CN102779411A - Method for automatically acquiring road grade - Google Patents
Method for automatically acquiring road grade Download PDFInfo
- Publication number
- CN102779411A CN102779411A CN2012102855912A CN201210285591A CN102779411A CN 102779411 A CN102779411 A CN 102779411A CN 2012102855912 A CN2012102855912 A CN 2012102855912A CN 201210285591 A CN201210285591 A CN 201210285591A CN 102779411 A CN102779411 A CN 102779411A
- Authority
- CN
- China
- Prior art keywords
- road
- information
- vehicle
- data point
- flight path
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Traffic Control Systems (AREA)
Abstract
本发明公开了一种自动获取道路坡度的方法,属于智能交通技术领域。所述方法包括:通过车载设备传感器采集车辆的行驶轨迹信息,对行驶轨迹信息进行处理,得到具体经纬度位置的坡度信息,通过地图匹配,将所述坡度信息输出到车辆在道路的位置上。本发明通过车载设备传感器来采集车辆俯仰角信息,并通过数据处理及地图匹配得到城市道路坡度值。得到的道路坡度信息数据是建立能耗模型的重要基础,同时也是车辆的行驶环境的一个重要因素,可以为其他一些交通参数的计算提供数据支持。
The invention discloses a method for automatically acquiring road slopes, which belongs to the technical field of intelligent transportation. The method includes: collecting vehicle track information through on-board equipment sensors, processing the track information to obtain slope information at a specific latitude and longitude position, and outputting the slope information to the position of the vehicle on the road through map matching. The invention collects vehicle pitch angle information through a vehicle-mounted device sensor, and obtains an urban road gradient value through data processing and map matching. The obtained road slope information data is an important basis for establishing an energy consumption model, and it is also an important factor of the vehicle's driving environment, which can provide data support for the calculation of other traffic parameters.
Description
技术领域 technical field
本发明涉及智能交通技术领域,尤其涉及一种自动获取道路坡度的方法。The invention relates to the technical field of intelligent transportation, in particular to a method for automatically acquiring road gradients.
背景技术 Background technique
随着节能减排成为交通发展的主题,建立一个实时微观监测城市道路能耗模型的需求越来越迫切。以CMEM、MOVES模型为代表,基于机动车功率需求变量的模型开发方法是目前主流方法。尤其是独立于车重的机动车比功率(VSP)变量,既保留了汽车工程领域的物理模型的优点,又减少了模型深入参数的复杂性,适用于交通参数的衔接,是油耗排放模型的研究与应用方向。As energy conservation and emission reduction become the theme of transportation development, the need to establish a real-time micro-monitoring model of urban road energy consumption is becoming more and more urgent. Represented by CMEM and MOVES models, the model development method based on motor vehicle power demand variables is currently the mainstream method. In particular, the vehicle specific power (VSP) variable, which is independent of vehicle weight, not only retains the advantages of the physical model in the field of automotive engineering, but also reduces the complexity of the model's in-depth parameters. It is suitable for the connection of traffic parameters and is the key to fuel consumption and emission models. Research and application direction.
机动车比功率(Vehicle Specific Power,VSP)的物理意义是机动车移动单位质量所需功率,其等于动能变化、势能变化、克服道路摩擦、克服空气阻力四方面所需功率总和与车辆总质量之比。经过简化后,VSP可以转化成行驶速度、加速度和道路坡度的函数。道路坡度作为一个重要的参数,很难通过便携式设备或者车载设备直接测量得到。The physical meaning of vehicle specific power (Vehicle Specific Power, VSP) is the power required to move the unit mass of the vehicle, which is equal to the sum of the power required for four aspects of kinetic energy change, potential energy change, overcoming road friction, and overcoming air resistance and the total mass of the vehicle. Compare. After simplification, VSP can be transformed into a function of driving speed, acceleration and road gradient. As an important parameter, road slope is difficult to be directly measured by portable devices or vehicle-mounted devices.
发明内容 Contents of the invention
有鉴于此,本发明的目的在于提供一种自动获取道路坡度的方法,实现道路坡度的自动获取。In view of this, the object of the present invention is to provide a method for automatically acquiring road gradients, so as to realize automatic acquisition of road gradients.
本发明提供了一种自动获取道路坡度的方法,包括:The invention provides a method for automatically obtaining road gradient, comprising:
通过车载设备传感器采集车辆的行驶轨迹信息,对行驶轨迹信息进行处理,得到具体经纬度位置的坡度信息,通过地图匹配,将所述坡度信息输出到车辆在道路的位置上。The track information of the vehicle is collected by the on-board equipment sensor, and the track information is processed to obtain the slope information of the specific latitude and longitude position, and the slope information is output to the position of the vehicle on the road through map matching.
本发明通过车载设备传感器来采集车辆俯仰角信息,并通过数据处理及地图匹配得到城市道路坡度值。得到的道路坡度信息数据是建立能耗模型的重要基础,同时也是车辆的行驶环境的一个重要因素,可以为其他一些交通参数的计算提供数据支持。The invention collects vehicle pitch angle information through a vehicle-mounted device sensor, and obtains an urban road gradient value through data processing and map matching. The obtained road slope information data is an important basis for establishing an energy consumption model, and it is also an important factor of the vehicle's driving environment, which can provide data support for the calculation of other traffic parameters.
附图说明 Description of drawings
图1为本发明实施例中纵坡的示意图;Fig. 1 is the schematic diagram of longitudinal slope in the embodiment of the present invention;
图2为本发明实施例中最小纵坡的示意图;Fig. 2 is the schematic diagram of minimum longitudinal slope in the embodiment of the present invention;
图3为本发明实施例提供的自动获取道路坡度的方法流程图;Fig. 3 is the flow chart of the method for automatically obtaining road gradient provided by the embodiment of the present invention;
图4为本发明实施例中对行驶轨迹信息进行处理的方法流程图;Fig. 4 is a flowchart of a method for processing driving track information in an embodiment of the present invention;
图5为本发明实施例中选择滑动平均窗口的示意图;Fig. 5 is the schematic diagram that selects sliding average window in the embodiment of the present invention;
图6为本发明实施例中地图匹配的方法流程图;FIG. 6 is a flowchart of a method for map matching in an embodiment of the present invention;
图7为基于本发明实施例方法处理后的数据与谷歌数据库高程图对比的示意图。Fig. 7 is a schematic diagram of comparing the processed data with the Google database elevation map based on the method of the embodiment of the present invention.
具体实施方式 Detailed ways
为使本发明的目的、技术方案和优点更加清楚,下面结合附图对本发明作进一步的详细描述。In order to make the object, technical solution and advantages of the present invention clearer, the present invention will be further described in detail below in conjunction with the accompanying drawings.
本发明实施例通过车载设备传感器来采集车辆俯仰角信息,并通过数据处理及地图匹配得到城市道路坡度值。In the embodiment of the present invention, the vehicle pitch angle information is collected by the vehicle-mounted device sensor, and the urban road slope value is obtained through data processing and map matching.
为了便于理解本发明实施例,首先介绍实时路况信息发布系统中的几个概念:In order to facilitate the understanding of the embodiments of the present invention, several concepts in the real-time road condition information release system are first introduced:
纵坡:指的是路线纵断面上同一坡段两点间的高差与其水平距离之比,以百分率表示。如图1所示,纵坡=a/b*100%=tan(Θ)*100%。Longitudinal slope: refers to the ratio of the height difference between two points on the same slope section on the longitudinal section of the route to its horizontal distance, expressed as a percentage. As shown in Figure 1, longitudinal slope=a/b*100%=tan(Θ)*100%.
最大纵坡:是公路允许采用的最大坡度值,确定最大纵坡的因素有汽车的动力特性、公路等级以及地形、气候、海拔高度等自然因素,其值应符合表1规定。Maximum longitudinal slope: It is the maximum slope value allowed by the highway. Factors determining the maximum longitudinal slope include the vehicle’s dynamic characteristics, road grade, and natural factors such as terrain, climate, and altitude. Its value should meet the requirements in Table 1.
表1Table 1
同时,设计速度为120km/h、100km/h、80km/h的高速公路,受地形条件或其它特殊情况限制时,经技术经济论证最大纵坡值可增加1%;公路改建中设计速度为40km/h、30km/h、20km/h的利用原有公路的路段,经技术经济论证,最大纵坡值可增加1%;越岭路线连续上坡或下坡路段,相对高差为200-500m时,平均纵坡不应大于5.5%,相对高差大于500m时平均纵坡不应大于5%,任意连续3km路段的平均纵坡不应大5.5%。At the same time, when expressways with design speeds of 120km/h, 100km/h, and 80km/h are restricted by terrain conditions or other special circumstances, the maximum longitudinal slope value can be increased by 1% after technical and economic demonstration; the design speed in highway reconstruction is 40km /h, 30km/h, and 20km/h sections using the original highway, the maximum longitudinal slope value can be increased by 1% after technical and economic demonstration; when the cross-ridge route is continuously uphill or downhill, the relative height difference is 200-500m , the average longitudinal slope should not be greater than 5.5%, the average longitudinal slope should not be greater than 5% when the relative height difference is greater than 500m, and the average longitudinal slope of any continuous 3km section should not be greater than 5.5%.
最小纵坡:是公路允许采用的最小坡度值。当铺设轨道或路面的路基面低于天然对面时,路基以开挖方式构成,这种路基为路堑,如图2所示。在各级公路的长路堑路段,以及其他横向排水不畅的路段,均应采用不小于0.3%的纵坡,否则应对其边沟作纵向排水设计。干旱地区以及横向排水良好的路段,其最小纵坡可不受上述限制。Minimum vertical slope: It is the minimum slope value allowed by the road. When the subgrade surface of the laid track or road surface is lower than the natural opposite side, the subgrade is formed by excavation, and this kind of subgrade is a road cutting, as shown in Figure 2. Longitudinal cut sections of highways at all levels and other sections with poor lateral drainage shall adopt a longitudinal slope of not less than 0.3%, otherwise longitudinal drainage shall be designed for the side ditches. In arid areas and road sections with good lateral drainage, the minimum longitudinal slope may not be subject to the above restrictions.
图3为本发明实施例提供的自动获取道路坡度的方法流程图,包括以下步骤:Fig. 3 is the flow chart of the method for automatically obtaining road slope provided by the embodiment of the present invention, comprising the following steps:
步骤301、通过车载设备传感器采集车辆的行驶轨迹信息。包括:车辆经纬度坐标、俯仰角、高程、速度等信息。采样数据解释如下表2所示:
表2Table 2
步骤302、对行驶轨迹信息进行处理,得到具体经纬度位置的坡度信息。
如图4所示,包括以下步骤:As shown in Figure 4, the following steps are included:
步骤3021、将采集到的俯仰角信息转化成《公路工程技术标准》中的标准格式纵坡值。如表3所示,使用公式tan(RADIANS(roc)),式中,roc是指车辆俯仰角度,单位-度,相对车体水平姿态计算;RADIANS是一个函数,将一个表示角度的数值或参数转换为弧度,将俯仰角信息转化为纵坡值。Step 3021, transform the collected pitch angle information into the standard format longitudinal slope value in "Technical Standards for Highway Engineering". As shown in Table 3, the formula tan(RADIANS(roc)) is used. In the formula, roc refers to the pitch angle of the vehicle, in units of degrees, calculated relative to the horizontal attitude of the vehicle body; RADIANS is a function that takes a value or parameter representing the angle Convert to radians to convert pitch angle information into longitudinal slope values.
表3table 3
步骤3022、将得到的纵坡值按《公路工程技术标准》里的最大纵坡值和最小纵坡值进行筛选,清洗掉纵坡值超出9%的数据。从表1中可以看出四级公路的最大纵波值为9%,所以要清洗超出9%的纵坡值数据。Step 3022: Filter the obtained longitudinal slope values according to the maximum longitudinal slope value and the minimum longitudinal slope value in the "Technical Standards for Highway Engineering", and clean out the data whose longitudinal slope value exceeds 9%. It can be seen from Table 1 that the maximum longitudinal wave value of the fourth-grade highway is 9%, so the longitudinal slope value data exceeding 9% should be cleaned.
步骤3023、使用滑动平均对清洗后的纵坡值进行处理。滑动平均公式如下:Step 3023, use the moving average to process the cleaned longitudinal slope value. The moving average formula is as follows:
其中,MA[i]是滑动平均后的样本集,N为滑动窗口,s[i+j]是需要做滑动平均的样本集。Among them, MA [i] is the sample set after sliding average, N is the sliding window, and s [i+j] is the sample set that needs to be averaged.
滑动平均的基本原理,是通过移动窗口来消除序列中的不规则变化,从而反映出趋势。滑动平均对原序列有平滑的作用,使得原序列的上下波动被削弱了,而且窗口越大,对数列的平滑作用越强。滑动平均能平滑掉异常的波动对数据的影响。但滑动平均在运用时也存在问题,加大滑动平均的窗口(即N)波动的平滑效果更好,但会使结果对数据实际变动变得不敏感。The basic principle of moving average is to eliminate the irregular changes in the sequence by moving the window, so as to reflect the trend. The moving average has a smoothing effect on the original sequence, which weakens the up and down fluctuations of the original sequence, and the larger the window, the stronger the smoothing effect on the sequence. The moving average can smooth out the influence of abnormal fluctuations on the data. However, there are also problems in the application of the sliding average. Increasing the window of the sliding average (that is, N) has a better smoothing effect on fluctuations, but it will make the results insensitive to the actual changes in the data.
根据图5选择滑动平均的窗口,以100为窗口既能很好的反映数据的变化趋势,同时又保留了细节。According to Figure 5, the sliding average window is selected, and the window of 100 can not only reflect the changing trend of the data well, but also retain the details.
步骤303、通过地图匹配算法,将坡度信息输出到车辆在道路的位置上。在获得了纵坡值信息之后,需要通过地图匹配算法,将GPS数据对应到车辆在道路的位置上,从而得到路网的道路坡度分布。在实际车载导航系统中,由于GPS定位误差、坐标系转换误差及道路电子地图精度误差等各种因素,在导航电子地图上经常出现车辆轨迹曲线偏离实际行驶道路的情况。地图匹配的基本思想就是将车辆行驶轨迹与数字地图中的道路网信息联系起来,并由此确定车辆在地图道路网络中的准确位置,从而能够将纵坡信息对应到准确的经纬度点上。
地图匹配是一种基于软件技术的定位修正方法,其基本思想是将车辆定位轨迹与数字地图中的路网信息联系起来,由此确定车辆在地图道路网络中的准确位置。本发明实施例使用最近邻法,将GPS探测到的车辆航迹点到某一路链的垂直距离作为判断匹配度的依据,航迹点到达某一路链的垂直距离越短说明航迹点离此路链越近,两者匹配的可能性就越大。Map matching is a positioning correction method based on software technology. Its basic idea is to link the vehicle positioning trajectory with the road network information in the digital map, thereby determining the exact position of the vehicle in the map road network. The embodiment of the present invention uses the nearest neighbor method, and uses the vertical distance from the vehicle track point detected by GPS to a certain road link as the basis for judging the matching degree. The closer the link is, the more likely it is that the two will match.
如图6所示,地图匹配算法的具体执行步骤如下:As shown in Figure 6, the specific execution steps of the map matching algorithm are as follows:
步骤3031、获得GPS探测到的航迹数据点的经纬度坐标信息。
步骤3032、收集临近区域内(方圆50米内)的所有路链作为候选路链并放入候选路链集中。Step 3032: Collect all the links in the adjacent area (within a radius of 50 meters) as candidate links and put them into the set of candidate links.
步骤3033、遍历候选路链集,依据最近邻准则判断当前路链与航迹数据点的匹配程度:计算航迹数据点到当前路链的垂直距离,距离短的匹配度高。Step 3033: Traversing the set of candidate links, judging the degree of matching between the current link and the track data point according to the nearest neighbor criterion: calculate the vertical distance from the track data point to the current link, and the shorter the distance, the higher the matching degree.
步骤3034、检查候选路链集,将航迹数据点投影在路链延长线上的路链排除出候选集。如果航迹数据点在路链延长线上,那么这个航迹数据点(也就是对应的经纬度坐标点)离这条路链很远,不可能落在这条路链上,需要排除这个路链。
步骤3035、选取剩余候选路链集中匹配度最高(即距离最短)的路链,并认定其为该航迹数据点的匹配路链。Step 3035: Select the link with the highest matching degree (ie the shortest distance) from the remaining candidate link set, and determine it as the matching link of the track data point.
步骤3036、获得航迹数据点在匹配路链上的投影坐标,以此坐标来对航迹数据点进行经纬度坐标修正。将匹配路链上的投影坐标作为正确的经纬度值来替换原来经纬度坐标值。Step 3036: Obtain the projection coordinates of the track data points on the matching road links, and use the coordinates to correct the longitude and latitude coordinates of the track data points. Use the projected coordinates on the matching road link as the correct latitude and longitude values to replace the original latitude and longitude coordinates.
本发明实施例从数据采集、数据处理、地图匹配三个方面对坡度识别的实现进行了阐述:首先,通过车载设备传感器采集车辆在行驶轨迹中的俯仰角信息;随后对采集到的数据(经纬度、高程、速度、俯仰角信息等)进行数据清理和数据处理,得出具体经纬度位置的坡度信息;最后,对于处理好的数据,通过设计的地图匹配算法,将GPS数据输出到车辆在道路的位置上,从而得到路网的道路坡度分布。得到的道路坡度信息数据是建立能耗模型的重要基础,同时也是车辆的行驶环境的一个重要因素,可以为其他一些交通参数的计算提供数据支持。The embodiments of the present invention describe the realization of slope recognition from three aspects: data collection, data processing, and map matching: first, the pitch angle information of the vehicle in the driving track is collected through the on-board device sensor; then the collected data (longitude and latitude , elevation, speed, pitch angle information, etc.) for data cleaning and data processing, to obtain the slope information of the specific latitude and longitude position; finally, for the processed data, through the designed map matching algorithm, the GPS data is output to the vehicle on the road. position, so as to obtain the road slope distribution of the road network. The obtained road slope information data is an important basis for establishing an energy consumption model, and it is also an important factor of the vehicle's driving environment, which can provide data support for the calculation of other traffic parameters.
通过图7可以看出采集到的信息与实际地理信息趋势基本相符,同时通过现场照片,可以看出坡度起伏的拐点也是准确的。It can be seen from Figure 7 that the collected information is basically consistent with the actual geographical information trend, and at the same time, through the on-site photos, it can be seen that the inflection point of the slope fluctuation is also accurate.
总之,以上所述仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围。In a word, the above descriptions are only preferred embodiments of the present invention, and are not intended to limit the protection scope of the present invention.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2012102855912A CN102779411A (en) | 2012-08-10 | 2012-08-10 | Method for automatically acquiring road grade |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2012102855912A CN102779411A (en) | 2012-08-10 | 2012-08-10 | Method for automatically acquiring road grade |
Publications (1)
Publication Number | Publication Date |
---|---|
CN102779411A true CN102779411A (en) | 2012-11-14 |
Family
ID=47124318
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2012102855912A Pending CN102779411A (en) | 2012-08-10 | 2012-08-10 | Method for automatically acquiring road grade |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102779411A (en) |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104916133A (en) * | 2015-06-09 | 2015-09-16 | 福建工程学院 | Road altitude information extraction method and system based on traffic track data |
CN105608985A (en) * | 2015-12-24 | 2016-05-25 | 东南大学 | Enhanced digital vector map production method with road longitudinal gradient |
CN106548651A (en) * | 2017-01-17 | 2017-03-29 | 吉林大学 | A kind of On-line testing method of vehicle traveling road ahead fine information |
CN106767883A (en) * | 2016-12-15 | 2017-05-31 | 清华大学苏州汽车研究院(吴江) | Map datum including road grade data generates system and method in real time |
CN107560599A (en) * | 2017-09-04 | 2018-01-09 | 清华大学 | A kind of road grade data processing method of feature based point sampling and curve matching |
CN107727045A (en) * | 2017-09-30 | 2018-02-23 | 福建农林大学 | Road radius of horizontal curve measuring method based on wheelpath |
CN107990909A (en) * | 2016-10-27 | 2018-05-04 | 千寻位置网络有限公司 | A kind of test method and its system of simulated roadway position data |
CN108803625A (en) * | 2018-08-09 | 2018-11-13 | 北京智行者科技有限公司 | A kind of running method |
CN109118939A (en) * | 2017-06-23 | 2019-01-01 | 薛富盛 | Dimensional topography map and preparation method thereof |
CN109910888A (en) * | 2019-03-04 | 2019-06-21 | 浙江吉利汽车研究院有限公司 | A vehicle downhill control method, device and equipment |
CN111354100A (en) * | 2020-02-28 | 2020-06-30 | 西南交通大学 | A quantitative analysis method for key factors of truck fuel consumption based on trajectory data |
CN111831960A (en) * | 2020-07-10 | 2020-10-27 | 北京交通大学 | Dynamic measurement method of network-connected truck load based on identification and elimination of slope disturbance |
CN111882872A (en) * | 2020-07-17 | 2020-11-03 | 北京交通大学 | Method and device for road gradient measurement based on power distribution of large-scale networked vehicles |
CN112304281A (en) * | 2019-07-30 | 2021-02-02 | 厦门雅迅网络股份有限公司 | Road slope measuring method, terminal equipment and storage medium |
CN112527930A (en) * | 2020-11-19 | 2021-03-19 | 深圳大学 | Pedestrian road gradient information extraction method based on smart phone |
CN112945195A (en) * | 2021-01-26 | 2021-06-11 | 北京讯腾智慧科技股份有限公司 | Method and device for measuring gradient of track bridge during passing of train |
CN113091708A (en) * | 2021-04-06 | 2021-07-09 | 中山大学 | Road subsection gradient estimation method and system based on multi-sample GPS quality control data |
CN115331430A (en) * | 2022-07-14 | 2022-11-11 | 中通客车股份有限公司 | Intelligent network vehicle-connected road spectrum acquisition and analysis method and system |
WO2025123396A1 (en) * | 2023-12-14 | 2025-06-19 | 安徽蔚来智驾科技有限公司 | Vehicle trajectory determination method, storage medium, and vehicle |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6009374A (en) * | 1995-10-24 | 1999-12-28 | Mitsubishi Denki Kabushiki Kaisha | Apparatus for and method of controlling vehicular systems while travelling |
CN101349570A (en) * | 2007-07-20 | 2009-01-21 | 爱信艾达株式会社 | Navigation apparatus and program for navigation |
JP2009236714A (en) * | 2008-03-27 | 2009-10-15 | Toyota Motor Corp | Gradient information calculation device, vehicle cruise controller, and navigation system |
CN100578152C (en) * | 2006-08-25 | 2010-01-06 | 北京航空航天大学 | A Heuristic Path Matching Method for Large-Scale Floating Car Data |
CN102622879A (en) * | 2011-01-26 | 2012-08-01 | 株式会社日立制作所 | Traffic Information Provider |
-
2012
- 2012-08-10 CN CN2012102855912A patent/CN102779411A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6009374A (en) * | 1995-10-24 | 1999-12-28 | Mitsubishi Denki Kabushiki Kaisha | Apparatus for and method of controlling vehicular systems while travelling |
CN100578152C (en) * | 2006-08-25 | 2010-01-06 | 北京航空航天大学 | A Heuristic Path Matching Method for Large-Scale Floating Car Data |
CN101349570A (en) * | 2007-07-20 | 2009-01-21 | 爱信艾达株式会社 | Navigation apparatus and program for navigation |
JP2009236714A (en) * | 2008-03-27 | 2009-10-15 | Toyota Motor Corp | Gradient information calculation device, vehicle cruise controller, and navigation system |
CN102622879A (en) * | 2011-01-26 | 2012-08-01 | 株式会社日立制作所 | Traffic Information Provider |
Cited By (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104916133A (en) * | 2015-06-09 | 2015-09-16 | 福建工程学院 | Road altitude information extraction method and system based on traffic track data |
CN105608985A (en) * | 2015-12-24 | 2016-05-25 | 东南大学 | Enhanced digital vector map production method with road longitudinal gradient |
CN107990909B (en) * | 2016-10-27 | 2021-05-25 | 千寻位置网络有限公司 | Test method and system for simulating road position data |
CN107990909A (en) * | 2016-10-27 | 2018-05-04 | 千寻位置网络有限公司 | A kind of test method and its system of simulated roadway position data |
CN106767883A (en) * | 2016-12-15 | 2017-05-31 | 清华大学苏州汽车研究院(吴江) | Map datum including road grade data generates system and method in real time |
CN106548651A (en) * | 2017-01-17 | 2017-03-29 | 吉林大学 | A kind of On-line testing method of vehicle traveling road ahead fine information |
CN109118939A (en) * | 2017-06-23 | 2019-01-01 | 薛富盛 | Dimensional topography map and preparation method thereof |
CN109118939B (en) * | 2017-06-23 | 2022-02-18 | 薛富盛 | Three-dimensional topographic map and manufacturing method thereof |
CN107560599A (en) * | 2017-09-04 | 2018-01-09 | 清华大学 | A kind of road grade data processing method of feature based point sampling and curve matching |
CN107560599B (en) * | 2017-09-04 | 2020-05-12 | 清华大学 | Road gradient data processing method based on feature point sampling and curve fitting |
CN107727045B (en) * | 2017-09-30 | 2019-10-18 | 福建农林大学 | Road flat curve radius measurement method based on driving track |
CN107727045A (en) * | 2017-09-30 | 2018-02-23 | 福建农林大学 | Road radius of horizontal curve measuring method based on wheelpath |
CN108803625A (en) * | 2018-08-09 | 2018-11-13 | 北京智行者科技有限公司 | A kind of running method |
CN108803625B (en) * | 2018-08-09 | 2021-07-23 | 北京智行者科技有限公司 | Driving method |
CN109910888A (en) * | 2019-03-04 | 2019-06-21 | 浙江吉利汽车研究院有限公司 | A vehicle downhill control method, device and equipment |
CN112304281A (en) * | 2019-07-30 | 2021-02-02 | 厦门雅迅网络股份有限公司 | Road slope measuring method, terminal equipment and storage medium |
CN111354100A (en) * | 2020-02-28 | 2020-06-30 | 西南交通大学 | A quantitative analysis method for key factors of truck fuel consumption based on trajectory data |
CN111831960A (en) * | 2020-07-10 | 2020-10-27 | 北京交通大学 | Dynamic measurement method of network-connected truck load based on identification and elimination of slope disturbance |
CN111831960B (en) * | 2020-07-10 | 2021-11-16 | 北京交通大学 | Dynamic measurement method of network-connected truck load based on identification and elimination of slope disturbance |
CN111882872A (en) * | 2020-07-17 | 2020-11-03 | 北京交通大学 | Method and device for road gradient measurement based on power distribution of large-scale networked vehicles |
CN111882872B (en) * | 2020-07-17 | 2021-08-17 | 北京交通大学 | Method and device for road gradient measurement based on power distribution of large-scale networked vehicles |
CN112527930A (en) * | 2020-11-19 | 2021-03-19 | 深圳大学 | Pedestrian road gradient information extraction method based on smart phone |
CN112527930B (en) * | 2020-11-19 | 2023-11-03 | 深圳大学 | A smartphone-based method for extracting road slope information from pedestrian road networks |
CN112945195A (en) * | 2021-01-26 | 2021-06-11 | 北京讯腾智慧科技股份有限公司 | Method and device for measuring gradient of track bridge during passing of train |
CN113091708A (en) * | 2021-04-06 | 2021-07-09 | 中山大学 | Road subsection gradient estimation method and system based on multi-sample GPS quality control data |
CN115331430A (en) * | 2022-07-14 | 2022-11-11 | 中通客车股份有限公司 | Intelligent network vehicle-connected road spectrum acquisition and analysis method and system |
CN115331430B (en) * | 2022-07-14 | 2024-03-08 | 中通客车股份有限公司 | Intelligent network-connected vehicle road spectrum acquisition and analysis method and system |
WO2025123396A1 (en) * | 2023-12-14 | 2025-06-19 | 安徽蔚来智驾科技有限公司 | Vehicle trajectory determination method, storage medium, and vehicle |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102779411A (en) | Method for automatically acquiring road grade | |
CN105303832B (en) | Overpass road section traffic volume congestion index computational methods based on microwave vehicle detector | |
US11447150B2 (en) | Comfort-based self-driving planning method | |
Boriboonsomsin et al. | Impacts of road grade on fuel consumption and carbon dioxide emissions evidenced by use of advanced navigation systems | |
CN104851286B (en) | A kind of method of utilization public transit vehicle gps data dynamic evaluation road traffic state | |
CN105806351B (en) | A kind of road information estimation method and device | |
CN100337256C (en) | Method for estimating city road network traffic flow state | |
Boroujeni et al. | Road grade measurement using in-vehicle, stand-alone GPS with barometric altimeter | |
CN113160593A (en) | Mountain road driving safety early warning method based on edge cloud cooperation | |
CN103093088A (en) | Safety evaluation method for steep slope and winding road | |
CN103038605A (en) | Detecting location, timetable and travel time estimations for barrier crossings in a digital map | |
CN106846806A (en) | Urban highway traffic method for detecting abnormality based on Isolation Forest | |
CN111656145A (en) | Vehicle monitor | |
CN110428621A (en) | A kind of monitoring of Floating Car dangerous driving behavior and method for early warning based on track data | |
CN102682605A (en) | System and Method for Determining Environmental Traffic Capacity of Expressway Based on Vehicle Emissions | |
CN107560599A (en) | A kind of road grade data processing method of feature based point sampling and curve matching | |
CN104900057A (en) | City expressway main and auxiliary road floating vehicle map matching method | |
CN110174106A (en) | A kind of healthy walking paths planning method and terminal device based on PM2.5 | |
CN108229803A (en) | A kind of extracting method in feature section, the judgment method of Dangerous Area and system | |
CN105702070A (en) | Vehicle-road cooperative control system and method with tunnel speed early warning function | |
CN106056903A (en) | Method for detecting road congestion areas based on GPS (Global Positioning System) data | |
CN110254435A (en) | A driving style recognition method | |
CN104048668A (en) | Map mapping method of floating vehicle | |
Kim et al. | A Study on the Scenario Development for the Analysis of Mixed Traffic Flow Characteristics Following the Introduction of Freeway Exclusive Lanes for Autonomous Vehicles | |
CN102436742A (en) | Method and device for evaluating traffic information service level of floating vehicle system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20121114 |