加入三氯甲烷-乙醇混合液进行洗涤、离心处理直至上层离心液为无色,洗涤后的样品封存于氯仿溶液中即可。 (5) When the pyrite-type ferrous disulfide colloid is cooled to room temperature, add chloroform-ethanol mixture to wash and centrifuge until the upper centrifugate is colorless, and the washed sample can be sealed in chloroform solution.

其中:三氯甲烷-乙醇混合液中三氯甲烷与乙醇的体积比(ml /ml)为1:0.5;三氯甲烷-乙醇混合液中乙醇的质量浓度为50%。黄铁矿型二硫化亚铁胶体与所述三氯甲烷-乙醇混合液的体积比(ml /ml)为1:2。 Among them: the volume ratio (ml/ml) of chloroform to ethanol in the chloroform-ethanol mixture is 1:0.5; the mass concentration of ethanol in the chloroform-ethanol mixture is 50%. The volume ratio (ml/ml) of the pyrite-type ferrous disulfide colloid to the chloroform-ethanol mixture is 1:2.

实施例5   一种黄铁矿型二硫化亚铁纳米单晶半导体材料的制备方法,包括以下步骤: Embodiment 5 A kind of preparation method of pyrite type ferrous disulfide nano single crystal semiconductor material, comprises the following steps:

⑴将铁源——浓度为0.5 mol/L的硫酸亚铁与三辛基氧化磷(TOPO)按1:6的摩尔比混合,并溶于油胺中,经搅拌且通纯度为98.5%以上的氩气或氮气除去氧气后,得到铁源前驱体。 ⑴Mix the iron source—ferrous sulfate with a concentration of 0.5 mol/L and trioctylphosphorus oxide (TOPO) at a molar ratio of 1:6, and dissolve in oleylamine, stir and pass the purity to more than 98.5% After removing oxygen from argon or nitrogen, the iron source precursor is obtained.

其中:铁源与油胺质量体积比(g/ml)为1:300。 Among them: the mass volume ratio (g/ml) of iron source to oleylamine is 1:300.

⑵将铁源前驱体在油浴中加热到170℃并搅拌0.5小时,得到铁源溶液。 (2) Heating the iron source precursor to 170° C. in an oil bath and stirring for 0.5 hours to obtain an iron source solution.

⑶将硫源——硫代乙酰胺溶于油胺中,经搅拌且通纯度为98.5%以上的氩气或氮气除去氧气后,得到硫源溶液。 (3) Dissolve the sulfur source—thioacetamide in oleylamine, and after stirring and passing argon or nitrogen with a purity of more than 98.5% to remove oxygen, obtain a sulfur source solution.

其中:硫源与油胺质量体积比(g/ml)为1:100。 Among them: the mass volume ratio (g/ml) of sulfur source to oleylamine is 1:100.

⑷将硫源溶液加热到90℃,然后用针管抽取,快速注射进铁源溶液中,然后将加热铁源的油浴升温至220℃,并反应1小时,得到黄铁矿型二硫化亚铁胶体。 (4) Heating the sulfur source solution to 90°C, then extracting it with a needle, quickly injecting it into the iron source solution, then raising the temperature of the oil bath for heating the iron source to 220°C, and reacting for 1 hour to obtain pyrite-type ferrous disulfide colloid.

其中:硫源溶液与铁源溶液的体积比(ml /ml)为1:4。 Among them: the volume ratio of sulfur source solution to iron source solution (ml/ml) is 1:4.

⑸将黄铁矿型二硫化亚铁胶体冷却至室温时加入三氯甲烷-乙醇混合液进行洗涤、离心处理直至上层离心液为无色,洗涤后的样品封存于氯仿溶液中即可。 (5) When the pyrite-type ferrous disulfide colloid is cooled to room temperature, add chloroform-ethanol mixture to wash and centrifuge until the upper centrifugate is colorless, and the washed sample can be sealed in chloroform solution.

其中:三氯甲烷-乙醇混合液中三氯甲烷与乙醇的体积比(ml /ml)为1:1;三氯甲烷-乙醇混合液中乙醇的质量浓度为50%。黄铁矿型二硫化亚铁胶体与所述三氯甲烷-乙醇混合液的体积比(ml /ml)为1:5。 Among them: the volume ratio (ml/ml) of chloroform to ethanol in the chloroform-ethanol mixture is 1:1; the mass concentration of ethanol in the chloroform-ethanol mixture is 50%. The volume ratio (ml/ml) of the pyrite-type ferrous disulfide colloid to the chloroform-ethanol mixture is 1:5.

实施例6   一种黄铁矿型二硫化亚铁纳米单晶半导体材料的制备方法,包括以下步骤: Embodiment 6 A kind of preparation method of pyrite type ferrous disulfide nano single crystal semiconductor material, comprises the following steps:

⑴将铁源——浓度为0.3 mol/L的硫酸亚铁与三辛基氧化磷(TOPO)按1:4的摩尔比混合,并溶于油胺中,经搅拌且通纯度为98.5%以上的氩气或氮气除去氧气后,得到铁源前驱体。 ⑴Mix the iron source—ferrous sulfate with a concentration of 0.3 mol/L and trioctylphosphorus oxide (TOPO) at a molar ratio of 1:4, and dissolve in oleylamine, stir and pass the purity to more than 98.5% After removing oxygen from argon or nitrogen, the iron source precursor is obtained.

其中:铁源与油胺质量体积比(g/ml)为1:200。 Among them: the mass volume ratio (g/ml) of iron source and oleylamine is 1:200.

⑵将铁源前驱体在油浴中加热到150℃并搅拌1小时,得到铁源溶液。 (2) Heating the iron source precursor to 150° C. in an oil bath and stirring for 1 hour to obtain an iron source solution.

⑶将硫源——L-半胱氨酸一水盐盐酸物溶于油胺中,经搅拌且通纯度为98.5%以上的氩气或氮气除去氧气后,得到硫源溶液。 (3) Dissolve the sulfur source—L-cysteine monohydrate hydrochloride in oleylamine, and after stirring and passing argon or nitrogen with a purity of more than 98.5% to remove oxygen, obtain a sulfur source solution.

其中:硫源与油胺质量体积比(g/ml)为1:80。 Among them: the mass volume ratio (g/ml) of sulfur source to oleylamine is 1:80.

⑷将硫源溶液加热到80℃,然后用针管抽取,快速注射进铁源溶液中,然后将加热铁源的油浴升温至200℃,并反应2小时,得到黄铁矿型二硫化亚铁胶体。 (4) Heating the sulfur source solution to 80°C, then extracting it with a needle, quickly injecting it into the iron source solution, then raising the temperature of the oil bath for heating the iron source to 200°C, and reacting for 2 hours to obtain pyrite-type ferrous disulfide colloid.

其中:硫源溶液与铁源溶液的体积比(ml /ml)为1:3。 Among them: the volume ratio of sulfur source solution to iron source solution (ml/ml) is 1:3.

⑸将黄铁矿型二硫化亚铁胶体冷却至室温时加入三氯甲烷-乙醇混合液进行洗涤、离心处理直至上层离心液为无色,洗涤后的样品封存于氯仿溶液中即可。 (5) When the pyrite-type ferrous disulfide colloid is cooled to room temperature, add chloroform-ethanol mixture to wash and centrifuge until the upper centrifugate is colorless, and the washed sample can be sealed in chloroform solution.

其中:三氯甲烷-乙醇混合液中三氯甲烷与乙醇的体积比(ml /ml)为1:0.7;三氯甲烷-乙醇混合液中乙醇的质量浓度为50%。黄铁矿型二硫化亚铁胶体与所述三氯甲烷-乙醇混合液的体积比(ml /ml)为1:4。 Among them: the volume ratio (ml/ml) of chloroform to ethanol in the chloroform-ethanol mixture is 1:0.7; the mass concentration of ethanol in the chloroform-ethanol mixture is 50%. The volume ratio (ml/ml) of the pyrite-type ferrous disulfide colloid to the chloroform-ethanol mixture is 1:4.

Claims (1)

1. a preparation method for Pyrite-type ferrous disulfide nano crystal semiconductor material, comprises the following steps:
(1) source of iron and trioctylphosphine oxide are pressed the mixed in molar ratio of 1:2 ~ 1:6, and are dissolved in oleyl amine, through stir and logical purity be more than 98.5% argon gas or nitrogen removing oxygen after, obtain source of iron presoma; Described source of iron and described oleyl amine mass volume ratio are 1:100 ~ 1:300; Described source of iron refers to that concentration is iron protochloride or the ferrous sulfate of 0.05 ~ 0.5 mol/L;
(2) described source of iron presoma be heated to 120 ~ 170 DEG C in oil bath and stir 0.5 ~ 1.5 hour, obtaining source of iron solution;
(3) sulphur source is dissolved in oleyl amine, through stir and logical purity be more than 98.5% argon gas or nitrogen removing oxygen after, obtain sulphur source solution; Described sulphur source and described oleyl amine mass volume ratio are 1:50 ~ 1:100; Described sulphur source refer in sulphur powder, thioacetamide, Cys one water salt hydrochloride any one;
(4) described sulphur source solution is heated to 60 ~ 90 DEG C, then extract with needle tubing, fast injection is entered in source of iron solution, then the oil bath of described heating source of iron is warming up to 180 ~ 220 DEG C, and reacts 1 ~ 3 hour, obtains Pyrite-type ferrous disulfide colloid; The volume ratio of described sulphur source solution and described source of iron solution is 1:2 ~ 1:4;
(5) when described Pyrite-type ferrous disulfide colloid being cooled to room temperature, add that trichloromethane-alcohol mixeding liquid carries out washing, centrifugal treating until upper strata centrifugate is colourless, the sample after washing is sealed in chloroformic solution; In described trichloromethane-alcohol mixeding liquid, the volume ratio of trichloromethane and ethanol is 1:0.5 ~ 1:1; The volume ratio of described Pyrite-type ferrous disulfide colloid and described trichloromethane-alcohol mixeding liquid is 1:2 ~ 1:5.
CN201210300304.0A 2012-08-22 2012-08-22 Preparation method of pyrite-type ferrous disulfide nanoscale single-crystal semiconductor material Expired - Fee Related CN102797031B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210300304.0A CN102797031B (en) 2012-08-22 2012-08-22 Preparation method of pyrite-type ferrous disulfide nanoscale single-crystal semiconductor material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210300304.0A CN102797031B (en) 2012-08-22 2012-08-22 Preparation method of pyrite-type ferrous disulfide nanoscale single-crystal semiconductor material

Publications (2)

Publication Number Publication Date
CN102797031A CN102797031A (en) 2012-11-28
CN102797031B true CN102797031B (en) 2015-07-08

Family

ID=47196320

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210300304.0A Expired - Fee Related CN102797031B (en) 2012-08-22 2012-08-22 Preparation method of pyrite-type ferrous disulfide nanoscale single-crystal semiconductor material

Country Status (1)

Country Link
CN (1) CN102797031B (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103350234B (en) * 2013-07-05 2015-03-18 浙江大学 Preparation method of platinum copper concave alloy nanometer crystal, and prepared platinum copper concave alloy nanometer crystal
CN103950990B (en) * 2014-05-21 2015-08-12 无锡迪腾敏生物科技有限公司 A kind of preparation method of bar-shaped Pyrite-type pyrite nano flake
CN104045117A (en) * 2014-06-16 2014-09-17 上海电力学院 A kind of synthesis method of multi-morphology FeS2 pyrite photoelectric material
US10457566B2 (en) 2016-03-11 2019-10-29 University Of Kansas Low-dimensional hyperthin FeS2 nanostructures for electrocatalysis
CN118458834B (en) * 2024-07-09 2024-10-29 上海屹锂新能源科技有限公司 Nanometer FeS for sulfide all-solid-state lithium battery2Composite positive electrode material thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1404462A1 (en) * 1986-11-10 1988-06-23 Всесоюзный нефтяной научно-исследовательский институт по технике безопасности Method of deactivating pyrophoric ferrous sulfides
JP2003502265A (en) * 1999-06-17 2003-01-21 キネテイツク・リミテツド Method for producing lithium transition metal sulfide
CN102041555A (en) * 2011-01-14 2011-05-04 南开大学 A kind of preparation method of CuInS2 nanocrystalline material
CN102070184A (en) * 2010-12-01 2011-05-25 同济大学 A kind of preparation method of CuInS2 nanoparticle
CN102249347A (en) * 2010-05-18 2011-11-23 中国科学院兰州化学物理研究所 Preparation method of iron disulfide microspheres
WO2012056121A1 (en) * 2010-10-25 2012-05-03 Solarwell Process for manufacturing colloidal nanosheets by lateral growth of nanocrystals

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100621309B1 (en) * 2004-04-20 2006-09-14 삼성전자주식회사 Method for producing metal sulfide nanocrystal using thiol compound as sulfur precursor
SG183009A1 (en) * 2007-09-28 2012-08-30 Eveready Battery Inc Processes for producing synthetic pyrite

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1404462A1 (en) * 1986-11-10 1988-06-23 Всесоюзный нефтяной научно-исследовательский институт по технике безопасности Method of deactivating pyrophoric ferrous sulfides
JP2003502265A (en) * 1999-06-17 2003-01-21 キネテイツク・リミテツド Method for producing lithium transition metal sulfide
CN102249347A (en) * 2010-05-18 2011-11-23 中国科学院兰州化学物理研究所 Preparation method of iron disulfide microspheres
WO2012056121A1 (en) * 2010-10-25 2012-05-03 Solarwell Process for manufacturing colloidal nanosheets by lateral growth of nanocrystals
CN102070184A (en) * 2010-12-01 2011-05-25 同济大学 A kind of preparation method of CuInS2 nanoparticle
CN102041555A (en) * 2011-01-14 2011-05-04 南开大学 A kind of preparation method of CuInS2 nanocrystalline material

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Air Stable, Photosensitive, Phase Pure Iron Pyrite Nanocrystal Thin Films for Photovoltaic Application;YU Bi, et al;《NANO LETTERS》;20111012;第11卷(第11期);第4953-4957页 *

Also Published As

Publication number Publication date
CN102797031A (en) 2012-11-28

Similar Documents

Publication Publication Date Title
Shi et al. Hydrothermal synthetic strategies of inorganic semiconducting nanostructures
Zhou et al. CeO2 spherical crystallites: synthesis, formation mechanism, size control, and electrochemical property study
Wang et al. Controlled growth of pyrite FeS 2 crystallites by a facile surfactant-assisted solvothermal method
Zhang et al. Water-soluble CdS quantum dots prepared from a refluxing single precursor in aqueous solution
Nithiyanantham et al. Shape-selective formation of MnWO 4 nanomaterials on a DNA scaffold: magnetic, catalytic and supercapacitor studies
CN102797031B (en) Preparation method of pyrite-type ferrous disulfide nanoscale single-crystal semiconductor material
Hosseinpour-Mashkani et al. CuInS2 nanostructures: Synthesis, characterization, formation mechanism and solar cell applications
CN105384189B (en) A kind of preparation method of cesium lead halide nanorod and the product obtained therefrom
Sabah et al. Fabrication and characterization of CdS nanoparticles annealed by using different radiations
Wang et al. Cu 2− x Se nanooctahedra: controllable synthesis and optoelectronic properties
Xia et al. Solvothermal synthesis of nanostructured CuInS2 thin films on FTO substrates and their photoelectrochemical properties
Wang et al. Shape controlled growth of pyrite FeS 2 crystallites via a polymer-assisted hydrothermal route
Long et al. Microwave-hydrothermal synthesis of Co-doped FeS 2 as a visible-light photocatalyst
Liu et al. Size-controlled synthesis and characterization of quantum-size SnO2 nanocrystallites by a solvothermal route
CN102786098A (en) Preparation method of pyrite-type ferrous disulfide micron/nano crystalline material with controllable morphology
CN104477857B (en) A kind of selenizing ferrum nano material of two-dimensional ultrathin two and its preparation method and application
CN101219779A (en) Method for preparing selenide and telluride nanomaterials from composite alkali metal hydroxide solvent
Zhong et al. Sphere-like CuGaS2 nanoparticles synthesized by a simple biomolecule-assisted solvothermal route
CN102910615A (en) Preparation method of graphene oxide/iron disulfide composite nano particles
Zilevu et al. Solution-phase synthesis of group 3–5 transition metal chalcogenide inorganic nanomaterials
CN104291278B (en) A kind of method of hydrazine hydrate auxiliary polyhydric alcohol based sols synthesis β phase indium selenide flaky nanocrystalline
CN101942299B (en) A method of synthesizing doped ZnS nano-luminescent material by oil-water interface method
CN106986370B (en) A kind of nanocrystalline preparation method of cubic copper chalcogen
CN102040201A (en) Solvothermal controllable method for preparing ZnSe and ZnTe nano materials
Alvi et al. Structural and optical properties of N-acetyl-l-cysteine capped Sb2S3 quantum dots for LED applications

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20150708

Termination date: 20160822