CN102788595A - Optical fiber gyroscope frequency characteristic elevating method and device based on Faraday effect - Google Patents
Optical fiber gyroscope frequency characteristic elevating method and device based on Faraday effect Download PDFInfo
- Publication number
- CN102788595A CN102788595A CN201210264008XA CN201210264008A CN102788595A CN 102788595 A CN102788595 A CN 102788595A CN 201210264008X A CN201210264008X A CN 201210264008XA CN 201210264008 A CN201210264008 A CN 201210264008A CN 102788595 A CN102788595 A CN 102788595A
- Authority
- CN
- China
- Prior art keywords
- signal
- polarized light
- circuit
- fiber
- conversion circuit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000000694 effects Effects 0.000 title claims abstract description 43
- 239000013307 optical fiber Substances 0.000 title claims abstract description 12
- 238000000034 method Methods 0.000 title claims description 10
- 230000003028 elevating effect Effects 0.000 title 1
- 239000000835 fiber Substances 0.000 claims abstract description 117
- 238000006243 chemical reaction Methods 0.000 claims abstract description 62
- 238000012545 processing Methods 0.000 claims abstract description 35
- 230000003287 optical effect Effects 0.000 claims abstract description 32
- 230000010287 polarization Effects 0.000 claims abstract description 29
- 238000011156 evaluation Methods 0.000 claims abstract description 25
- 230000005284 excitation Effects 0.000 claims abstract description 23
- 238000012360 testing method Methods 0.000 claims abstract description 11
- 238000001514 detection method Methods 0.000 claims abstract description 10
- 238000003199 nucleic acid amplification method Methods 0.000 claims description 15
- 230000003321 amplification Effects 0.000 claims description 14
- 238000005070 sampling Methods 0.000 claims description 9
- 238000004804 winding Methods 0.000 claims description 8
- 238000005259 measurement Methods 0.000 claims description 6
- 238000013139 quantization Methods 0.000 claims description 5
- 230000001105 regulatory effect Effects 0.000 claims 1
- 230000008859 change Effects 0.000 description 7
- 230000004044 response Effects 0.000 description 6
- 238000004088 simulation Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 230000007613 environmental effect Effects 0.000 description 4
- 238000011160 research Methods 0.000 description 4
- 238000011161 development Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000010998 test method Methods 0.000 description 2
- 238000012795 verification Methods 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 239000000306 component Substances 0.000 description 1
- 239000008358 core component Substances 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Images
Landscapes
- Gyroscopes (AREA)
Abstract
本发明公开了一种基于Faraday效应的光纤陀螺频率特性评估装置,激励电流源包括信号发生器、转换放大电路和电流线圈。敏感光路包括光源、环形器、Y波导相位调制器、偏振分束器、保偏光纤环、λ/4波片、传感光纤、反射镜和探测器;模拟光纤陀螺信号处理检测电路包括前置放大电路、A/D转换电路、数字信号处理单元、第一D/A转换电路、第二D/A转换电路和锁相放大器;本发明应用的Faraday效应是采用正弦电流激励敏感光路产生,其中作为激励信号的正弦信号可以实现高频率输出,解决了光纤陀螺的频率特性测试的激励信号输出频率有限的问题,所以可以实现高带宽的评估。
The invention discloses an optical fiber gyroscope frequency characteristic evaluation device based on the Faraday effect. The excitation current source includes a signal generator, a conversion amplifier circuit and a current coil. Sensitive optical path includes light source, circulator, Y waveguide phase modulator, polarization beam splitter, polarization maintaining fiber ring, λ/4 wave plate, sensing fiber, mirror and detector; analog fiber optic gyroscope signal processing detection circuit includes pre- Amplifying circuit, A/D conversion circuit, digital signal processing unit, the first D/A conversion circuit, the second D/A conversion circuit and lock-in amplifier; The Faraday effect that the present invention applies is to adopt sinusoidal current to excite sensitive optical circuit to produce, wherein The sinusoidal signal used as the excitation signal can achieve high-frequency output, which solves the problem of limited output frequency of the excitation signal for the frequency characteristic test of the fiber optic gyroscope, so it can realize high-bandwidth evaluation.
Description
技术领域 technical field
本发明涉及一种基于Faraday效应的光纤陀螺频率特性评估方法与装置,属于惯性技术领域。The invention relates to a method and device for evaluating the frequency characteristics of an optical fiber gyroscope based on the Faraday effect, and belongs to the technical field of inertia.
背景技术 Background technique
光纤陀螺是随着光纤技术迅速发展而出现的一种新型光纤旋转传感器,由于它的相位调制传感方式具有极高灵敏度以及精巧和高机械强度的实用性将成为航天、航空、航海等诸多领域中最具有发展前景的惯性部件,作为一种重要的惯性传感器,测量运载体的角速度,是构成惯性系统的核心器件,相当程度上决定了整个惯性系统的性能。Fiber optic gyro is a new type of fiber optic rotation sensor that has emerged with the rapid development of fiber optic technology. Because of its phase modulation sensing method with extremely high sensitivity, compactness and high mechanical strength, it will become a popular choice in many fields such as aerospace, aviation, and navigation. The most promising inertial component, as an important inertial sensor, measures the angular velocity of the carrier and is the core component of the inertial system, which determines the performance of the entire inertial system to a considerable extent.
光纤陀螺是基于Sagnac效应的新型角速度传感器,具有无转动部件的全固态结构、动态范围大、带宽大、功耗低、抗冲击振动、体积小、无启动过程、寿命长等突出优点。Fiber optic gyro is a new type of angular velocity sensor based on the Sagnac effect. It has the advantages of an all-solid-state structure without rotating parts, large dynamic range, large bandwidth, low power consumption, shock resistance, small size, no startup process, and long life.
随着中低精度光纤陀螺这些年的成功应用和光学器件性能的提高,研制用于惯性导航系统的高精度光纤陀螺成为一个发展趋势。光纤陀螺的测试方法在一定程度上制约着光纤陀螺精度的提高。光纤陀螺的动态特性是表征其可靠性和环境适应性的重要性能指标,它的好坏直接决定了陀螺的应用范围,其中,频率特性分析是动态特性的重要部分。With the successful application of medium and low-precision fiber optic gyroscopes in recent years and the improvement of the performance of optical devices, the development of high-precision fiber optic gyroscopes for inertial navigation systems has become a development trend. The testing method of fiber optic gyroscope restricts the improvement of the accuracy of fiber optic gyroscope to a certain extent. The dynamic characteristics of the fiber optic gyroscope is an important performance index to characterize its reliability and environmental adaptability. Its quality directly determines the application range of the gyroscope. Among them, the frequency characteristic analysis is an important part of the dynamic characteristics.
数字闭环光纤陀螺是中高精度光纤陀螺的主要方案,代表着国际国内的研究方向。为了提高光纤陀螺的可靠性和环境适应性,提高闭环的跟踪特性,光纤陀螺的研究人员一直努力通过改善闭环反馈的控制算法来提高动态特性,反应改善动态特性的一个指标是频率特性增强即带宽增大。Digital closed-loop fiber optic gyroscope is the main solution of medium and high precision fiber optic gyroscope, which represents the research direction at home and abroad. In order to improve the reliability and environmental adaptability of the fiber optic gyroscope and improve the tracking characteristics of the closed loop, the researchers of the fiber optic gyroscope have been working hard to improve the dynamic characteristics by improving the control algorithm of the closed loop feedback. increase.
传统的光纤陀螺动态特性测试方法是采用突停台和角振动台等机械设备分别测量陀螺的阶跃响应曲线和频率响应曲线。采用角振动台测试陀螺带宽时,角振动台以正弦交变的角速率运动,它能提供不同频率、不同幅度的角速率。光纤陀螺承受不同频率的正弦信号输入,记录相应的输入角振动幅值及相位,测量光纤陀螺输出信号的幅度和相位,便可获得光纤陀螺的频率特性。The traditional test method of dynamic characteristics of fiber optic gyroscope is to measure the step response curve and frequency response curve of the gyroscope with mechanical equipment such as sudden stop table and angular vibration table. When the angular vibration table is used to test the bandwidth of the gyroscope, the angular vibration table moves at a sinusoidal alternating angular rate, which can provide angular rates of different frequencies and amplitudes. The fiber optic gyroscope accepts sinusoidal signal input of different frequencies, records the corresponding input angular vibration amplitude and phase, and measures the amplitude and phase of the fiber optic gyroscope output signal to obtain the frequency characteristics of the fiber optic gyroscope.
由于一般角振动台是针对机械陀螺而设计的,输出角振动频率一般的仅有200Hz到300Hz左右,目前国内最为先进的角振动台的最大工作频率范围只能达到500Hz,但光纤陀螺的带宽远远超过500Hz,远不能满足数字闭环光纤陀螺动态特性测试的要求。Since the general angular vibration table is designed for mechanical gyroscopes, the output angular vibration frequency is generally only about 200Hz to 300Hz. At present, the maximum operating frequency range of the most advanced angular vibration table in China can only reach 500Hz, but the bandwidth of the fiber optic gyroscope is far away. Far more than 500Hz, far from meeting the requirements of digital closed-loop fiber optic gyroscope dynamic characteristics test.
半实物仿真测试方案都是在光纤陀螺的光纤环上添加扰动信号,利用两束相向传播的光经过扰动处得时间不同,差别一个延迟时间τ,从而产生相位差,代替了输入角速度引起的Sagnac相位差,改变扰动信号的频率进而测出频率特性。The hardware-in-the-loop simulation test scheme is to add a disturbance signal to the fiber optic ring of the fiber optic gyroscope, and use the time difference between the two beams of counter-propagating light to pass through the disturbance, and the difference is a delay time τ, thereby generating a phase difference, which replaces the Sagnac caused by the input angular velocity. Phase difference, change the frequency of the disturbance signal and then measure the frequency characteristics.
其中以下是具体的实现方案:The following are specific implementation plans:
利用PZT施加调制信号实现频率特性评估方案:根据光纤陀螺的工作原理,在陀螺光纤环中引入一个PZT元件,通过给PZT施加一定频率的正弦调制来模拟一个正弦变化的角速率,从而测得光纤陀螺的幅频响应曲线,进而确定其带宽。其结构原理图如图1所示。闭环光纤陀螺的工作原理:由SLD光源发出的光经过一个耦合器后由起偏器起偏,变为线偏振光进入Y波导相位调制器,在相位调制器处受到相位调制。经过光纤环的两束光发生干涉,最后,携带相位信息的光由耦合器进入Pin探测器。前置放大电路对PIN/FET输出的待测电压信号进行放大滤波后的模拟信号进入A/D转换电路进行离散、量化,转换成数字信号,以输入数字信号处理单元进行解调运算,信号处理单元把解调结果累加形成阶梯波的同时,输出一个方波信号叠加在数字阶梯波上,叠加信号经过D/A转换后施加在Y波导相位调制器上实现闭环反馈和调制。Using PZT to apply modulation signal to realize frequency characteristic evaluation scheme: According to the working principle of fiber optic gyro, a PZT element is introduced into the gyro fiber optic ring, and a sinusoidal angular rate is simulated by applying a sinusoidal modulation of a certain frequency to the PZT, so as to measure the optical fiber The amplitude-frequency response curve of the gyro determines its bandwidth. Its structure principle diagram like
根据以上闭环光纤陀螺的工作原理,在陀螺光纤环中引入一个PZT元件,通过给PZT施加一定频率的正弦电压信号从而实现正弦调制来模拟一个正弦变化的角速率,从而测得光纤陀螺的幅频响应曲线,进而确定其带宽。According to the working principle of the above closed-loop fiber optic gyroscope, a PZT element is introduced into the fiber optic ring of the gyroscope, and a sinusoidal modulation is realized by applying a sinusoidal voltage signal of a certain frequency to the PZT to simulate a sinusoidally changing angular rate, thereby measuring the amplitude and frequency of the fiber optic gyroscope response curve to determine its bandwidth.
通过集成光学调制器实现数字化动态测试方法测得带宽方案:利用光纤陀螺闭环检测的原理,在反馈阶梯波上迭加所需的信号,用阶梯波引起的两束光之间的相位差来代替输入角速度引起的Sagnac相位差。其先后提出了在反馈阶梯波上添加阶跃信号、正弦信号、伪随机信号作为外部信号3种方案。另外,在反馈阶梯波上添加伪随机信号作为外部信号再用相关识别方法,将数字闭环输出经过小波滤波后的信号与伪随机信号进行相关运算后得到陀螺闭环回路的脉冲响应,再通过傅里叶变换得到陀螺的幅频特性和相频特性。结构如图2所示。闭环光纤陀螺的工作原理:由SLD光源发出的光经过一个耦合器后由起偏器起偏,变为线偏振光进入Y波导相位调制器,在相位调制器处受到相位调制。经过光纤环的两束光发生干涉,最后,携带相位信息的光由耦合器进入Pin探测器。前置放大电路对PIN/FET输出的待测电压信号进行放大滤波后的模拟信号进入A/D转换电路进行离散、量化,转换成数字信号,以输入数字信号处理单元进行解调运算,信号处理单元把解调结果累加形成阶梯波的同时,输出一个方波信号叠加在数字阶梯波上,叠加信号经过D/A转换后施加在Y波导相位调制器上实现闭环反馈和调制。Through the integrated optical modulator to realize the digital dynamic test method to measure the bandwidth scheme: using the principle of fiber optic gyroscope closed-loop detection, superimpose the required signal on the feedback ladder wave, and replace it with the phase difference between the two beams of light caused by the ladder wave Enter the Sagnac phase difference caused by the angular velocity. It has successively proposed three schemes of adding step signal, sinusoidal signal, and pseudo-random signal as external signals on the feedback ladder wave. In addition, a pseudo-random signal is added to the feedback ladder wave as an external signal, and then the correlation identification method is used to correlate the digital closed-loop output signal after wavelet filtering with the pseudo-random signal to obtain the impulse response of the gyroscope closed-loop loop, and then through Fourier The amplitude-frequency characteristics and phase-frequency characteristics of the gyroscope are obtained through leaf transformation. The structure is shown in Figure 2. The working principle of the closed-loop fiber optic gyroscope: the light emitted by the SLD light source is polarized by the polarizer after passing through a coupler, becomes linearly polarized light and enters the Y-waveguide phase modulator, where it is phase-modulated. The two beams of light passing through the fiber ring interfere, and finally, the light carrying phase information enters the Pin detector through the coupler. The preamplifier circuit amplifies and filters the voltage signal to be measured output by the PIN/FET, and the analog signal enters the A/D conversion circuit for discrete and quantization, and converts it into a digital signal, which is input to the digital signal processing unit for demodulation operation, signal processing When the unit accumulates the demodulation results to form a ladder wave, it outputs a square wave signal superimposed on the digital ladder wave, and the superimposed signal is applied to the Y waveguide phase modulator after D/A conversion to realize closed-loop feedback and modulation.
根据以上闭环光纤陀螺的工作原理,通过在光纤陀螺反馈阶梯波上叠加正弦信号用于等效外部输入角速度,对陀螺解调输出信号按照幅值进行判断得到陀螺带宽。According to the working principle of the closed-loop fiber optic gyroscope above, the gyroscope bandwidth is obtained by judging the gyroscope demodulation output signal according to the amplitude by superimposing the sinusoidal signal on the fiber optic gyroscope feedback ladder wave for equivalent external input angular velocity.
半实物仿真测试方案关键就是两束相向传播的光经过扰动处得时间差值为延迟时间τ,但是延迟时间τ一般很小,只有μs量级的,在测量低频时,添加的外加信号频率小,变化比较慢,在μs量级的时间内变化不明显,由于光纤陀螺光路的互易性,导致低频时的扰动对相位变化不明显,只能靠增大扰动的幅值来改善,所以在低频段不易等效输入测量频率特性。The key to the hardware-in-the-loop simulation test scheme is that the time difference between two beams of counter-propagating light passing through the disturbance is the delay time τ, but the delay time τ is generally very small, only on the order of μs. When measuring low frequencies, the added external signal frequency is small , the change is relatively slow, and the change is not obvious within the time of μs. Due to the reciprocity of the optical fiber gyro optical path, the disturbance at low frequencies has no obvious change in the phase, which can only be improved by increasing the amplitude of the disturbance. Therefore, in It is not easy to measure the frequency characteristics of the equivalent input in the low frequency band.
发明内容 Contents of the invention
本发明的目的是为了解决上述问题,提出一种基于Faraday效应的光纤陀螺频率特性评估装置与方法,本装置可以测量光纤陀螺的全带宽内的频率特性,为光纤陀螺闭环控制的研究提供验证手段。另外,可以得出已定型产品的光纤陀螺的闭环带宽,为光纤陀螺环境适应性的适用范围提供依据。The purpose of the present invention is to solve the above problems, and propose a device and method for evaluating the frequency characteristics of a fiber optic gyroscope based on the Faraday effect. This device can measure the frequency characteristics in the full bandwidth of the fiber optic gyroscope, and provide verification means for the research on the closed-loop control of the fiber optic gyroscope. . In addition, the closed-loop bandwidth of the fiber optic gyroscope that has been finalized can be obtained, which provides a basis for the scope of application of the fiber optic gyroscope's environmental adaptability.
一种基于Faraday效应的光纤陀螺频率特性评估装置,包括激励电流源、敏感光路和模拟光纤陀螺信号处理检测电路;A device for evaluating the frequency characteristics of a fiber optic gyroscope based on the Faraday effect, including an excitation current source, a sensitive optical path, and an analog fiber optic gyroscope signal processing and detection circuit;
激励电流源包括信号发生器、转换放大电路和电流线圈;信号发生器生成交变电流信号,交变电流信号输出至转换放大电路,转换放大电路对交变电流信号进行交流放大,然后将交变电流输出至电流线圈,电流线圈缠绕在敏感光路的传感光纤上,电流线圈中通入交变电流,产生的磁场使敏感光路中的传感光纤感应Faraday效应,实现了信号由激励电流源传递到敏感光路中;转换放大电路输出的交变电流经过一个采样电阻后,得到采样电压,将采样电压输出至锁相放大器的参考端口;The excitation current source includes a signal generator, a conversion amplifier circuit and a current coil; the signal generator generates an alternating current signal, and the alternating current signal is output to the conversion amplifier circuit, and the conversion amplifier circuit performs AC amplification on the alternating current signal, and then converts the alternating current signal to The current is output to the current coil, and the current coil is wound on the sensing fiber of the sensitive optical path. The alternating current is passed through the current coil, and the generated magnetic field causes the sensing fiber in the sensitive optical path to induce the Faraday effect, and the signal is transmitted by the excitation current source. into the sensitive optical path; after the alternating current output by the conversion amplifier circuit passes through a sampling resistor, a sampling voltage is obtained, and the sampling voltage is output to the reference port of the lock-in amplifier;
敏感光路包括光源、环形器、Y波导相位调制器、偏振分束器、保偏光纤环、λ/4波片、传感光纤、反射镜和探测器;光源发出光,光经过环形器后,进入Y波导相位调制器,在Y波导相位调制器处起偏为线偏振光然后受到相位调制,调制后的偏振光输出至偏振分束器,偏振光由偏振分束器的两个尾纤耦合后,注入保偏光纤环,偏振光分别沿保偏光纤环的X轴和Y轴传输,进入λ/ 4波片后,在λ/4波片中,偏振光分别变为左旋和右旋的圆偏振光,并进入传感光纤,两束圆偏振光的相位发生变化(F=2VNI),其中,F为Faraday效应相位差,V为Verdet常数,N为缠绕导线的匝数,I为电流大小。两束圆偏振光以不同的速度传输,输出至反射镜,在反射镜的镜面处反射后,两束圆偏振光的偏振模式互换,再次穿过传感光纤,使两束圆偏振光产生的相位加倍(2F=4VNI);两束圆偏振光再次通过λ/4波片后,恢复为线偏振光,然后两束线偏振光发生干涉;携带相位信息的光由环形器进入探测器,探测器实现由光信号转换为电压信号输出至前置放大电路;Sensitive optical path includes light source, circulator, Y waveguide phase modulator, polarization beam splitter, polarization maintaining fiber ring, λ/4 wave plate, sensing fiber, mirror and detector; Entering the Y-waveguide phase modulator, polarized into linearly polarized light at the Y-waveguide phase modulator and then subjected to phase modulation, the modulated polarized light is output to the polarization beam splitter, and the polarized light is coupled by two pigtails of the polarization beam splitter Finally, it is injected into the polarization-maintaining fiber ring, and the polarized light is transmitted along the X-axis and Y-axis of the polarization-maintaining fiber ring respectively. After entering the λ/4 wave plate, in the λ/4 wave plate, the polarized light becomes left-handed and right-handed respectively. When the circularly polarized light enters the sensing fiber, the phase of the two circularly polarized lights changes (F=2VNI), where F is the Faraday effect phase difference, V is the Verdet constant, N is the number of turns of the winding wire, and I is the current size. The two beams of circularly polarized light are transmitted at different speeds and output to the reflector. After being reflected at the mirror surface of the mirror, the polarization modes of the two beams of circularly polarized light are exchanged, and then pass through the sensing fiber again, so that the two beams of circularly polarized light generate Phase doubled (2F=4VNI); the two beams of circularly polarized light pass through the λ/4 wave plate again, and then return to linearly polarized light, and then the two beams of linearly polarized light interfere; the light carrying phase information enters the detector from the circulator, The detector converts the optical signal into a voltage signal and outputs it to the preamplifier circuit;
模拟光纤陀螺信号处理检测电路包括前置放大电路、A/D转换电路、数字信号处理单元、第一D/A转换电路、第二D/A转换电路和锁相放大器;前置放大电路对探测器输出的待测电压信号进行放大滤波,然后输出至A/D转换电路,A/D转换电路对模拟的待测电压信号进行离散、量化,转换成数字待测电压信号,输出至数字信号处理单元,数字信号处理单元对两个相邻的延迟时间内的数字信号进行相减进行解调,把解调结果进行累加想成阶梯波,同时,在阶梯波上叠加方波信号,得到叠加信号,将叠加信号输入第一D/A转换电路,第一D/A转换电路将数字的叠加信号转换为模拟的叠加信号,输出至Y波导相位调制器,实现闭环反馈和调制,同时,数字信号处理单元还将解调的结果输出至第二D/A转换电路,第二D/A转换电路将数字解调结果转换为模拟解调结果,输出至锁相放大器的信号通道端口进行测量,锁相放大器测量幅值与相位差大小,实现了频率特性评估。The analog fiber optic gyroscope signal processing and detection circuit includes a preamplifier circuit, an A/D conversion circuit, a digital signal processing unit, a first D/A conversion circuit, a second D/A conversion circuit and a lock-in amplifier; the preamplifier circuit is capable of detecting The voltage signal to be measured output by the device is amplified and filtered, and then output to the A/D conversion circuit. The A/D conversion circuit discretizes and quantifies the analog voltage signal to be measured, converts it into a digital voltage signal to be measured, and outputs it to the digital signal processing Unit, the digital signal processing unit subtracts the digital signals in two adjacent delay times for demodulation, and accumulates the demodulation results as a ladder wave, and at the same time, superimposes a square wave signal on the ladder wave to obtain a superimposed signal , the superimposed signal is input into the first D/A conversion circuit, and the first D/A conversion circuit converts the digital superimposed signal into an analog superimposed signal, and outputs it to the Y waveguide phase modulator to realize closed-loop feedback and Modulation, at the same time, the digital signal processing unit also outputs the demodulation result to the second D/A conversion circuit, and the second D/A conversion circuit converts the digital demodulation result into an analog demodulation result, and outputs the signal to the lock-in amplifier The channel port is used for measurement, and the lock-in amplifier measures the amplitude and phase difference to realize frequency characteristic evaluation.
一种基于Faraday效应的光纤陀螺频率特性评估方法,包括以下几个步骤:A method for evaluating the frequency characteristics of an optical fiber gyroscope based on the Faraday effect, comprising the following steps:
步骤一:由光源发出的光经过一个环形器后进入Y波导相位调制器,在Y波导相位调制器处调制为线偏振光受到相位调制;偏振光由偏振分束器的两个尾纤耦合后注入保偏光纤环,分别沿保偏光纤的X轴和Y轴传输,经过λ/4波片后,分别变为左旋和右旋的圆偏振光,并进入传感光纤;由于激励交变电流产生磁场,在传感光纤中产生Faraday磁光效应,使这两束圆偏振光的相位发生变化,(F=2VNI,其中,F为Faraday效应相位差,V为Verdet常数,N为缠绕导线的匝数,I为电流大小,)两束圆偏振光以不同的速度传输,在反射镜处反射后,两束圆偏振光的偏振模式互换,再次穿过传感光纤,并经历Faraday效应使两束光产生的相位加倍,2F=4VNI,两束光再次通过λ/4波片后,恢复为线偏振光,然后两束线偏振光发生干涉;最后,携带相位信息的光由环形器进入探测器,返回探测器的光只携带了由于Faraday效应产生的非互易相位差;Step 1: The light emitted by the light source enters the Y-waveguide phase modulator after passing through a circulator, and is modulated into linearly polarized light at the Y-waveguide phase modulator to be phase-modulated; the polarized light is coupled by two pigtails of the polarization beam splitter Inject into the polarization-maintaining fiber ring, transmit along the X-axis and Y-axis of the polarization-maintaining fiber respectively, after passing through the λ/4 wave plate, they become left-handed and right-handed circularly polarized light respectively, and enter the sensing fiber; due to the exciting alternating current A magnetic field is generated, and the Faraday magneto-optical effect is generated in the sensing fiber, so that the phase of the two circularly polarized lights changes, (F=2VNI, where F is the Faraday effect phase difference, V is the Verdet constant, and N is the winding wire The number of turns, I is the magnitude of the current, two beams of circularly polarized light are transmitted at different speeds, after being reflected at the mirror, the polarization modes of the two beams of circularly polarized light are exchanged, and then pass through the sensing fiber again, and experience the Faraday effect to make The phase of the two beams of light is doubled, 2F=4VNI, after the two beams of light pass through the λ/4 wave plate again, they return to linearly polarized light, and then the two beams of linearly polarized light interfere; finally, the light carrying the phase information enters through the circulator Detector, the light returning to the detector only carries the non-reciprocal phase difference due to the Faraday effect;
步骤二:前置放大电路对光电探测器输出的待测电压信号进行放大滤波后的模拟信号进入A/D转换电路进行离散、量化,转换成数字信号,以输入数字信号处理单元进行解调运算,信号处理单元把解调结果累加形成阶梯波的同时,输出一个方波信号叠加在数字阶梯波上,叠加信号经过第一D/A转换电路转换后施加在Y波导相位调制器上实现闭环反馈和±π/2调制;同时,信号处理单元把解调结果输出经过第二D/A转换电路转换后输出,进入锁相放大器的信号通道端口进行测量;利用锁相放大器测量信号幅值与相位差的大小,改变激励电流信号的频率进而实现了频率特性评估。Step 2: The pre-amplification circuit amplifies and filters the voltage signal to be measured output by the photodetector, and the analog signal enters the A/D conversion circuit for discrete and quantization, and converts it into a digital signal, which is input to the digital signal processing unit for demodulation operation , the signal processing unit accumulates the demodulation results to form a staircase wave, and at the same time outputs a square wave signal superimposed on the digital staircase wave, and the superimposed signal is converted by the first D/A conversion circuit and applied to the Y waveguide phase modulator to realize closed-loop feedback and ±π/2 modulation; at the same time, the signal processing unit outputs the output of the demodulation result after conversion by the second D/A conversion circuit, and enters the signal channel port of the lock-in amplifier for measurement; uses the lock-in amplifier to measure the signal amplitude and phase The size of the difference, changing the frequency of the excitation current signal to achieve frequency characteristic evaluation.
本发明的优点在于:The advantages of the present invention are:
(1)本发明应用的Faraday效应是采用正弦电流激励敏感光路产生,其中作为激励信号的正弦信号可以实现高频率输出,解决了光纤陀螺的频率特性测试的激励信号输出频率有限的问题,所以可以实现高带宽的评估;(1) The Faraday effect applied in the present invention is generated by using a sinusoidal current to excite the sensitive optical path, wherein the sinusoidal signal as the excitation signal can realize high-frequency output, which solves the problem that the output frequency of the excitation signal for the frequency characteristic test of the fiber optic gyroscope is limited, so it can be Enables high-bandwidth evaluation;
(2)本装置中采用的是对Faraday效应敏感的传感光路,能够更好的敏感电流产生Faraday效应,提高了敏感信号的信噪比;(2) This device uses a sensing optical path that is sensitive to the Faraday effect, which can better generate the Faraday effect for sensitive currents and improve the signal-to-noise ratio of sensitive signals;
(3)本装置的电路是模拟了光纤陀螺的信号检测电路,可以通过调节装置内的前向增益与反馈增益来模拟光纤陀螺,从而实现频率特性的准确评估;(3) The circuit of this device simulates the signal detection circuit of the fiber optic gyroscope, which can simulate the fiber optic gyroscope by adjusting the forward gain and feedback gain in the device, so as to realize the accurate evaluation of the frequency characteristics;
(4)本装置内安装了4个不同长度的光纤环,只要通过跳线即可连接上光纤环,这样就可以来评估不同长度光纤环的光纤陀螺频率特性,增加了本评估装置的适用性;(4) Four fiber optic rings of different lengths are installed in the device, and the fiber rings can be connected by jumpers, so that the frequency characteristics of fiber optic gyroscopes with different lengths of fiber rings can be evaluated, which increases the applicability of the evaluation device ;
(5)本装置的评估方法是采用锁相放大器,能够准确评估光纤陀螺的带宽。(5) The evaluation method of this device is a lock-in amplifier, which can accurately evaluate the bandwidth of the fiber optic gyroscope.
附图说明 Description of drawings
图1是背景技术中利用PZT的半实物仿真原理图;Fig. 1 is the semi-physical simulation schematic diagram utilizing PZT in the background technology;
图2是背景技术中利用集成光学调制器的半实物仿真原理图;Fig. 2 is the schematic diagram of the hardware-in-the-loop simulation utilizing the integrated optical modulator in the background technology;
图3是本发明的结构示意图。Fig. 3 is a structural schematic diagram of the present invention.
图中:In the picture:
1-激励电流源 2-敏感光路 3-模拟光纤陀螺信号处理检测电路1-Excitation current source 2-Sensitive optical path 3-Analog fiber optic gyroscope signal processing detection circuit
101-信号发生器 102-转换放大电路 103-电流线圈101-Signal Generator 102-Converting and Amplifying Circuit 103-Current Coil
201-SLD光源 202-环形器201-SLD light source 202-Circulator
204-Y波导相位调制器 205-偏振分束器 206-保偏光纤环204-Y waveguide phase modulator 205-Polarization beam splitter 206-Polarization maintaining fiber ring
207-λ/4波片 208-传感光纤 209-反射镜207-λ/4 wave plate 208-Sensing fiber 209-Reflector
210-探测器210-Detector
301-前置放大电路 302-A/D转换电路 303-数字信号处理单元301-Pre-amplification circuit 302-A/D conversion circuit 303-Digital signal processing unit
304-第一D/A转换电路 305-第二D/A转换电路 306-锁相放大器304-First D/A conversion circuit 305-Second D/A conversion circuit 306-Lock-in amplifier
具体实施方式 Detailed ways
下面将结合附图和实施例对本发明作进一步的详细说明。The present invention will be further described in detail with reference to the accompanying drawings and embodiments.
本发明是一种基于Faraday效应的光纤陀螺频率特性评估装置,如图3所示,包括激励电流源1、敏感光路2和模拟光纤陀螺信号处理检测电路3。The present invention is a Faraday effect-based fiber optic gyroscope frequency characteristic evaluation device, as shown in FIG.
激励电流源1为本装置提供激励信号,通过改变激励信号的频率实现扫频,完成频率特性的评估。激励电流源1包括信号发生器101、转换放大电路102和电流线圈103。The excitation
激励电流源1是采用三极管交流转换放大。放大基本原理是:在输入信号为0时,放大电路在工作在放大状态,并且有合适的直流工作点。当有交流信号加入放大电路后,引起基极电流在原来直流的基础上做相应的变化,基极电流变化使得集电极电流随之成β(β为交流放大倍数)的变化,实现电流的放大。为了满足以上交流大电流输出和长时间工作的要求,并且消除交越失真,采用双电源互补对称的推挽式三极管对管放大的形式,实现推挽式的两个三极管分别在正弦信号的正负周期内放大,解决了交越失真的问题。The excitation
信号发生器101生成交变电流信号,交变电流信号的频率能够通过信号发生器101调节,交变电流信号输出至转换放大电路102,转换放大电路102对交变电流信号进行交流放大,然后将交变电流输出至电流线圈103,电流线圈103缠绕在敏感光路2的传感光纤208上,电流线圈103中通入交变电流,产生的磁场使敏感光路2中的传感光纤208感应Faraday效应,实现了信号由激励电流源传递到敏感光路中。转换放大电路102输出的交变电流经过一个采样电阻后,得到采样电压,将采样电压输出至锁相放大器305的参考端口。The
敏感光路2包括SLD光源201、环形器202、Y波导相位调制器204、偏振分束器205、保偏光纤环206、λ/4波片207、传感光纤208、反射镜209、探测器210。Sensitive optical path 2 includes SLD
SLD光源201发出光,光经过一个单模环形器202后,进入Y波导相位调制器204,在Y波导相位调制器204处起偏为线偏振光后受到相位调制,调制后的偏振光输出至偏振分束器205,偏振光由偏振分束器205的两个尾纤耦合后,注入保偏光纤环206,偏振光分别沿保偏光纤环206的X轴和Y轴传输,进入λ/4波片207后,在λ/4波片207中,偏振光分别变为左旋和右旋的圆偏振光,并进入传感光纤208,由于激励交变电流产生磁场,在传感光纤208中产生Faraday磁光效应,使这两束圆偏振光的相位发生变化(F=2VNI,其中,F为Faraday效应相位差,V为Verdet常数,N为缠绕导线的匝数,I为电流大小),两束圆偏振光以不同的速度传输,输出至反射镜209,在反射镜209的镜面处反射后,两束圆偏振光的偏振模式互换,再次穿过传感光纤208,并经历Faraday效应,使两束圆偏振光产生的相位加倍(2F=4VNI)。这两束圆偏振光再次通过λ/4波片207后,恢复为线偏振光,然后两束线偏振光发生干涉。最后,携带相位信息的光由单模环形器202进入探测器210,探测器210实现由光信号转换为电压信号输出至前置放大电路301,本发明通过光电探测器实现了信号由敏感光路2中传递到电路中。The SLD
所述的保偏光纤环206中设有4个不同长度的光纤环,分别为570m、350m、100m和200m,当需要使用其中一个长度的光线环时,将选中的光线环通过跳线分别与偏振分束器205、λ/4波片207连接,组成保偏光纤环206,这样就可以来评估不同长度光纤环的光纤陀螺频率特性,增加了本评估装置的适用性。The polarization-maintaining
模拟光纤陀螺信号处理检测电路3包括前置放大电路301、A/D转换电路302、数字信号处理单元303、第一D/A转换电路304、第二D/A转换电路305和锁相放大器306。The analog fiber optic gyroscope signal processing detection circuit 3 includes a
前置放大电路301对探测器210输出的待测电压信号进行放大滤波,然后输出至A/D转换电路302,A/D转换电路302对模拟的待测电压信号进行离散、量化,转换成数字待测电压信号,输出至数字信号处理单元303,数字信号处理单元303对两个相邻的延迟时间内的数字信号进行相减进行解调,把解调结果进行累加想成阶梯波,同时,在阶梯波上叠加方波信号,得到叠加信号,将叠加信号输入第一D/A转换电路304,第一D/A转换电路304将数字的叠加信号转换为模拟的叠加信号,输出至Y波导相位调制器204,实现闭环反馈和调制,同时,数字信号处理单元303还将解调的结果输出至第二D/A转换电路305,第二D/A转换电路305将数字解调结果转换为模拟解调结果,输出至锁相放大器306的信号通道端口进行测量,锁相放大器306测量幅值与相位差大小,进而实现了频率特性评估。The
激励电流源1与敏感光路2之间的连接是通过把线圈缠绕在传感光纤208上实现,在敏感光路2与模拟光纤陀螺信号处理的检测电路3的连接是通过光电探测器210实现的。The connection between the excitation
本发明是采用的频率可调的交流电流激励磁敏感光路产生Faraday效应,Faraday效应产生的相位差替代Sagnac效应的相位差,因为交流的正弦电流可以实现高频输出,通过检测Faraday效应的相位差就可以实现了低频和高频段内的频率特性评估测试,尤其是实现高频段的评估,即解决了传统方法评估频率有限的缺点和半实物仿真方案的在低频段的反应不明显的缺陷。The present invention adopts frequency-adjustable alternating current to excite the magnetosensitive optical circuit to generate Faraday effect, and the phase difference generated by Faraday effect replaces the phase difference of Sagnac effect, because the alternating sinusoidal current can realize high-frequency output, by detecting the phase difference of Faraday effect The frequency characteristics evaluation test in the low frequency and high frequency bands can be realized, especially the evaluation in the high frequency band, which solves the shortcomings of the traditional method of limited frequency evaluation and the insignificant response of the hardware-in-the-loop simulation scheme in the low frequency band.
本发明能够测量光纤陀螺的频率特性,也就能够测出陀螺的带宽。其意义:一、通过课题的研究,可以为光纤陀螺闭环控制算法的研究提供验证手段。二、通过对算法的评估测试,可以得出已定型产品的光纤陀螺的闭环带宽,为光纤陀螺环境适应性的适用范围提供依据。The invention can measure the frequency characteristic of the fiber optic gyroscope, and also can measure the bandwidth of the gyroscope. Its significance: 1. Through the research of the project, it can provide verification means for the research of the closed-loop control algorithm of the fiber optic gyroscope. 2. Through the evaluation and testing of the algorithm, the closed-loop bandwidth of the fiber optic gyroscope that has been finalized can be obtained, which provides a basis for the scope of application of the fiber optic gyroscope's environmental adaptability.
本发明是一种基于Faraday效应的光纤陀螺频率特性评估方法,包括以下几个步骤:The present invention is a kind of fiber optic gyroscope frequency characteristic evaluation method based on Faraday effect, comprises the following several steps:
步骤一:由SLD光源1发出的光经过一个单模环形器202后由光纤起偏器203起偏,变为线偏振光进入Y波导相位调制器204,在Y波导相位调制器204处受到相位调制。偏振光由偏振分束器205的两个尾纤耦合后注入保偏光纤环206,分别沿保偏光纤的X轴和Y轴传输,经过λ/4波片207后,分别变为左旋和右旋的圆偏振光,并进入传感光纤208。由于激励交变电流产生磁场,在传感光纤208中产生Faraday磁光效应,使这两束圆偏振光的相位发生变化(F=2VNI,其中,F为Faraday效应相位差,V为Verdet常数,N为缠绕导线的匝数,I为电流大小)并以不同的速度传输,在反射镜209处反射后,两束圆偏振光的偏振模式互换,再次穿过传感光纤208,并经历Faraday效应使两束光产生的相位加倍(2F=4VNI,其中,F为Faraday效应相位差,V为Verdet常数,N为缠绕导线的匝数,I为电流大小)。这两束光再次通过λ/4波片207后,恢复为线偏振光,然后两束线偏振光发生干涉。最后,携带相位信息的光由单模环形器202进入探测器210。由于发生干涉的两束光,在光路传输过程中,分别都经过了保偏光纤的X轴和Y轴和传感光纤的左旋和右旋模式,只在时间上略有差别,因此返回探测器210的光只携带了由于Faraday效应产生的非互易相位差。Step 1: The light emitted by the SLD
步骤二:前置放大电路301对光电探测器210输出的待测电压信号进行放大滤波后的模拟信号进入A/D转换电路302进行离散、量化,转换成数字信号,以输入数字信号处理单元303进行解调运算,信号处理单元303把解调结果累加形成阶梯波的同时,输出一个方波信号叠加在数字阶梯波上,叠加信号经过第一D/A转换电路304转换后施加在Y波导相位调制器204上实现闭环反馈和±π/2调制。同时,信号处理单元303把解调结果输出经过第二D/A转换电路305转换后输出,进入锁相放大器306的测试端口进行测量。利用锁相放大器305测量信号幅值与相位差的大小,改变激励电流信号进而实现了频率特性评估。Step 2: The
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210264008XA CN102788595A (en) | 2012-07-27 | 2012-07-27 | Optical fiber gyroscope frequency characteristic elevating method and device based on Faraday effect |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210264008XA CN102788595A (en) | 2012-07-27 | 2012-07-27 | Optical fiber gyroscope frequency characteristic elevating method and device based on Faraday effect |
Publications (1)
Publication Number | Publication Date |
---|---|
CN102788595A true CN102788595A (en) | 2012-11-21 |
Family
ID=47154071
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201210264008XA Pending CN102788595A (en) | 2012-07-27 | 2012-07-27 | Optical fiber gyroscope frequency characteristic elevating method and device based on Faraday effect |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102788595A (en) |
Cited By (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103292976A (en) * | 2013-05-16 | 2013-09-11 | 北京航空航天大学 | Interferometry-based optical fiber Verdet constant measuring system |
CN103487065A (en) * | 2013-09-29 | 2014-01-01 | 浙江大学 | Program-controlled impact device for automatically measuring output delay time of fiber-optic gyroscope |
CN103868507A (en) * | 2014-03-17 | 2014-06-18 | 北京航空航天大学 | Tail fiber matching-based differential double-interference-type fiber optic gyroscope polarization nonreciprocal error suppression method |
CN103884358A (en) * | 2014-03-31 | 2014-06-25 | 北京控制工程研究所 | Digital closed-loop optical fiber gyroscope full-loop detection and simulation test system |
CN104457791A (en) * | 2014-11-27 | 2015-03-25 | 北京航天时代光电科技有限公司 | Method for measuring fiber-optic gyroscope bandwidth under static condition |
CN104535819A (en) * | 2015-01-09 | 2015-04-22 | 胡雨亭 | Polarization error restraining device and method for Y waveguide loop of optical current transformer |
CN104950266A (en) * | 2015-06-19 | 2015-09-30 | 北京航空航天大学 | Optical fiber magnetic field sensor |
CN104950169A (en) * | 2015-06-19 | 2015-09-30 | 浙江大学 | Method and system for measuring frequency characteristics of high-speed FOG (Fiber Optical Gyroscope) |
CN104964681A (en) * | 2015-07-16 | 2015-10-07 | 陕西华燕航空仪表有限公司 | Self-detecting circuit and self-detecting method for open-loop optical fiber gyroscope |
CN105467345A (en) * | 2015-12-22 | 2016-04-06 | 云南电网有限责任公司电力科学研究院 | Fiber current sensor frequency band width test method and system |
CN106441367A (en) * | 2016-10-25 | 2017-02-22 | 浙江大学 | Test method and device for feedback residual modulation phase of fiber-optic gyroscope |
CN106646183A (en) * | 2017-02-24 | 2017-05-10 | 北京世维通光智能科技有限公司 | SLD (superluminescent diode) light source test system |
CN107101805A (en) * | 2017-04-21 | 2017-08-29 | 北京航空航天大学 | Hollow polarization-maintaining photonic crystal fiber Verdet constant measuring apparatus and method |
CN107869997A (en) * | 2016-09-27 | 2018-04-03 | 北京计算机技术及应用研究所 | Light path commissioning device for optical fibre gyro |
CN109029412A (en) * | 2018-08-30 | 2018-12-18 | 衡阳市衡山科学城科技创新研究院有限公司 | A kind of optical fibre gyro closed feedback loop nonlinearity test method and system |
CN109211274A (en) * | 2018-09-30 | 2019-01-15 | 北京控制工程研究所 | A kind of autonomous verification method of optical fibre gyro detection circuit |
CN109391322A (en) * | 2018-12-14 | 2019-02-26 | 珠海任驰光电科技有限公司 | A kind of middle short fiber wire jumper length-measuring appliance and measurement method |
CN109443338A (en) * | 2018-12-04 | 2019-03-08 | 河北汉光重工有限责任公司 | A kind of closed-loop control system of miniature fiber gyro |
CN110927431A (en) * | 2019-12-12 | 2020-03-27 | 东南大学 | Closed-loop demodulation all-fiber current transformer and large-current waveform hopping problem solving method thereof |
CN110987014A (en) * | 2019-12-13 | 2020-04-10 | 西安航天精密机电研究所 | Signal interference detection method for optical fiber gyroscope signal processing circuit, storage medium and computer equipment |
CN112484752A (en) * | 2020-11-10 | 2021-03-12 | 广东工业大学 | Large-dynamic-range fiber optic gyroscope reflection characteristic testing device and method |
CN113917710A (en) * | 2021-10-18 | 2022-01-11 | 哈尔滨工程大学 | A tunable fiber-integrated polarization beam splitter |
CN114236210A (en) * | 2021-11-16 | 2022-03-25 | 北京航天时代光电科技有限公司 | Modulation frequency self-adaption system and method for optical fiber current transformer |
CN114234954A (en) * | 2022-02-28 | 2022-03-25 | 深圳奥斯诺导航科技有限公司 | Double sensitization optical path integrated optical fiber gyroscope |
CN115031714A (en) * | 2022-06-02 | 2022-09-09 | 中国船舶重工集团公司第七0七研究所 | Optical fiber gyroscope with magnetic field drift error active compensation function and compensation method |
CN115060583A (en) * | 2022-08-18 | 2022-09-16 | 中国船舶重工集团公司第七0七研究所 | Method and system for evaluating strength of hollow-core microstructure optical fiber |
CN116625349A (en) * | 2023-07-26 | 2023-08-22 | 中国船舶集团有限公司第七〇七研究所 | Method for improving vibration performance of optical fiber compass |
CN117825776A (en) * | 2024-02-28 | 2024-04-05 | 中国计量科学研究院 | Super-large current proportion standard device based on Faraday magneto-optical effect |
CN118393204A (en) * | 2024-06-27 | 2024-07-26 | 北京率为机电科技有限公司 | Time-sharing detection device and method for optical fiber current and voltage transformer |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1687795A (en) * | 2005-06-13 | 2005-10-26 | 北京航空航天大学 | Optical fibre current transformer and its loop detector of transformer |
CN1687794A (en) * | 2005-06-13 | 2005-10-26 | 北京航空航天大学 | Optical fibre current transformer and its on line temp measuring method |
CN1808074A (en) * | 2006-02-24 | 2006-07-26 | 北京航空航天大学 | Optical fiber gyro frequency character tester based on magneto-optical Farady effect |
CN1844854A (en) * | 2006-05-19 | 2006-10-11 | 北京航空航天大学 | A device for increasing the closed-loop bandwidth of an optical fiber gyroscope by triple frequency modulation |
CN101008569A (en) * | 2006-12-31 | 2007-08-01 | 北京航天控制仪器研究所 | Optical fiber gyroscope using mixed optical path of polarization maintaining and low polarization |
CN101216502A (en) * | 2008-01-18 | 2008-07-09 | 北京航空航天大学 | A Wave Plate Temperature Compensation System Applicable to Optical Fiber Current Transformer |
CN102128967A (en) * | 2010-12-15 | 2011-07-20 | 北京航空航天大学 | Optical fiber current transformer for three-phase common super-fluorescence optical fiber light source |
CN102520374A (en) * | 2011-11-29 | 2012-06-27 | 北京航空航天大学 | Optical fiber magnetic field sensor digital closed loop detection device with double modulation characteristics |
CN102607620A (en) * | 2012-03-29 | 2012-07-25 | 扬州永阳光电科贸有限公司 | Reflection-type interference optical fiber sensor system |
-
2012
- 2012-07-27 CN CN201210264008XA patent/CN102788595A/en active Pending
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1687795A (en) * | 2005-06-13 | 2005-10-26 | 北京航空航天大学 | Optical fibre current transformer and its loop detector of transformer |
CN1687794A (en) * | 2005-06-13 | 2005-10-26 | 北京航空航天大学 | Optical fibre current transformer and its on line temp measuring method |
CN1808074A (en) * | 2006-02-24 | 2006-07-26 | 北京航空航天大学 | Optical fiber gyro frequency character tester based on magneto-optical Farady effect |
CN1844854A (en) * | 2006-05-19 | 2006-10-11 | 北京航空航天大学 | A device for increasing the closed-loop bandwidth of an optical fiber gyroscope by triple frequency modulation |
CN101008569A (en) * | 2006-12-31 | 2007-08-01 | 北京航天控制仪器研究所 | Optical fiber gyroscope using mixed optical path of polarization maintaining and low polarization |
CN101216502A (en) * | 2008-01-18 | 2008-07-09 | 北京航空航天大学 | A Wave Plate Temperature Compensation System Applicable to Optical Fiber Current Transformer |
CN102128967A (en) * | 2010-12-15 | 2011-07-20 | 北京航空航天大学 | Optical fiber current transformer for three-phase common super-fluorescence optical fiber light source |
CN102520374A (en) * | 2011-11-29 | 2012-06-27 | 北京航空航天大学 | Optical fiber magnetic field sensor digital closed loop detection device with double modulation characteristics |
CN102607620A (en) * | 2012-03-29 | 2012-07-25 | 扬州永阳光电科贸有限公司 | Reflection-type interference optical fiber sensor system |
Non-Patent Citations (9)
Title |
---|
张春熹: "基于DSP 的全数字闭环光纤陀螺", 《北京航空航天大学学报》 * |
张朝阳: "光纤电流互感器λ /4波片温度误差补偿", 《电工技术学报》 * |
张朝阳: "数字闭环全光纤电流互感器信号处理方法", 《中国电机工程学报》 * |
张朝阳: "闭环光纤电流互感器误差分析与实验研究", 《高压电器》 * |
李彦等: "准互易光学电压互感器数字闭环信号处理方法", 《电测与仪表》 * |
王夏霄: "一种新型全数字闭环光纤电流互感器方案", 《电力系统自动化》 * |
王夏霄: "全光纤电流互感器的偏振误差研究", 《光子学报》 * |
邬战军: "光纤陀螺数字闭环控制系统模型实验研究", 《光子学报》 * |
邬战军: "基于 Faraday效应的光纤陀螺频率响应测试方法", 《清华大学学报 (自然科学版)》 * |
Cited By (50)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103292976A (en) * | 2013-05-16 | 2013-09-11 | 北京航空航天大学 | Interferometry-based optical fiber Verdet constant measuring system |
CN103487065A (en) * | 2013-09-29 | 2014-01-01 | 浙江大学 | Program-controlled impact device for automatically measuring output delay time of fiber-optic gyroscope |
CN103487065B (en) * | 2013-09-29 | 2015-11-18 | 浙江大学 | For the program control percussion device that optical fibre gyro output delay time is measured automatically |
CN103868507A (en) * | 2014-03-17 | 2014-06-18 | 北京航空航天大学 | Tail fiber matching-based differential double-interference-type fiber optic gyroscope polarization nonreciprocal error suppression method |
CN103868507B (en) * | 2014-03-17 | 2016-06-08 | 北京航空航天大学 | The double; two interference type optical fiber gyroscope of difference based on tail optical fiber coupling polarizes nonreciprocal error inhibition method |
CN103884358B (en) * | 2014-03-31 | 2016-06-01 | 北京控制工程研究所 | A kind of digital closed-loop optic fiber gyroscope full loop detection and emulation test system |
CN103884358A (en) * | 2014-03-31 | 2014-06-25 | 北京控制工程研究所 | Digital closed-loop optical fiber gyroscope full-loop detection and simulation test system |
CN104457791A (en) * | 2014-11-27 | 2015-03-25 | 北京航天时代光电科技有限公司 | Method for measuring fiber-optic gyroscope bandwidth under static condition |
CN104457791B (en) * | 2014-11-27 | 2017-05-10 | 北京航天时代光电科技有限公司 | Method for measuring fiber-optic gyroscope bandwidth under static condition |
CN104535819A (en) * | 2015-01-09 | 2015-04-22 | 胡雨亭 | Polarization error restraining device and method for Y waveguide loop of optical current transformer |
CN104535819B (en) * | 2015-01-09 | 2018-06-01 | 胡雨亭 | The polarization error restraining device and method of the Y waveguide loop of optical fiber current mutual inductor |
CN104950266A (en) * | 2015-06-19 | 2015-09-30 | 北京航空航天大学 | Optical fiber magnetic field sensor |
CN104950169B (en) * | 2015-06-19 | 2017-08-15 | 浙江大学 | A kind of method of testing and system of high speed fibre gyro frequency characteristic |
CN104950169A (en) * | 2015-06-19 | 2015-09-30 | 浙江大学 | Method and system for measuring frequency characteristics of high-speed FOG (Fiber Optical Gyroscope) |
CN104950266B (en) * | 2015-06-19 | 2017-10-20 | 北京航空航天大学 | A kind of fibre optic magnetic field sensor |
CN104964681A (en) * | 2015-07-16 | 2015-10-07 | 陕西华燕航空仪表有限公司 | Self-detecting circuit and self-detecting method for open-loop optical fiber gyroscope |
CN105467345A (en) * | 2015-12-22 | 2016-04-06 | 云南电网有限责任公司电力科学研究院 | Fiber current sensor frequency band width test method and system |
CN107869997A (en) * | 2016-09-27 | 2018-04-03 | 北京计算机技术及应用研究所 | Light path commissioning device for optical fibre gyro |
CN106441367A (en) * | 2016-10-25 | 2017-02-22 | 浙江大学 | Test method and device for feedback residual modulation phase of fiber-optic gyroscope |
CN106441367B (en) * | 2016-10-25 | 2019-04-16 | 浙江大学 | A kind of test method and device of optical fibre gyro feedback residual modulation phase |
CN106646183A (en) * | 2017-02-24 | 2017-05-10 | 北京世维通光智能科技有限公司 | SLD (superluminescent diode) light source test system |
CN106646183B (en) * | 2017-02-24 | 2023-06-02 | 北京世维通光智能科技有限公司 | SLD light source test system |
CN107101805A (en) * | 2017-04-21 | 2017-08-29 | 北京航空航天大学 | Hollow polarization-maintaining photonic crystal fiber Verdet constant measuring apparatus and method |
CN109029412A (en) * | 2018-08-30 | 2018-12-18 | 衡阳市衡山科学城科技创新研究院有限公司 | A kind of optical fibre gyro closed feedback loop nonlinearity test method and system |
CN109029412B (en) * | 2018-08-30 | 2020-11-13 | 衡阳市衡山科学城科技创新研究院有限公司 | Method and system for testing nonlinearity of closed-loop feedback loop of fiber-optic gyroscope |
CN109211274A (en) * | 2018-09-30 | 2019-01-15 | 北京控制工程研究所 | A kind of autonomous verification method of optical fibre gyro detection circuit |
CN109211274B (en) * | 2018-09-30 | 2020-07-14 | 北京控制工程研究所 | A method for self-verification of fiber optic gyro detection circuit |
CN109443338A (en) * | 2018-12-04 | 2019-03-08 | 河北汉光重工有限责任公司 | A kind of closed-loop control system of miniature fiber gyro |
CN109443338B (en) * | 2018-12-04 | 2022-06-17 | 河北汉光重工有限责任公司 | Closed-loop control system of small-sized fiber-optic gyroscope |
CN109391322B (en) * | 2018-12-14 | 2023-09-05 | 珠海任驰光电科技有限公司 | Device and method for measuring length of medium-short optical fiber jumper |
CN109391322A (en) * | 2018-12-14 | 2019-02-26 | 珠海任驰光电科技有限公司 | A kind of middle short fiber wire jumper length-measuring appliance and measurement method |
CN110927431A (en) * | 2019-12-12 | 2020-03-27 | 东南大学 | Closed-loop demodulation all-fiber current transformer and large-current waveform hopping problem solving method thereof |
CN110987014B (en) * | 2019-12-13 | 2024-02-23 | 西安航天精密机电研究所 | Signal interference detection method for fiber-optic gyroscope signal processing circuit, storage medium and computer equipment |
CN110987014A (en) * | 2019-12-13 | 2020-04-10 | 西安航天精密机电研究所 | Signal interference detection method for optical fiber gyroscope signal processing circuit, storage medium and computer equipment |
CN112484752B (en) * | 2020-11-10 | 2023-07-21 | 广东工业大学 | A large dynamic range fiber optic gyroscope reflection characteristic test device and method |
CN112484752A (en) * | 2020-11-10 | 2021-03-12 | 广东工业大学 | Large-dynamic-range fiber optic gyroscope reflection characteristic testing device and method |
CN113917710A (en) * | 2021-10-18 | 2022-01-11 | 哈尔滨工程大学 | A tunable fiber-integrated polarization beam splitter |
CN113917710B (en) * | 2021-10-18 | 2024-03-26 | 哈尔滨工程大学 | Tunable in-fiber integrated polarization beam splitter |
CN114236210A (en) * | 2021-11-16 | 2022-03-25 | 北京航天时代光电科技有限公司 | Modulation frequency self-adaption system and method for optical fiber current transformer |
CN114236210B (en) * | 2021-11-16 | 2024-04-09 | 北京航天时代光电科技有限公司 | Modulation frequency self-adaptive system and method for optical fiber current transformer |
CN114234954A (en) * | 2022-02-28 | 2022-03-25 | 深圳奥斯诺导航科技有限公司 | Double sensitization optical path integrated optical fiber gyroscope |
CN115031714A (en) * | 2022-06-02 | 2022-09-09 | 中国船舶重工集团公司第七0七研究所 | Optical fiber gyroscope with magnetic field drift error active compensation function and compensation method |
CN115031714B (en) * | 2022-06-02 | 2024-06-21 | 中国船舶重工集团公司第七0七研究所 | Optical fiber gyroscope with magnetic field drift error active compensation function and compensation method |
CN115060583B (en) * | 2022-08-18 | 2022-11-01 | 中国船舶重工集团公司第七0七研究所 | Method and system for evaluating strength of hollow-core microstructure optical fiber |
CN115060583A (en) * | 2022-08-18 | 2022-09-16 | 中国船舶重工集团公司第七0七研究所 | Method and system for evaluating strength of hollow-core microstructure optical fiber |
CN116625349B (en) * | 2023-07-26 | 2023-09-15 | 中国船舶集团有限公司第七〇七研究所 | Method for improving vibration performance of optical fiber compass |
CN116625349A (en) * | 2023-07-26 | 2023-08-22 | 中国船舶集团有限公司第七〇七研究所 | Method for improving vibration performance of optical fiber compass |
CN117825776A (en) * | 2024-02-28 | 2024-04-05 | 中国计量科学研究院 | Super-large current proportion standard device based on Faraday magneto-optical effect |
CN117825776B (en) * | 2024-02-28 | 2024-05-10 | 中国计量科学研究院 | Super-large current proportion standard device based on Faraday magneto-optical effect |
CN118393204A (en) * | 2024-06-27 | 2024-07-26 | 北京率为机电科技有限公司 | Time-sharing detection device and method for optical fiber current and voltage transformer |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102788595A (en) | Optical fiber gyroscope frequency characteristic elevating method and device based on Faraday effect | |
CN100340860C (en) | Optical fibre current transformer and its loop detector of transformer | |
CN103076155B (en) | Optical fiber Verdet constant measurement system on basis of double optical paths | |
CN108717168B (en) | Scalar magnetic field gradient measuring device and method based on light field amplitude modulation | |
CN102538822B (en) | Method for fast testing and calibrating dynamic characteristic of fiber optic gyroscope | |
CN103115628B (en) | A kind of resonant mode optical gyroscope scale factor method of testing | |
CN102840869B (en) | Measuring method for fiber optic gyroscope eigenfrequency | |
CN102692314B (en) | Apparatus and method for testing power spectral density of frequency noise of laser based on fiber resonator | |
CN103162836B (en) | Device and method for detecting optical interference of light polarization tiny corner | |
CN108519566B (en) | SERF atomic magnetometer device and method based on optical frequency shift modulation | |
JP2013242295A (en) | Optical pumping magnetometer and magnetic sensing method | |
CN106017689B (en) | A kind of atomic spin precession differential polarization detection means based on acousto-optic modulation | |
CN106872911A (en) | Atom magnetometer and application method under a kind of excitation field high | |
CN103616020B (en) | The fiber optic loop eigenfrequency measurement mechanism detected based on sine wave modulation and first harmonic and method | |
CN111929622A (en) | Multichannel gradient magnetic field measuring device based on atomic spin effect | |
CN104713575A (en) | Method for testing frequency characteristic of closed loop fiber optic gyroscope | |
CN107656219A (en) | A kind of rubidium atom magnetometer | |
CN102607547A (en) | Digital domain balanced detecting method and device for optical fiber gyroscope | |
CN108534770B (en) | A fast method for measuring the spin exchange rate of 129Xe-Rb | |
CN106441367A (en) | Test method and device for feedback residual modulation phase of fiber-optic gyroscope | |
CN111060747A (en) | A highly sensitive detection method of nuclear spin precession based on electron spin | |
CN102183249B (en) | Sagnac phase shift tracing method of optical fiber gyroscope | |
CN101975584B (en) | An open-loop test method for detecting circuit system errors of interferometric fiber optic gyroscopes | |
CN110987000A (en) | Method for accurately measuring zero-bias magnetic field sensitivity of laser gyroscope | |
CN111060089A (en) | High-sensitivity nuclear spin precession detection method based on electronic spin magnetic resonance difference |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20121121 |