CN102793566B - System and method for generating acoustic radiation force - Google Patents
System and method for generating acoustic radiation force Download PDFInfo
- Publication number
- CN102793566B CN102793566B CN201110136820.XA CN201110136820A CN102793566B CN 102793566 B CN102793566 B CN 102793566B CN 201110136820 A CN201110136820 A CN 201110136820A CN 102793566 B CN102793566 B CN 102793566B
- Authority
- CN
- China
- Prior art keywords
- pulse signal
- control
- acoustic radiation
- radiation force
- electronic delay
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000005855 radiation Effects 0.000 title claims abstract description 46
- 238000000034 method Methods 0.000 title claims abstract description 37
- 239000000523 sample Substances 0.000 claims abstract description 49
- 238000003384 imaging method Methods 0.000 claims abstract description 47
- 230000009977 dual effect Effects 0.000 claims abstract description 19
- 238000012545 processing Methods 0.000 claims abstract description 12
- 230000005540 biological transmission Effects 0.000 claims description 25
- 238000004891 communication Methods 0.000 claims description 3
- 238000004364 calculation method Methods 0.000 description 13
- 238000010586 diagram Methods 0.000 description 12
- 230000003321 amplification Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 238000002091 elastography Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- 238000002604 ultrasonography Methods 0.000 description 2
- 230000005284 excitation Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 238000012285 ultrasound imaging Methods 0.000 description 1
Images
Landscapes
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
Abstract
本发明涉及一种声辐射力的产生系统及方法。该系统包括:主控模块,用于获取基本参数和生成控制指令,根据所述控制指令控制加载基本参数得到原始脉冲信号,并将所述原始脉冲信号进行处理得到相位相差180度的双控制脉冲信号;驱动脉冲发生器,用于接收所述双脉冲信号,且将所述双控制脉冲信号转换为相位相差0度的双驱动脉冲信号;功率脉冲发生器,用于接收所述驱动脉冲信号,且对所述双驱动脉冲信号处理形成与所述原始脉冲信号相位相差0度且幅值为其2倍的双极性高压脉冲信号;普通线阵成像探头,用于接收所述双极性高压脉冲信号,并根据所述双极性高压脉冲信号产生声辐射力脉冲。上述声辐射力的产生系统及方法,降低了成本。
The invention relates to a system and method for generating acoustic radiation force. The system includes: a main control module, which is used to obtain basic parameters and generate control instructions, control loading of basic parameters according to the control instructions to obtain an original pulse signal, and process the original pulse signal to obtain double control pulses with a phase difference of 180 degrees signal; a driving pulse generator, used to receive the double pulse signal, and convert the double control pulse signal into a double driving pulse signal with a phase difference of 0 degrees; a power pulse generator, used to receive the driving pulse signal, And processing the dual drive pulse signal to form a bipolar high voltage pulse signal with a phase difference of 0 degrees and an amplitude twice that of the original pulse signal; an ordinary line array imaging probe is used to receive the bipolar high voltage pulse signal, and generate an acoustic radiation force pulse according to the bipolar high-voltage pulse signal. The above-mentioned system and method for generating acoustic radiation force reduces the cost.
Description
【技术领域】【Technical field】
本发明涉及超声技术领域,特别涉及一种声辐射力的产生系统及方法。The invention relates to the field of ultrasonic technology, in particular to a system and method for generating acoustic radiation force.
【背景技术】【Background technique】
随着超声弹性成像技术的研究和发展,超声弹性成像技术已经成为检测组织弹性模量的一种重要手段。检测组织弹性模量的方法主要是在组织内部要检测的部分和深度,产生一个较低频率的剪切波,并在组织中传播,使组织发生微小位移,然后用一定频率的超声波来追踪剪切波在组织中传播所造成的位移,通过采集超声回波信号,计算组织的弹性模量。With the research and development of ultrasonic elastography, ultrasonic elastography has become an important means to detect tissue elastic modulus. The method of detecting tissue elastic modulus is mainly to generate a low-frequency shear wave in the part and depth of the tissue to be detected, and propagate in the tissue to cause a small displacement of the tissue, and then use a certain frequency of ultrasonic waves to track the shear wave. The displacement caused by the shear wave propagating in the tissue is calculated by collecting the ultrasonic echo signal to calculate the elastic modulus of the tissue.
检测组织弹性模量时首先需给组织施加作用力使其发生形变,传统的声辐射力脉冲成像技术产生声辐射力,通过产生的声辐射力引起组织发生形变。该产生声辐射力是采用同心圆部分球面做成整个超声换能器,该超声换能器体积大且需专门定制,价格昂贵,制作周期长,导致整个声辐射力产生装置成本较高。When detecting tissue elastic modulus, it is first necessary to apply force to the tissue to cause it to deform. The traditional acoustic radiation force pulse imaging technology generates acoustic radiation force, which causes the tissue to deform. To generate the acoustic radiation force, the entire ultrasonic transducer is made of concentric circles and partial spheres. The ultrasonic transducer is bulky and needs to be customized, expensive, and the production cycle is long, resulting in high cost of the entire acoustic radiation force generating device.
【发明内容】【Content of invention】
基于此,有必要提供一种声辐射力的产生系统,降低了成本。Based on this, it is necessary to provide an acoustic radiation force generation system, which reduces the cost.
一种声辐射力的产生系统,包括:A system for generating acoustic radiation force, comprising:
主控模块,用于获取基本参数和生成控制指令,根据所述控制指令控制加载基本参数得到原始脉冲信号,并将所述原始脉冲信号进行处理得到相位相差180度的双控制脉冲信号;The main control module is used to obtain basic parameters and generate control instructions, control and load the basic parameters according to the control instructions to obtain an original pulse signal, and process the original pulse signal to obtain a double control pulse signal with a phase difference of 180 degrees;
驱动脉冲发生器,用于接收所述双脉冲信号,且将所述双控制脉冲信号转换为相位相差0度的双驱动脉冲信号;a driving pulse generator, configured to receive the double pulse signal, and convert the double control pulse signal into a double driving pulse signal with a phase difference of 0 degrees;
功率脉冲发生器,用于接收所述驱动脉冲信号,且对所述双驱动脉冲信号处理形成与所述原始脉冲信号相位相差0度且幅值为其2倍的双极性高压脉冲信号;A power pulse generator, configured to receive the driving pulse signal, and process the double driving pulse signal to form a bipolar high-voltage pulse signal with a phase difference of 0 degrees and an amplitude twice that of the original pulse signal;
普通线阵成像探头,用于接收所述双极性高压脉冲信号,并根据所述双极性高压脉冲信号产生声辐射力脉冲。An ordinary linear array imaging probe is used to receive the bipolar high-voltage pulse signal, and generate an acoustic radiation force pulse according to the bipolar high-voltage pulse signal.
优选地,所述主控模块包括通讯相连的主控单元和可编程逻辑控制单元,所述主控单元用于获取基本参数,生成控制指令,并将所述基本参数及控制指令发送给所述可编程逻辑控制单元;所述可编程逻辑控制单元用于根据所述控制指令控制加载基本参数得到原始脉冲信号,将所述原始脉冲信号进行处理得到相位相差180度的双控制脉冲信号。Preferably, the main control module includes a communication-connected main control unit and a programmable logic control unit, the main control unit is used to obtain basic parameters, generate control instructions, and send the basic parameters and control instructions to the A programmable logic control unit; the programmable logic control unit is used to control loading of basic parameters according to the control instruction to obtain an original pulse signal, and process the original pulse signal to obtain a double control pulse signal with a phase difference of 180 degrees.
优选地,所述基本参数包括普通线阵成像探头的各阵元的电子延迟时间、发射频率、发射阵元数和发射持续时间;所述可编程逻辑控制单元包括指令编译子单元、电子延迟控制子单元和串列脉冲发生子单元,所述指令编译子单元用于将所述控制指令编译处理,并根据编译后的控制指令分别控制所述电子延迟控制子单元加载电子延迟时间和发射频率、所述串列脉冲发生子单元加载所述发射阵元数和发射持续时间;所述电子延迟控制子单元用于根据电子延迟时间和发射频率在每个阵元相应的电子通道产生原始脉冲信号;所述串列脉冲发生子单元用于根据发射阵元数和发射持续时间对所述原始脉冲信号处理得到相位相差180度的双控制脉冲信号。Preferably, the basic parameters include the electronic delay time, transmission frequency, number of transmission array elements and transmission duration of each array element of a common line array imaging probe; the programmable logic control unit includes an instruction compiling subunit, an electronic delay control A subunit and a serial pulse generation subunit, the instruction compilation subunit is used to compile and process the control instruction, and control the electronic delay control subunit to load the electronic delay time and transmission frequency according to the compiled control instruction, respectively. The serial pulse generating subunit loads the number of transmitting array elements and the transmitting duration; the electronic delay control subunit is used to generate the original pulse signal in the corresponding electronic channel of each array element according to the electronic delay time and transmitting frequency; The serial pulse generating subunit is used to process the original pulse signal according to the number of transmitting array elements and the transmitting duration to obtain a double control pulse signal with a phase difference of 180 degrees.
优选地,还包括与所述主控模块相连的存储模块,所述存储模块用于预先存储所述普通线阵成像探头的各阵元的电子延迟时间;所述主控模块还用于从所述存储模块中读取所述普通线阵成像探头的各阵元的电子延迟时间。Preferably, it also includes a storage module connected to the main control module, the storage module is used to pre-store the electronic delay time of each array element of the common line array imaging probe; Read the electronic delay time of each array element of the common line array imaging probe in the storage module.
优选地,所述普通线阵成像探头的各阵元的电子延迟时间的计算公式如下:Preferably, the calculation formula of the electronic delay time of each array element of the common linear array imaging probe is as follows:
其中,t为电子延迟时间,Lh为发射焦点深度,Len为阵元n到发射扫描线轴心位置距离;C为超声波在介质中的传播速度。Among them, t is the electronic delay time, Lh is the depth of the emission focus, Len is the distance from the array element n to the axis of the emission scanning line; C is the propagation speed of the ultrasonic wave in the medium.
优选地,还包括电源模块,所述电源模块用于为所述主控模块、驱动脉冲发生器、功率脉冲发生器和普通线阵成像探头提供电能。Preferably, a power supply module is also included, and the power supply module is used to provide electric energy for the main control module, the driving pulse generator, the power pulse generator and the common linear array imaging probe.
此外,还有必要提供一种声辐射力的产生方法,降低了成本。In addition, it is also necessary to provide a method for generating acoustic radiation force, which reduces the cost.
一种声辐射力的产生方法,包括以下步骤:A method for generating an acoustic radiation force, comprising the following steps:
获取基本参数,生成控制指令,根据所述控制指令控制加载基本参数得到原始脉冲信号,将所述原始脉冲信号进行处理得到相位相差180度的双控制脉冲信号并发送;Obtaining basic parameters, generating a control instruction, controlling and loading the basic parameters according to the control instruction to obtain an original pulse signal, processing the original pulse signal to obtain a double control pulse signal with a phase difference of 180 degrees and sending it;
接收所述双脉冲信号,且将所述双控制脉冲信号转换为相位相差0度的双驱动脉冲信号,并发送;receiving the double pulse signal, and converting the double control pulse signal into a double driving pulse signal with a phase difference of 0 degrees, and sending it;
提供一普通线阵成像探头,所述普通阵成像探头接收所述双驱动脉冲信号,且对所述双驱动脉冲信号处理形成与所述原始脉冲信号相位相差0度且幅值为其2倍的双极性高压脉冲信号,并发送;An ordinary linear array imaging probe is provided, the ordinary array imaging probe receives the double driving pulse signal, and processes the double driving pulse signal to form a phase difference with the original pulse signal of 0 degrees and an amplitude that is twice its Bipolar high-voltage pulse signal and send it;
接收所述双极性高压脉冲信号,并根据所述双极性高压脉冲信号产生声辐射力脉冲。The bipolar high-voltage pulse signal is received, and an acoustic radiation force pulse is generated according to the bipolar high-voltage pulse signal.
优选地,所述基本参数包括普通线阵成像探头的各阵元的电子延迟时间、发射频率、发射阵元数和发射持续时间;根据所述控制指令控制加载基本参数得到原始脉冲信号,将所述原始脉冲信号进行处理得到相位相差180度的双脉冲信号并发送的步骤具体为:根据电子延迟时间和发射频率在每个阵元相应的电子通道产生原始脉冲信号;根据发射阵元数和发射持续时间对所述原始脉冲信号处理得到相位相差180度的双控制脉冲信号。Preferably, the basic parameters include the electronic delay time, transmission frequency, number of transmission array elements and transmission duration of each array element of the ordinary line array imaging probe; according to the control instruction, the basic parameters are loaded to obtain the original pulse signal, and the The steps for processing the original pulse signal to obtain a double pulse signal with a phase difference of 180 degrees and sending it are as follows: according to the electronic delay time and transmission frequency, the original pulse signal is generated in the corresponding electronic channel of each array element; according to the number of transmitting array elements and the transmission frequency Duration Process the original pulse signal to obtain a double control pulse signal with a phase difference of 180 degrees.
优选地,还包括步骤:预先存储所述普通线阵成像探头的各阵元的电子延迟时间。Preferably, it also includes the step of: pre-storing the electronic delay time of each array element of the common linear array imaging probe.
优选地,所述普通线阵成像探头的各阵元的电子延迟时间的计算公式如下:Preferably, the calculation formula of the electronic delay time of each array element of the common linear array imaging probe is as follows:
其中,t为电子延迟时间,Lh为发射焦点深度,Len为阵元n到发射扫描线轴心位置距离;C为超声波在介质中的传播速度。Among them, t is the electronic delay time, Lh is the depth of the emission focus, Len is the distance from the array element n to the axis of the emission scanning line; C is the propagation speed of the ultrasonic wave in the medium.
上述声辐射力的产生系统及方法,通过获取基本参数,根据基本参数得到原始脉冲信号,对原始脉冲信号进行处理后得到相应的双极性高压脉冲信号,采用普通线阵成像探头作为超声换能器,根据该双极性高压脉冲信号产生声辐射力脉冲,不需专门定制昂贵的超声换能器,降低了成本。The above-mentioned generation system and method of acoustic radiation force obtains the basic parameters, obtains the original pulse signal according to the basic parameters, and obtains the corresponding bipolar high-voltage pulse signal after processing the original pulse signal, and uses an ordinary linear array imaging probe as the ultrasonic transducer The acoustic radiation force pulse is generated according to the bipolar high-voltage pulse signal, and there is no need to customize expensive ultrasonic transducers, which reduces the cost.
【附图说明】【Description of drawings】
图1为一个实施例中声辐射力的产生系统的结构示意图;Fig. 1 is a structural schematic diagram of a generation system of acoustic radiation force in an embodiment;
图2为电子延迟时间的设置格式示意图;Fig. 2 is a schematic diagram of the setting format of the electronic delay time;
图3为控制指令的设置格式示意图;Fig. 3 is a schematic diagram of the setting format of the control command;
图4为图1中主控模块的内部结构示意图;Fig. 4 is a schematic diagram of the internal structure of the main control module in Fig. 1;
图5为图4中可编程逻辑控制单元的内部结构示意图;Fig. 5 is a schematic diagram of the internal structure of the programmable logic control unit in Fig. 4;
图6为一个实施例中在m个阵元产生原始脉冲信号示意图;Fig. 6 is a schematic diagram of generating original pulse signals in m array elements in one embodiment;
图7为一个实施例中单阵元驱动电路结构示意图;Fig. 7 is a schematic structural diagram of a single array element driving circuit in an embodiment;
图8为激发超声换能器产生声辐射力的模型示意图;8 is a schematic diagram of a model that excites an ultrasonic transducer to generate an acoustic radiation force;
图9为声辐射力的产生系统的各个信号节点的信号波形示意图;Fig. 9 is a schematic diagram of signal waveforms of each signal node of the generation system of the acoustic radiation force;
图10为另一个实施例中声辐射力的产生系统的结构示意图;Fig. 10 is a schematic structural diagram of a system for generating acoustic radiation force in another embodiment;
图11为一个实施例中声辐射力的产生方法的流程图;Fig. 11 is a flowchart of a method for generating acoustic radiation force in an embodiment;
图12为一个实施例中根据该控制指令控制加载基本参数得到原始脉冲信号,将该原始脉冲信号进行处理得到双控制脉冲信号并发送的步骤的具体流程图。Fig. 12 is a specific flow chart of the steps of controlling loading of basic parameters according to the control instruction to obtain an original pulse signal, processing the original pulse signal to obtain a dual control pulse signal and sending it in an embodiment.
【具体实施方式】【Detailed ways】
下面结合具体的实施例及附图对技术方案进行详细的描述。The technical solution will be described in detail below in conjunction with specific embodiments and accompanying drawings.
如图1所示,在一个实施例中,一种声辐射力的产生系统,包括依次相连的主控模块100、驱动脉冲发生器200、功率脉冲发生器300和普通线阵成像探头400。其中,As shown in FIG. 1 , in one embodiment, an acoustic radiation force generating system includes a main control module 100 , a
主控模块100用于获取基本参数和生成控制指令,根据控制指令控制加载基本参数得到原始脉冲信号,将原始脉冲信号进行处理得到相位相差180度的双控制脉冲信号。其中,基本参数包括普通线阵成像探头400的各阵元的电子延迟时间、发射频率、发射阵元数和发射持续时间。普通线阵成像探头400的各阵元的电子延迟时间是指各个阵元与指定阵元之间的相位电子延时数据,电子延迟时间为t。该实施例,为了计算方便,指定阵元通常为所有参与计算的阵元阵列中心阵元,采用平面几何计算方法获得各个阵元在阵元阵列中的电子延迟时间,以普通线阵成像探头为例说明计算公式:The main control module 100 is used to obtain basic parameters and generate control instructions, control loading of basic parameters according to the control instructions to obtain original pulse signals, and process the original pulse signals to obtain dual control pulse signals with a phase difference of 180 degrees. Wherein, the basic parameters include the electronic delay time of each array element of the ordinary linear
其中,t为电子延迟时间,Lh为发射焦点深度,Len为阵元n到发射扫描线轴心位置距离;C为超声波在介质中的传播速度。Among them, t is the electronic delay time, Lh is the depth of the emission focus, Len is the distance from the array element n to the axis of the emission scanning line; C is the propagation speed of the ultrasonic wave in the medium.
Len等于n*Le或(n+0.5)*Le,或其他计算方式,其中,Le为探头阵元间距,单位为毫米(mm)。Len is equal to n*Le or (n+0.5)*Le, or other calculation methods, where Le is the distance between the probe array elements, and the unit is millimeter (mm).
另外,Ln为阵元n到发射焦点位置的声音传播距离。in addition, Ln is the sound propagation distance from array element n to the emission focus position.
电子延迟时间的设置格式如图2所示,D0到Dn-1表示第1到第n个电子延迟时间。The setting format of the electronic delay time is shown in Figure 2, and D 0 to D n-1 represent the 1st to nth electronic delay times.
控制指令的设置格式如图3所示,A0表示控制发射信号时序、辅助信号开关的指令,A1表示控制发射频率、发射持续时间的指令。The setting format of the control command is shown in Figure 3. A 0 represents the command to control the timing of the transmission signal and the switch of the auxiliary signal, and A 1 represents the command to control the transmission frequency and transmission duration.
在一个实施例中,如图4所示,主控模块100包括相连的主控单元110和可编程逻辑控制单元120。In one embodiment, as shown in FIG. 4 , the main control module 100 includes a main control unit 110 and a programmable
其中,主控单元110用于获取基本参数,生成控制指令,并将该基本参数及控制指令发送给可编程逻辑控制单元120。主控单元110可为计算机或ARM板等。在主控单元110的人机交互界面上配置了系统需要的参数,如电子延迟时间、发射频率、发射持续时间、发射信号时序、发射焦点深度等。用户可在该人机交互界面上设置相应的基本参数,主控单元110获取到用户设置的基本参数。Wherein, the main control unit 110 is used to obtain basic parameters, generate control instructions, and send the basic parameters and control instructions to the programmable
可编程逻辑控制单元120用于根据控制指令控制加载基本参数得到原始脉冲信号,将原始脉冲信号进行处理得到双控制脉冲信号并发送。可编程逻辑控制单元120可为FPGA(Field-Programmable Gate Array,现场可编程门阵列)控制板。The programmable
主控单元110和可编程逻辑控制单元120通过串口通讯连接,主控单元110按照通讯协议将控制指令发送给可编程逻辑控制单元120。The main control unit 110 and the programmable
如图5所示,可编程逻辑控制单元120包括指令编译子单元121、电子延迟控制子单元123和串列脉冲发生子单元125。As shown in FIG. 5 , the programmable
指令编译子单元121用于将控制指令编译处理,并根据编译后的控制指令分别控制电子延迟控制子单元123加载电子延迟时间和发射频率,串列脉冲发生子单元123加载发射阵元数和发射持续时间。The instruction compilation subunit 121 is used to compile and process the control instructions, and control the electronic delay control subunit 123 to load the electronic delay time and transmission frequency according to the compiled control instructions, and the serial pulse generation subunit 123 loads the number of transmitting array elements and the transmission frequency. duration.
电子延迟控制子单元123用于根据电子延迟时间和发射频率在每个阵元相应的电子通道产生原始脉冲信号。电子延迟时间可为t。如发射阵元数为m个,分别为#1到#m,如图6所示,电子延迟控制子单元123在阵元的电子通道产生原始脉冲信号,#1阵元产生的原始脉冲信号与#m阵元产生的原始脉冲信号具有相同的相位,#2阵元与#m-1阵元产生的原始脉冲信号具有相同的相位,#1阵元产生的原始脉冲信号和#2阵元产生的原始脉冲信号相差电子延迟t,依次类推。The electronic delay control subunit 123 is used to generate the original pulse signal in the corresponding electronic channel of each array element according to the electronic delay time and transmission frequency. The electronic delay time may be t. If the number of transmitting array elements is m, respectively #1 to #m, as shown in Figure 6, the electronic delay control subunit 123 generates the original pulse signal in the electronic channel of the array element, and the original pulse signal generated by the #1 array element is the same as The original pulse signal generated by #m array element has the same phase, the original pulse signal generated by #2 array element and #m-1 array element has the same phase, the original pulse signal generated by #1 array element and #2 array element The original pulse signal differs by electronic delay t, and so on.
串列脉冲发生子单元125用于根据发射阵元数和发射持续时间对原始脉冲信号处理得到相位相差180度的双控制脉冲信号。串列脉冲发生子单元125将每个阵元产生的原始脉冲信号转换为相位相差180度的双控制脉冲信号。The serial pulse generating subunit 125 is used to process the original pulse signal according to the number of transmitting array elements and the transmitting duration to obtain a double control pulse signal with a phase difference of 180 degrees. The serial pulse generation subunit 125 converts the original pulse signal generated by each array element into a double control pulse signal with a phase difference of 180 degrees.
驱动脉冲发生器200用于接收双控制脉冲信号,且将该双控制脉冲信号转换为双驱动脉冲信号,并发送给功率脉冲发生器300。驱动脉冲发生器200可采用Supertex公司的MD1822(或者MD1711),主要功能是把电平为TTL控制信号在集成电路内部进行变换得到10V左右的双驱动脉冲信号。驱动脉冲发生器200将双驱动脉冲信号耦合至后级功率脉冲发生器300的输入端口。The driving
功率脉冲发生器300用于接收双驱动脉冲信号,且对该双驱动脉冲信号处理形成与原始脉冲信号相位相差0度且幅值为其2倍的双极性高压脉冲信号,并发送。功率脉冲发生器300可采用Supertex公司的TC6320的芯片的内部功率MOS管进行信号变换和功率放大,从原先的单极性脉冲变换成双极性脉冲去驱动超声换能器,获取精准工作频率的超声波束。驱动超声换能器的正高压HVP电平值为+20V~+100V之间范围,负高压HVN值为-20V~-100V之间范围。The
普通线阵成像探头400用于接收双极性高压脉冲信号,并根据双极性高压脉冲信号产生声辐射力脉冲。普通线阵成像探头400作为超声换能器,可为普通B超成像探头。利用B超图像引导,选择合适的深度,然后在这个深度上发射声辐射力脉冲,在这个区域的组织产生低频振荡剪切波,通过普通线阵成像探头400发射超声跟踪波束,跟踪剪切波的传播,通过计算可获得所选深度的组织弹性模量。The common linear
如图7为单阵元的声辐射力的产生系统中可编程逻辑控制单元120、驱动脉冲发生器200、功率脉冲发生器300和普通线阵成像探头400的基本驱动电路结构示意图。Figure 7 is a schematic diagram of the basic drive circuit structure of the programmable
如图8为激发超声换能器(普通线阵成像探头)产生声辐射力的模型示意图,超声波焦点810发射超声波到超声换能器820,超声换能器820产生电子激励信号830。FIG. 8 is a schematic diagram of a model for exciting an ultrasonic transducer (ordinary linear array imaging probe) to generate acoustic radiation force. The
如图1和图9所示,以一个阵元产生的原始脉冲信号,可编程逻辑控制单元120为FPGA为例,说明各个部分的工作过程及信号波形。上述声辐射力的产生系统的工作过程是:主控单元110发送控制指令和基本参数,FPGA将基本参数加载于相应的电子延迟控制子单元123和串列脉冲发生子单元125。电子延迟控制子单元123产生m通道的具有设定电子延迟时间为t的原始脉冲信号A,串列脉冲发生子单元125将来自电子延迟控制子单元123的原始脉冲信号A转换为相位相差180度的双控制脉冲信号B(图8中所示的FPGA控制信号+和FPGA控制信号-);驱动脉冲发生器200将来自FPGA的双控制脉冲信号B转换为双驱动脉冲信号C的驱动脉冲信号+和驱动脉冲信号-,驱动脉冲信号+与FPGA控制信号+的相位相差180度,驱动脉冲信号+与驱动脉冲信号-相位相差0度;驱动脉冲信号C经过功率脉冲发生器300之后形成双极性高压脉冲信号D,双极性高压脉冲信号D的幅值为原始脉冲信号A脉冲的幅值的2倍;最终m路双极性高压脉冲信号D加载在普通线阵成像探头400上,产生声辐射力脉冲。As shown in FIG. 1 and FIG. 9 , taking the original pulse signal generated by one array element and the programmable
在一个实施例中,如图10所示,上述声辐射力的产生系统,除了包括依次相连的主控模块100、驱动脉冲发生器200、功率脉冲发生器300和普通线阵成像探头400,还包括存储模块500和电源模块600。In one embodiment, as shown in FIG. 10 , the system for generating the above-mentioned acoustic radiation force, in addition to including a main control module 100, a driving
存储模块500用于预先存储普通线阵成像探头的各阵元的电子延迟时间,主控模块100还用于从存储模块500中读取该普通线阵成像探头的各阵元的电子延迟时间。The storage module 500 is used for pre-storing the electronic delay time of each array element of the common linear array imaging probe, and the main control module 100 is also used for reading the electronic delay time of each array element of the common linear array imaging probe from the storage module 500 .
电源模块600用于给主控模块100、驱动脉冲发生器200、功率脉冲发生器300和普通线阵成像探头400提供电能。The power supply module 600 is used to provide electric energy to the main control module 100 , the driving
在一个实施例中,如图11所示,一种声辐射力的产生方法,包括以下步骤:In one embodiment, as shown in FIG. 11 , a method for generating an acoustic radiation force includes the following steps:
步骤S100,获取基本参数,生成控制指令,根据该控制指令控制加载基本参数得到原始脉冲信号,将该原始脉冲信号进行处理得到相位相差180度的双控制脉冲信号并发送。Step S100, acquiring basic parameters, generating a control instruction, controlling loading of basic parameters according to the control instruction to obtain an original pulse signal, processing the original pulse signal to obtain a double control pulse signal with a phase difference of 180 degrees, and sending it.
其中,基本参数包括普通线阵成像探头的各阵元的电子延迟时间、发射频率、发射阵元数和发射持续时间。普通线阵成像探头的各阵元的电子延迟时间是指各个阵元与指定阵元之间的相位电子延时数据,电子延迟时间为t。该实施例,为了计算方便,指定阵元通常为所有参与计算的阵元阵列中心阵元,采用平面几何计算方法获得各个阵元在阵元阵列中的电子延迟时间,以普通线阵成像探头为例说明计算公式:Among them, the basic parameters include the electronic delay time of each array element of the common line array imaging probe, the emission frequency, the number of emission array elements and the emission duration. The electronic delay time of each array element of an ordinary line array imaging probe refers to phase electronic delay data between each array element and a designated array element, and the electronic delay time is t. In this embodiment, for the convenience of calculation, the specified array element is usually the central array element of all the array elements participating in the calculation, and the electronic delay time of each array element in the array element array is obtained by using the plane geometric calculation method, and the ordinary line array imaging probe is used as Example to illustrate the calculation formula:
其中,t为电子延迟时间,Lh为发射焦点深度,Len为阵元n到发射扫描线轴心位置距离;C为超声波在介质中的传播速度。Among them, t is the electronic delay time, Lh is the depth of the emission focus, Len is the distance from the array element n to the axis of the emission scanning line; C is the propagation speed of the ultrasonic wave in the medium.
Len等于n*Le或(n+0.5)*Le,或其他计算方式,其中,Le为探头阵元间距,单位为毫米(mm)。Len is equal to n*Le or (n+0.5)*Le, or other calculation methods, where Le is the distance between the probe array elements, and the unit is millimeter (mm).
另外,Ln为阵元n到发射焦点位置的声音传播距离。in addition, Ln is the sound propagation distance from array element n to the emission focus position.
电子延迟时间的设置格式如图2所示,D0到Dn-1表示第1到第n个电子延迟时间。The setting format of the electronic delay time is shown in Figure 2, and D 0 to D n-1 represent the 1st to nth electronic delay times.
控制指令的设置格式如图3所示,A0表示控制发射信号时序、辅助信号开关的指令,A1表示控制发射频率、发射持续时间的指令。The setting format of the control command is shown in Figure 3. A 0 represents the command to control the timing of the transmission signal and the switch of the auxiliary signal, and A 1 represents the command to control the transmission frequency and transmission duration.
在步骤S100之前还包括步骤:预先存储普通线阵成像探头的各阵元的电子延迟时间。步骤S100中获取基本参数中获取电子延迟时间具体为读取预先存储的普通线阵成像探头的各阵元的电子延迟时间。Before the step S100, a step is further included: pre-storing the electronic delay time of each array element of the common line array imaging probe. The acquisition of the electronic delay time in the acquisition of the basic parameters in step S100 is specifically to read the pre-stored electronic delay time of each array element of the common line array imaging probe.
在一个实施例中,如图12所示,根据该控制指令控制加载基本参数得到原始脉冲信号,将该原始脉冲信号进行处理得到双控制脉冲信号并发送的步骤具体包括:In one embodiment, as shown in FIG. 12 , according to the control instruction, the loading of basic parameters is controlled to obtain an original pulse signal, and the steps of processing the original pulse signal to obtain a double control pulse signal and sending it specifically include:
步骤S110,根据电子延迟时间和发射频率在每个阵元想要的电子通道产生原始脉冲信号。Step S110, generating an original pulse signal in the desired electronic channel of each array element according to the electronic delay time and the transmission frequency.
电子延迟时间可为t。如发射阵元数为m个,分别为#1到#m,如图6所示,在阵元的电子通道产生原始脉冲信号,#1阵元产生的原始脉冲信号与#m阵元产生的原始脉冲信号具有相同的相位,#2阵元与#m-1阵元产生的原始脉冲信号具有相同的相位,#1阵元产生的原始脉冲信号和#2阵元产生的原始脉冲信号相差电子延迟t,依次类推。The electronic delay time may be t. If the number of transmitting array elements is m, respectively #1 to #m, as shown in Figure 6, the original pulse signal is generated in the electronic channel of the array element, the original pulse signal generated by #1 array element is the same as that generated by #m array element The original pulse signal has the same phase, the original pulse signal generated by #2 array element and #m-1 array element has the same phase, the original pulse signal generated by #1 array element and the original pulse signal generated by #2 array element are electron delay t, and so on.
步骤S120,根据发射阵元数和发射持续时间对所述原始脉冲信号处理得到相位相差180度的双控制脉冲信号。Step S120, processing the original pulse signal according to the number of transmitting array elements and the transmitting duration to obtain a double control pulse signal with a phase difference of 180 degrees.
步骤S200,接收该双控制脉冲信号,且将该双控制脉冲信号转换为双驱动脉冲信号,并发送。Step S200, receiving the dual control pulse signal, converting the dual control pulse signal into a dual driving pulse signal, and sending it.
采用Supertex公司的MD1822(或者MD1711)把电平为TTL控制信号在集成电路内部进行变换得到10V左右的驱动脉冲信号。MD1822 (or MD1711) of Supertex Company is used to convert the level to TTL control signal inside the integrated circuit to obtain a driving pulse signal of about 10V.
步骤S300,接收该双驱动脉冲信号,且对该双驱动脉冲信号处理形成与原始脉冲信号相位相差0度且幅值为其2倍的双极性高压脉冲信号,并发送。Step S300, receiving the double driving pulse signal, processing the double driving pulse signal to form a bipolar high-voltage pulse signal with a phase difference of 0 degrees and twice the amplitude of the original pulse signal, and sending it.
采用Supertex公司的TC6320的芯片的内部功率MOS管进行信号变换和功率放大,从原先的单极性脉冲变换成双极性脉冲去驱动超声换能器,获取精准工作频率的超声波束。驱动超声换能器的正高压HVP电平值为+20V~+100V之间范围,负高压HVN值为-20V~-100V之间范围。The internal power MOS tube of Supertex's TC6320 chip is used for signal conversion and power amplification, and the original unipolar pulse is converted into a bipolar pulse to drive the ultrasonic transducer to obtain an ultrasonic beam with a precise working frequency. The level value of the positive high voltage HVP driving the ultrasonic transducer ranges from +20V to +100V, and the value of the negative high voltage HVN ranges from -20V to -100V.
步骤S400,提供一普通线阵成像探头,该普通阵成像探头接收该双极性高压脉冲信号,并根据该双极性高压脉冲信号产生声辐射力脉冲。Step S400, providing an ordinary linear array imaging probe, the ordinary array imaging probe receives the bipolar high voltage pulse signal, and generates an acoustic radiation force pulse according to the bipolar high voltage pulse signal.
上述声辐射力的产生系统及方法,通过获取基本参数,根据基本参数得到原始脉冲信号,对原始脉冲信号进行处理后得到相应的双极性高压脉冲信号,采用普通线阵成像探头作为超声换能器,根据该双极性高压脉冲信号产生声辐射力脉冲,不需专门定制昂贵的超声换能器,降低了成本。The above-mentioned generation system and method of acoustic radiation force obtains the basic parameters, obtains the original pulse signal according to the basic parameters, and obtains the corresponding bipolar high-voltage pulse signal after processing the original pulse signal, and uses an ordinary linear array imaging probe as the ultrasonic transducer The acoustic radiation force pulse is generated according to the bipolar high-voltage pulse signal, and there is no need to customize expensive ultrasonic transducers, which reduces the cost.
另外,采用常用的主控单元及可编程逻辑单元,对原始脉冲信号进行处理,进一步降低成本。In addition, the commonly used main control unit and programmable logic unit are used to process the original pulse signal, further reducing the cost.
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。The above-mentioned embodiments only express several implementation modes of the present invention, and the description thereof is relatively specific and detailed, but should not be construed as limiting the patent scope of the present invention. It should be pointed out that those skilled in the art can make several modifications and improvements without departing from the concept of the present invention, and these all belong to the protection scope of the present invention. Therefore, the protection scope of the patent for the present invention should be based on the appended claims.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201110136820.XA CN102793566B (en) | 2011-05-24 | 2011-05-24 | System and method for generating acoustic radiation force |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201110136820.XA CN102793566B (en) | 2011-05-24 | 2011-05-24 | System and method for generating acoustic radiation force |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102793566A CN102793566A (en) | 2012-11-28 |
CN102793566B true CN102793566B (en) | 2014-04-16 |
Family
ID=47193045
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201110136820.XA Active CN102793566B (en) | 2011-05-24 | 2011-05-24 | System and method for generating acoustic radiation force |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102793566B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6355624B2 (en) * | 2013-03-28 | 2018-07-11 | キヤノン株式会社 | Ultrasonic diagnostic apparatus and ultrasonic diagnostic method |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5107466A (en) * | 1989-11-13 | 1992-04-21 | Hitachi Medical Corporation | Ultrasonic doppler flow meter |
JP3704138B2 (en) * | 2003-10-27 | 2005-10-05 | ジーイー横河メディカルシステム株式会社 | Ultrasonic imaging device |
CN1957851A (en) * | 2005-10-31 | 2007-05-09 | 株式会社东芝 | Ultrasonic probe and ultrasonic diagnostic apparatus |
CN101176674A (en) * | 2007-11-28 | 2008-05-14 | 深圳市蓝韵实业有限公司 | Transmitting module of ultrasonic diagnostic device |
CN101411625A (en) * | 2007-10-15 | 2009-04-22 | 深圳迈瑞生物医疗电子股份有限公司 | Method for modulating and transmitting ultrasonic system bipolar pulse |
CN101601594A (en) * | 2009-07-08 | 2009-12-16 | 汕头市超声仪器研究所有限公司 | A kind of excitation device and excitation method of medical B supersonic front end |
JP2010017406A (en) * | 2008-07-11 | 2010-01-28 | Toshiba Corp | Ultrasonic diagnostic apparatus |
JP2010042048A (en) * | 2008-08-08 | 2010-02-25 | Aloka Co Ltd | Ultrasonic diagnostic system |
-
2011
- 2011-05-24 CN CN201110136820.XA patent/CN102793566B/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5107466A (en) * | 1989-11-13 | 1992-04-21 | Hitachi Medical Corporation | Ultrasonic doppler flow meter |
JP3704138B2 (en) * | 2003-10-27 | 2005-10-05 | ジーイー横河メディカルシステム株式会社 | Ultrasonic imaging device |
CN1957851A (en) * | 2005-10-31 | 2007-05-09 | 株式会社东芝 | Ultrasonic probe and ultrasonic diagnostic apparatus |
CN101411625A (en) * | 2007-10-15 | 2009-04-22 | 深圳迈瑞生物医疗电子股份有限公司 | Method for modulating and transmitting ultrasonic system bipolar pulse |
CN101176674A (en) * | 2007-11-28 | 2008-05-14 | 深圳市蓝韵实业有限公司 | Transmitting module of ultrasonic diagnostic device |
JP2010017406A (en) * | 2008-07-11 | 2010-01-28 | Toshiba Corp | Ultrasonic diagnostic apparatus |
JP2010042048A (en) * | 2008-08-08 | 2010-02-25 | Aloka Co Ltd | Ultrasonic diagnostic system |
CN101601594A (en) * | 2009-07-08 | 2009-12-16 | 汕头市超声仪器研究所有限公司 | A kind of excitation device and excitation method of medical B supersonic front end |
Also Published As
Publication number | Publication date |
---|---|
CN102793566A (en) | 2012-11-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105283913B (en) | Delta related method thereof on ASIC for ultrasonic beam forming | |
CN101601594B (en) | Excitation method of medical B-ultrasound front-end excitation device | |
CN101642405B (en) | Ultrasonic blind guide method and portable ultrasonic blind guide device thereof | |
US20170343655A1 (en) | Ultrasonic imaging probe including composite aperture receiving array | |
CN104334088A (en) | Laser-induced ultrasonic wave apparatus and method | |
CN102813530A (en) | APparatus for driving two-dimensional transducer array, medical imaging system, and method of driving two-dimensional transducer array | |
CN109564279B (en) | Ultrasound system front-end circuit with pulser and linear amplifier for array transducer | |
JP2012095111A (en) | Ultrasonic probe apparatus and control method of the same | |
CN105662464A (en) | An Ultrasonic Fetal Heart Monitor and Its Digital Demodulation Method for Echo Signals | |
US20160183917A1 (en) | Ultrasound diagnostic apparatus | |
JP5019561B2 (en) | Ultrasonic probe and ultrasonic diagnostic apparatus | |
CN102793566B (en) | System and method for generating acoustic radiation force | |
JP2019013671A (en) | Ultrasound diagnostic device, transmission condition setting method, and program | |
US20050096545A1 (en) | Methods and apparatus for transducer probe | |
CN202637748U (en) | Focusing device | |
JP6251030B2 (en) | Ultrasonic probe and ultrasonic diagnostic apparatus | |
JP2007117668A (en) | Ultrasonic probe and ultrasonographic apparatus | |
CN105842347B (en) | A Time Division Multiplexing High Power Phased Array Ultrasonic Signal Generator | |
Povshenko et al. | Portable ultrasound flaw detector | |
CN102247167A (en) | B-mode ultrasonic scanner with wireless probe and realization method thereof | |
CN102274043A (en) | Digitalized type-B ultrasonic probe | |
Clegg et al. | Using Heterogeneous Hardware for Simultaneous Diagnostic and Therapeutic Ultrasound | |
JP6318587B2 (en) | Ultrasonic diagnostic apparatus and control method of ultrasonic diagnostic apparatus | |
US20200138414A1 (en) | Operatively adaptive ultrasound imaging system | |
JP2000279408A (en) | Transmitting circuit and waveform generating method in ultrasonic wave diagnostic device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C41 | Transfer of patent application or patent right or utility model | ||
TR01 | Transfer of patent right |
Effective date of registration: 20160129 Address after: 102200, Beijing Changping District science and Technology Park, super Road, No. 37 Patentee after: Lepu (Beijing) Medical Equipment Co.,Ltd. Address before: 1068 No. 518055 Guangdong city in Shenzhen Province, Nanshan District City Xili University School Avenue Patentee before: Shenzhen Institutes of Advanced Technology, Chinese Academy of Science |