CN102787144B - Process for producing acetone and butanol by coupling biomass fermentation and pervaporation membrane - Google Patents
Process for producing acetone and butanol by coupling biomass fermentation and pervaporation membrane Download PDFInfo
- Publication number
- CN102787144B CN102787144B CN2012102655263A CN201210265526A CN102787144B CN 102787144 B CN102787144 B CN 102787144B CN 2012102655263 A CN2012102655263 A CN 2012102655263A CN 201210265526 A CN201210265526 A CN 201210265526A CN 102787144 B CN102787144 B CN 102787144B
- Authority
- CN
- China
- Prior art keywords
- butanol
- tower
- membrane
- acetone
- pervaporation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 title claims abstract description 91
- 239000012528 membrane Substances 0.000 title claims abstract description 78
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 title claims abstract description 58
- 238000000855 fermentation Methods 0.000 title claims abstract description 56
- 230000004151 fermentation Effects 0.000 title claims abstract description 56
- 238000000034 method Methods 0.000 title claims abstract description 36
- 238000010168 coupling process Methods 0.000 title claims abstract description 20
- 230000008878 coupling Effects 0.000 title claims abstract description 16
- 238000005859 coupling reaction Methods 0.000 title claims abstract description 16
- 239000002028 Biomass Substances 0.000 title claims abstract description 10
- 238000005373 pervaporation Methods 0.000 title abstract description 55
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims abstract description 81
- 238000000605 extraction Methods 0.000 claims abstract description 52
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 32
- 239000012466 permeate Substances 0.000 claims abstract description 30
- 239000002904 solvent Substances 0.000 claims abstract description 23
- 239000012074 organic phase Substances 0.000 claims abstract description 22
- DNZWLJIKNWYXJP-UHFFFAOYSA-N butan-1-ol;propan-2-one Chemical compound CC(C)=O.CCCCO DNZWLJIKNWYXJP-UHFFFAOYSA-N 0.000 claims abstract description 21
- 239000007788 liquid Substances 0.000 claims abstract description 18
- 238000004519 manufacturing process Methods 0.000 claims abstract description 15
- 239000008346 aqueous phase Substances 0.000 claims abstract description 8
- 239000000463 material Substances 0.000 claims description 6
- -1 polypropylene Polymers 0.000 claims description 4
- 229920002981 polyvinylidene fluoride Polymers 0.000 claims description 4
- 239000004743 Polypropylene Substances 0.000 claims description 3
- 229920001155 polypropylene Polymers 0.000 claims description 3
- 239000007921 spray Substances 0.000 claims description 3
- 229920002379 silicone rubber Polymers 0.000 claims description 2
- 239000000758 substrate Substances 0.000 claims description 2
- 230000008016 vaporization Effects 0.000 claims description 2
- 230000008020 evaporation Effects 0.000 claims 6
- 238000001704 evaporation Methods 0.000 claims 6
- 239000012530 fluid Substances 0.000 claims 2
- 229910052500 inorganic mineral Inorganic materials 0.000 claims 2
- 239000011707 mineral Substances 0.000 claims 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims 1
- 230000001580 bacterial effect Effects 0.000 claims 1
- SWXVUIWOUIDPGS-UHFFFAOYSA-N diacetone alcohol Natural products CC(=O)CC(C)(C)O SWXVUIWOUIDPGS-UHFFFAOYSA-N 0.000 claims 1
- 239000000835 fiber Substances 0.000 claims 1
- 230000008595 infiltration Effects 0.000 claims 1
- 238000001764 infiltration Methods 0.000 claims 1
- 238000011081 inoculation Methods 0.000 claims 1
- 230000000149 penetrating effect Effects 0.000 claims 1
- MWWATHDPGQKSAR-UHFFFAOYSA-N propyne Chemical compound CC#C MWWATHDPGQKSAR-UHFFFAOYSA-N 0.000 claims 1
- 238000005096 rolling process Methods 0.000 claims 1
- BFKJFAAPBSQJPD-UHFFFAOYSA-N tetrafluoroethene Chemical group FC(F)=C(F)F BFKJFAAPBSQJPD-UHFFFAOYSA-N 0.000 claims 1
- 238000000926 separation method Methods 0.000 abstract description 27
- 239000012071 phase Substances 0.000 abstract description 24
- 238000005265 energy consumption Methods 0.000 abstract description 13
- 238000003860 storage Methods 0.000 abstract description 13
- 230000002401 inhibitory effect Effects 0.000 abstract description 8
- 238000005516 engineering process Methods 0.000 abstract description 5
- 238000011065 in-situ storage Methods 0.000 abstract description 4
- 240000008042 Zea mays Species 0.000 description 16
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 16
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 16
- 235000005822 corn Nutrition 0.000 description 16
- 239000000047 product Substances 0.000 description 11
- 238000004821 distillation Methods 0.000 description 8
- 238000005191 phase separation Methods 0.000 description 8
- 239000010902 straw Substances 0.000 description 8
- 244000005700 microbiome Species 0.000 description 7
- 235000013312 flour Nutrition 0.000 description 6
- 230000000813 microbial effect Effects 0.000 description 5
- 239000002551 biofuel Substances 0.000 description 4
- 230000005764 inhibitory process Effects 0.000 description 4
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 4
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- 238000004880 explosion Methods 0.000 description 3
- 230000007062 hydrolysis Effects 0.000 description 3
- 238000006460 hydrolysis reaction Methods 0.000 description 3
- 239000007791 liquid phase Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 2
- 102000004190 Enzymes Human genes 0.000 description 2
- 108090000790 Enzymes Proteins 0.000 description 2
- 239000002033 PVDF binder Substances 0.000 description 2
- 238000005903 acid hydrolysis reaction Methods 0.000 description 2
- 235000013405 beer Nutrition 0.000 description 2
- UVMPXOYNLLXNTR-UHFFFAOYSA-N butan-1-ol;ethanol;propan-2-one Chemical compound CCO.CC(C)=O.CCCCO UVMPXOYNLLXNTR-UHFFFAOYSA-N 0.000 description 2
- 239000006562 flour medium Substances 0.000 description 2
- 239000012510 hollow fiber Substances 0.000 description 2
- 239000002609 medium Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 2
- 239000003208 petroleum Substances 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- 241000609240 Ambelania acida Species 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- 241000193401 Clostridium acetobutylicum Species 0.000 description 1
- 241000423302 Clostridium acetobutylicum ATCC 824 Species 0.000 description 1
- 241000193454 Clostridium beijerinckii Species 0.000 description 1
- 241000218631 Coniferophyta Species 0.000 description 1
- 244000017020 Ipomoea batatas Species 0.000 description 1
- 235000002678 Ipomoea batatas Nutrition 0.000 description 1
- 240000003183 Manihot esculenta Species 0.000 description 1
- 235000016735 Manihot esculenta subsp esculenta Nutrition 0.000 description 1
- 241000209504 Poaceae Species 0.000 description 1
- 244000046146 Pueraria lobata Species 0.000 description 1
- 235000010575 Pueraria lobata Nutrition 0.000 description 1
- 244000061456 Solanum tuberosum Species 0.000 description 1
- 235000002595 Solanum tuberosum Nutrition 0.000 description 1
- 240000006394 Sorghum bicolor Species 0.000 description 1
- 235000011684 Sorghum saccharatum Nutrition 0.000 description 1
- 235000021307 Triticum Nutrition 0.000 description 1
- 244000098338 Triticum aestivum Species 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000010905 bagasse Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- VDTYJGCGYXFZFQ-FAOVPRGRSA-N butan-1-ol (2R,3S,4R,5R)-2,3,4,5,6-pentahydroxyhexanal propan-2-one Chemical compound C(CCC)O.CC(=O)C.O=C[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO VDTYJGCGYXFZFQ-FAOVPRGRSA-N 0.000 description 1
- KTUQUZJOVNIKNZ-UHFFFAOYSA-N butan-1-ol;hydrate Chemical compound O.CCCCO KTUQUZJOVNIKNZ-UHFFFAOYSA-N 0.000 description 1
- 239000001273 butane Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000004205 dimethyl polysiloxane Substances 0.000 description 1
- 235000013870 dimethyl polysiloxane Nutrition 0.000 description 1
- 235000011389 fruit/vegetable juice Nutrition 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 239000002608 ionic liquid Substances 0.000 description 1
- 239000002207 metabolite Substances 0.000 description 1
- 238000001471 micro-filtration Methods 0.000 description 1
- 235000013379 molasses Nutrition 0.000 description 1
- OFBQJSOFQDEBGM-UHFFFAOYSA-N n-pentane Natural products CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 1
- 230000036963 noncompetitive effect Effects 0.000 description 1
- CXQXSVUQTKDNFP-UHFFFAOYSA-N octamethyltrisiloxane Chemical compound C[Si](C)(C)O[Si](C)(C)O[Si](C)(C)C CXQXSVUQTKDNFP-UHFFFAOYSA-N 0.000 description 1
- 238000004987 plasma desorption mass spectroscopy Methods 0.000 description 1
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 238000002203 pretreatment Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 239000004945 silicone rubber Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E50/00—Technologies for the production of fuel of non-fossil origin
- Y02E50/10—Biofuels, e.g. bio-diesel
Landscapes
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
Abstract
本发明涉及一种生物质发酵-渗透汽化膜耦合生产丙酮丁醇的工艺,具体涉及一种将渗透汽化膜耦合ABE发酵过程,在线原位分离ABE,并利用萃取塔获得无水溶剂的生产工艺。将发酵罐中发酵液抽出,通过优先透醇膜得到浓缩液,浓缩液送入萃取塔,在萃取塔中分为有机相和水相,水相泵入水相贮罐后,有机相不经过醪塔,直接进入一丁塔及后续精馏塔组,获得无水丁醇、丙酮和乙醇,水相贮罐中水相经过渗透汽化优先透醇膜组件,渗透液泵入萃取塔,如此循环。本发明将发酵过程与渗透汽化技术耦合,在渗透汽化组件后增加萃取塔,不仅降低发酵过程中丁醇的抑制作用,而且节省了分离过程中的能耗,提高生物质发酵法生产丁醇的竞争力。
The present invention relates to a process for producing acetone-butanol through coupling of biomass fermentation and pervaporation membrane, in particular to a production process of coupling pervaporation membrane with ABE fermentation process, separating ABE in situ online, and using an extraction tower to obtain anhydrous solvent . The fermentation liquid in the fermenter is extracted, and the concentrated liquid is obtained by preferentially permeating the alcohol membrane. The concentrated liquid is sent to the extraction tower, where it is divided into an organic phase and an aqueous phase. After the aqueous phase is pumped into the aqueous phase storage tank, the organic phase does not pass through the mash. The tower directly enters the Yiding tower and the subsequent rectification tower group to obtain anhydrous butanol, acetone and ethanol. The water phase in the water phase storage tank passes through the alcohol membrane module first through pervaporation, and the permeate is pumped into the extraction tower, and so on. The invention couples the fermentation process with the pervaporation technology, and adds an extraction tower after the pervaporation module, which not only reduces the inhibitory effect of butanol in the fermentation process, but also saves energy consumption in the separation process, and improves the efficiency of producing butanol by biomass fermentation Competitiveness.
Description
发明领域field of invention
本发明涉及一种生物质发酵-渗透汽化膜耦合生产丙酮丁醇的工艺,具体涉及一种将发酵渗透汽化耦合生产ABE发酵过程,在线原位分离ABE,并利用渗透汽化透醇膜和萃取塔获得无水溶剂的工艺。The present invention relates to a process for producing acetone butanol through coupling of biomass fermentation and pervaporation membrane, in particular to a fermentation process of coupling fermentation and pervaporation to produce ABE, separating ABE on-line and in situ, and using pervaporation permeation membrane and extraction tower A process for obtaining anhydrous solvents.
背景技术Background technique
随着世界石油资源日益紧缺,世界各国都在积极寻找再生资源的开发利用。生物燃料作为重要的可再生能源已引起各国的重视,预计到2020年生物燃油的比例将增长到30%,总需求量将达到870亿加仑。With the increasing shortage of oil resources in the world, countries all over the world are actively looking for the development and utilization of renewable resources. As an important renewable energy source, biofuel has attracted the attention of various countries. It is estimated that the proportion of biofuel will increase to 30% by 2020, and the total demand will reach 87 billion gallons.
然而,目前丁醇的生产主要采用丙烯合成法制备,这种方法是以石油中的丙烯为原料制备丁醇产品。随着石油资源的日益枯竭,利用可再生生物质资源开发新的丁醇生产方法已成为国际关注的热点。发酵法是公认的有望代替丙烯合成法的丁醇生产工艺。然而,发酵法生产丁醇过程中遇到的两个主要难题即是发酵产物的反馈抑制和分离浓缩能耗过高的问题。反馈抑制是指某些代谢产物的浓度达到一定范围后,由于目的产物对微生物的生长具有非竞争抑制作用,从而导致发酵反应难以正常进行,目的产物不再增加,产品发酵液中目的产物浓度过低现象。正因如此,丁醇发酵液中ABE的浓度仅为1~2%(丁醇发酵的产物通常为丁醇、丙酮和乙醇,三者缩写为ABE,其中丁醇、丙酮、乙醇的比例为6:3:1)。如此低的丁醇浓度造成后续产品分离浓缩能耗过高。据报道,采用传统的蒸馏法对丁醇发酵液进行浓缩所需的能耗比丁醇本身的燃烧热能还高,尤其是醪塔蒸馏浓缩过程,将溶剂浓度提高到500g/L,消耗能量几乎占整个蒸馏能耗的50%。正因如此,多年来,丁醇的生产一直采用丙烯合成法制备。由此可见,开发新型有效的分离技术,解决发酵生产生物燃料过程中产物反馈抑制和产品浓缩能耗过高的问题,是能否实现生物燃料丁醇产业化生产的关键,对提高发酵生产丁醇的技术经济性具有重要意义。However, at present, butanol is mainly produced by propylene synthesis method, which uses propylene in petroleum as raw material to prepare butanol products. With the depletion of petroleum resources, the development of new butanol production methods using renewable biomass resources has become a hot spot of international concern. Fermentation is recognized as a butanol production process that is expected to replace propylene synthesis. However, the two main problems encountered in the production of butanol by fermentation are the feedback inhibition of fermentation products and the high energy consumption of separation and concentration. Feedback inhibition means that after the concentration of certain metabolites reaches a certain range, since the target product has a non-competitive inhibitory effect on the growth of microorganisms, the fermentation reaction is difficult to proceed normally, the target product no longer increases, and the concentration of the target product in the product fermentation broth is too high. low phenomenon. Because of this, the concentration of ABE in butanol fermentation broth is only 1-2% (the products of butanol fermentation are usually butanol, acetone and ethanol, the three are abbreviated as ABE, and the ratio of butanol, acetone and ethanol is 6% :3:1). Such a low concentration of butanol results in high energy consumption for subsequent product separation and concentration. According to reports, the energy consumption required to concentrate the butanol fermentation broth by the traditional distillation method is higher than the combustion heat energy of butanol itself. It accounts for 50% of the entire distillation energy consumption. For this reason, butanol has been produced synthetically from propylene for many years. It can be seen that the development of new and effective separation technology to solve the problems of product feedback inhibition and high energy consumption of product concentration in the process of fermentation and production of biofuels is the key to realizing the industrial production of biofuel butanol, and it is of great importance to improve the fermentation production of butanol. The technical economy of alcohol is of great significance.
目前,利用渗透汽化耦合原位分离丙酮、丁醇和乙醇的专利有201010136813.5,201010162856.0。专利201010136813.5,在渗透汽化膜前选择性的设置一个微滤膜分离器,将微生物细胞和发酵液中的固体悬浮物截留,从而降低渗透汽化膜的污染,提高分离效率。专利201010162856.0,发酵醪液由前一发酵罐送入下一发酵罐之前,发酵醪液中的液相部分先通过渗透汽化膜分离装置将丁醇分离,分离丁醇后的发酵醪液再送入下一发酵罐。国内外有文献报道利用发酵-渗透汽化耦合工艺减轻抑制,提高丁醇产率,例如Heitmann et al.(2012),Wouter et al.(2012)分别利用离子液体支撑液膜和PDMS膜分离发酵液中的溶剂。但是这些报道均不涉及丙酮丁醇溶剂的相分离现象的应用。本发明利用ABE浓缩液出现相分离的特点,在渗透汽化工艺后增加萃取塔,在萃取塔中高浓度的溶剂发生相分离。其中有机相溶剂的浓度,可以达到醪塔浓缩后的浓度(500g/L),从而在后续的精馏过程中省略醪塔,而萃取塔并不增加能耗,所以相对于CN101805754A和CN101851641A,此工艺可以降低能耗和水耗,进而获得无水溶剂。Currently, there are 201010136813.5 and 201010162856.0 patents for the in-situ separation of acetone, butanol and ethanol using pervaporation coupling. In patent 201010136813.5, a microfiltration membrane separator is selectively installed in front of the pervaporation membrane to intercept the suspended solids in microbial cells and fermentation broth, thereby reducing the pollution of the pervaporation membrane and improving the separation efficiency. Patent 201010162856.0, before the fermented mash is sent from the previous fermenter to the next fermenter, the liquid phase part of the fermented mash is first separated from the butanol through the pervaporation membrane separation device, and the fermented mash after the butanol separation is sent to the next fermenter. A fermenter. There are literatures at home and abroad that use fermentation-pervaporation coupling process to reduce inhibition and increase butanol yield, such as Heitmann et al. (2012), Wouter et al. (2012) use ionic liquid supported liquid membrane and PDMS membrane to separate fermentation broth solvent in. But none of these reports involves the application of the phase separation phenomenon of acetone butanol solvent. The invention utilizes the phase separation characteristic of the ABE concentrated liquid, adds an extraction tower after the pervaporation process, and the high-concentration solvent in the extraction tower undergoes phase separation. Wherein the concentration of the organic phase solvent can reach the concentration (500g/L) after the beer tower is concentrated, so that the beer tower is omitted in the subsequent rectification process, and the extraction tower does not increase energy consumption, so compared to CN101805754A and CN101851641A, this The process reduces energy and water consumption, resulting in anhydrous solvents.
发明内容Contents of the invention
本发明的目的在于提供一种用发酵渗透汽化耦合技术生产丙酮丁醇的工艺,解除了发酵过程中ABE对菌体的抑制作用,提高丙酮丁醇的产率。The object of the present invention is to provide a process for producing acetone-butanol using fermentation pervaporation coupling technology, which removes the inhibitory effect of ABE on bacteria in the fermentation process and improves the yield of acetone-butanol.
本发明的另一目的在于提供一种利用渗透汽化和萃取塔,获得高浓度丙酮丁醇乙醇的方法,减少了后续蒸馏操作步骤,降低能量的消耗,实现节能减排。Another object of the present invention is to provide a method for obtaining high-concentration acetone, butanol, and ethanol by using a pervaporation and extraction tower, which reduces subsequent distillation steps, reduces energy consumption, and realizes energy saving and emission reduction.
本发明提供了一种连续发酵与渗透汽化膜分离耦合生产无水溶剂的工艺,其特征在于工艺过程如下:The invention provides a process for producing anhydrous solvent coupled with continuous fermentation and pervaporation membrane separation, which is characterized in that the process is as follows:
(1)将经过预处理的生物质作为发酵底物,接种丁醇丙酮乙醇生产菌种进行发酵;(1) Using pretreated biomass as a fermentation substrate, inoculate butanol acetone ethanol production strains for fermentation;
(2)将发酵罐内发酵液通过泵输入至渗透汽化优先透醇膜分离器,透过液经冷凝器收集得到丙酮、丁醇和乙醇的浓缩液,截留液回流至发酵罐中;(2) The fermentation liquid in the fermenter is pumped into the pervaporation preferential permeation membrane separator, the permeate is collected by the condenser to obtain the concentrated liquid of acetone, butanol and ethanol, and the retained liquid is returned to the fermenter;
(3)丙酮、丁醇和乙醇的渗透液通过泵输入萃取塔中,渗透液在萃取塔中分为有机相和水相;(3) The permeate of acetone, butanol and ethanol is pumped into the extraction tower, and the permeate is divided into an organic phase and an aqueous phase in the extraction tower;
(4)上述水相通过泵输入水相贮罐,上述有机相不经过醪塔,直接进入一丁塔及后续精馏塔组,实现有机相中少量水的脱除,获得无水丙酮、丁醇和乙醇;水相贮罐中的水相经过渗透汽化优先透醇膜分离器,实现水相中少量丙酮、丁醇和乙醇混合液的浓缩,随后再进入萃取塔,进行后续操作。(4) The above-mentioned water phase is pumped into the water-phase storage tank, and the above-mentioned organic phase directly enters the Yiding tower and the subsequent rectification tower group without passing through the mash tower, so as to realize the removal of a small amount of water in the organic phase and obtain anhydrous acetone, butane Alcohol and ethanol; the water phase in the water phase storage tank passes through the pervaporation preferentially through the alcohol membrane separator to realize the concentration of a small amount of acetone, butanol and ethanol mixture in the water phase, and then enters the extraction tower for subsequent operations.
本发明所述的渗透汽化优先透醇膜分离器由一个或一个以上的渗透汽化优先透醇膜分离器组成,各单元渗透汽化优先透醇膜分离器的渗透侧通过管路串联或并联于真空泵总管路。The pervaporation preferential alcohol permeation membrane separator of the present invention is composed of one or more pervaporation preferential alcohol permeation membrane separators, and the permeation side of each unit pervaporation preferential alcohol permeation membrane separator is connected in series or parallel to the vacuum pump through pipelines Main pipeline.
本发明所述的渗透汽化优先透醇膜是有机膜、无机膜或有机-无机杂化膜;其膜组件形式为卷式、管式、板框式或中空纤维式。The pervaporation preferential alcohol permeation membrane of the present invention is an organic membrane, an inorganic membrane or an organic-inorganic hybrid membrane; the membrane module is in the form of a coil, a tube, a plate-and-frame or a hollow fiber.
本发明所述的有机-无机杂化膜的材质是PDMS-Silicalite-1、PDMS-ZSM-5或PTMSP-Silicalite中的一种;有机膜的材质是硅橡胶、聚三甲基硅丙炔、聚丙烯、聚偏氟乙烯或聚四氟乙烯;无机膜的材质可以是Silicalite-1或ZSM-5。The material of the organic-inorganic hybrid membrane of the present invention is one of PDMS-Silicalite-1, PDMS-ZSM-5 or PTMSP-Silicalite; the material of the organic membrane is silicone rubber, polytrimethylsilapropyne, Polypropylene, polyvinylidene fluoride or polytetrafluoroethylene; the material of the inorganic membrane can be Silicalite-1 or ZSM-5.
本发明所述的萃取塔是喷淋萃取塔、筛板塔、转盘塔和脉冲塔中的一种。The extraction tower of the present invention is one of a spray extraction tower, a sieve tray tower, a rotating disk tower and a pulse tower.
本发明所述的生物质可以是木质纤维素(例如小麦秸秆、玉米秸秆、甘蔗渣等各种农作物的秸秆、草类以及阔叶树或针叶树的木屑),也可以是淀粉类物质(例如玉米、木薯、红薯、马铃薯、葛根中的一种或两种),也可以是糖类原料(例如糖蜜、高粱汁)。木质纤维素的预处理方法采用常规的稀酸等化学预处理或蒸汽爆破等理化预处理即可。木质纤维素的水解温度为45-50℃,丙酮丁醇发酵的温度为37-40℃。优选的丙酮丁醇发酵微生物是C.acetobutylicum ATCC824,C.butylicum23592,C.acetobutylicum170,C.acetobutylicum P260,C.beijerinckii ATCC55025。The biomass of the present invention can be lignocellulose (such as wheat straw, corn straw, bagasse and other crop straws, grasses, and wood chips of broad-leaved trees or conifers), and can also be starchy substances (such as corn, cassava, etc.) , sweet potato, potato, kudzu root or one or both), or sugar raw materials (such as molasses, sorghum juice). The pretreatment method of lignocellulose can be conventional chemical pretreatment such as dilute acid or physical and chemical pretreatment such as steam explosion. The hydrolysis temperature of lignocellulose is 45-50°C, and the temperature of acetone-butanol fermentation is 37-40°C. Preferred acetobutylicum fermenting microorganisms are C.acetobutylicum ATCC824, C.butylicum23592, C.acetobutylicum170, C.acetobutylicum P260, C.beijerinckii ATCC55025.
本发明提供的一种利用发酵渗透汽化耦合工艺生产丙酮丁醇的工艺将发酵、渗透汽化优先透醇膜分离器和精馏过程有机结合,实现了发酵产物丙酮丁醇乙醇的原位分离,降低了丙酮丁醇乙醇对发酵微生物的抑制作用,提高了丁醇发酵强度;同时并在渗透汽化优先透醇膜分离器之后设置了萃取塔,充分有效地利用了通过渗透汽化优先透醇膜分离器之后的透过液的相分离现象,降低了后续溶剂的分离成本。本发明提供的工艺将水解液中葡萄糖丙酮丁醇的发酵工艺与渗透汽化膜分离过程紧密耦合,节省了生产过程中的能耗和水耗,降低了由生物质生产燃料丁醇的生产成本。A process for producing acetone butanol using a fermentation pervaporation coupling process provided by the present invention organically combines fermentation, pervaporation preferential permeation membrane separator and rectification process, realizes the in-situ separation of fermentation product acetone butanol ethanol, reduces The inhibitory effect of acetone, butanol, and ethanol on fermenting microorganisms is improved, and the butanol fermentation intensity is improved; at the same time, an extraction tower is set after the pervaporation preferential alcohol permeation membrane separator, which fully and effectively utilizes the pervaporation preferential alcohol permeation membrane separator. The subsequent phase separation of the permeate reduces the cost of subsequent solvent separation. The process provided by the invention tightly couples the fermentation process of glucose acetone butanol in the hydrolyzate with the separation process of the pervaporation membrane, saves energy and water consumption in the production process, and reduces the production cost of producing fuel butanol from biomass.
附图说明Description of drawings
图1是发酵渗透汽化精馏集成工艺生产丙酮丁醇方案一的工艺流程示意图;Fig. 1 is the technological process schematic diagram of acetone-butanol scheme one produced by fermentation pervaporation rectification integrated process;
附图标记reference sign
1.补料罐 2.进料泵 3.发酵罐 4.进料泵 5.渗透汽化优先透醇膜组件 6.冷凝器 7.压力表 8.真空泵 9.进料泵 10.萃取塔 11.进料泵 12.阀门 13.水相贮罐 14.进料泵 15.渗透汽化优先透醇膜组件 16.冷凝器 17.压力表 18.真空泵19.进料泵 20.一丁塔1. Feed tank 2.
具体实施方式Detailed ways
下面结合实施例对本发明做进一步说明,本发明所涉及的主题保护范围并非仅限于这些实施例。The present invention will be further described below in conjunction with the embodiments, and the protection scope of the subject matter involved in the present invention is not limited to these embodiments.
实施例1一种玉米秸秆发酵-渗透汽化耦合工艺生产丙酮丁醇的工艺Example 1 A process for producing acetone butanol by a corn stalk fermentation-pervaporation coupling process
玉米秸秆经蒸汽爆破处理、酸水解、酶水解后制成料浆进入补料罐1,开启进料泵2进入发酵罐3,接种微生物后在37℃发酵72h后,当罐内液相中总溶剂浓度经检测达到18g/L时,打开进料泵4,发酵液输送进渗透汽化优先透醇膜组件5,渗透汽化组件中由两个板框式渗透汽化优先透醇膜分离器串联组成,采用的渗透汽化膜为有机-无机杂化膜(PDMS-Silicalite-1)。同时,打开真空泵8,压力表7真空度维持在500Pa,渗透液被冷凝器6被收集,收集所得的丙酮、丁醇和乙醇总浓度达150g/L,截留的料液返回发酵罐3中;经过耦合分离12h后,暂停耦合分离,从补料罐1中向发酵罐中流加与渗透汽化膜分离获得的渗透液体积相同的秸秆水解糖液,继续发酵。同时开启进料泵9,冷凝器6中收集得到的渗透液进入萃取塔10,萃取塔为喷淋萃取塔,在萃取塔中分为有机相和水相;萃取塔中水相浓度约为100g/L,通过进料泵11,开阀门12进入水相贮罐13通路;萃取塔中的有机相浓度达到500g/L,通过进料泵11,开阀门12进入一丁塔20通路,获得无水丁醇、丙酮和乙醇;水相贮罐13中的水相通过进料泵14输入渗透汽化优先透醇膜组件15,打开真空泵18,压力表压力500pa,待萃取塔有机相全部进入一丁塔20,冷凝器16收集渗透液通过进料泵19进入萃取塔12,如此循环,最后获得无水丁醇、丙酮和乙醇。耦合分离12h后,暂停耦合分离,从补料罐1中向发酵罐中流加与渗透汽化膜分离获得的渗透液体积相同的秸秆水解糖液,继续发酵。当发酵罐2内到总溶剂的浓度达到18g/L时,开启真空泵,再次进行耦合分离,渗透液进入冷凝器被收集,如此循环10次。Corn stalks are treated with steam explosion, acid hydrolysis, and enzyme hydrolysis to make a slurry into the feed tank 1, turn on the feed pump 2 and enter the
本例实现了玉米秸秆水解糖液半连续发酵生产丙酮丁醇,不仅大大减少了发酵产生的丙酮丁醇溶剂对微生物细胞的抑制作用,并且由于在渗透汽化优先透醇膜组件后增加了萃取塔,充分利用了渗透汽化优先透醇膜渗透液的相分离性质,有效降低了浓缩过程的能耗,与传统间歇发酵-蒸馏过程相比,丁醇的生产强度提高,由于省略醪塔,可以节省精馏能耗。This example realizes the production of acetone butanol by semi-continuous fermentation of corn stalk hydrolyzed sugar solution, which not only greatly reduces the inhibitory effect of the acetone butanol solvent produced by fermentation on microbial cells, but also adds an extraction tower after pervaporation preferentially passes through the alcohol membrane module. , making full use of the phase separation properties of the pervaporation-preferential permeation membrane permeate, effectively reducing the energy consumption of the concentration process, compared with the traditional batch fermentation-distillation process, the production intensity of butanol is increased, and the omission of the mash tower can save Distillation energy consumption.
实施例2一种玉米粉发酵-渗透汽化耦合工艺生产丙酮丁醇的工艺Embodiment 2 A kind of technology of corn flour fermentation-pervaporation coupled process to produce acetone butanol
以玉米粉为原料配制培养基,121℃蒸煮糊化90分钟,得到玉米粉培养基,进入补料罐1,开启进料泵2进入发酵罐3,接种微生物后在37℃发酵60h后,当罐内液相中总溶剂浓度经检测达到20g/L时,打开进料泵4,发酵液输送进渗透汽化优先透醇膜组件5,膜组件由一个中空纤维渗透汽化优先透醇膜分离器组成,选用的渗透汽化膜为无机膜Silicalite-1或者ZSM-5。同时,打开真空泵8,压力表7真空度维持在500Pa,渗透液被冷凝器6被收集,收集所得的丙酮、丁醇和乙醇总浓度达400g/L,截留的料液返回发酵罐3中;经过分离12h后,暂停渗透汽化分离,从补料罐1中向发酵罐中流加与渗透汽化膜分离获得的渗透液体积相同的秸秆水解糖液,继续发酵。同时开启进料泵9,冷凝器6中收集得到的渗透液进入萃取塔10,萃取塔为筛板塔,在萃取塔中分为有机相和水相;萃取塔中水相浓度约为280g/L,通过进料泵11,开阀门12进入水相贮罐13通路;萃取塔中的有机相浓度达到700g/L,通过进料泵11,开阀门12进入一丁塔20通路,获得无水丁醇、丙酮和乙醇;水相贮罐13中的水相通过进料泵14输入渗透汽化优先透醇膜组件15,打开真空泵18,压力表压力500pa,待萃取塔有机相全部进入一丁塔20,冷凝器16收集渗透液通过进料泵19进入萃取塔12,如此循环,最后获得无水丁醇、丙酮和乙醇。经过耦合分离12h后,暂停耦合分离,从补料罐1中向发酵罐中流加与渗透汽化膜分离获得的渗透液体积相同的秸秆水解糖液,继续发酵。当发酵罐2内到总溶剂的浓度达到20g/L时,开启真空泵,再次进行耦合分离,渗透液进入冷凝器被收集,如此循环10次。Prepare the medium with corn flour as raw material, cook and gelatinize at 121°C for 90 minutes to obtain the corn flour medium, enter the feed tank 1, turn on the feed pump 2 and enter the
本例实现了玉米粉半连续发酵生产丙酮丁醇,不仅大大减少了发酵产生的丙酮丁醇溶剂对微生物细胞的抑制作用,并且由于在渗透汽化优先透醇膜后增加了萃取塔,充分利用了高浓度渗透液的相分离性质,有效降低了浓缩过程的能耗,与传统间歇发酵-蒸馏过程相比,丁醇的生产强度提高。This example realizes the semi-continuous fermentation of corn flour to produce acetone butanol, which not only greatly reduces the inhibitory effect of the acetone butanol solvent produced by fermentation on microbial cells, but also makes full use of the The phase separation property of high-concentration permeate can effectively reduce the energy consumption of the concentration process, and increase the production intensity of butanol compared with the traditional batch fermentation-distillation process.
实施例3一种玉米秸秆连续发酵-渗透汽化耦合工艺生产丙酮丁醇的工艺Example 3 A process for producing acetone-butanol by a continuous fermentation-pervaporation coupling process of corn stalks
玉米秸秆经蒸汽爆破处理、酸水解、酶水解后制成料浆进入补料罐1,开启进料泵2进入发酵罐3,接种微生物后在37℃发酵20h后,当罐内液相中总溶剂浓度经检测达到5g/L时,打开进料泵4,发酵液输送进渗透汽化优先透醇膜组件5,膜组件由两个卷式渗透汽化优先透醇膜分离器并联组成,使用渗透汽化膜为聚偏氟乙烯有机膜。同时,打开真空泵8,压力表7真空度维持在500Pa,冷凝器6中收集得到的渗透液进入萃取塔10,萃取塔为转盘塔,在萃取塔中分为有机相和水相;萃取塔中水相浓度约为80g/L,通过进料泵11,开阀门12进入水相贮罐13通路;萃取塔中的有机相浓度达到500g/L,通过进料泵11,开阀门12进入一丁塔20通路,直接进入一丁塔,获得无水丁醇、丙酮和乙醇;水相贮罐13中的水相通过进料泵14输入渗透汽化优先透醇膜组件15,打开真空泵18,压力表压力500pa,待萃取塔有机相全部进入一丁塔20,冷凝器16收集渗透液通过进料泵19进入萃取塔12,如此循环,最后获得无水丁醇、丙酮和乙醇。Corn stalks are treated with steam explosion, acid hydrolysis, and enzyme hydrolysis to make a slurry into the feed tank 1, turn on the feed pump 2 and enter the
本例实现了玉米秸秆连续发酵生产丙酮丁醇,不仅大大减少了发酵产生的丙酮丁醇溶剂对微生物细胞的抑制作用,并且由于在渗透汽化优先透醇膜后增加了萃取塔,充分利用了渗透汽化优先透醇膜渗透液的相分离性质,有效降低了浓缩过程的能耗,与传统间歇发酵-蒸馏过程相比,丁醇的生产强度同时得到提高。This example realizes the continuous fermentation of corn stalks to produce acetone butanol, which not only greatly reduces the inhibitory effect of the acetone butanol solvent produced by fermentation on microbial cells, but also makes full use of the permeation efficiency due to the addition of an extraction tower after pervaporation preferentially permeates the alcohol membrane. The phase-separation property of vaporization-preferred permeation membrane permeate can effectively reduce the energy consumption of the concentration process, and the production intensity of butanol is also improved compared with the traditional batch fermentation-distillation process.
实施例4一种玉米粉连续发酵-渗透汽化耦合工艺生产丙酮丁醇的工艺Embodiment 4 A kind of technology of corn flour continuous fermentation-pervaporation coupled process to produce acetone butanol
以玉米粉为原料配制培养基,121℃蒸煮糊化90分钟,得到玉米粉培养基,进入补料罐1,开启进料泵2进入发酵罐3,接种微生物后在37℃发酵20h后,当罐内液相中总溶剂浓度经检测达到5g/L时,打开进料泵4,发酵液输送进渗透汽化优先透醇膜组件5,膜组件由三个管式渗透汽化优先透醇膜分离器并联组成,所用渗透汽化膜为有机膜聚丙烯或者有机-无机杂化膜PTMSP-Silicalite-1。同时,打开真空泵8,压力表7真空度维持在500Pa,渗透液被冷凝器6被收集,收集所得的丙酮、丁醇和乙醇总浓度达200g/L,截留的料液返回发酵罐3中;同时从补料罐1中向发酵罐中流加与渗透汽化膜分离获得的渗透液体积相同的秸秆水解糖液,继续发酵。同时开启进料泵9,冷凝器6中收集得到的渗透液进入萃取塔10,萃取塔为脉冲塔,在萃取塔中分为有机相和水相;萃取塔中水相浓度约为100g/L,通过进料泵11,开阀门12进入水相贮罐13通路;萃取塔中的有机相浓度达到520g/L,通过进料泵11,开阀门12进入一丁塔20通路,获得无水丁醇、丙酮和乙醇;水相贮罐13中的水相通过进料泵14输入渗透汽化优先透醇膜组件15,打开真空泵18,压力表压力500pa,待萃取塔有机相全部进入一丁塔20,冷凝器16收集渗透液通过进料泵19进入萃取塔12,如此循环,最后获得无水丁醇、丙酮和乙醇。Use corn flour as raw material to prepare medium, cook and gelatinize at 121°C for 90 minutes to obtain corn flour medium, enter feeding tank 1, turn on feed pump 2 and enter
本例实现了玉米粉连续发酵生产丙酮丁醇,不仅大大减少了发酵产生的丙酮丁醇溶剂对微生物细胞的抑制作用,并且由于在渗透汽化优先透醇膜后增加了萃取塔,充分利用了渗透汽化优先透醇膜渗透液的相分离性质,省略了能耗大的醪塔,有效降低了浓缩过程的能耗,与传统间歇发酵-蒸馏过程相比,丁醇的生产强度提高。This example realizes the continuous fermentation of corn flour to produce acetone butanol, which not only greatly reduces the inhibitory effect of the acetone butanol solvent produced by fermentation on microbial cells, but also makes full use of the permeation efficiency due to the addition of an extraction tower after pervaporation preferentially permeates the alcohol membrane. Vaporization preferentially penetrates the phase separation property of the permeate of the alcohol membrane, omits the energy-intensive mash tower, effectively reduces the energy consumption of the concentration process, and improves the production intensity of butanol compared with the traditional batch fermentation-distillation process.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2012102655263A CN102787144B (en) | 2012-07-27 | 2012-07-27 | Process for producing acetone and butanol by coupling biomass fermentation and pervaporation membrane |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2012102655263A CN102787144B (en) | 2012-07-27 | 2012-07-27 | Process for producing acetone and butanol by coupling biomass fermentation and pervaporation membrane |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102787144A CN102787144A (en) | 2012-11-21 |
CN102787144B true CN102787144B (en) | 2013-10-16 |
Family
ID=47152733
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2012102655263A Active CN102787144B (en) | 2012-07-27 | 2012-07-27 | Process for producing acetone and butanol by coupling biomass fermentation and pervaporation membrane |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102787144B (en) |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102911854B (en) * | 2012-09-29 | 2014-06-25 | 大连理工大学 | Separation and purification device and separation and purification method for butanol and acetone |
CN103910605B (en) * | 2013-12-27 | 2016-04-27 | 江苏九天高科技股份有限公司 | The technique of a kind of infiltration evaporation system and refined biological propyl carbinol thereof |
CN103695301B (en) * | 2013-12-30 | 2016-06-22 | 南京九思高科技有限公司 | A kind of device improving biomass fuel alcohol fermentation efficiency and technique |
CN105482998A (en) * | 2016-01-12 | 2016-04-13 | 广西新天德能源有限公司 | High-efficiency and environment-friendly alcoholic fermentation coupling film separating system device |
CN108265083A (en) * | 2017-01-04 | 2018-07-10 | 北京化工大学 | The method that ethyl alcohol, acetone and butanol are prepared using ligno-cellulose hydrolysate segmentation |
CN106754259A (en) * | 2017-02-14 | 2017-05-31 | 中国科学院过程工程研究所 | A kind of synthesis gas that ferments produces the system and its processing method of alcohols |
CN107904265A (en) * | 2017-12-21 | 2018-04-13 | 北京首钢朗泽新能源科技有限公司 | The utilization technique and device of product in a kind of legal system alcohol that ferments |
CN111036083B (en) * | 2019-12-30 | 2024-05-17 | 山东金塔机械集团有限公司 | Three-effect membrane separation dehydration energy-saving method and device for preparing absolute alcohol |
CN111948112A (en) * | 2020-08-10 | 2020-11-17 | 盐城新海川机电科技有限公司 | Penetrating fluid constant-pressure quantitative supply method and device |
CN111766191B (en) * | 2020-08-10 | 2023-11-24 | 江苏钦宇建设工程有限公司 | Environment-friendly material cylinder penetration testing machine and working method thereof |
EP4588553A1 (en) * | 2022-09-14 | 2025-07-23 | Nitto Denko Corporation | Membrane separation system and method for operating membrane separation system |
CN115925515A (en) * | 2022-11-25 | 2023-04-07 | 青岛科技大学 | Energy-saving process for separating n-butyl alcohol-vinyl butyl ether-water by coupling ethylene glycol extractive distillation-pervaporation |
CN117384978A (en) * | 2023-06-30 | 2024-01-12 | 四川大学 | A production process for producing ethanol by coupling cassava fermentation and pervaporation membrane separation |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
IT1245485B (en) * | 1991-05-03 | 1994-09-20 | Butterfly Srl | PERMSELECTIVE MEMBRANES AND THEIR USE |
EP2268825A4 (en) * | 2008-04-09 | 2012-05-02 | Cobalt Technologies Inc | Immobilized product tolerant microorganisms |
EP2504447A2 (en) * | 2009-11-23 | 2012-10-03 | ButamaxTM Advanced Biofuels LLC | Method for producing butanol using extractive fermentation with osmolyte addition |
CN101805754B (en) * | 2010-03-31 | 2012-06-27 | 南京工业大学 | Process for in-situ separation of acetone, butanol and ethanol by coupling biomass fermentation and pervaporation |
CN101851641B (en) * | 2010-05-05 | 2012-10-24 | 王建设 | Method and device for producing biological butanol by continuous pervaporation coupling fermentation |
CN102304106B (en) * | 2011-08-11 | 2013-10-16 | 北京化工大学 | Method for producing butanol, acetone, butyric acid and furfural by fermentation of hemicellulose-rich biomass |
-
2012
- 2012-07-27 CN CN2012102655263A patent/CN102787144B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN102787144A (en) | 2012-11-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102787144B (en) | Process for producing acetone and butanol by coupling biomass fermentation and pervaporation membrane | |
CN101805754B (en) | Process for in-situ separation of acetone, butanol and ethanol by coupling biomass fermentation and pervaporation | |
Huang et al. | Butanol production from food waste: a novel process for producing sustainable energy and reducing environmental pollution | |
Qureshi et al. | Process integration for simultaneous saccharification, fermentation, and recovery (SSFR): production of butanol from corn stover using Clostridium beijerinckii P260 | |
US8252350B1 (en) | Ethanol recovery from fermentation broth | |
CN103834696B (en) | A kind of fermentation realizes with film separation coupling the method that continuous batch of fermentation ligno-cellulose hydrolysate produced lactic acid | |
Dadi et al. | Valorization of coffee byproducts for bioethanol production using lignocellulosic yeast fermentation and pervaporation | |
Wu et al. | Acetone–butanol–ethanol production using pH control strategy and immobilized cells in an integrated fermentation–pervaporation process | |
CN102304106B (en) | Method for producing butanol, acetone, butyric acid and furfural by fermentation of hemicellulose-rich biomass | |
CN103695475B (en) | Method for in-situ separation of ethanol by membrane separation technology | |
Sivasakthivelan et al. | Production of Ethanol by Zymomonas mobilis and Saccharomyces cerevisiae using sunflower head wastes-A comparative study | |
CN201873680U (en) | System device for ethanol fermentation and separation and coupling based on pervaporation membrane | |
CN103290067A (en) | Method for improving yield of simultaneous saccharification and fermentation lignocellulose ethanol | |
Jiang et al. | Bioethanol production from cassava fermentation in pervaporation membrane bioreactor fed with high concentration sugar | |
Murugan et al. | Bioethanol production from agave leaves using Saccharomyces cerevisiae (MTCC 173) and Zymomonas mobilis (MTCC 2427) | |
CN202039062U (en) | Combine device for producing cellulosic ethanol through fermenting xylose and simultaneously separating ethanol | |
RU2405827C2 (en) | Method of preparing organic solvents | |
CN102766020B (en) | Method for producing ethanol, acetone and butanol by permeabilization, vaporization, coupling and rectification of ABE (Acetone, Butanol and Ethanol) fermentation liquor | |
CN102586339B (en) | Method for co-production of fuel ethanol and lignin from sweet sorghum straw | |
CN103695301B (en) | A kind of device improving biomass fuel alcohol fermentation efficiency and technique | |
US8328994B2 (en) | Ethanol recovery system for cellulosic feedstocks | |
WO2015085012A1 (en) | Methods and systems for production of bioproducts | |
CN103582787B (en) | The production technology of the volatile fermentation products of solar energy auxiliary | |
CN102757984B (en) | Production method of butyl alcohol by fermentation of biomass coupled with pervaporation separation | |
CN105624205A (en) | Cellulase recycling method in cellulose ethanol production |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |