CN102793910A - New application of casein kinase2-interacting protein-1 (CKIP-1) protein and coding gene thereof - Google Patents
New application of casein kinase2-interacting protein-1 (CKIP-1) protein and coding gene thereof Download PDFInfo
- Publication number
- CN102793910A CN102793910A CN2012101864238A CN201210186423A CN102793910A CN 102793910 A CN102793910 A CN 102793910A CN 2012101864238 A CN2012101864238 A CN 2012101864238A CN 201210186423 A CN201210186423 A CN 201210186423A CN 102793910 A CN102793910 A CN 102793910A
- Authority
- CN
- China
- Prior art keywords
- ckip
- protein
- mice
- gene
- dna molecule
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 101001001794 Danio rerio Pleckstrin homology domain-containing family O member 1-A Proteins 0.000 title claims abstract description 90
- 101001001793 Homo sapiens Pleckstrin homology domain-containing family O member 1 Proteins 0.000 title claims abstract description 90
- 108090000623 proteins and genes Proteins 0.000 title claims abstract description 82
- 102100036265 Pleckstrin homology domain-containing family O member 1 Human genes 0.000 title claims abstract description 77
- 102000004169 proteins and genes Human genes 0.000 title claims abstract description 14
- 235000018102 proteins Nutrition 0.000 title description 7
- 239000013612 plasmid Substances 0.000 claims abstract description 58
- 206010007572 Cardiac hypertrophy Diseases 0.000 claims abstract description 34
- 208000006029 Cardiomegaly Diseases 0.000 claims abstract description 25
- 238000002360 preparation method Methods 0.000 claims abstract description 7
- 229940079593 drug Drugs 0.000 claims abstract description 4
- 239000003814 drug Substances 0.000 claims abstract description 4
- 108020004414 DNA Proteins 0.000 claims description 29
- 230000002861 ventricular Effects 0.000 claims description 26
- 102000053602 DNA Human genes 0.000 claims description 25
- 230000014509 gene expression Effects 0.000 claims description 25
- 230000000747 cardiac effect Effects 0.000 claims description 24
- 210000004027 cell Anatomy 0.000 claims description 23
- 210000005003 heart tissue Anatomy 0.000 claims description 15
- 230000002107 myocardial effect Effects 0.000 claims description 13
- 210000004413 cardiac myocyte Anatomy 0.000 claims description 10
- 238000004904 shortening Methods 0.000 claims description 10
- 230000001605 fetal effect Effects 0.000 claims description 9
- 206010028594 Myocardial fibrosis Diseases 0.000 claims description 7
- 230000006870 function Effects 0.000 claims description 6
- 230000007423 decrease Effects 0.000 claims description 4
- 230000000694 effects Effects 0.000 claims description 4
- 239000002773 nucleotide Substances 0.000 claims description 4
- 125000003729 nucleotide group Chemical group 0.000 claims description 4
- 238000010171 animal model Methods 0.000 claims description 3
- 230000003449 preventive effect Effects 0.000 claims description 2
- 239000000126 substance Substances 0.000 claims description 2
- 230000001225 therapeutic effect Effects 0.000 claims description 2
- 238000011282 treatment Methods 0.000 abstract description 8
- 238000000034 method Methods 0.000 abstract description 6
- 201000010099 disease Diseases 0.000 abstract description 3
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 abstract description 3
- 230000002265 prevention Effects 0.000 abstract description 3
- 238000003759 clinical diagnosis Methods 0.000 abstract description 2
- 238000003745 diagnosis Methods 0.000 abstract description 2
- 230000009711 regulatory function Effects 0.000 abstract description 2
- 241000699670 Mus sp. Species 0.000 description 193
- 239000013598 vector Substances 0.000 description 29
- 102100021454 Histone deacetylase 4 Human genes 0.000 description 20
- 101000899259 Homo sapiens Histone deacetylase 4 Proteins 0.000 description 19
- 102000055120 MEF2 Transcription Factors Human genes 0.000 description 17
- 108010018650 MEF2 Transcription Factors Proteins 0.000 description 17
- 241000699666 Mus <mouse, genus> Species 0.000 description 17
- 238000001890 transfection Methods 0.000 description 17
- 101800000407 Brain natriuretic peptide 32 Proteins 0.000 description 12
- 101800002247 Brain natriuretic peptide 45 Proteins 0.000 description 12
- 230000008685 targeting Effects 0.000 description 11
- 238000002474 experimental method Methods 0.000 description 10
- 239000012634 fragment Substances 0.000 description 10
- 238000012360 testing method Methods 0.000 description 10
- 239000013613 expression plasmid Substances 0.000 description 9
- 230000004217 heart function Effects 0.000 description 9
- 108091008146 restriction endonucleases Proteins 0.000 description 9
- 238000001356 surgical procedure Methods 0.000 description 9
- 108060001084 Luciferase Proteins 0.000 description 8
- 239000005089 Luciferase Substances 0.000 description 8
- 210000001519 tissue Anatomy 0.000 description 8
- 238000010186 staining Methods 0.000 description 7
- 108091008611 Protein Kinase B Proteins 0.000 description 6
- 102000013530 TOR Serine-Threonine Kinases Human genes 0.000 description 6
- 108010065917 TOR Serine-Threonine Kinases Proteins 0.000 description 6
- 210000001367 artery Anatomy 0.000 description 6
- 238000011813 knockout mouse model Methods 0.000 description 6
- 230000026731 phosphorylation Effects 0.000 description 6
- 238000006366 phosphorylation reaction Methods 0.000 description 6
- 208000024172 Cardiovascular disease Diseases 0.000 description 5
- 102100033810 RAC-alpha serine/threonine-protein kinase Human genes 0.000 description 5
- 230000037396 body weight Effects 0.000 description 5
- 210000000805 cytoplasm Anatomy 0.000 description 5
- 238000007490 hematoxylin and eosin (H&E) staining Methods 0.000 description 5
- 230000004807 localization Effects 0.000 description 5
- 210000001671 embryonic stem cell Anatomy 0.000 description 4
- 230000002401 inhibitory effect Effects 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 238000012216 screening Methods 0.000 description 4
- 238000011144 upstream manufacturing Methods 0.000 description 4
- 101150026842 Anp gene Proteins 0.000 description 3
- 206010016654 Fibrosis Diseases 0.000 description 3
- 108010057466 NF-kappa B Proteins 0.000 description 3
- 102000003945 NF-kappa B Human genes 0.000 description 3
- 238000012408 PCR amplification Methods 0.000 description 3
- 102100024908 Ribosomal protein S6 kinase beta-1 Human genes 0.000 description 3
- 101710108924 Ribosomal protein S6 kinase beta-1 Proteins 0.000 description 3
- 230000033228 biological regulation Effects 0.000 description 3
- 238000010276 construction Methods 0.000 description 3
- 230000004761 fibrosis Effects 0.000 description 3
- 238000003209 gene knockout Methods 0.000 description 3
- 230000003993 interaction Effects 0.000 description 3
- 210000005240 left ventricle Anatomy 0.000 description 3
- 108700032466 mouse CKIP-1 Proteins 0.000 description 3
- 210000004165 myocardium Anatomy 0.000 description 3
- 238000003757 reverse transcription PCR Methods 0.000 description 3
- 230000019491 signal transduction Effects 0.000 description 3
- 230000002103 transcriptional effect Effects 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- 101800001288 Atrial natriuretic factor Proteins 0.000 description 2
- 102400000667 Brain natriuretic peptide 32 Human genes 0.000 description 2
- 102000019025 Calcium-Calmodulin-Dependent Protein Kinases Human genes 0.000 description 2
- 108010026870 Calcium-Calmodulin-Dependent Protein Kinases Proteins 0.000 description 2
- 206010019280 Heart failures Diseases 0.000 description 2
- 101001077300 Homo sapiens E3 ubiquitin-protein ligase RBBP6 Proteins 0.000 description 2
- 101001125123 Homo sapiens Interferon-inducible double-stranded RNA-dependent protein kinase activator A Proteins 0.000 description 2
- GRRNUXAQVGOGFE-UHFFFAOYSA-N Hygromycin-B Natural products OC1C(NC)CC(N)C(O)C1OC1C2OC3(C(C(O)C(O)C(C(N)CO)O3)O)OC2C(O)C(CO)O1 GRRNUXAQVGOGFE-UHFFFAOYSA-N 0.000 description 2
- 206010020880 Hypertrophy Diseases 0.000 description 2
- 102100029408 Interferon-inducible double-stranded RNA-dependent protein kinase activator A Human genes 0.000 description 2
- 102000043136 MAP kinase family Human genes 0.000 description 2
- 108091054455 MAP kinase family Proteins 0.000 description 2
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 2
- 229930193140 Neomycin Natural products 0.000 description 2
- 108091007960 PI3Ks Proteins 0.000 description 2
- 108090000430 Phosphatidylinositol 3-kinases Proteins 0.000 description 2
- 102000003993 Phosphatidylinositol 3-kinases Human genes 0.000 description 2
- 241000700159 Rattus Species 0.000 description 2
- 101000702488 Rattus norvegicus High affinity cationic amino acid transporter 1 Proteins 0.000 description 2
- 102100023132 Transcription factor Jun Human genes 0.000 description 2
- 230000004913 activation Effects 0.000 description 2
- 230000030570 cellular localization Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 210000000038 chest Anatomy 0.000 description 2
- 230000011227 chondrocyte hypertrophy Effects 0.000 description 2
- 238000012761 co-transfection Methods 0.000 description 2
- 230000001447 compensatory effect Effects 0.000 description 2
- 238000012790 confirmation Methods 0.000 description 2
- 235000013601 eggs Nutrition 0.000 description 2
- 239000013604 expression vector Substances 0.000 description 2
- 239000012091 fetal bovine serum Substances 0.000 description 2
- GRRNUXAQVGOGFE-NZSRVPFOSA-N hygromycin B Chemical compound O[C@@H]1[C@@H](NC)C[C@@H](N)[C@H](O)[C@H]1O[C@H]1[C@H]2O[C@@]3([C@@H]([C@@H](O)[C@@H](O)[C@@H](C(N)CO)O3)O)O[C@H]2[C@@H](O)[C@@H](CO)O1 GRRNUXAQVGOGFE-NZSRVPFOSA-N 0.000 description 2
- 229940097277 hygromycin b Drugs 0.000 description 2
- 210000004185 liver Anatomy 0.000 description 2
- 230000004660 morphological change Effects 0.000 description 2
- 238000010172 mouse model Methods 0.000 description 2
- 229960004927 neomycin Drugs 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 239000000523 sample Substances 0.000 description 2
- 238000005549 size reduction Methods 0.000 description 2
- 230000002269 spontaneous effect Effects 0.000 description 2
- 210000001562 sternum Anatomy 0.000 description 2
- 108700020469 14-3-3 Proteins 0.000 description 1
- 102000004899 14-3-3 Proteins Human genes 0.000 description 1
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 1
- 101100268670 Caenorhabditis elegans acc-3 gene Proteins 0.000 description 1
- 102000004631 Calcineurin Human genes 0.000 description 1
- 108010042955 Calcineurin Proteins 0.000 description 1
- BHPQYMZQTOCNFJ-UHFFFAOYSA-N Calcium cation Chemical compound [Ca+2] BHPQYMZQTOCNFJ-UHFFFAOYSA-N 0.000 description 1
- 102000014914 Carrier Proteins Human genes 0.000 description 1
- 108010014303 DNA-directed DNA polymerase Proteins 0.000 description 1
- 102000016928 DNA-directed DNA polymerase Human genes 0.000 description 1
- 101001129775 Dictyostelium discoideum Sca1 complex protein phr Proteins 0.000 description 1
- 239000006144 Dulbecco’s modified Eagle's medium Substances 0.000 description 1
- 102100031780 Endonuclease Human genes 0.000 description 1
- 102100031181 Glyceraldehyde-3-phosphate dehydrogenase Human genes 0.000 description 1
- 102000003964 Histone deacetylase Human genes 0.000 description 1
- 108090000353 Histone deacetylase Proteins 0.000 description 1
- 101710177324 Histone deacetylase 4 Proteins 0.000 description 1
- 101100456626 Homo sapiens MEF2A gene Proteins 0.000 description 1
- 101001050288 Homo sapiens Transcription factor Jun Proteins 0.000 description 1
- 108010001336 Horseradish Peroxidase Proteins 0.000 description 1
- 241000581650 Ivesia Species 0.000 description 1
- 101150021395 JUND gene Proteins 0.000 description 1
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 description 1
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 description 1
- 102100025169 Max-binding protein MNT Human genes 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 101100079042 Mus musculus Myef2 gene Proteins 0.000 description 1
- 102100021148 Myocyte-specific enhancer factor 2A Human genes 0.000 description 1
- 108010084498 Myosin Heavy Chains Proteins 0.000 description 1
- 239000000020 Nitrocellulose Substances 0.000 description 1
- 108091005804 Peptidases Proteins 0.000 description 1
- 102000004160 Phosphoric Monoester Hydrolases Human genes 0.000 description 1
- 108090000608 Phosphoric Monoester Hydrolases Proteins 0.000 description 1
- 102100030264 Pleckstrin Human genes 0.000 description 1
- 239000004365 Protease Substances 0.000 description 1
- 108010092799 RNA-directed DNA polymerase Proteins 0.000 description 1
- 108700008625 Reporter Genes Proteins 0.000 description 1
- 102100037486 Reverse transcriptase/ribonuclease H Human genes 0.000 description 1
- 208000037065 Subacute sclerosing leukoencephalitis Diseases 0.000 description 1
- 206010042297 Subacute sclerosing panencephalitis Diseases 0.000 description 1
- 108010006785 Taq Polymerase Proteins 0.000 description 1
- 102000006601 Thymidine Kinase Human genes 0.000 description 1
- 108020004440 Thymidine kinase Proteins 0.000 description 1
- 108010083111 Ubiquitin-Protein Ligases Proteins 0.000 description 1
- 102000006275 Ubiquitin-Protein Ligases Human genes 0.000 description 1
- 150000001413 amino acids Chemical class 0.000 description 1
- 210000000709 aorta Anatomy 0.000 description 1
- 210000002376 aorta thoracic Anatomy 0.000 description 1
- 230000006907 apoptotic process Effects 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 108091008324 binding proteins Proteins 0.000 description 1
- 210000002459 blastocyst Anatomy 0.000 description 1
- 230000014461 bone development Effects 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 229910001424 calcium ion Inorganic materials 0.000 description 1
- 230000010261 cell growth Effects 0.000 description 1
- 210000000170 cell membrane Anatomy 0.000 description 1
- 230000005754 cellular signaling Effects 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- RNFNDJAIBTYOQL-UHFFFAOYSA-N chloral hydrate Chemical compound OC(O)C(Cl)(Cl)Cl RNFNDJAIBTYOQL-UHFFFAOYSA-N 0.000 description 1
- 229960002327 chloral hydrate Drugs 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000010339 dilation Effects 0.000 description 1
- 231100000673 dose–response relationship Toxicity 0.000 description 1
- 238000002592 echocardiography Methods 0.000 description 1
- 230000002526 effect on cardiovascular system Effects 0.000 description 1
- 238000001962 electrophoresis Methods 0.000 description 1
- 238000004520 electroporation Methods 0.000 description 1
- 230000013020 embryo development Effects 0.000 description 1
- 210000002257 embryonic structure Anatomy 0.000 description 1
- 239000003623 enhancer Substances 0.000 description 1
- MHMNJMPURVTYEJ-UHFFFAOYSA-N fluorescein-5-isothiocyanate Chemical compound O1C(=O)C2=CC(N=C=S)=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 MHMNJMPURVTYEJ-UHFFFAOYSA-N 0.000 description 1
- 238000003208 gene overexpression Methods 0.000 description 1
- 238000010363 gene targeting Methods 0.000 description 1
- 108020004445 glyceraldehyde-3-phosphate dehydrogenase Proteins 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 230000006801 homologous recombination Effects 0.000 description 1
- 238000002744 homologous recombination Methods 0.000 description 1
- 238000009396 hybridization Methods 0.000 description 1
- 238000010166 immunofluorescence Methods 0.000 description 1
- 238000000338 in vitro Methods 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 230000003601 intercostal effect Effects 0.000 description 1
- 230000003834 intracellular effect Effects 0.000 description 1
- 230000002427 irreversible effect Effects 0.000 description 1
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 1
- 235000019341 magnesium sulphate Nutrition 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000013011 mating Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000010534 mechanism of action Effects 0.000 description 1
- 101150014102 mef-2 gene Proteins 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 238000000386 microscopy Methods 0.000 description 1
- 230000009456 molecular mechanism Effects 0.000 description 1
- 230000010016 myocardial function Effects 0.000 description 1
- 230000002182 neurohumoral effect Effects 0.000 description 1
- 229920001220 nitrocellulos Polymers 0.000 description 1
- 230000002018 overexpression Effects 0.000 description 1
- 210000003101 oviduct Anatomy 0.000 description 1
- 230000008506 pathogenesis Effects 0.000 description 1
- 230000036285 pathological change Effects 0.000 description 1
- 231100000915 pathological change Toxicity 0.000 description 1
- 230000001575 pathological effect Effects 0.000 description 1
- 230000002085 persistent effect Effects 0.000 description 1
- 150000003904 phospholipids Chemical class 0.000 description 1
- 108010026735 platelet protein P47 Proteins 0.000 description 1
- 229920002401 polyacrylamide Polymers 0.000 description 1
- 239000011535 reaction buffer Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- PYWVYCXTNDRMGF-UHFFFAOYSA-N rhodamine B Chemical compound [Cl-].C=12C=CC(=[N+](CC)CC)C=C2OC2=CC(N(CC)CC)=CC=C2C=1C1=CC=CC=C1C(O)=O PYWVYCXTNDRMGF-UHFFFAOYSA-N 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 230000000638 stimulation Effects 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 208000024891 symptom Diseases 0.000 description 1
- 210000002435 tendon Anatomy 0.000 description 1
- 238000002627 tracheal intubation Methods 0.000 description 1
- 108091006107 transcriptional repressors Proteins 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000009261 transgenic effect Effects 0.000 description 1
- YFDSDPIBEUFTMI-UHFFFAOYSA-N tribromoethanol Chemical compound OCC(Br)(Br)Br YFDSDPIBEUFTMI-UHFFFAOYSA-N 0.000 description 1
- 229950004616 tribromoethanol Drugs 0.000 description 1
- 230000003827 upregulation Effects 0.000 description 1
- 210000000596 ventricular septum Anatomy 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000001262 western blot Methods 0.000 description 1
- 238000001086 yeast two-hybrid system Methods 0.000 description 1
Images
Landscapes
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
本发明公开了一种CKIP-1蛋白及其编码基因的新用途。本发明提供了CKIP-1蛋白、所述CKIP-1蛋白的编码基因或含有所述CKIP-1蛋白的编码基因的质粒在制备预防和/或治疗心肌肥大的药物中的应用;所述CKIP-1蛋白如序列表的序列1所示。本发明发现了CKIP-1蛋白及其编码基因在心肌肥大疾病中的调节作用,以便为心肌肥大的诊断与治疗寻找新的靶点与方法,为寻求相关疾病的临床诊断和治疗奠定基础。本发明对于心肌肥大的治疗和预防具有重大价值。The invention discloses a new application of CKIP-1 protein and its coding gene. The present invention provides the application of CKIP-1 protein, the coding gene of the CKIP-1 protein or the plasmid containing the coding gene of the CKIP-1 protein in the preparation of drugs for preventing and/or treating cardiac hypertrophy; the CKIP- 1 The protein is shown in sequence 1 of the sequence listing. The present invention discovers the regulatory function of CKIP-1 protein and its coding gene in cardiac hypertrophy, so as to find new targets and methods for the diagnosis and treatment of cardiac hypertrophy, and lay the foundation for the clinical diagnosis and treatment of related diseases. The invention has great value for the treatment and prevention of cardiac hypertrophy.
Description
技术领域 technical field
本发明涉及一种CKIP-1蛋白及其编码基因的新用途。 The invention relates to a new application of CKIP-1 protein and its coding gene. the
背景技术 Background technique
心血管疾病是危害人类健康的主要疾病之一,每年主要心血管病的医疗费用达1300亿元人民币,给社会造成巨大的经济负担。深入研究心血管疾病发病机制及分子机理并在此基础上建立新的防治策略和防治措施,降低心血管疾病的死亡率和致残率,是生命科学需要解决的重大基础科学问题。 Cardiovascular disease is one of the main diseases that endanger human health. The annual medical expenses of major cardiovascular diseases amount to 130 billion yuan, causing a huge economic burden to the society. In-depth study of the pathogenesis and molecular mechanism of cardiovascular diseases and the establishment of new prevention strategies and measures on this basis to reduce the mortality and disability rates of cardiovascular diseases are major basic scientific issues that life sciences need to solve. the
心肌细胞肥大是临床多种心血管疾病所伴有的病理改变,是心脏对生物机械牵张和神经体液刺激的一种主要反应。虽然早期心肌肥大是心脏维持有效心输出量的一种代偿性机制,但持久的心肌肥大会导致心脏进入失代偿阶段,胎儿期基因ANP,BNP,β-MHC等重新表达,继而发生不可逆转的心肌肥大和扩张,心肌收缩力下降,导致心力衰竭。触发心肌肥大的反应与多种信号通路的激活有关,包括钙离子/钙调素依赖的蛋白激酶(Calcium calmodulin-dependent protein kinases,CaMK)/HDACs/MEF2,钙调神经磷酸酶(Calcineurin),丝裂素活化蛋白激酶(mitogen-activated protein kinase,MAPK),磷酸肌醇3-激酶(phosphatidylinositol 3-kinase,PI3K),蛋白激酶B(protein kinase B,PKB)/AKT,哺乳动物雷帕霉素靶蛋白(mammalian target of rapamycin,mTOR)和核因子-κB(nuclear factor kappa B,NF-κB)等。由此可见,心肌细胞肥大信号通路是一复杂的调控网络。寻找参与心肌肥大调控的新基因及信号通路是心血管领域的研究热点。 Cardiomyocyte hypertrophy is a pathological change associated with a variety of clinical cardiovascular diseases, and it is a major response of the heart to biomechanical stretch and neurohumoral stimulation. Although early myocardial hypertrophy is a compensatory mechanism for the heart to maintain effective cardiac output, persistent myocardial hypertrophy will lead to the heart entering a decompensated stage, re-expression of fetal genes ANP, BNP, β-MHC, etc., and subsequent irreversible events. Reversed myocardial hypertrophy and dilation, decreased myocardial contractility, leading to heart failure. The response to trigger cardiac hypertrophy is related to the activation of multiple signaling pathways, including calcium ion/calmodulin-dependent protein kinases (CaMK)/HDACs/MEF2, calcineurin, silk Mitogen-activated protein kinase (MAPK), phosphatidylinositol 3-kinase (PI3K), protein kinase B (protein kinase B, PKB)/AKT, mammalian target of rapamycin protein (mammalian target of rapamycin, mTOR) and nuclear factor-κB (nuclear factor kappa B, NF-κB), etc. Thus, the cardiomyocyte hypertrophy signaling pathway is a complex regulatory network. Finding new genes and signaling pathways involved in the regulation of cardiac hypertrophy is a research hotspot in the cardiovascular field. the
贺福初实验室于1999年从人22周龄胎肝中克隆到CKIP-1基因,表达409个氨基酸组成的CKIP-1蛋白。CKIP-1蛋白N端含有一个PH(pleckstrin homology)结构域,通过结合磷脂介导了其质膜定位,C末端含有一个亮氨酸拉链,介导CKIP-1与c-Jun、JunD等AP-1家族成员的相互作用。Litchfield实验室通过酵母双杂交筛选激酶CK2的结合蛋白时得到同一个基因,命名为酪蛋白激酶结合蛋白(casein kinase2-interacting protein-1,CKIP-1)。 In 1999, He Fuchu's laboratory cloned the CKIP-1 gene from human fetal liver at 22 weeks old, and expressed CKIP-1 protein consisting of 409 amino acids. The N-terminus of CKIP-1 protein contains a PH (pleckstrin homology) domain, which mediates its plasma membrane localization by binding phospholipids, and the C-terminus contains a leucine zipper, which mediates CKIP-1 and c-Jun, JunD and other AP- 1 Interaction of family members. The Litchfield laboratory obtained the same gene when screening the binding protein of the kinase CK2 through yeast two-hybrid screening, and named it casein kinase2-interacting protein-1 (CKIP-1). the
发明内容 Contents of the invention
本发明的目的是提供一种CKIP-1蛋白及其编码基因的新用途。 The purpose of the present invention is to provide a new application of CKIP-1 protein and its coding gene. the
本发明提供了CKIP-1蛋白、所述CKIP-1蛋白的编码基因或含有所述CKIP-1蛋白的编码基因的质粒在制备预防和/或治疗心肌肥大的药物中的应用;所述CKIP-1蛋白(ckip-1蛋白)如序列表的序列1所示。
The present invention provides the application of CKIP-1 protein, the coding gene of the CKIP-1 protein or the plasmid containing the coding gene of the CKIP-1 protein in the preparation of drugs for preventing and/or treating cardiac hypertrophy; the CKIP- 1 protein (ckip-1 protein) is shown in
所述CKIP-1蛋白的编码基因(又称CKIP-1基因或ckip-1基因)为如下1)-4)中任 一所述的DNA分子: The gene encoding the CKIP-1 protein (also known as CKIP-1 gene or ckip-1 gene) is the DNA molecule described in any of the following 1)-4):
1)序列表中序列2自5’末端第43至1266位核苷酸所示的DNA分子;
1) The DNA molecule shown in the
2)序列表中序列2所示的DNA分子;
2) The DNA molecule shown in
3)在严格条件下与1)或2)所示的DNA分子杂交且编码所述蛋白的DNA分子; 3) A DNA molecule that hybridizes to the DNA molecule shown in 1) or 2) under stringent conditions and encodes the protein;
4)与1)或2)或3)的基因具有90%以上的同源性且编码所述蛋白的DNA分子。 4) A DNA molecule that has more than 90% homology with the gene in 1) or 2) or 3) and encodes the protein. the
上述严格条件可为在0.1×SSPE(或0.1×SSC)、0.1%SDS的溶液中,65℃条件下杂交并洗膜。 The above-mentioned stringent conditions can be hybridized and washed in a solution of 0.1×SSPE (or 0.1×SSC) and 0.1% SDS at 65°C. the
含有所述CKIP-1蛋白的编码基因的质粒具体可为将所述CKIP-1蛋白的编码基因插入pJG/ALPHA MHC质粒得到的重组质粒。 The plasmid containing the gene encoding the CKIP-1 protein can specifically be a recombinant plasmid obtained by inserting the gene encoding the CKIP-1 protein into the pJG/ALPHA MHC plasmid. the
所述CKIP-1蛋白、所述CKIP-1蛋白的编码基因或含有所述CKIP-1蛋白的编码基因的质粒对心肌肥大的预防和/或治疗作用可体现为如下(a)至(e)中的至少一种:(a)促使心肌细胞变小和心肌纤维化程度减弱;(b)降低心脏指数;(c)降低左心室指数;(d)降低心脏组织中胎儿期基因的表达水平;(e)增加左心室射血分数和心室短轴缩短率。 The preventive and/or therapeutic effect of the CKIP-1 protein, the gene encoding the CKIP-1 protein or the plasmid containing the gene encoding the CKIP-1 protein on cardiac hypertrophy can be embodied as follows (a) to (e) At least one of: (a) promotes cardiomyocyte size reduction and myocardial fibrosis; (b) reduces cardiac index; (c) reduces left ventricular index; (d) reduces the expression level of fetal period genes in cardiac tissue; (e) Increased left ventricular ejection fraction and ventricular fractional shortening. the
本发明还提供了所述CKIP-1蛋白、所述CKIP-1蛋白的编码基因或含有所述CKIP-1蛋白的编码基因的质粒在制备产品中的应用;所述产品为具有如下(a)至(e)中的至少一种功能的产品:(a)促使心肌细胞变小和心肌纤维化程度减弱;(b)降低心脏指数;(c)降低左心室指数;(d)降低心脏组织中胎儿期基因的表达水平;(e)增加左心室射血分数和心室短轴缩短率。 The present invention also provides the application of the CKIP-1 protein, the coding gene of the CKIP-1 protein or the plasmid containing the coding gene of the CKIP-1 protein in the preparation of products; the product has the following (a) Products with at least one function in (e): (a) promote myocardial cell size reduction and myocardial fibrosis; (b) reduce cardiac index; (c) reduce left ventricular index; (d) reduce cardiac tissue Expression levels of prenatal genes; (e) increased left ventricular ejection fraction and ventricular fractional shortening. the
本发明还提供了用于抑制所述CKIP-1蛋白编码基因表达的物质在制备产品中的应用;所述产品为具有如下(1)至(4)中的至少一种功能的产品:(1)制作心肌肥大动物模型;(2)促使心肌细胞变大和心肌纤维化发生;(3)增加心脏指数;(4)增加心脏组织中胎儿期基因的表达水平。 The present invention also provides the application of the substance for inhibiting the expression of the CKIP-1 protein coding gene in the preparation of products; the product is a product with at least one of the following functions (1) to (4): (1 ) to make animal models of cardiac hypertrophy; (2) to promote myocardial cell enlargement and myocardial fibrosis; (3) to increase cardiac index; (4) to increase the expression level of fetal period genes in cardiac tissue. the
以上任一所述胎儿期基因为ANF基因、BNP基因和β-MHC基因中的至少一种。 Any one of the above fetal genes is at least one of ANF gene, BNP gene and β-MHC gene. the
本发明具有如下重大发现:(1)CKIP-1基因敲除会导致自发性心肌肥大的发生,增加压力过负荷导致的心肌肥大的敏感性;(2)CKIP-1基因过表达能明显对抗由于压力过负荷导致的心肌功能的下降及心肌肥大的发生;(3)CKIP-1蛋白的作用机制是通过与HDAC4直接的相互作用实现的,二者的相互作用,可以促进HDAC4进入核内,抑制MEF2C的转录活性。 The present invention has the following major discoveries: (1) CKIP-1 gene knockout can lead to the occurrence of spontaneous cardiac hypertrophy, increasing the sensitivity of cardiac hypertrophy caused by pressure overload; (2) CKIP-1 gene overexpression can obviously resist the The decline of myocardial function and the occurrence of myocardial hypertrophy caused by pressure overload; (3) The mechanism of action of CKIP-1 protein is realized through the direct interaction with HDAC4. The interaction between the two can promote HDAC4 to enter the nucleus and inhibit Transcriptional activity of MEF2C. the
本发明发现了CKIP-1蛋白及其编码基因在心肌肥大疾病中的调节作用,以便为心肌肥大的诊断与治疗寻找新的靶点与方法,为寻求相关疾病的临床诊断和治疗奠定基础。本发明对于心肌肥大的治疗和预防具有重大价值。 The present invention discovers the regulatory function of CKIP-1 protein and its coding gene in cardiac hypertrophy, so as to find new targets and methods for the diagnosis and treatment of cardiac hypertrophy, and lay the foundation for the clinical diagnosis and treatment of related diseases. The invention has great value for the treatment and prevention of cardiac hypertrophy. the
附图说明 Description of drawings
图1为KO小鼠与WT小鼠心脏组织形态的变化。 Figure 1 shows the changes in the heart tissue morphology of KO mice and WT mice. the
图2为KO小鼠与WT小鼠心脏重量与体重的比值变化。 Figure 2 shows the changes in the ratio of heart weight to body weight in KO mice and WT mice. the
图3为KO小鼠与WT小鼠ANF基因、BNP基因和β-MHC基因表达的变化。 Figure 3 shows the changes in the expression of ANF gene, BNP gene and β-MHC gene between KO mice and WT mice. the
图4为KO小鼠与WT小鼠中MEF2C转录抑制因子HDAC4在心肌细胞中定位的变化。 Figure 4 shows the changes in the localization of MEF2C transcriptional repressor HDAC4 in cardiomyocytes in KO mice and WT mice. the
图5为KO小鼠与WT小鼠中中,HDAC4磷酸化水平的变化。 Fig. 5 is the change of HDAC4 phosphorylation level in KO mice and WT mice. the
图6为在KO小鼠与WT小鼠中,Akt/mTOR/S6K磷酸化水平的比较。 Figure 6 is a comparison of the phosphorylation levels of Akt/mTOR/S6K in KO mice and WT mice. the
图7为KO小鼠与WT小鼠手术4周后心脏组织形态结构的变化。
Fig. 7 shows the changes of heart tissue morphology and structure in KO mice and
图8为KO小鼠与WT小鼠手术4周后心脏指数的变化。 Figure 8 shows the changes in heart index of KO mice and WT mice after 4 weeks of surgery. the
图9为KO小鼠与WT小鼠手术4周后ANF基因、BNP基因和β-MHC基因表达的变化。
Figure 9 shows the changes in the expression of ANF gene, BNP gene and β-MHC gene in KO mice and
图10为KO小鼠与WT小鼠手术4周后心脏功能变化比较。
Figure 10 is a comparison of cardiac function changes between KO mice and
图11为TG小鼠与WT小鼠手术4周后心脏组织形态结构的变化。
Figure 11 shows the changes in cardiac tissue morphology and structure of TG mice and
图12为TG小鼠与WT小鼠手术4周后心脏指数的变化。 Figure 12 shows the changes in heart index of TG mice and WT mice after 4 weeks of operation. the
图13为TG小鼠与WT小鼠手术4周后心脏组织中ANF、BNP和β-MHC表达的变化。
Figure 13 shows the changes in the expression of ANF, BNP and β-MHC in heart tissue of TG mice and
图14为TG小鼠与WT小鼠手术4周后通过超声心动检测心脏功能的变化。 Fig. 14 shows changes in cardiac function detected by echocardiography after 4 weeks of operation in TG mice and WT mice. the
图15为CKIP-1对心肌增强因子MEF2C转录活性的抑制作用。 Figure 15 shows the inhibitory effect of CKIP-1 on the transcriptional activity of myocardial enhancer factor MEF2C. the
图16为外源表达的CKIP-1对HDAC4在胞内定位的影响。 Figure 16 shows the effect of exogenously expressed CKIP-1 on the intracellular localization of HDAC4. the
图17为实施例2的步骤三的2中的PCR扩增程序。 FIG. 17 is the PCR amplification program in Step 3-2 of Example 2. the
具体实施方式 Detailed ways
以下的实施例便于更好地理解本发明,但并不限定本发明。下述实施例中的实验方法,如无特殊说明,均为常规方法。下述实施例中所用的试验材料,如无特殊说明,均为自常规生化试剂商店购买得到的。以下实施例中的定量试验,均设置三次重复实验,结果取平均值。 The following examples facilitate a better understanding of the present invention, but do not limit the present invention. The experimental methods in the following examples are conventional methods unless otherwise specified. The test materials used in the following examples, unless otherwise specified, were purchased from conventional biochemical reagent stores. Quantitative experiments in the following examples were all set up to repeat the experiments three times, and the results were averaged. the
C57/BL小鼠(又称野生型小鼠或WT小鼠,用WT表示):购自北京维通利华实验动物技术有限公司,SPF级。 C57/BL mice (also known as wild-type mice or WT mice, represented by WT): purchased from Beijing Weitong Lihua Experimental Animal Technology Co., Ltd., SPF grade. the
ploxPI质粒和pBluescript SK(+)质粒:参考文献(该文献同时也是详细描述打靶载体构建的文献)如下:李力博士论文人胎肝来源PACT等重要功能基因的基因打靶,2005年,中国人民解放军军事医学科院。 ploxPI plasmid and pBluescript SK(+) plasmid: References (this document is also a document describing the construction of targeting vectors in detail) are as follows: Dr. Li Li's paper on gene targeting of important functional genes such as PACT derived from human fetal liver, 2005, Chinese People's Liberation Army Academy of Military Medicine. the
小鼠胚胎干细胞:参考文献:LiL,Deng B,Xing G,Teng Y,Tian C,Cheng X, Yin X,Yang J,Gao X,Zhu Y,Sun Q,Zhang L,Yang X,He F.Proc Natl Acad Sci US A.PACT is a negative regulator of p53and essential for cell growth and embryonic development.2007May 8;104(19):7951-6.Epub 2007Apr 30。
Mouse embryonic stem cells: References: LiL , Deng B , Xing G , Teng Y , Tian C , Cheng X , Yin X , Yang J , Gao X , Zhu Y , Sun Q , Zhang L , Yang X , He F. Proc Natl Acad Sci US A .PACT is a negative regulator of p53 and essential for cell growth and embryonic development.
pJG/ALPHA MHC质粒:参考文献:Gulick J,Robbins J.Cell-type-specific transgenesis in the mouse.Methods Mol Biol.2009;561:91-104.。 pJG/ALPHA MHC plasmid: References: Gulick J, Robbins J. Cell-type-specific transgenesis in the mouse. Methods Mol Biol. 2009;561:91-104.. the
CKIP-1表达质粒(pCMV-Myc-CKIP-1质粒):参考文献:Lu K,Yin X,Weng T,Xi S,Li L,Xing G,Cheng X,Yang X,Zhang L,He F.Target ing ww domains linker of hect-type ubiquitin ligase smurf1 for activation by ckip-1.Nat Cell Biol.2008;10:994-1002。 CKIP-1 expression plasmid (pCMV-Myc-CKIP-1 plasmid): References: Lu K, Yin X, Weng T, Xi S, Li L, Xing G, Cheng X, Yang X, Zhang L, He F. Target ing ww domains linker of hect-type ubiquitin ligase smurf1 for activation by ckip-1. Nat Cell Biol. 2008;10:994-1002. the
HDAC4质粒(Flag-epitope-tagged HDAC4质粒):参考文献:Vega RB,Matsuda K,Oh J,Barbosa AC,Yang X,Meadows E,McAnally J,Pomajzl C,Shelton JM,Richardson JA,Karsenty G,Olson EN.Hi stone deacetylase 4controls chondrocyte hypertrophy during skeletogenesis.Cell.2004Nov 12;119(4):555-66。
HDAC4 plasmid (Flag-epitope-tagged HDAC4 plasmid): References: Vega RB, Matsuda K, Oh J, Barbosa AC, Yang X, Meadows E, McAnally J, Pomajzl C, Shelton JM, Richardson JA, Karsenty G, Olson EN .Hi stone deacetylase 4 controls chondrocyte hypertrophy during skeletogenesis.
MEF2C质粒(Myc-tagged MEF2C质粒):参考文献:Arnold MA,Kim Y,Czubryt MP,Phan D,McAnally J,Qi X,Shelton JM,Richardson JA,Bassel-Duby R,Olson EN.MEF2C transcription factor controls chondrocyte hypertrophy and bone development.Dev Cell.2007Mar;12(3):377-89)。 MEF2C plasmid (Myc-tagged MEF2C plasmid): References: Arnold MA, Kim Y, Czubryt MP, Phan D, McAnally J, Qi X, Shelton JM, Richardson JA, Bassel-Duby R, Olson EN.MEF2C transcription factor controls chondrocyte hypertrophy and bone development. Dev Cell. 2007 Mar;12(3):377-89). the
pRL-TK质粒:购自Promega公司(E2241)。 pRL-TK plasmid: purchased from Promega (E2241). the
293T细胞:购自协和医科大学基础医学细胞中心细胞库。 293T cells: purchased from the cell bank of the Basic Medical Cell Center of Peking Union Medical College. the
C2C12细胞:购自协和医科大学基础医学细胞中心细胞库。 C2C12 cells: purchased from the cell bank of the Basic Medical Cell Center of Peking Union Medical College. the
pEGFP-N1-HDAC4质粒:参考文献:Wang AH,Kruhlak MJ,Wu J,Bertos NR,Vezmar M,Posner BI,Bazett-Jones DP,Yang XJ.Regulation of histone deacetylase 4by binding of 14-3-3proteins.Mol Cell Biol.2000Sep;20(18):6904-12.。
pEGFP-N1-HDAC4 plasmid: References: Wang AH, Kruhlak MJ, Wu J, Bertos NR, Vezmar M, Posner BI, Bazett-Jones DP, Yang XJ. Regulation of
pIRES-DsRed-CKIP-1质粒:参考文献:Zhang L,Xing G,Tie Y,Tang Y,Tian C,Li L,Sun L,Wei H,Zhu Y,He F.Role for the pleckstrin homologydomain-containing protein CKIP-1in AP-1 regulation and apoptosis.EMBO J.2005Feb 23;24(4):766-78. pIRES-DsRed-CKIP-1 plasmid: References: Zhang L, Xing G, Tie Y, Tang Y, Tian C, Li L, Sun L, Wei H, Zhu Y, He F. Role for the pleckstrin homology domain-containing protein CKIP-1in AP-1 regulation and apoptosis.EMBO J.2005Feb 23;24(4):766-78.
pIRES-DsRed质粒和pEGFP-N1质粒均购自Clontech。 Both pIRES-DsRed plasmid and pEGFP-N1 plasmid were purchased from Clontech. the
实施例1、CKIP-1基因敲除小鼠的获得
一、CKIP-1基因敲除小鼠的获得 1. Obtaining CKIP-1 knockout mice
1、打靶载体的构建 1. Construction of targeting carrier
小鼠CKIP-1基因组为GENBANK ACCESSION NO.67220(Gene ID:67220,updated on11-May-2012)所示双链DNA分子。 The mouse CKIP-1 genome is a double-stranded DNA molecule shown in GENBANK ACCESSION NO.67220 (Gene ID: 67220, updated on 11-May-2012). the
(1)用限制性内切酶NotI和XhoI双酶切小鼠CKIP-1基因组,回收约1.4kb的片段(片段甲)。 (1) The mouse CKIP-1 genome was double digested with restriction endonucleases NotI and XhoI, and a fragment of about 1.4 kb (fragment A) was recovered. the
(2)用限制性内切酶NotI和XhoI双酶切ploxPI质粒,回收载体骨架。 (2) Digest the ploxPI plasmid with restriction endonucleases NotI and XhoI to recover the vector backbone. the
(3)将步骤(1)回收的片段和步骤(2)的载体骨架连接,得到重组质粒。 (3) Ligate the fragment recovered in step (1) with the vector backbone of step (2) to obtain a recombinant plasmid. the
(4)用限制性内切酶EcoR I和SspI双酶切小鼠CKIP-1基因组,回收约9.6kb 的片段。 (4) The mouse CKIP-1 genome was double digested with restriction endonucleases EcoR I and SspI, and a fragment of about 9.6kb was recovered. the
(5)用限制性内切酶EcoR I和SspI双酶切pBluescript SK(+)质粒,回收载体骨架。 (5) Digest the pBluescript SK(+) plasmid with restriction endonucleases EcoR I and SspI to recover the vector backbone. the
(6)将步骤(4)回收的片段和步骤(5)的载体骨架连接,得到重组质粒。 (6) Ligate the fragment recovered in step (4) with the vector backbone in step (5) to obtain a recombinant plasmid. the
(7)用限制性内切酶EcoRI和Clal双酶切步骤(6)得到的重组质粒,回收约9.6kb的片段(片段乙)。 (7) Digest the recombinant plasmid obtained in step (6) with restriction endonucleases EcoRI and Clal, and recover a fragment (fragment B) of about 9.6 kb. the
(8)用限制性内切酶EcoRI和Clal双酶切步骤(3)得到的重组质粒,回收载体骨架。 (8) Digest the recombinant plasmid obtained in step (3) with restriction endonucleases EcoRI and Clal to recover the vector backbone. the
(9)将步骤(7)回收的片段和步骤(8)的载体骨架连接,得到打靶载体pTV-CKIP-1。打靶载体上的片段甲和片段乙可以和小鼠基因组DNA发生同源重组,从而敲除掉CKIP-1基因。 (9) Ligate the fragment recovered in step (7) with the vector backbone in step (8) to obtain the targeting vector pTV-CKIP-1. Fragment A and Fragment B on the targeting vector can undergo homologous recombination with mouse genomic DNA, thereby knocking out the CKIP-1 gene. the
2、将打靶载体转染入小鼠胚胎干细胞 2. Transfect the targeting vector into mouse embryonic stem cells
打靶载体经Not Ⅰ线性化后,电转(600V,25μF)入小鼠胚胎干细胞内。电转后24小时后用500μg/ml G418和300μg/ml潮霉素B筛选中靶细胞。 After the targeting vector was linearized by Not I, it was electroporated (600V, 25μF) into mouse embryonic stem cells. 24 hours after electroporation, target cells were screened with 500 μg/ml G418 and 300 μg/ml hygromycin B. the
利用G418筛选可以得到含有新霉素基因(neomycin)的胚胎干细胞,这种细胞发生了打靶载体的插入,但是G418筛选无法排除打靶载体随机整合入基因组进而获得抗性的细胞;潮霉素B则用来筛选不含有胸苷激酶(tk)的细胞,被杀死的细胞为打靶载体随机整合入基因组进而获得抗性的细胞。 Embryonic stem cells containing the neomycin gene (neomycin) can be obtained by G418 screening, and the insertion of the targeting vector has occurred in this cell, but G418 screening cannot exclude cells that randomly integrate the targeting vector into the genome and acquire resistance; hygromycin B It is used to screen cells that do not contain thymidine kinase (tk), and the killed cells are cells in which the targeting vector is randomly integrated into the genome to obtain resistance. the
4、将中靶细胞进行囊胚注射,然后移植到WT小鼠雌鼠的胚胎,雌鼠生产的小鼠为CKIP-1的嵌合体小鼠(子一代)。 4. The target cells are injected into blastocysts, and then transplanted into the embryos of WT female mice. The mice produced by the female mice are chimeric mice of CKIP-1 (offspring generation). the
5、将嵌合体小鼠与WT小鼠交配,得到的子代小鼠即为杂合子小鼠(子二代)。 5. Mate the chimeric mice with WT mice, and the offspring mice obtained are heterozygous mice (second generation). the
6、将杂合子小鼠交配,得到子代小鼠(子三代)。 6. Mating heterozygous mice to obtain offspring mice (three generations). the
二、CKIP-1基因敲除小鼠的基因型鉴定 2. Genotype identification of CKIP-1 knockout mice
分别将步骤一得到的每只子三代小鼠进行如下实验步骤:
Each of the third-generation mice obtained in
1、提取小鼠鼠尾的基因组DNA。 1. Extract the genomic DNA of the mouse tail. the
2、以步骤1提取的基因组DNA为模板,分别采用引物对甲和引物对乙进行PCR扩增。如果采用引物对甲得到了约500bp的靶序列且采用引物对乙得到了约443bp的靶序列,待测小鼠的基因型为CKIP-1+/-。如果采用引物对甲得到了约500bp的靶序列且采用引物对乙没有得到约443bp的靶序列,待测小鼠的基因型为CKIP-1-/-。如果采用引物对甲没有得到约500bp的靶序列且采用引物对乙得到了约443bp的靶序列,待测小鼠的基因型为CKIP-1+/+。
2. Using the genomic DNA extracted in
引物对甲由引物KO-1和引物KO-2组成,用于鉴定敲除突变型小鼠,靶序列约500bp。引物对乙由引物WT-1和引物WT-2组成,用于鉴定野生型小鼠,靶序列约443bp。 Primer pair A consists of primer KO-1 and primer KO-2, used to identify knockout mutant mice, and the target sequence is about 500bp. Primer pair B consists of primer WT-1 and primer WT-2, used to identify wild-type mice, and the target sequence is about 443bp. the
KO-1:5'-CCA GAC TGC CTT GGG AAA AGC GCC TCC CCT ACC-3'; KO-1: 5'-CCA GAC TGC CTT GGG AAA AGC GCC TCC CCT ACC-3';
KO-2:5-Ttc ccc ctt tgt gaa gcc cca act ctt gac tc'-3'。 KO-2: 5-Ttc ccc ctt tgt gaa gcc cca act ctt gac tc'-3'. the
WT-1:5'-GTT CTG CTT TTG TCA CTA GAC ACT TGT TTT CTG CC-3'; WT-1: 5'-GTT CTG CTT TTG TCA CTA GAC ACT TGT TTT CTG CC-3';
WT-2:5'-tgg ttt ccc ctc gga cct gta gga ag-3'。 WT-2: 5'-tgg ttt ccc ctc gga cct gta gga ag-3'. the
PCR反应体系(15μl):两条引物(0.1μg/μl)各0.5μl,10×Buffer 1.5μl,dNTP(2.5mmol/L)1.2μl,Taq DNA polymerase(5U/μl)0.3μl,基因组DNA 1μl,加ddH2O补足到15μl。 PCR reaction system (15μl): 0.5μl each of two primers (0.1μg/μl), 1.5μl 10×Buffer, 1.2μl dNTP (2.5mmol/L), 0.3μl Taq DNA polymerase (5U/μl), 1μl genomic DNA , add ddH 2 O to make up to 15 μl.
PCR反应程序:94℃3min;94℃1min、61℃50s、72℃1min,循环38次;72℃7min。 PCR reaction program: 94°C for 3min; 94°C for 1min, 61°C for 50s, 72°C for 1min, cycle 38 times; 72°C for 7min. the
选取基因型为CKIP-1-/-的小鼠,即为纯合型CKIP-1基因敲除小鼠(又称KO小鼠,用KO表示)。 The mice whose genotype is CKIP-1-/- are selected as homozygous CKIP-1 knockout mice (also known as KO mice, denoted by KO). the
三、转空载体对照小鼠的获得 3. Acquisition of empty vector control mice
用ploxPI质粒代替打靶载体进行步骤一的2,得到转空载体对照小鼠甲。
Use the ploxPI plasmid instead of the targeting vector to perform
实施例2、KO小鼠与WT小鼠的心脏形态和心脏功能等参数的比较
一、心脏组织形态的变化 1. Changes in cardiac tissue morphology
分别取2个月(或8个月)的KO小鼠和WT小鼠的心脏,进行组织切片后利用HE染色、WGA染色和MTT染色检测心肌结构及纤维化程度。 The hearts of 2-month (or 8-month) KO mice and WT mice were taken respectively, and the myocardial structure and fibrosis degree were detected by HE staining, WGA staining and MTT staining after tissue sections. the
结果见图1。图1A为HE染色的照片,图1B为图1A的局部放大图,图1C为MTT染色的照片,图1D为WGA染色的照片。与WT小鼠相比,2个月时KO小鼠的心脏体积和心肌细胞明显增大,8个月时KO小鼠表现出心肌纤维化。 The results are shown in Figure 1. Figure 1A is a photograph of HE staining, Figure 1B is a partially enlarged view of Figure 1A, Figure 1C is a photograph of MTT staining, and Figure 1D is a photograph of WGA staining. Compared with WT mice, heart volume and cardiomyocytes in KO mice were significantly larger at 2 months, and KO mice showed myocardial fibrosis at 8 months. the
转空载体对照小鼠甲的心脏形态变化与WT小鼠一致。 The morphological changes of the hearts of the empty vector control mice A were consistent with those of the WT mice. the
二、心脏指数的变化 2. Changes in cardiac index
取2个月的KO小鼠3只、8个月的KO小鼠3只、2个月的WT小鼠3只和8个月的WT小鼠3只,称重(计量单位为g),然后后取心脏并称取重量(计量单位为mg),计算心脏指数,即心脏重量与体重的比值(mg/g)。 Take 3 KO mice of 2 months, 3 KO mice of 8 months, 3 WT mice of 2 months and 3 WT mice of 8 months, and weigh them (measured in g), Then take the heart and weigh it (measured in mg), and calculate the cardiac index, which is the ratio of heart weight to body weight (mg/g). the
结果见图2(3只小鼠的平均值),##P<0.01。结果表明,与WT小鼠相比,KO小鼠心脏指数显著增大。 The results are shown in Figure 2 (average of 3 mice), ##P<0.01. The results showed that the cardiac index was significantly increased in KO mice compared with WT mice. the
转空载体对照小鼠甲的心脏指数与WT小鼠一致。 The cardiac index of the empty vector control mice A was consistent with that of the WT mice. the
三、心肌肥大相关基因的表达 3. Expression of genes related to cardiac hypertrophy
取2个月的KO小鼠3只、8个月的KO小鼠3只、2个月的WT小鼠3只和8个月的WT小鼠3只,分别进行如下步骤: Take 3 KO mice of 2 months, 3 KO mice of 8 months, 3 WT mice of 2 months and 3 WT mice of 8 months, and carry out the following steps respectively:
1、取心脏组织,并提取总RNA。 1. Take heart tissue and extract total RNA. the
2、以总RNA为模板,进行RT-PCR,检测各个胚胎期基因(ANP基因、BNP基因或β-MHC的表达)。 2. Using total RNA as a template, carry out RT-PCR to detect the expression of each embryonic gene (ANP gene, BNP gene or β-MHC). the
RT-PCR反应体系:5×Reaction buffer 5μl,底物dNTP(10mmol/l)0.5μl,MgSO4(25mmol/l)1μl,AMV反转录酶(5U/μl)0.5μl,Tfl DNA聚合酶(5U/μl)0.5μl,上游引物(25pmol/μl)1μl,下游引物(25pmol/μl)1μl,总RNA约100ng,加去RNase水至25μl。 RT-PCR reaction system: 5×Reaction buffer 5μl, substrate dNTP (10mmol/l) 0.5μl, MgSO4 (25mmol/l) 1μl, AMV reverse transcriptase (5U/μl) 0.5μl, Tfl DNA polymerase (5U /μl) 0.5μl, upstream primer (25pmol/μl) 1μl, downstream primer (25pmol/μl) 1μl, total RNA about 100ng, add RNase-free water to 25μl. the
RT-PCR反应程序见图17。 The RT-PCR reaction program is shown in Figure 17. the
用于检测心钠肽基因(ANP基因)的引物对如下(靶序列为142bp): The primer pair used to detect the atrial natriuretic peptide gene (ANP gene) is as follows (the target sequence is 142bp):
上游引物:5'-TTCGGGGGTAGGATTGACAG-3'; Upstream primer: 5'-TTCGGGGGTAGGATTGACAG-3';
下游引物:5'-CACACCACAAGGGCTTAGGA-3'。 Downstream primer: 5'-CACACCCACAAGGGCTTAGGA-3'. the
用于检测脑钠肽基因(BNP基因)的引物对如下(靶序列为185bp): The primer pair used to detect the brain natriuretic peptide gene (BNP gene) is as follows (the target sequence is 185bp):
上游引物5'-TGTTTCTGCTTTTCCTTTATCTG-3'; Upstream primer 5'-TGTTTCTGCTTTTCCTTTATCTG-3';
下游引物5'-TCTTTTTGGGTGTTCTTTTGTGA-3'。 Downstream primer 5'-TCTTTTTGGGTGTTCTTTTGTGA-3'. the
用于检测肌球蛋白重链基因(β-MHC基因)的引物对如下(靶序列为110bp): The primer pair used to detect the myosin heavy chain gene (β-MHC gene) is as follows (the target sequence is 110bp):
上游引物5'-TCCCCAACCGCATTCTCTAT-3'; Upstream primer 5'-TCCCCAACCGCATTCTCTAT-3';
下游引物5'-CAGTTTCTCAGCCCCTTTCC-3'。 Downstream primer 5'-CAGTTTCTCAGCCCCCTTTCC-3'. the
以相同月份的WT小鼠中基因的表达量为1,计算各个月份的KO小鼠的各个胚胎期基因的相对表达量,结果见图3。结果表明,与WT小鼠相比,2个月时KO小鼠的心脏组织中ANF基因、BNP基因和β-MHC基因的表达呈现升高的趋势,8个月时这种差异更加明显。 Taking the expression level of genes in WT mice in the same month as 1, the relative expression levels of genes in each embryonic stage of KO mice in each month were calculated, and the results are shown in FIG. 3 . The results showed that compared with WT mice, the expression of ANF gene, BNP gene and β-MHC gene in the heart tissue of KO mice showed a tendency to increase at 2 months, and this difference was more obvious at 8 months. the
转空载体对照小鼠甲各个基因的表达量与WT小鼠一致。 The expression levels of each gene in the empty vector control mice were consistent with those in the WT mice. the
四、心脏功能的超声心动检测 4. Echocardiographic testing of cardiac function
取2个月的KO小鼠8只、8个月的KO小鼠4只、2个月的WT小鼠9只和8个月的WT小鼠5只,分别进行如下实验步骤: Take 8 KO mice of 2 months, 4 KO mice of 8 months, 9 WT mice of 2 months and 5 WT mice of 8 months, and carry out the following experimental steps respectively:
小鼠腹腔注射水合氯醛(450mg/kg),使用超声诊断仪(探头为15W,多普勒检测 频率为14.0MHz,试验中仪器增益固定为65dB,图像深度调至30mm,探头置于胸骨左侧,与胸骨中线成10°-30°,于左室长轴和短轴切面腱索水平行M型扫描)测量左室功能相关指标。 Mice were intraperitoneally injected with chloral hydrate (450mg/kg), using an ultrasonic diagnostic instrument (the probe was 15W, the Doppler detection frequency was 14.0MHz, the instrument gain was fixed at 65dB in the test, the image depth was adjusted to 30mm, and the probe was placed on the left side of the sternum On the left side, at 10°-30° to the midline of the sternum, M-mode scans were performed at the level of the left ventricular long-axis and short-axis chordal tendons) to measure left ventricular function-related indicators. the
结果见表1。 The results are shown in Table 1. the
表1 心脏功能的超声心动检测结果(平均值±标准差) Table 1 Echocardiographic test results of cardiac function (mean ± standard deviation)
与WT小鼠相比,AP<0.05,BP<0.01。 A P<0.05, B P<0.01 compared to WT mice.
IVSd室间隔舒张末期厚度;IVSs室间隔收缩末期厚度;LVPWd左室舒张末期后壁厚度;LVPWs左室收缩末期后壁厚度;LVDd左室舒张末期内径;LVDs左室收缩末期内径;EF代表左室射血分数,FS代表左室短轴缩短率。 IVSd ventricular septal end-diastolic thickness; IVSs ventricular septal end-systolic thickness; LVPWd left ventricular end-diastolic posterior wall thickness; LVPWs left ventricular end-systolic posterior wall thickness; LVDd left ventricular end-diastolic diameter; LVDs left ventricular end-systolic diameter; EF stands for left ventricle Ejection fraction, FS stands for fractional shortening of left ventricle. the
结果表明,2个月时CKIP-1基因敲除可引起小鼠室间隔以及室壁厚度增大、并且心脏收缩功能代偿性增强,8个月时KO小鼠的左室短轴缩短率和左室射血分数明显低于WT小鼠。 The results showed that knockout of CKIP-1 gene at 2 months could increase the thickness of the ventricular septum and wall in mice, and the compensatory enhancement of cardiac systolic function, and the short-axis shortening rate and Left ventricular ejection fraction was significantly lower than in WT mice. the
转空载体对照小鼠甲的各个相关指标与WT小鼠一致。 The relevant indicators of the empty vector control mouse A were consistent with those of the WT mice. the
五、组织免疫荧光观察HDAC4的定位变化 5. Observation of HDAC4 localization changes by tissue immunofluorescence
分别取8个月的KO小鼠和WT小鼠的心脏,进行组织冰冻切片,在空气中干燥后,在-20℃冰冻的丙酮中浸泡5分钟,然后用5%的胎牛血清37℃封闭30分钟,然后分别用HDAC4的抗体(Santa Cruz)及CKIP-1的抗体(Cell Signaling)孵育,然后分别用FITC标记的抗兔的二抗和罗丹明标记的抗羊的二抗检测,激光共聚焦显微镜观察。
The hearts of 8-month-old KO mice and WT mice were taken respectively, and frozen sections were made, dried in the air, soaked in -20°C frozen acetone for 5 minutes, and then sealed with 5% fetal bovine serum at 37°
结果见图4。结果表明,在WT小鼠的心肌细胞中,HDAC4定位于细胞质和细胞核中,在KO小鼠的心肌细胞中,HDAC4主要定位于细胞质中。 The results are shown in Figure 4. The results showed that in the cardiomyocytes of WT mice, HDAC4 was localized in the cytoplasm and nucleus, and in the cardiomyocytes of KO mice, HDAC4 was mainly localized in the cytoplasm. the
六、Western Blotting实验检测心肌组织中与心肌肥大功能相关蛋白的磷酸化水平的变化 6. Western Blotting test to detect changes in phosphorylation levels of proteins related to cardiac hypertrophy in myocardial tissue
分别提取8个月的KO小鼠和WT小鼠的心肌组织蛋白,加入蛋白酶和磷酸酶抑制剂,在10%的聚丙烯酰胺凝胶中电泳,转移至硝酸纤维膜,分别用不同的抗体孵育,以GAPDH作为内参杂交后,再用辣根过氧化物酶标记的二抗孵育,用化学发光试剂盒 检测。 Extract the myocardial tissue proteins of 8-month-old KO mice and WT mice, add protease and phosphatase inhibitors, electrophoresis in 10% polyacrylamide gel, transfer to nitrocellulose membrane, and incubate with different antibodies After hybridization with GAPDH as an internal reference, it was incubated with a secondary antibody labeled with horseradish peroxidase and detected with a chemiluminescence kit. the
结果见图5和图6。KO小鼠的心肌组织中,HDAC4的磷酸化水平明显高于WT小鼠,Akt/mTOR/S6K的磷酸化水平明显高于WT小鼠。 The results are shown in Figures 5 and 6. In the myocardial tissue of KO mice, the phosphorylation level of HDAC4 was significantly higher than that of WT mice, and the phosphorylation level of Akt/mTOR/S6K was significantly higher than that of WT mice. the
步骤一至步骤六的结果表明:与野生型小鼠相比,2个月的CKIP-1基因敲除小鼠心肌细胞明显增大,心脏指数明显增加,心脏组织中胎儿期基因(ANP基因、BNP基因和β-MHC基因)表达水平显著上调,心脏左室功能代偿性增强,射血分数与左室短轴缩短率增加;与野生型小鼠相比,8个月的CKIP-1基因敲除小鼠心肌细胞进一步增大,心脏指数进一步增加,胎儿期基因的表达进一步显著上调,然而射血分数与心脏短轴缩短率呈现明显下降,以上指标符合病理性心肌肥大的症状;CKIP-1基因敲除小鼠心肌中HDAC4、AKT、mTOR和S6K的磷酸化水平显著升高;以上结果表明CKIP-1基因敲除小鼠随着年龄的增高,表现出自发性心肌肥大的发生。
The results of
实施例3、通过小鼠心肌肥大模型证实CKIP-1基因的作用(KO小鼠和WT小鼠) Example 3. Confirmation of the role of CKIP-1 gene through the mouse cardiac hypertrophy model (KO mice and WT mice)
一、制作小鼠心肌肥大模型(弓动脉缩窄术) 1. Making a mouse model of myocardial hypertrophy (arch arterial constriction)
分别将KO小鼠和WT小鼠进行如下实验: KO mice and WT mice were subjected to the following experiments:
模型组(小鼠心肌肥大模型,用TAC表示):取8周龄的小鼠,经三溴乙醇麻醉后,通过气管插管与小动物呼吸机连接,进行人工通气,于胸部左侧第2-3肋间打开胸腔,分离主动脉弓并在其下穿一丝线,按统一标准使主动脉缩窄(Transverse aortic constriction,TAC),关闭胸腔。 Model group (mouse cardiac hypertrophy model, represented by TAC): 8-week-old mice were anesthetized with tribromoethanol, connected to a small animal ventilator through tracheal intubation, and artificially ventilated. -3 intercostals to open the thorax, separate the aortic arch and thread a thread under it, make the aorta constriction (Transverse aortic constriction, TAC) according to the uniform standard, and close the thorax. the
假手术组(用Sham表示):除了不进行TAC外,其余手术程序完全与模型组相同。 Sham operation group (indicated by Sham): except that TAC was not performed, the rest of the operation procedures were completely the same as the model group. the
弓动脉缩窄术为常规方法,描述弓动脉缩窄术的文献为:deAlmeida,A.C.,van Oort,R.J.,Wehrens,X.H.Transverse Aortic Constriction in Mice.J.Vis.Exp.(38),e1729,DOI:10.3791/1729(2010)。 Arch artery constriction is a routine method, and the literature describing arch artery constriction is: deAlmeida,A.C.,van Oort,R.J.,Wehrens,X.H.Transverse Aortic Constriction in Mice.J.Vis.Exp.(38),e1729,DOI : 10.3791/1729 (2010). the
二、心脏组织形态的变化 2. Changes in cardiac tissue morphology
分别取步骤一的手术4周后的KO小鼠和WT小鼠的心脏,拍照,然后进行组织切片并分别进行HE染色和MTT染色。
The hearts of KO mice and
结果见图7。图7A为心脏照片,图7B为HE染色的照片,图7C为图7B的局部放大图,图7D为MTT染色的照片。结果表明,CKIP-1基因敲除加剧了弓动脉缩窄术引起的心肌肥大的发生,表现心肌的明显增大,并伴有严重纤维化的发生。 The results are shown in Figure 7. Figure 7A is a photograph of the heart, Figure 7B is a photograph of HE staining, Figure 7C is a partially enlarged view of Figure 7B, and Figure 7D is a photograph of MTT staining. The results showed that CKIP-1 gene knockout exacerbated the occurrence of myocardial hypertrophy induced by arch artery constriction, showing significant enlargement of the myocardium, accompanied by severe fibrosis. the
三、心脏指数的变化 3. Changes in cardiac index
取3只步骤一的手术4周后的KO小鼠(模型组)、3只步骤一的手术4周后的KO小鼠(假手术组)、3只步骤一的手术4周后的WT小鼠(模型组)、3只步骤一的手术4周后的WT小鼠(假手术组),称重(计量单位为g),然后后取心脏并称取重量(计 量单位为mg),计算心脏指数,即心脏重量与体重的比值(mg/g)。
Take 3
结果见图8(3只小鼠的平均值),与假手术相比,**P<0.01,与WT小鼠相比,#P<0.05,##P<0.01。结果表明,在弓动脉缩窄术后,KO小鼠的心脏指数显著大于WT小鼠。 The results are shown in Figure 8 (average of 3 mice), **P<0.01 compared to sham, #P<0.05, ##P<0.01 compared to WT mice. The results showed that the cardiac index of KO mice was significantly larger than that of WT mice after arch artery constriction. the
四、心肌肥大相关基因的表达 4. Expression of genes related to cardiac hypertrophy
取3只步骤一的手术4周后的KO小鼠(模型组)、3只步骤一的手术4周后的KO小鼠(假手术组)、3只步骤一的手术4周后的WT小鼠(模型组)、3只步骤一的手术4周后的WT小鼠(假手术组),分别进行实施例2的步骤三的试验。
Take 3
结果见图9,TAC-代表假手术组,TAC+代表模型组。结果发现,手术后,KO小鼠心肌组织中ANF基因、BNP基因和β-MHC基因的表达增加比例显著高于WT小鼠。 The results are shown in Figure 9, TAC- represents the sham operation group, and TAC+ represents the model group. It was found that after surgery, the expression ratios of ANF gene, BNP gene and β-MHC gene in myocardial tissue of KO mice were significantly higher than those of WT mice. the
五、心脏功能的超声心动检测 5. Echocardiographic testing of cardiac function
取9只步骤一的手术2周后的KO小鼠(模型组)、9只步骤一的手术2周后的KO小鼠(假手术组)、9只步骤一的手术2周后的WT小鼠(模型组)、9只步骤一的手术2周后的WT小鼠(假手术组)、9只步骤一的手术4周后的KO小鼠(模型组)、9只步骤一的手术4周后的KO小鼠(假手术组)、9只步骤一的手术4周后的WT小鼠(模型组)、9只步骤一的手术4周后的WT小鼠(假手术组),分别进行实施例2的步骤四的试验。
Take 9
手术4周后WT小鼠和KO小鼠的心脏功能的超声心动检测结果见表2。
Table 2 shows the echocardiographic results of cardiac function of WT mice and
手术2周或4周后模型组KO小鼠和模型组WT小鼠的心脏功能的超声心动检测结果见图10(*P<0.05,**P<0.01,***P<0.001,与假手术组相比;#P<0.05,##P<0.01,###P<0.001,与WT小鼠相比)。 The echocardiographic results of cardiac function of KO mice in the model group and WT mice in the model group after 2 or 4 weeks of operation are shown in Figure 10 ( * P<0.05, ** P<0.01, *** P<0.001, compared with sham Compared with the operated group; #P <0.05, ## P<0.01, ### P<0.001, compared with WT mice).
请审阅,上段描述中提到,表2为WT小鼠和KO小鼠的结果 Please review, as mentioned in the description above, Table 2 shows the results of WT mice and KO mice
结果表明,KO小鼠表现明显的心衰。 The results showed that KO mice exhibited significant heart failure. the
实施例4、转CKIP-1基因小鼠的获得
一、心肌特异表达载体的构建 1. Construction of myocardial specific expression vector
1、合成序列表的序列2所示的CKIP-1基因,以CKIP-1基因为模板,用F1和R1组成的引物对进行PCR扩增,得到PCR扩增产物。
1. Synthesize the CKIP-1 gene shown in
F1:5'-CCCAAGCTTATGGACTACAAAGACGATGACGACAAGATGAAGAAGAGCGGCTCCGGCAAG-3', F1: 5'-CCC AAGCTT ATGGACTACAAAGACGATGACGACAAGATGAAGAAGAGCGGCTCCGGCAAG-3',
R1:5'-CCCAAGCTTTCACATCAGGCTCTTCCGGTATT-3'。 R1: 5'-CCC AAGCTTT CACATCAGGCTCTTCCGGTATT-3'.
F1中引入了Flag标签。 Flag tags were introduced in F1. the
2、用限制性内切酶HindIII酶切步骤1的PCR扩增产物,回收酶切产物。
2. Digest the PCR amplified product in
3、用限制性内切酶HindIII酶切pJG/ALPHA MHC质粒,回收载体骨架(约4500bp)。 3. Digest the pJG/ALPHA MHC plasmid with restriction endonuclease HindIII, and recover the vector backbone (about 4500bp). the
4、将步骤2的酶切产物和步骤3的载体骨架连接,得到重组质粒α-MHC-CKIP-1(心肌特异表达载体)。
4. Ligate the digested product of
二、转CKIP-1基因小鼠的获得 2. Acquisition of transgenic CKIP-1 mice
1、用限制性内切酶NotI酶切重组质粒α-MHC-CKIP-1,回收线性化质粒。 1. Digest the recombinant plasmid α-MHC-CKIP-1 with the restriction endonuclease NotI, and recover the linearized plasmid. the
2、将线性化质粒显微注射入WT小鼠受精卵雄性原核,并将有活力的受精卵移植到WT代孕小鼠的输卵管。 2. Microinject the linearized plasmid into the male pronucleus of fertilized eggs of WT mice, and transplant the viable fertilized eggs into the fallopian tubes of WT surrogate mice. the
3、代孕小鼠生产后,得到的子代小鼠(子一代),采用F2和R2组成的引物对进行PCR鉴定,具有约330bp目的条带的小鼠为PCR鉴定阳性小鼠。 3. After the birth of the surrogate mice, the offspring mice obtained (the first generation) were identified by PCR using a primer pair composed of F2 and R2, and the mice with the target band of about 330 bp were positive mice for PCR identification. the
F1:5'–GACTAACTAGAAGCTTATGGACTA-3'; F1: 5'–GACTAACTAGAAGCTTATGGACTA-3';
R2:5'-CCAGGGTGAACTTGCTGTGAT-3'。 R2: 5'-CCAGGGTGAACTTGCTGTGAT-3'. the
4、将步骤3得到的PCR鉴定阳性小鼠与WT小鼠交配并获得子代小鼠(子二代),采用F2和R2组成的引物对进行PCR鉴定,具有约330bp 目的条带的小鼠为PCR鉴定阳性小鼠。
4. Mate the PCR-identified positive mice obtained in
5、将步骤4得到的PCR鉴定阳性小鼠与WT小鼠交配并获得子代小鼠(子三代),采用F2和R2组成的引物对进行PCR鉴定,具有约330bp 目的条带的小鼠为PCR鉴定阳性小鼠,即用于实施例5的TG小鼠。
5. Mate the PCR-identified positive mice obtained in
三、转空载体对照小鼠乙的获得 3. Acquisition of Empty Vector Control Mouse B
用pJG/ALPHA MHC质粒代替重组质粒α-MHC-CKIP-1进行步骤二的试验,得到转空载体对照小鼠乙。
The pJG/ALPHA MHC plasmid was used to replace the recombinant plasmid α-MHC-CKIP-1 for the experiment in
实施例5、通过小鼠心肌肥大模型证实CKIP-1基因的作用(TG小鼠和WT小鼠) Example 5. Confirmation of the role of CKIP-1 gene through the mouse cardiac hypertrophy model (TG mice and WT mice)
一、制作小鼠心肌肥大模型(弓动脉缩窄术) 1. Making a mouse model of myocardial hypertrophy (arch arterial constriction)
用TG小鼠代替KO小鼠,其它同实施例3的步骤一。
TG mice were used instead of KO mice, and the others were the same as
二、心脏组织形态的变化 2. Changes in cardiac tissue morphology
用TG小鼠代替KO小鼠,其它同实施例3的步骤二。
TG mice were used instead of KO mice, and the rest were the same as
结果见图11。图11A为心脏照片,图11B为HE染色的照片,图11C为图11B的局部放大图,图11D为MTT染色的照片。结果表明,CKIP-1基因过表达减弱了弓动脉缩窄术引起的心肌肥大的发生,与WT小鼠相比,TG小鼠表现为心肌减小、纤维化程度减弱。转空载体对照小鼠乙的心脏形态变化与WT小鼠一致。 The results are shown in Figure 11. Figure 11A is a photograph of the heart, Figure 11B is a photograph of HE staining, Figure 11C is a partially enlarged view of Figure 11B, and Figure 11D is a photograph of MTT staining. The results showed that the overexpression of CKIP-1 gene attenuated the occurrence of myocardial hypertrophy induced by arch artery constriction, and compared with WT mice, TG mice showed a smaller myocardium and less fibrosis. The morphological changes of the hearts of the empty vector control mice B were consistent with those of the WT mice. the
三、心脏指数的变化 3. Changes in cardiac index
取5只步骤一的手术4周后的TG小鼠(模型组)、6只步骤一的手术4周后的TG小鼠(假手术组)、6只步骤一的手术4周后的WT小鼠(模型组)、8只步骤一的手术4周后的WT小鼠(假手术组),称重(计量单位为g),然后后取心脏并称取重量(计量单位为mg),取左心室并称取重量(计量单位为mg)。计算心脏指数,即心脏重量与体重的比值(mg/g)。计算左心室指数,即左心室重量与体重的比值(mg/g)。
Take 5
结果见图12(3只小鼠的平均值),与假手术相比,**P<0.01,与WT小鼠相比,#P<0.05,##P<0.01。结果表明,在弓动脉缩窄术后,TG小鼠的心脏指数和左心室指数均显著小于WT小鼠。转空载体对照小鼠乙的心脏指数变化与WT小鼠一致。 The results are shown in Figure 12 (average of 3 mice), **P<0.01 compared with sham, #P<0.05, ##P<0.01 compared with WT mice. The results showed that after arch artery constriction, the cardiac index and left ventricular index of TG mice were significantly smaller than those of WT mice. The change of cardiac index in empty vector control mice B was consistent with that in WT mice. the
四、心肌肥大相关基因的表达 4. Expression of genes related to cardiac hypertrophy
取4只步骤一的手术4周后的TG小鼠(模型组)、4只步骤一的手术4周后的TG小鼠(假手术组)、5只步骤一的手术4周后的WT小鼠(模型组)、5只步骤一的手术4周后的WT小鼠(假手术组),分别进行实施例2的步骤三的试验。
Take 4
结果见图13。结果发现,手术后,TG小鼠心肌组织中ANF基因、BNP基因和β-MHC基因的表达比例显著低于WT小鼠。转空载体对照小鼠乙各个相关基因的表达情况与WT小鼠一致。 The results are shown in Figure 13. It was found that after surgery, the expression ratios of ANF gene, BNP gene and β-MHC gene in myocardial tissue of TG mice were significantly lower than those of WT mice. The expression of each related gene in the empty vector control mice B was consistent with that in the WT mice. the
五、心脏功能的超声心动检测 5. Echocardiographic testing of cardiac function
取5只步骤一的手术4周后的TG小鼠(模型组)、6只步骤一的手术4周后的TG小鼠(假手术组)、6只步骤一的手术4周后的WT小鼠(模型组)、8只步骤一的手术4周后的WT小鼠(假手术组),分别进行实施例2的步骤三的试验,分别进行实施例2的步骤四的试验。
Take 5
结果见图14。结果表明,TG小鼠的射血分数与心室短轴缩短率显著高于WT小鼠。转空载体对照小鼠乙的射血分数和心室短轴缩短率与WT小鼠一致。 The results are shown in Figure 14. The results showed that the ejection fraction and short-axis shortening rate of TG mice were significantly higher than those of WT mice. The ejection fraction and short-axis shortening rate of the empty vector control mice B were consistent with those of WT mice. the
实施例6荧光双报告实验证实CKIP-1对MEF2C的抑制作用 Example 6 Fluorescence double reporter experiment confirms the inhibitory effect of CKIP-1 on MEF2C
将293T细胞培养于含10%FBS的DMEM中,在24孔板中进行培养,细胞密度达到60%时分别进行以下几组平行的转染处理: 293T cells were cultured in DMEM containing 10% FBS and cultured in a 24-well plate. When the cell density reached 60%, the following parallel transfection treatments were carried out:
第一组:空白对照组; The first group: blank control group;
第二组:共转染MEF2C荧光素酶报告质粒和pRL-TK质粒,转染剂量为每孔转染 0.4微克MEF2C荧光素酶报告质粒和0.4微克pRL-TK质粒; The second group: co-transfect MEF2C luciferase reporter plasmid and pRL-TK plasmid, the transfection dose is 0.4 μg MEF2C luciferase reporter plasmid and 0.4 μg pRL-TK plasmid per well;
第三组:转染CKIP-1表达质粒,转染剂量为每孔转染0.4微克CKIP-1表达质粒; The third group: transfection with CKIP-1 expression plasmid, the transfection dose is 0.4 μg of CKIP-1 expression plasmid per well;
第四组:共转染MEF2C荧光素酶报告质粒、pRL-TK和CKIP-1表达质粒,转染剂量为每孔转染0.4微克MEF2C荧光素酶报告质粒、0.4微克pRL-TK质粒和0.4微克CKIP-1表达质粒; The fourth group: co-transfect MEF2C luciferase reporter plasmid, pRL-TK and CKIP-1 expression plasmids, the transfection dose is 0.4 μg MEF2C luciferase reporter plasmid, 0.4 μg pRL-TK plasmid and 0.4 μg per well CKIP-1 expression plasmid;
第五组:共转染MEF2C荧光素酶报告质粒、pRL-TK和CKIP-1表达质粒,转染剂量为每孔转染0.4微克MEF2C荧光素酶报告质粒、0.4微克pRL-TK质粒和0.4微克CKIP-1表达质粒; The fifth group: co-transfect MEF2C luciferase reporter plasmid, pRL-TK and CKIP-1 expression plasmid, the transfection dose is 0.4 μg MEF2C luciferase reporter plasmid, 0.4 μg pRL-TK plasmid and 0.4 μg per well CKIP-1 expression plasmid;
第六组:共转染MEF2C荧光素酶报告质粒、pRL-TK和CKIP-1表达质粒,转染剂量为每孔转染0.4微克MEF2C荧光素酶报告质粒、0.4微克pRL-TK质粒和0.4微克CKIP-1表达质粒。 Group 6: Co-transfect MEF2C luciferase reporter plasmid, pRL-TK and CKIP-1 expression plasmids, the transfection dose is 0.4 μg MEF2C luciferase reporter plasmid, 0.4 μg pRL-TK plasmid and 0.4 μg per well CKIP-1 expression plasmid. the
转染18小时后在荧光显微镜下进行观察,结果见图15。报告基因实验结果表明,CKIP-1基因外源转染能以剂量依赖的方式显著抑制MEF2C的转录活性。 After 18 hours of transfection, it was observed under a fluorescent microscope, and the results are shown in FIG. 15 . The results of reporter gene experiments showed that exogenous transfection of CKIP-1 gene can significantly inhibit the transcriptional activity of MEF2C in a dose-dependent manner. the
实施例6、体外共转染实验检测CKIP-1对HDAC4细胞内定位的影响 Example 6. In vitro co-transfection experiment to detect the effect of CKIP-1 on the intracellular localization of HDAC4
将C2C12细胞在6孔板中分别进行以下几组平行的转染处理: The C2C12 cells were subjected to the following parallel transfection treatments in a 6-well plate:
第一组:转染pEGFP-N1-HDAC4质粒,转染剂量为每孔转染2微克pEGFP-N1-HDAC4质粒; The first group: transfection with pEGFP-N1-HDAC4 plasmid, the transfection dose is 2 micrograms of pEGFP-N1-HDAC4 plasmid per well;
第二组:转染pIRES-DsRed-CKIP-1,转染剂量为每孔转染2微克pIRES-DsRed-CKIP-1质粒; The second group: transfection with pIRES-DsRed-CKIP-1, the transfection dose is 2 micrograms of pIRES-DsRed-CKIP-1 plasmid per well;
第三组:共转染pGFP-N1-HDAC4和pIRES-DsRed,转染剂量为每孔转染2微克pEGFP-N1-HDAC4质粒和2微克pIRES-DsRed质粒; The third group: co-transfection of pGFP-N1-HDAC4 and pIRES-DsRed, the transfection dose is 2 micrograms of pEGFP-N1-HDAC4 plasmid and 2 micrograms of pIRES-DsRed plasmid per well;
第四组:共转染pEGFP-N1和pIRES-DsRed-CKIP-1,转染剂量为每孔转染2微克pEGFP-N1质粒和2微克pIRES-DsRed-CKIP-1质粒; The fourth group: co-transfect pEGFP-N1 and pIRES-DsRed-CKIP-1, the transfection dose is 2 micrograms of pEGFP-N1 plasmid and 2 micrograms of pIRES-DsRed-CKIP-1 plasmid per well;
第五组:共转染pEGFP-N1-HDAC4与pIRES-DsRed-CKIP-1,转染剂量为每孔转染2微克pEGFP-N1-HDAC4质粒和2微克pIRES-DsRed-CKIP-1质粒。 The fifth group: co-transfect pEGFP-N1-HDAC4 and pIRES-DsRed-CKIP-1, the transfection dose is 2 μg pEGFP-N1-HDAC4 plasmid and 2 μg pIRES-DsRed-CKIP-1 plasmid per well. the
通过激光共聚焦显微镜观察CKIP-1的表达对HDAC4定位的影响,结果见图16。在C2C12细胞中,外源转染的带RFP标签的CKIP-1蛋白主要定位于细胞质中,带GFP标签的HDAC4主要定位于细胞质中。当二者共同转染时,CKIP-1影响了HDAC4的定位,使其主要定位于细胞核中。结果表明,CKIP-1可以促进HDAC4由胞质进入胞核,增强细胞内HDAC4对MEF2C的抑制作用。 The effect of CKIP-1 expression on HDAC4 localization was observed by confocal laser microscopy, and the results are shown in FIG. 16 . In C2C12 cells, exogenously transfected RFP-tagged CKIP-1 protein was mainly localized in the cytoplasm, and GFP-tagged HDAC4 was mainly localized in the cytoplasm. When the two were co-transfected, CKIP-1 affected the localization of HDAC4, making it mainly localized in the nucleus. The results showed that CKIP-1 could promote HDAC4 to enter the nucleus from the cytoplasm, and enhance the inhibitory effect of intracellular HDAC4 on MEF2C. the
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2012101864238A CN102793910A (en) | 2012-06-07 | 2012-06-07 | New application of casein kinase2-interacting protein-1 (CKIP-1) protein and coding gene thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2012101864238A CN102793910A (en) | 2012-06-07 | 2012-06-07 | New application of casein kinase2-interacting protein-1 (CKIP-1) protein and coding gene thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN102793910A true CN102793910A (en) | 2012-11-28 |
Family
ID=47193378
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2012101864238A Pending CN102793910A (en) | 2012-06-07 | 2012-06-07 | New application of casein kinase2-interacting protein-1 (CKIP-1) protein and coding gene thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102793910A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110592083A (en) * | 2013-07-05 | 2019-12-20 | 柏业公司 | Respiratory disease related gene specific siRNA, double helix oligo RNA structure containing siRNA and application thereof |
CN113559266A (en) * | 2021-07-16 | 2021-10-29 | 中国航天员科研训练中心 | Application of Ckip-13' UTR in medicine for preventing and/or treating heart failure diseases |
-
2012
- 2012-06-07 CN CN2012101864238A patent/CN102793910A/en active Pending
Non-Patent Citations (4)
Title |
---|
《传承与发展,创湖南省生理科学事业的新高-湖南省生理科学会2011年度学术年会会议论文摘要汇编》 20111231 李慕鹏等 CKIP-1 rs2306235多态性与慢性心力衰竭的遗传易感性研究 12-13 1-7 , * |
姜志胜: "心肌肥大过程中的信号转导", 《中国动脉硬化杂志》 * |
李慕鹏等: "CKIP-1 rs2306235多态性与慢性心力衰竭的遗传易感性研究", 《传承与发展,创湖南省生理科学事业的新高─湖南省生理科学会2011年度学术年会会议论文摘要汇编》 * |
陈苏等: "CKIP-1:一种新型的凋亡促进因子", 《生命的化学》 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110592083A (en) * | 2013-07-05 | 2019-12-20 | 柏业公司 | Respiratory disease related gene specific siRNA, double helix oligo RNA structure containing siRNA and application thereof |
CN113559266A (en) * | 2021-07-16 | 2021-10-29 | 中国航天员科研训练中心 | Application of Ckip-13' UTR in medicine for preventing and/or treating heart failure diseases |
CN113559266B (en) * | 2021-07-16 | 2023-08-08 | 中国航天员科研训练中心 | Application of Ckip-1 3` UTR in drugs for preventing and/or treating heart failure |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Yang et al. | Cardiac hypertrophy and dysfunction induced by overexpression of miR-214 in vivo | |
CN106729757A (en) | MiR 378 suppresses the purposes of myocardial hypertrophy and myocardial fibrosis and diagnosis of heart failure | |
Zakariyah et al. | Congenital heart defect causing mutation in Nkx2. 5 displays in vivo functional deficit | |
Lal et al. | Troponin I-Interacting Protein Kinase–A Novel Cardiac-Specific Kinase, Emerging as a Molecular Target for the Treatment of Cardiac Disease– | |
Omede et al. | The oxoglutarate receptor 1 (OXGR1) modulates pressure overload-induced cardiac hypertrophy in mice | |
JPWO2005009470A1 (en) | Heart failure therapeutic agent containing an ASK1 inhibitor as an active ingredient and screening method thereof | |
T. Tsoporis et al. | Conditional cardiac overexpression of S100A6 attenuates myocyte hypertrophy and apoptosis following myocardial infarction | |
Tsoutsman et al. | Molecular insights from a novel cardiac troponin I mouse model of familial hypertrophic cardiomyopathy | |
CN102115787B (en) | MicroRNA (Ribose Nucleic Acid) and application of antisensenucleic acid of microRNA in diagnosis, prevention, treatment and/or prognostic evaluation of heart disease | |
Oh et al. | Role of the PRC2-Six1-miR-25 signaling axis in heart failure | |
Yang et al. | Deficiency of nuclear receptor interaction protein leads to cardiomyopathy by disrupting sarcomere structure and mitochondrial respiration | |
AU2004291809B2 (en) | Method of growing myocardial cells | |
CN102793910A (en) | New application of casein kinase2-interacting protein-1 (CKIP-1) protein and coding gene thereof | |
Zhang et al. | Cardiac ankyrin repeat protein contributes to dilated cardiomyopathy and heart failure | |
CN110257508A (en) | One kind post-processing ischemical reperfusion injury treatment miRNA marker and its application in aging myocardial ischemia | |
Yan et al. | Cardiac ISL1-interacting protein, a cardioprotective factor, inhibits the transition from cardiac hypertrophy to heart failure | |
US8367342B2 (en) | Cardiac hypertrophy | |
Wang et al. | Zhi Xin Shan, Guangdong Provincial People's Hospital, China Luis Alberto Gonano, Universidad Nacional de La Plata | |
CN113577285B (en) | Application of SLC25A26 in the preparation of drugs for inhibiting cardiac hypertrophy | |
CN112899309B (en) | Cardiomyocyte-specific overexpression Snhg5 vector and its method for constructing transgenic animals | |
WO2023000555A1 (en) | Use of pzp and pharmaceutical composition that comprises pzp and that is used to fight obesity | |
WO2007137414A1 (en) | Overexpression of integrin linked kinase (ilk) to improve post-infarct remodeling | |
CN115684599A (en) | Application of DVL2 protein in medicine for preventing and/or treating heart failure diseases | |
Bui | The role of Pontin in stress-induced cardiac hypertrophy | |
US7531714B2 (en) | Melusin a muscle specific protein, as a drug target for prevention and treatment of heart failure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C12 | Rejection of a patent application after its publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20121128 |