CN102794169B - Attapulgite-perovskite composite material, preparation method and application thereof - Google Patents
Attapulgite-perovskite composite material, preparation method and application thereof Download PDFInfo
- Publication number
- CN102794169B CN102794169B CN201210313998.1A CN201210313998A CN102794169B CN 102794169 B CN102794169 B CN 102794169B CN 201210313998 A CN201210313998 A CN 201210313998A CN 102794169 B CN102794169 B CN 102794169B
- Authority
- CN
- China
- Prior art keywords
- attapulgite
- perovskite
- concave
- clay rod
- convex clay
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000002131 composite material Substances 0.000 title claims abstract description 42
- 238000002360 preparation method Methods 0.000 title claims abstract description 12
- 229960000892 attapulgite Drugs 0.000 claims abstract description 64
- 229910052625 palygorskite Inorganic materials 0.000 claims abstract description 64
- 230000003197 catalytic effect Effects 0.000 claims abstract description 33
- 239000004927 clay Substances 0.000 claims abstract description 33
- 229910052746 lanthanum Inorganic materials 0.000 claims abstract description 24
- 238000007254 oxidation reaction Methods 0.000 claims abstract description 16
- 230000003647 oxidation Effects 0.000 claims abstract description 14
- 239000000203 mixture Substances 0.000 claims abstract description 8
- 238000005469 granulation Methods 0.000 claims abstract description 3
- 230000003179 granulation Effects 0.000 claims abstract description 3
- 239000002245 particle Substances 0.000 claims description 29
- 238000003756 stirring Methods 0.000 claims description 16
- 239000003054 catalyst Substances 0.000 claims description 13
- 239000013078 crystal Substances 0.000 claims description 12
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical group [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 claims description 12
- 239000011572 manganese Substances 0.000 claims description 12
- 239000000725 suspension Substances 0.000 claims description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 12
- 239000008188 pellet Substances 0.000 claims description 11
- 239000000843 powder Substances 0.000 claims description 10
- 150000002696 manganese Chemical class 0.000 claims description 9
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical group [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 claims description 8
- 229910052748 manganese Inorganic materials 0.000 claims description 8
- 235000011114 ammonium hydroxide Nutrition 0.000 claims description 7
- 238000001354 calcination Methods 0.000 claims description 7
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 claims description 6
- 150000002603 lanthanum Chemical class 0.000 claims description 6
- 238000000034 method Methods 0.000 claims description 6
- 229910002651 NO3 Inorganic materials 0.000 claims description 5
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 claims description 5
- 229920002472 Starch Polymers 0.000 claims description 5
- 238000002156 mixing Methods 0.000 claims description 5
- 235000019698 starch Nutrition 0.000 claims description 5
- 239000008107 starch Substances 0.000 claims description 5
- 238000005406 washing Methods 0.000 claims description 5
- 229910000514 dolomite Inorganic materials 0.000 claims description 4
- 239000010459 dolomite Substances 0.000 claims description 4
- 238000001125 extrusion Methods 0.000 claims description 4
- 159000000008 strontium salts Chemical class 0.000 claims description 4
- 230000018044 dehydration Effects 0.000 claims description 2
- 238000006297 dehydration reaction Methods 0.000 claims description 2
- 235000011837 pasties Nutrition 0.000 claims description 2
- 239000002002 slurry Substances 0.000 claims 2
- 230000032683 aging Effects 0.000 claims 1
- 230000015572 biosynthetic process Effects 0.000 claims 1
- 239000005416 organic matter Substances 0.000 claims 1
- USTYSKYAJUBXIT-UHFFFAOYSA-N strontium;nitrate Chemical group [Sr+2].[O-][N+]([O-])=O USTYSKYAJUBXIT-UHFFFAOYSA-N 0.000 claims 1
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 abstract description 60
- 238000011068 loading method Methods 0.000 abstract description 4
- 239000000126 substance Substances 0.000 abstract description 4
- 239000002957 persistent organic pollutant Substances 0.000 abstract description 3
- 239000002086 nanomaterial Substances 0.000 abstract description 2
- 230000004913 activation Effects 0.000 abstract 1
- 230000009849 deactivation Effects 0.000 abstract 1
- 238000000746 purification Methods 0.000 abstract 1
- 239000007789 gas Substances 0.000 description 20
- 150000001875 compounds Chemical class 0.000 description 14
- 239000012855 volatile organic compound Substances 0.000 description 13
- 229910052712 strontium Inorganic materials 0.000 description 10
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 description 10
- 239000010815 organic waste Substances 0.000 description 9
- XGPJPLXOIJRLJN-UHFFFAOYSA-N [Mn].[Sr].[La] Chemical compound [Mn].[Sr].[La] XGPJPLXOIJRLJN-UHFFFAOYSA-N 0.000 description 7
- 230000000694 effects Effects 0.000 description 7
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 6
- IPJKJLXEVHOKSE-UHFFFAOYSA-L manganese dihydroxide Chemical class [OH-].[OH-].[Mn+2] IPJKJLXEVHOKSE-UHFFFAOYSA-L 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- DHEQXMRUPNDRPG-UHFFFAOYSA-N strontium nitrate Chemical compound [Sr+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O DHEQXMRUPNDRPG-UHFFFAOYSA-N 0.000 description 6
- AUFVVJFBLFWLJX-UHFFFAOYSA-N [Mn].[La] Chemical group [Mn].[La] AUFVVJFBLFWLJX-UHFFFAOYSA-N 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 5
- 239000008187 granular material Substances 0.000 description 5
- 230000007062 hydrolysis Effects 0.000 description 5
- 238000006460 hydrolysis reaction Methods 0.000 description 5
- 239000011268 mixed slurry Substances 0.000 description 5
- 239000007790 solid phase Substances 0.000 description 5
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonium chloride Substances [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 4
- YZKBALIHPXZPKY-UHFFFAOYSA-N [Mn].[Sr] Chemical compound [Mn].[Sr] YZKBALIHPXZPKY-UHFFFAOYSA-N 0.000 description 4
- 150000001555 benzenes Chemical class 0.000 description 4
- 239000006185 dispersion Substances 0.000 description 4
- 230000007613 environmental effect Effects 0.000 description 4
- FYDKNKUEBJQCCN-UHFFFAOYSA-N lanthanum(3+);trinitrate Chemical compound [La+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O FYDKNKUEBJQCCN-UHFFFAOYSA-N 0.000 description 4
- MIVBAHRSNUNMPP-UHFFFAOYSA-N manganese(2+);dinitrate Chemical compound [Mn+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O MIVBAHRSNUNMPP-UHFFFAOYSA-N 0.000 description 4
- 239000002114 nanocomposite Substances 0.000 description 4
- 229910001427 strontium ion Inorganic materials 0.000 description 4
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- 238000003917 TEM image Methods 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 230000003993 interaction Effects 0.000 description 3
- CZMAIROVPAYCMU-UHFFFAOYSA-N lanthanum(3+) Chemical compound [La+3] CZMAIROVPAYCMU-UHFFFAOYSA-N 0.000 description 3
- 229910021645 metal ion Inorganic materials 0.000 description 3
- 238000001000 micrograph Methods 0.000 description 3
- 239000002105 nanoparticle Substances 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 239000012266 salt solution Substances 0.000 description 3
- PWYYWQHXAPXYMF-UHFFFAOYSA-N strontium(2+) Chemical compound [Sr+2] PWYYWQHXAPXYMF-UHFFFAOYSA-N 0.000 description 3
- 231100000331 toxic Toxicity 0.000 description 3
- 230000002588 toxic effect Effects 0.000 description 3
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- 229910002182 La0.7Sr0.3MnO3 Inorganic materials 0.000 description 2
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 2
- PACGUUNWTMTWCF-UHFFFAOYSA-N [Sr].[La] Chemical compound [Sr].[La] PACGUUNWTMTWCF-UHFFFAOYSA-N 0.000 description 2
- 238000003915 air pollution Methods 0.000 description 2
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000003344 environmental pollutant Substances 0.000 description 2
- 239000010419 fine particle Substances 0.000 description 2
- 238000000265 homogenisation Methods 0.000 description 2
- 150000002576 ketones Chemical class 0.000 description 2
- -1 lanthanum ions Chemical class 0.000 description 2
- 229910001437 manganese ion Inorganic materials 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000002923 metal particle Substances 0.000 description 2
- 231100000719 pollutant Toxicity 0.000 description 2
- 238000010008 shearing Methods 0.000 description 2
- 239000004575 stone Substances 0.000 description 2
- 239000008096 xylene Substances 0.000 description 2
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 239000000809 air pollutant Substances 0.000 description 1
- 231100001243 air pollutant Toxicity 0.000 description 1
- 150000001299 aldehydes Chemical class 0.000 description 1
- 150000001335 aliphatic alkanes Chemical class 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000002734 clay mineral Substances 0.000 description 1
- 238000006477 desulfuration reaction Methods 0.000 description 1
- 230000023556 desulfurization Effects 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 150000002013 dioxins Chemical class 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- 239000003546 flue gas Substances 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- 238000009775 high-speed stirring Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910000000 metal hydroxide Inorganic materials 0.000 description 1
- 150000004692 metal hydroxides Chemical class 0.000 description 1
- 238000005065 mining Methods 0.000 description 1
- 239000002159 nanocrystal Substances 0.000 description 1
- 230000003472 neutralizing effect Effects 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 150000003071 polychlorinated biphenyls Chemical class 0.000 description 1
- 125000005575 polycyclic aromatic hydrocarbon group Chemical group 0.000 description 1
- 239000003361 porogen Substances 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 229920006395 saturated elastomer Chemical class 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 239000004753 textile Substances 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 235000021419 vinegar Nutrition 0.000 description 1
- 239000000052 vinegar Substances 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 239000002351 wastewater Substances 0.000 description 1
Images
Landscapes
- Catalysts (AREA)
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
Abstract
本发明公开了一种凹凸棒石-钙钛矿复合材料及其制备方法和用途,其中凹凸棒石-钙钛矿复合材料是以凹凸棒石粘土为载体,在凹凸棒石表面负载钙钛矿颗粒后得到的复合材料,钙钛矿的负载量为凹凸棒石粘土质量的6-12%;本发明复合材料的组成表示为:μ%La1-xSrxMnO3/PG;式中μ=6-12,x=0、0.1或0.3。本发明复合材料为纳米结构,其活化能低、催化活性高、抗失活能力强,可以应用于甲苯等挥发性有机污染物净化及其他各类有机物的催化氧化。The invention discloses an attapulgite-perovskite composite material and its preparation method and application, wherein the attapulgite-perovskite composite material uses attapulgite clay as a carrier, and the attapulgite surface is loaded with perovskite In the composite material obtained after granulation, the loading of perovskite is 6-12% of the mass of attapulgite clay; the composition of the composite material of the present invention is expressed as: μ% La 1-x Sr x MnO 3 /PG; where μ =6-12, x=0, 0.1 or 0.3. The composite material of the invention has a nano structure, has low activation energy, high catalytic activity and strong deactivation resistance, and can be applied to the purification of volatile organic pollutants such as toluene and the catalytic oxidation of other various organic substances.
Description
一、技术领域 1. Technical field
本发明属于能源化工领域,涉及到凹凸棒石粘土为载体,钙钛矿型化合物纳米颗粒为活性组分的纳米材料、制备方法及其脱除挥发性有机污染物的应用。The invention belongs to the field of energy and chemical industry, and relates to a nano material with attapulgite clay as a carrier and perovskite compound nano particles as an active component, a preparation method and an application for removing volatile organic pollutants.
二、背景技术 2. Background technology
挥发性有机物(VOCs)通常是指常压下沸点为50-260℃的有机化合物,如烷烃、烯烃、芳香烃、氯代芳烃以及饱和、不饱和的醛、酮等。VOCs主要来源于石油、化工、造纸、油漆涂料、采矿、金属电镀和纺织等行业排放的废气,以及众多交通工具所排放的废气。Volatile organic compounds (VOCs) usually refer to organic compounds with a boiling point of 50-260°C under normal pressure, such as alkanes, alkenes, aromatic hydrocarbons, chlorinated aromatic hydrocarbons, saturated and unsaturated aldehydes, ketones, etc. VOCs mainly come from exhaust gases emitted by industries such as petroleum, chemical industry, papermaking, paint coatings, mining, metal electroplating, and textiles, as well as exhaust gases emitted by many vehicles.
据统计,2005-2010年间,我国VOCs排放总量约2650-3100万吨,而2010年我国仅涂料应用过程就向大气释放VOCs约388万吨,在挥发性有机废气总排放中占有很大比例。苯系物、醇、醋、醚、酮等五类化合物是当前涂料应用排放有机废气的主要成分,分别占到总量的29%、19%、13%、10%和11%,其中31%为有毒有害物质,以甲苯和二甲苯为主。随着社会发展和人们对环境质量要求的提高,世界各国对有机废气的排放制定了严格的环保法规,如美国、日本、德国等都制定了严格的有机废气排放标准,特别是对苯系物、多环芳烃、多氯联苯、二恶英等常见的和强毒性的工业有机废气,更是引起了人们和环保工作者的关注。美国清洁空气修正案(1990年)要求监测的189种优先控制的有毒空气污染物中,约有100种为挥发性有机污染物;我国1997年颁布并实施的《大气污染物综合排放标准》中共限定了33种污染物的排放限值,其中就包括苯系物(苯、甲苯和二甲苯)等多种VOCs。目前我国大气污染的控制和治理多集中于电厂和锅炉等大型固定源的烟气除尘、脱硫、脱硝等的技术研究和工业推广上,相比之下挥发性有机废气,如苯系物有机废气的排放未引起足够的重视。故开发经济、高效的有机废气处理技术,将对改善我国的大气质量,实现大气污染的控制和治理具有重要的环境、经济和社会意义。According to statistics, from 2005 to 2010, the total emission of VOCs in my country was about 26.5-31 million tons. In 2010, only about 3.88 million tons of VOCs were released into the atmosphere during the coating application process in my country, accounting for a large proportion of the total emissions of volatile organic waste gases. . Five types of compounds, such as benzene series, alcohol, vinegar, ether, and ketone, are the main components of organic waste gas emitted by current coating applications, accounting for 29%, 19%, 13%, 10%, and 11% of the total, of which 31% It is a toxic and harmful substance, mainly toluene and xylene. With the development of society and the improvement of people's requirements for environmental quality, countries around the world have formulated strict environmental protection regulations on the discharge of organic waste gas, such as the United States, Japan, Germany, etc., have formulated strict organic waste gas emission standards, especially for benzene series , polycyclic aromatic hydrocarbons, polychlorinated biphenyls, dioxins and other common and highly toxic industrial organic waste gases have attracted the attention of people and environmental protection workers. Among the 189 priority toxic air pollutants that are required to be monitored by the United States Clean Air Amendment (1990), about 100 are volatile organic pollutants; the "Comprehensive Emission Standards for Atmospheric Pollutants" promulgated and implemented in my country in 1997 The emission limits of 33 kinds of pollutants are limited, including various VOCs such as benzene series (benzene, toluene and xylene). At present, the control and treatment of air pollution in my country are mostly focused on the technical research and industrial promotion of flue gas dust removal, desulfurization, and denitrification of large-scale fixed sources such as power plants and boilers. In contrast, volatile organic waste gases, such as benzene series organic waste gases emissions have not attracted enough attention. Therefore, the development of economical and efficient organic waste gas treatment technology will have important environmental, economic and social significance for improving my country's air quality and realizing the control and governance of air pollution.
三、发明内容 3. Contents of the invention
本发明旨在提供一种凹凸棒石-钙钛矿复合材料及其制备方法和用途,所要解决的技术问题是遴选合适的原料及配比使其能通过催化氧化的方式去除挥发性有机废气。The present invention aims to provide an attapulgite-perovskite composite material and its preparation method and application. The technical problem to be solved is to select suitable raw materials and proportions so that they can remove volatile organic waste gas through catalytic oxidation.
本发明解决技术问题采用如下技术方案:The present invention solves technical problem and adopts following technical scheme:
本发明凹凸棒石-钙钛矿复合材料,是以凹凸棒石粘土为载体,在凹凸棒石表面负载钙钛矿颗粒后得到的复合材料,钙钛矿的负载量为凹凸棒石粘土质量的6-12%;The attapulgite-perovskite composite material of the present invention is a composite material obtained by loading perovskite particles on the attapulgite surface with attapulgite clay as a carrier. 6-12%;
本发明复合材料的组成通式表示为:μ%La1-xSrxMnO3/PG;The general composition formula of the composite material of the present invention is expressed as: μ%La 1-x Sr x MnO 3 /PG;
其中La1-xSrxMnO3为钙钛矿,PG为凹凸棒石载体,μ%表示钙钛矿的负载量(占PG的质量百分比),μ=6-12;Among them, La 1-x Sr x MnO 3 is perovskite, PG is attapulgite carrier, μ% indicates the loading amount of perovskite (accounting for the mass percentage of PG), μ=6-12;
所述钙钛矿为镧锰钙钛矿,即x=0,镧与锰的摩尔比为1:1,或为有锶掺杂的镧锰钙钛矿,x=0.1或0.3。The perovskite is lanthanum-manganese perovskite, ie x=0, the molar ratio of lanthanum to manganese is 1:1, or lanthanum-manganese perovskite doped with strontium, x=0.1 or 0.3.
所述凹凸棒石粘土中凹凸棒石晶体的直径为40-50nm;The diameter of the attapulgite crystal in the attapulgite clay is 40-50nm;
所述钙钛矿的粒径小于10nm。The particle size of the perovskite is less than 10nm.
所述凹凸棒石粘土中,凹凸棒石的质量百分含量≥60%,白云石的质量百分含量≤10%。In the attapulgite clay, the mass percentage of attapulgite is ≥60%, and the mass percentage of dolomite is ≤10%.
本发明凹凸棒石-钙钛矿复合材料的制备方法,按以下步骤操作:The preparation method of attapulgite-perovskite composite material of the present invention, operates according to the following steps:
a、将凹凸棒石粘土预先堆存、均化;a. Pre-stock and homogenize the attapulgite clay;
b、向堆存、均化后的凹凸棒石粘土中加水,使得凹凸棒石粘土的含水量为30-50%,混合均匀后经对辊或多辊挤压机剪切挤压得到凹凸棒石粘土片状物,使凹凸棒石晶束解聚分散;b. Add water to the attapulgite clay after stockpiling and homogenization, so that the water content of the attapulgite clay is 30-50%, mix evenly, and then shear and extrude the attapulgite through a pair of rollers or a multi-roller extruder to obtain attapulgite Stone clay flakes, which depolymerize and disperse attapulgite crystal bundles;
c、将所述凹凸棒石粘土片状物干燥后粉碎并过200目筛得到凹凸棒石粉料;c, drying the attapulgite clay flakes and pulverizing them through a 200-mesh sieve to obtain attapulgite powder;
d、将50g所述凹凸棒石粉料加入200-2000mL水中,陈化10-48小时后搅拌0.5-1小时得到混合均匀的浆状物,向所述浆状物中加入配比量的易溶镧盐和易溶锰盐或者加入配比量的易溶镧盐、易溶锶盐和易溶锰盐,搅拌至无气泡产生,再加入氨水调pH值8-10得到悬浮液,使加入的镧离子和/或锶离子和/或锰离子水解完全;d. Add 50 g of the attapulgite powder into 200-2000 mL of water, age for 10-48 hours and then stir for 0.5-1 hour to obtain a uniformly mixed slurry, and add a proportioned amount of easily soluble Lanthanum salt and soluble manganese salt or soluble lanthanum salt, soluble strontium salt and soluble manganese salt are added in a proportioning amount, stirred until no bubbles are generated, then ammonia water is added to adjust the pH value to 8-10 to obtain a suspension, and the added Complete hydrolysis of lanthanum ions and/or strontium ions and/or manganese ions;
所述配比量是指按通式的组成和配比计算得到的量;The proportioning amount refers to the amount calculated according to the composition and proportioning of the general formula;
e、所述悬浮液经洗涤、脱水得到泥饼,将所述泥饼干燥并筛分成40-60目的粒料或者向所述泥饼中加入糊状淀粉干燥并造粒后得到40-60目的粒料;糊状淀粉的添加量为所述泥饼质量的1-5%;e. The suspension is washed and dehydrated to obtain a mud cake, and the mud cake is dried and sieved into 40-60 mesh pellets, or paste starch is added to the mud cake to dry and granulate to obtain a 40-60 mesh Granules; the addition of pasty starch is 1-5% of the mud cake quality;
f、将所述粒料于600-900℃煅烧1.5-2.5小时,使负载到凹凸棒石表面的镧、锶、锰氢氧化物胶体颗粒转化为纳米氧化物颗粒,得到凹凸棒石粘土-钙钛矿复合材料。f. Calcining the pellets at 600-900°C for 1.5-2.5 hours to convert the colloidal particles of lanthanum, strontium and manganese hydroxides loaded on the surface of attapulgite into nano-oxide particles to obtain attapulgite clay-calcium Titanium composite.
所述易溶镧盐为镧的硝酸盐或硫酸盐;所述易溶锶盐为锶的硝酸盐或硫酸盐;所述易溶锰盐为锰的硝酸盐或硫酸盐。The soluble lanthanum salt is nitrate or sulfate of lanthanum; the soluble strontium salt is nitrate or sulfate of strontium; the soluble manganese salt is nitrate or sulfate of manganese.
本发明凹凸棒石粘土-钙钛矿复合材料在挥发性有机物催化氧化的过程中作为催化剂的应用。The application of the attapulgite clay-perovskite composite material of the invention as a catalyst in the process of catalytic oxidation of volatile organic compounds.
本发明所称的凹凸棒石-钙钛矿复合材料中的钙钛矿指的是钙钛矿型化合物。The perovskite in the attapulgite-perovskite composite material referred to in the present invention refers to a perovskite compound.
本发明以甲苯为例检测凹凸棒石粘土-钙钛矿复合材料催化氧化性能,过程如下:The present invention takes toluene as an example to detect the catalytic oxidation performance of the attapulgite clay-perovskite composite material, and the process is as follows:
将本发明制备的复合材料0.5g装入气固相催化反应器的石英管中,反应器从室温开始升温,用空气泵产生空气分成两路,一路气通入甲苯,另一路作稀释气体,通过混气瓶混合后进入催化氧化反应体系,通过调节两路气的流量可以获得不同浓度的甲苯气体。催化氧化反应系统进出口的甲苯或其他VOCs气体浓度由配有FID检测器的气相色谱检测完成,催化剂的活性以甲苯或其他VOCs的转化率表示。0.5g of the composite material prepared by the present invention is packed into the quartz tube of the gas-solid phase catalytic reactor, the reactor starts to heat up from room temperature, and the air generated by the air pump is divided into two paths, one path is passed into toluene, and the other path is used as a dilution gas, After being mixed through the gas mixing bottle, it enters the catalytic oxidation reaction system, and different concentrations of toluene gas can be obtained by adjusting the flow of the two-way gas. The gas concentration of toluene or other VOCs at the inlet and outlet of the catalytic oxidation reaction system is detected by gas chromatography equipped with an FID detector, and the activity of the catalyst is expressed by the conversion rate of toluene or other VOCs.
与已有技术相比,本发明有益效果体现在:Compared with the prior art, the beneficial effects of the present invention are reflected in:
1、凹凸棒石粘土中凹凸棒石晶体常常成为束状集合体产出,凹凸棒石粘土剪切挤压可以促进束状集合体解聚,促使凹凸棒石纳米晶体分散,本发明的方法采用了挤压剪切预处理,提高了复合材料的比表面积和催化性能。1, in the attapulgite clay, the attapulgite crystals often become bundle-like aggregates, and the shearing and extrusion of the attapulgite clay can promote the depolymerization of the bundle-like aggregates and impel the attapulgite nanocrystals to disperse. The method of the present invention adopts The extrusion shear pretreatment improves the specific surface area and catalytic performance of the composite.
2、凹凸棒石粘土中普遍含有一定量的白云石,而加入的镧、锶、锰盐水溶液具有酸性。本发明利用凹凸棒石粘土这一矿物组成的特性,直接把凹凸棒石粘土粉体与镧、锶、锰盐水溶液混合,既中和了镧、锶、锰盐水溶液的酸性,又去除了凹凸棒石粘土的白云石杂质,提高了材料的性能,减少了中和、沉淀药剂氨水的消耗,减少了酸性废水、高盐度废液等污染排放,降低了催化剂材料制备成本。2. Attapulgite clay generally contains a certain amount of dolomite, and the added lanthanum, strontium, and manganese salt solutions are acidic. The present invention utilizes the characteristic of attapulgite clay mineral composition, directly mixes attapulgite clay powder with lanthanum, strontium and manganese salt solution, which not only neutralizes the acidity of lanthanum, strontium and manganese salt solution, but also removes the unevenness The dolomite impurity of the rod stone clay improves the performance of the material, reduces the consumption of neutralizing and precipitating agent ammonia water, reduces the pollution discharge of acid waste water and high salinity waste liquid, and reduces the cost of catalyst material preparation.
3、发明人经研究发现,凹凸棒石与金属离子存在相互作用,本发明利用这一相互作用,发挥凹凸棒石晶体诱导的金属离子水解沉淀作用、凹凸棒石胶体颗粒(带负电荷)与金属离子水解氢氧化物(带正电荷)的相互作用,使金属氢氧化物以胶体颗粒的形式均匀分散地负载到凹凸棒石晶体表面,实现了凹凸棒石与金属纳米复合制备的预组装。3. The inventor found through research that there is an interaction between attapulgite and metal ions. The present invention utilizes this interaction to bring into play the hydrolysis and precipitation of metal ions induced by attapulgite crystals, and the attapulgite colloidal particles (negatively charged) and The interaction of metal ions to hydrolyze the hydroxide (positively charged) enables the metal hydroxide to be uniformly dispersed on the surface of the attapulgite crystal in the form of colloidal particles, and the pre-assembly of attapulgite and metal nanocomposite preparation is realized.
4、本发明通过适当温度的煅烧,使均匀分散地负载到凹凸棒石晶体表面的镧、锶、锰氢氧化物生成钙钛矿型化合物纳米颗粒,得到凹凸棒石-钙钛矿复合材料,提高了复合材料的催化活性。4. In the present invention, through calcination at an appropriate temperature, the lanthanum, strontium, and manganese hydroxides uniformly dispersed on the surface of the attapulgite crystal form perovskite compound nanoparticles to obtain attapulgite-perovskite composite materials, The catalytic activity of the composite material is improved.
5、本发明在凹凸棒石棒状晶体表面同时负载小于粒径10nm的钙钛矿型化合物颗粒,研究发现纳米级钙钛矿型化合物颗粒能在凹凸棒石载体表面均匀的分散,提高了催化剂的活性,减少钙钛矿的负载量。5. The present invention simultaneously loads perovskite compound particles smaller than 10nm in diameter on the surface of attapulgite rod-shaped crystals. It is found that nano-scale perovskite compound particles can be uniformly dispersed on the surface of attapulgite carrier, which improves the catalytic performance. activity, reducing the loading of perovskite.
6、本发明在脱水后产生的泥饼中,加入有机物粘结剂,搅拌混合均匀、造粒,可以提高造粒效果,提高催化剂颗粒的孔隙度。6. In the present invention, an organic binder is added to the mud cake produced after dehydration, stirred and mixed evenly, and granulated, which can improve the granulation effect and increase the porosity of the catalyst particles.
四、附图说明 4. Description of drawings
图1为本发明制备的凹凸棒石-镧锰钙钛矿纳米复合材料的TEM图像。Fig. 1 is the TEM image of the attapulgite-lanthanum manganese perovskite nanocomposite material prepared in the present invention.
图2为本发明制备的镧锶摩尔比为9:1的凹凸棒石粘土-镧锶锰钙钛矿纳米复合材料的TEM图像。Fig. 2 is a TEM image of the attapulgite clay-lanthanum strontium manganese perovskite nanocomposite material with a lanthanum strontium molar ratio of 9:1 prepared by the present invention.
图3为本发明制备的镧锶摩尔比为7:3的凹凸棒石粘土-镧锶锰钙钛矿纳米复合材料的TEM图像。Fig. 3 is a TEM image of the attapulgite clay-lanthanum strontium manganese perovskite nanocomposite material with a lanthanum strontium molar ratio of 7:3 prepared by the present invention.
五、具体实施方式 5. Specific implementation
实施例1:Example 1:
1、将从矿山开采的凹凸棒石粘土矿石倾倒在矿石堆场的地面上,摊铺厚度不超过10cm,晾晒3-5天后输送到圆锥状矿石堆堆存,矿石平均堆存时间1-6个月,矿石在堆存过程中经历自然风化、自然破碎和混合均化作用,提高矿石原料均匀性。从矿石堆取原料是采用纵向取土方式。1. Pour the attapulgite clay ore mined from the mine on the ground of the ore stockyard, pave the thickness not to exceed 10cm, and transport it to the conical ore pile after drying for 3-5 days. The average ore stockpiling time is 1-6 During the storage process, the ore experienced natural weathering, natural crushing and mixing and homogenization to improve the uniformity of ore raw materials. Raw materials are taken from ore piles in a vertical way.
2、向从矿石堆取出的凹凸棒石粘土物料中加水,使得凹凸棒石粘土的含水量为30-50%,混合均匀后经对辊或多辊挤压机剪切挤压得到凹凸棒石粘土片状物,促使凹凸棒石晶束解聚分散。2. Add water to the attapulgite clay material taken out from the ore pile, so that the water content of the attapulgite clay is 30-50%. After mixing evenly, the attapulgite is obtained by shearing and extruding with a pair of rollers or a multi-roller extruder. Clay flakes promote the depolymerization and dispersion of attapulgite crystal bundles.
3、将凹凸棒石粘土片状物105℃干燥后粉碎并过200目筛得到凹凸棒石粘土粉料。3. Attapulgite clay flakes were dried at 105° C., crushed and passed through a 200-mesh sieve to obtain attapulgite clay powder.
4、将50g凹凸棒石粉料加入1000ml水中,陈化24小时,再用高速搅拌机以10000r/min高速搅拌0.5小时得到混合均匀的浆状物,向浆状物中加入5.37g硝酸镧(La(NO3)3·6H2O分析纯),搅拌30分钟,再加入4.44g硝酸锰(含Mn(NO3)2为50%的分析纯),持续搅拌直至无气泡产生,然后滴加氨水溶液,10000r/min高速搅拌10min,调pH值8-10得到悬浮液,使加入的镧离子和锰离子水解完全。4. Add 50g of attapulgite powder into 1000ml of water, age for 24 hours, then use a high-speed mixer to stir at a high speed of 10000r/min for 0.5 hours to obtain a uniformly mixed slurry, and add 5.37g of lanthanum nitrate (La( NO 3 ) 3 6H 2 O analytically pure), stirred for 30 minutes, then added 4.44g manganese nitrate (50% analytically pure containing Mn(NO 3 ) 2 ), continued stirring until no bubbles were produced, then added dropwise ammonia solution , 10000r/min high-speed stirring for 10min, adjust the pH value to 8-10 to obtain a suspension, so that the added lanthanum ions and manganese ions are hydrolyzed completely.
5、将悬浮液用具有洗涤功能的板框压滤机压滤、洗涤、脱水得到泥饼,用挤出成型机将泥饼成型为0.5-2mm的粒料并干燥。5. Filter the suspension with a plate and frame filter press with washing function, wash and dehydrate to obtain a mud cake, and use an extrusion molding machine to shape the mud cake into 0.5-2mm pellets and dry.
6、将粒料放置于马弗炉中700℃煅烧2h,使负载到凹凸棒石表面的镧、锰氢氧化物胶体颗粒在高温下相互作用转化为具有高催化活性的纳米级钙钛矿型化合物颗粒,得到凹凸棒石-钙钛矿复合材料,复合材料中镧锰钙钛矿的质量百分比为6%(6%LaMnO3/PG)。6. Place the pellets in a muffle furnace for calcination at 700°C for 2 hours, so that the colloidal particles of lanthanum and manganese hydroxides loaded on the surface of the attapulgite interact and transform into nano-scale perovskite with high catalytic activity at high temperature. compound particles to obtain attapulgite-perovskite composite material, and the mass percentage of lanthanum manganese perovskite in the composite material is 6% (6%LaMnO 3 /PG).
本实施例制备的凹凸棒石-镧锰钙钛矿复合材料的透射电镜图像如图1所示。从图1中可以看出,镧锰钙钛矿颗粒负载在凹凸棒石棒状晶体表面,纳米颗粒的粒径为5-10nm,作为催化氧化活性组分的镧锰钙钛矿具有很高的分散度。The transmission electron microscope image of the attapulgite-lanthanum manganese perovskite composite material prepared in this example is shown in FIG. 1 . It can be seen from Figure 1 that the lanthanum-manganese perovskite particles are loaded on the surface of the attapulgite rod-shaped crystals, the particle size of the nanoparticles is 5-10nm, and the lanthanum-manganese perovskite as a catalytic oxidation active component has a high dispersion Spend.
将本实施例制备的复合材料装入气固相催化反应器中,用甲苯作为模拟化合物评价催化氧化VOCs的效率,结果表明对于浓度为3790mg/m3的甲苯气体,在339℃时甲苯的转化率为99%,催化氧化效果高于目前报道的催化剂的性能。The composite material prepared in this example is loaded into a gas-solid phase catalytic reactor, and toluene is used as a model compound to evaluate the efficiency of catalytic oxidation of VOCs. The results show that for toluene gas with a concentration of 3790 mg/ m3 , the conversion of toluene at 339 ° C The rate is 99%, and the catalytic oxidation effect is higher than the performance of the currently reported catalysts.
实施例2:Example 2:
步骤1-3的制备方法同实施例1。The preparation method of step 1-3 is the same as embodiment 1.
4、将50g凹凸棒石粉料加入1000ml水中,陈化24小时,再用高速搅拌机以10000r/min高速搅拌0.5小时得到混合均匀的浆状物,向浆状物中加入7.00g硝酸镧(La(NO3)3·6H2O分析纯),搅拌10分钟,再加入0.38g硝酸锶(Sr(NO3)2分析纯),继续搅拌20分钟,再加入6.43g硝酸锰(含Mn(NO3)2为50%的分析纯),持续搅拌直至无气泡产生,然后滴加氨水溶液,10000r/min高速搅拌10min,调pH值8-10得到悬浮液,使加入的镧离子、锶离子和锰离子水解完全。4. Add 50g of attapulgite powder into 1000ml of water, age for 24 hours, and then use a high-speed mixer to stir at a high speed of 10000r/min for 0.5 hours to obtain a uniformly mixed slurry, and add 7.00g of lanthanum nitrate (La( NO 3 ) 3 6H 2 O analytically pure), stirred for 10 minutes, then added 0.38g strontium nitrate (Sr(NO 3 ) 2 analytically pure), continued stirring for 20 minutes, then added 6.43g manganese nitrate (containing Mn(NO 3 ) 2 is 50% analytically pure), continue to stir until no bubbles are produced, then add dropwise ammonia solution, stir at a high speed of 10000r/min for 10min, adjust the pH value to 8-10 to obtain a suspension, and make the added lanthanum ion, strontium ion and manganese Ionic hydrolysis is complete.
5、将悬浮液用具有洗涤功能的板框压滤机压滤、洗涤、脱水得到泥饼,将泥饼干燥后破碎筛分得到0.5-2mm的粒料。5. Filter the suspension with a plate and frame filter press with washing function, wash and dehydrate to obtain a mud cake, dry the mud cake, crush and sieve to obtain 0.5-2mm granules.
6、将粒料放置于马弗炉中700℃煅烧2h,使负载到凹凸棒石表面的镧、锶、锰氢氧化物胶体颗粒在高温下相互作用转化为具有高催化活性的纳米级钙钛矿型化合物颗粒,得到凹凸棒石-钙钛矿复合材料,复合材料中镧锶锰钙钛矿的质量百分比为8.5%(8.5%La0.9Sr0.1MnO3/PG)。6. Place the pellets in a muffle furnace for calcination at 700°C for 2 hours, so that the colloidal particles of lanthanum, strontium, and manganese hydroxides loaded on the surface of attapulgite interact at high temperature and transform them into nano-scale perovskite with high catalytic activity ore-type compound particles to obtain attapulgite-perovskite composite materials, and the mass percentage of lanthanum strontium manganese perovskite in the composite material is 8.5% (8.5%La 0.9 Sr 0.1 MnO 3 /PG).
本实施例制备的凹凸棒石-镧锶锰钙钛矿复合材料的透射电镜图像如图2所示,镧锶锰钙钛矿颗粒负载在凹凸棒石棒状晶体表面,纳米金属颗粒的粒径为5-10nm,作为催化活性组分的镧锶锰钙钛矿具有很高的分散度。The transmission electron microscope image of the attapulgite-lanthanum strontium manganese perovskite composite material prepared in this example is shown in Figure 2. The lanthanum strontium manganese perovskite particles are loaded on the surface of the attapulgite rod-shaped crystals, and the particle size of the nano-metal particles is 5-10nm, the lanthanum strontium manganese perovskite as the catalytic active component has a high degree of dispersion.
将本实施例制备的复合材料装入气固相催化反应器中,用甲苯作为模拟化合物评价催化氧化VOCs的效率,结果表明对于浓度为3790mg/m3的甲苯气体,在318℃时甲苯的转化率为99%,催化氧化效果高于目前报道的催化剂的性能。The composite material prepared in this example was loaded into a gas-solid phase catalytic reactor, and toluene was used as a simulated compound to evaluate the efficiency of catalytic oxidation of VOCs. The results showed that for toluene gas with a concentration of 3790 mg/ m3 , the conversion of toluene at 318 ° C The rate is 99%, and the catalytic oxidation effect is higher than the performance of the currently reported catalysts.
实施例3:Example 3:
步骤1-3的制备方法同实施例1。The preparation method of step 1-3 is the same as embodiment 1.
4、将50g凹凸棒石粉料加入1000ml水中,陈化24小时,再用高速搅拌机以10000r/min高速搅拌0.5小时得到混合均匀的浆状物,向浆状物中加入8.03g硝酸镧(La(NO3)3·6H2O分析纯),搅拌10分钟,再加入1.68g硝酸锶(Sr(NO3)2分析纯),继续搅拌20分钟,再加入9.48g硝酸锰(含Mn(NO3)2为50%的分析纯),持续搅拌直至无气泡产生,然后滴加氨水溶液,10000r/min高速搅拌10min,调pH值8-10得到悬浮液,使加入的镧离子、锶离子和锰离子水解完全。4. Add 50g of attapulgite powder into 1000ml of water, age for 24 hours, then use a high-speed mixer to stir at a high speed of 10000r/min for 0.5 hours to obtain a uniformly mixed slurry, and add 8.03g of lanthanum nitrate (La( NO 3 ) 3 6H 2 O analytically pure), stirred for 10 minutes, then added 1.68g strontium nitrate (Sr(NO 3 ) 2 analytically pure), continued stirring for 20 minutes, then added 9.48g manganese nitrate (containing Mn(NO 3 ) 2 is 50% analytically pure), continue to stir until no bubbles are produced, then add dropwise ammonia solution, stir at a high speed of 10000r/min for 10min, adjust the pH value to 8-10 to obtain a suspension, and make the added lanthanum ion, strontium ion and manganese Ionic hydrolysis is complete.
5、将悬浮液用具有洗涤功能的板框压滤机压滤、洗涤、脱水得到泥饼,将泥饼干燥后破碎筛分得到0.1-0.2mm、0.2-0.5mm以及0.5-1.0mm不同粒径的的粒料,以满足催化反应器对细颗粒催化剂的要求。5. Filter the suspension with a plate and frame filter press with washing function, wash and dehydrate to obtain mud cake, dry the mud cake, crush and sieve to obtain different particles of 0.1-0.2mm, 0.2-0.5mm and 0.5-1.0mm The diameter of the pellets to meet the requirements of the catalytic reactor for fine particle catalysts.
6、将粒料放置于马弗炉中800℃煅烧2h,使负载到凹凸棒石表面的镧、锶、锰氢氧化物胶体颗粒在高温下相互作用转化为具有高催化活性的纳米级钙钛矿型化合物颗粒,得到凹凸棒石-钙钛矿复合材料,复合材料中镧锶锰钙钛矿的质量百分比为12%(12%La0.7Sr0.3MnO3/PG)。6. Place the pellets in a muffle furnace for calcination at 800°C for 2 hours, so that the colloidal particles of lanthanum, strontium, and manganese hydroxides loaded on the surface of attapulgite interact and transform into nano-scale perovskite with high catalytic activity at high temperature ore-type compound particles to obtain attapulgite-perovskite composite material, the mass percentage of lanthanum strontium manganese perovskite in the composite material is 12% (12%La 0.7 Sr 0.3 MnO 3 /PG).
本实施例制备的凹凸棒石-镧锶锰钙钛矿复合材料的透射电镜图像如图3所示,镧锶锰钙钛矿颗粒负载在凹凸棒石棒状晶体表面,纳米金属颗粒的粒径5-10nm,作为催化活性组分的镧锶锰钙钛矿具有很高的分散度。The transmission electron microscope image of the attapulgite-lanthanum strontium manganese perovskite composite material prepared in this example is shown in Figure 3. The lanthanum strontium manganese perovskite particles are loaded on the surface of the attapulgite rod-shaped crystals, and the particle size of the nano-metal particles is 5 -10nm, the lanthanum strontium manganese perovskite as the catalytic active component has a high degree of dispersion.
将本实施例制备的复合材料装入气固相催化反应器中,用甲苯作为模拟化合物评价催化氧化VOCs的效率,结果表明对于浓度为3790mg/m3的甲苯气体,三种粒径的催化剂在300℃时甲苯的转化率均为99%,催化氧化效果高于目前报道的催化剂性能。The composite material prepared in this example is loaded into a gas-solid phase catalytic reactor, and toluene is used as a simulated compound to evaluate the efficiency of catalytic oxidation of VOCs. The results show that for a concentration of 3790 mg/m Toluene gas, the catalysts of three particle sizes are in The conversion rate of toluene at 300 °C is 99%, and the catalytic oxidation effect is higher than the catalyst performance reported so far.
实施例4:Example 4:
步骤1-3的制备方法同实施例1。The preparation method of step 1-3 is the same as embodiment 1.
4、将50g凹凸棒石粉料加入1000ml水中,陈化24小时,再用高速搅拌机以10000r/min高速搅拌0.5小时得到混合均匀的浆状物,向浆状物中加入8.03g硝酸镧(La(NO3)3·6H2O分析纯),搅拌10分钟,再加入1.68g硝酸锶(Sr(NO3)2分析纯),继续搅拌20分钟,再加入9.48g硝酸锰(含Mn(NO3)2为50%的分析纯),持续搅拌直至无气泡产生,然后滴加氨水溶液,10000r/min高速搅拌10min,调pH值8-10得到悬浮液,使加入的镧离子、锶离子和锰离子水解完全。4. Add 50g of attapulgite powder into 1000ml of water, age for 24 hours, then use a high-speed mixer to stir at a high speed of 10000r/min for 0.5 hours to obtain a uniformly mixed slurry, and add 8.03g of lanthanum nitrate (La( NO 3 ) 3 6H 2 O analytically pure), stirred for 10 minutes, then added 1.68g strontium nitrate (Sr(NO 3 ) 2 analytically pure), continued stirring for 20 minutes, then added 9.48g manganese nitrate (containing Mn(NO 3 ) 2 is 50% analytically pure), continue to stir until no bubbles are produced, then add dropwise ammonia solution, stir at a high speed of 10000r/min for 10min, adjust the pH value to 8-10 to obtain a suspension, and make the added lanthanum ion, strontium ion and manganese Ionic hydrolysis is complete.
5、将悬浮液用具有洗涤功能的板框压滤机压滤、洗涤、脱水得到泥饼,向泥饼中加入泥饼质量1-5%的糊状淀粉,造粒得到0.5-1.0mm、1.0-2.0mm以及2-3mm不同粒径的的粒料,以满足催化反应器对细颗粒催化剂的要求,糊状淀粉起到粘结剂和致孔剂的作用。5. Filter the suspension with a plate and frame filter press with washing function, wash and dehydrate to obtain a mud cake, add paste starch with a mass of 1-5% of the mud cake to the mud cake, and granulate to obtain a 0.5-1.0mm, Granules with different particle sizes of 1.0-2.0mm and 2-3mm meet the requirements of catalytic reactors for fine particle catalysts. Paste starch acts as a binder and porogen.
6、将粒料放置于马弗炉中800℃煅烧2h,使负载到凹凸棒石表面的镧、锶、锰氢氧化物胶体颗粒在高温下相互作用转化为具有高催化活性的纳米级钙钛矿型化合物颗粒,得到凹凸棒石-钙钛矿复合材料,复合材料中镧锶锰钙钛矿的质量百分比为12%(12%La0.7Sr0.3MnO3/PG)。6. Place the pellets in a muffle furnace for calcination at 800°C for 2 hours, so that the colloidal particles of lanthanum, strontium, and manganese hydroxides loaded on the surface of attapulgite interact and transform into nano-scale perovskite with high catalytic activity at high temperature ore-type compound particles to obtain attapulgite-perovskite composite material, the mass percentage of lanthanum strontium manganese perovskite in the composite material is 12% (12%La 0.7 Sr 0.3 MnO 3 /PG).
将本实施例制备的复合材料装入气固相催化反应器中,用甲苯作为模拟化合物评价催化氧化VOCs的效率,结果表明对于浓度为3790mg/m3的甲苯气体,三种粒径的催化剂在300℃时甲苯的转化率均为99%,催化氧化效果高于目前报道的催化剂性能。The composite material prepared in this example is loaded into a gas-solid phase catalytic reactor, and toluene is used as a simulated compound to evaluate the efficiency of catalytic oxidation of VOCs. The results show that for a concentration of 3790 mg/m Toluene gas, the catalysts of three particle sizes are in The conversion rate of toluene at 300 °C is 99%, and the catalytic oxidation effect is higher than the catalyst performance reported so far.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210313998.1A CN102794169B (en) | 2012-08-30 | 2012-08-30 | Attapulgite-perovskite composite material, preparation method and application thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210313998.1A CN102794169B (en) | 2012-08-30 | 2012-08-30 | Attapulgite-perovskite composite material, preparation method and application thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102794169A CN102794169A (en) | 2012-11-28 |
CN102794169B true CN102794169B (en) | 2014-04-30 |
Family
ID=47193620
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201210313998.1A Expired - Fee Related CN102794169B (en) | 2012-08-30 | 2012-08-30 | Attapulgite-perovskite composite material, preparation method and application thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102794169B (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104857952A (en) * | 2015-05-04 | 2015-08-26 | 合肥晨晰环保工程有限公司 | Sulfur-resistant nitrogen-oxide-removing attapulgite manganese-based SCR catalyst and preparation method and application thereof |
CN106944010A (en) * | 2017-04-14 | 2017-07-14 | 明光市国星凹土有限公司 | A kind of concave convex rod adsorbent and preparation method for organic exhaust gas |
CN106955664A (en) * | 2017-04-25 | 2017-07-18 | 安徽博硕科技有限公司 | A kind of preparation method of nano-manganese dioxide/rare earth modified nano strontium titanates/attapulgite clay compounded adsorbent |
CN109999795A (en) * | 2019-04-19 | 2019-07-12 | 常州大学 | A kind of attapulgite load LaMnO for the VOCs that degrades3Catalyst |
CN115301243B (en) * | 2022-07-15 | 2024-01-05 | 浙江聚泰新能源材料有限公司 | Supported perovskite catalyst, preparation method and application thereof |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1947834A (en) * | 2006-11-10 | 2007-04-18 | 北京工业大学 | Process for preparing catalyst contg. La(1-x)SrxMO3 used for removing volatile organic matter |
CN101015806A (en) * | 2007-02-15 | 2007-08-15 | 浙江工业大学 | Metal mesh type combustion catalyst and its preparing process and application |
-
2012
- 2012-08-30 CN CN201210313998.1A patent/CN102794169B/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1947834A (en) * | 2006-11-10 | 2007-04-18 | 北京工业大学 | Process for preparing catalyst contg. La(1-x)SrxMO3 used for removing volatile organic matter |
CN101015806A (en) * | 2007-02-15 | 2007-08-15 | 浙江工业大学 | Metal mesh type combustion catalyst and its preparing process and application |
Non-Patent Citations (2)
Title |
---|
沈柳倩等.钙钛矿型催化剂对VOCs催化燃烧的抗毒性和稳定性研究.《分子催化》.2008,第22卷(第04期),320-324. |
钙钛矿型催化剂对VOCs催化燃烧的抗毒性和稳定性研究;沈柳倩等;《分子催化》;20080831;第22卷(第04期);320-324 * |
Also Published As
Publication number | Publication date |
---|---|
CN102794169A (en) | 2012-11-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Han et al. | Diatomite-supported birnessite–type MnO2 catalytic oxidation of formaldehyde: Preparation, performance and mechanism | |
Luo et al. | Study on the catalytic performance of LaMnO3 for the RhB degradation | |
US10413894B2 (en) | Catalysts for degradation of organic pollutants in printing and dyeing wastewater and method of preparation thereof | |
Li et al. | Green synthesis of red mud based ZnOFe2O3 composite used for photo-Fenton reaction under visible light | |
CN102794169B (en) | Attapulgite-perovskite composite material, preparation method and application thereof | |
CN108906055A (en) | A kind of preparation method of magnetic sludge charcoal, magnetic sludge charcoal and its application | |
CN101537356A (en) | Attapulgite clay-Ni/Fe nano composite material, preparation method and applications thereof | |
CN110743527A (en) | Preparation method of mesoporous ozone catalyst | |
Wang et al. | Solar photocatalytic degradation of 2-sec-butyl-4, 6-dinitrophenol (DNBP) using TiO2/SiO2 aerogel composite photocatalysts | |
CN102389791A (en) | Desulfurization and denitrification catalyst taking kaolin as carrier and preparation method thereof | |
Yin et al. | Synergistically enhanced photocatalytic degradation of tetracycline hydrochloride by Z-scheme heterojunction MT-BiVO4 microsphere/P-doped g-C3N4 nanosheet composite | |
CN112316913A (en) | Water treatment adsorbent using red mud waste residues as raw materials and preparation method thereof | |
CN101564685B (en) | Method for preparing photocatalytic material of titanium oxide immobilized on fly ash | |
CN103706368A (en) | Iron-carbon catalytic filler for treating organic mixed exhaust gases and preparation method of filler | |
Wang et al. | Acid-pretreated red mud for selective catalytic reduction of NOx with NH3: Insights into inhibition mechanism of binders | |
CN104667916A (en) | Method for preparing catalytic wet oxidation catalyst | |
CN109835897B (en) | A kind of metal/heteroatom modified white distiller's grains-based activated carbon and preparation method thereof | |
CN106892482A (en) | A kind of black TiO2Nano material and preparation method and application | |
CN104722292A (en) | Halloysite/lanthanon perovskite composite SCR catalyst and preparation method thereof | |
CN113145134B (en) | A kind of visible light catalyst based on mineral composite material and preparation method thereof | |
Yang et al. | Enhanced photocatalytic performance of cementitious material with TiO2@ Ag modified fly ash micro-aggregates | |
CN105883915B (en) | A kind of nano-crystalline titanium dioxide microballoon and its application as ozone oxidation catalyst | |
CN104437546A (en) | Non-homogeneous phase ozone catalyst and preparation method thereof | |
Li et al. | Heterostructure CoFe2O4/kaolinite composite for efficient degradation of tetracycline hydrochloride through synergetic photo-Fenton reaction | |
Liang et al. | Oxygen vacancies promoted the generation of sulfate radicals and singlet oxygen by peroxymonosulfate activation with Co3O4 quantum dots/g-C3N4 nanosheets |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20140430 |
|
CF01 | Termination of patent right due to non-payment of annual fee |