CN102765643B - Elevator fault diagnosis and early-warning method based on data drive - Google Patents
Elevator fault diagnosis and early-warning method based on data drive Download PDFInfo
- Publication number
- CN102765643B CN102765643B CN201210176351.9A CN201210176351A CN102765643B CN 102765643 B CN102765643 B CN 102765643B CN 201210176351 A CN201210176351 A CN 201210176351A CN 102765643 B CN102765643 B CN 102765643B
- Authority
- CN
- China
- Prior art keywords
- fault
- elevator
- case
- data
- diagnosis
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000003745 diagnosis Methods 0.000 title claims abstract description 88
- 238000000034 method Methods 0.000 title claims abstract description 48
- 238000005065 mining Methods 0.000 claims abstract description 4
- 238000012423 maintenance Methods 0.000 claims description 33
- 238000004422 calculation algorithm Methods 0.000 claims description 14
- 230000008569 process Effects 0.000 claims description 13
- 238000007418 data mining Methods 0.000 claims description 12
- 238000007781 pre-processing Methods 0.000 claims description 7
- 238000012549 training Methods 0.000 claims description 7
- 238000013528 artificial neural network Methods 0.000 claims description 6
- 239000000284 extract Substances 0.000 claims description 6
- 238000000605 extraction Methods 0.000 claims description 6
- 208000024891 symptom Diseases 0.000 claims description 6
- 238000004364 calculation method Methods 0.000 claims description 5
- 238000012360 testing method Methods 0.000 claims description 5
- 238000007689 inspection Methods 0.000 claims description 4
- 230000002159 abnormal effect Effects 0.000 claims description 3
- 238000006243 chemical reaction Methods 0.000 claims description 3
- 230000001939 inductive effect Effects 0.000 claims description 3
- 238000000513 principal component analysis Methods 0.000 claims description 3
- 230000009467 reduction Effects 0.000 claims description 3
- 238000012706 support-vector machine Methods 0.000 claims description 3
- 238000012937 correction Methods 0.000 claims description 2
- 239000011159 matrix material Substances 0.000 claims description 2
- 238000013461 design Methods 0.000 abstract description 5
- 238000001514 detection method Methods 0.000 abstract description 4
- 238000004519 manufacturing process Methods 0.000 abstract 1
- 230000006870 function Effects 0.000 description 11
- 238000005516 engineering process Methods 0.000 description 9
- 238000010586 diagram Methods 0.000 description 3
- 230000003449 preventive effect Effects 0.000 description 2
- 230000008439 repair process Effects 0.000 description 2
- 201000004569 Blindness Diseases 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000007621 cluster analysis Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000012067 mathematical method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000010606 normalization Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Landscapes
- Maintenance And Inspection Apparatuses For Elevators (AREA)
- Indicating And Signalling Devices For Elevators (AREA)
Abstract
本发明涉及电梯领域。为实现电梯故障的早期发现和诊断,本发明采取的技术方案是,基于数据驱动的电梯故障诊断与预警方法,借助于远程服务中心、故障诊断与预测终端和电梯控制器实现,包括如下步骤:首先对实时电梯故障数据进行挖掘获得电梯故障数据流中的特征信息,并将挖掘结果保存在故障诊断与预测终端的电梯故障案例库中;然后利用电梯故障案例库对故障诊断与预测终端上的电梯故障知识库进行更新;再针对新电梯故障问题的特征进行案例检索,采用基于案例推理的故障诊断方法对电梯系统进行故障诊断:通过检索电梯故障知识库知识或案例,获得与新电梯故障问题具有最相似特征的信息,解决诊断问题;本发明主要应用于图像传感器的设计制造。
The invention relates to the field of elevators. In order to realize the early detection and diagnosis of elevator faults, the technical solution adopted by the present invention is to implement a data-driven elevator fault diagnosis and early warning method by means of a remote service center, a fault diagnosis and prediction terminal, and an elevator controller, including the following steps: Firstly, the real-time elevator fault data is mined to obtain the characteristic information in the elevator fault data stream, and the mining results are stored in the elevator fault case database of the fault diagnosis and prediction terminal; Update the elevator fault knowledge base; then conduct case retrieval according to the characteristics of the new elevator fault problem, and use the fault diagnosis method based on case reasoning to diagnose the fault of the elevator system: by retrieving the knowledge or cases of the elevator fault knowledge base, obtain the new elevator fault problem The information with the most similar features solves the problem of diagnosis; the invention is mainly applied to the design and manufacture of image sensors.
Description
技术领域 technical field
本发明涉及电梯领域,具体讲,涉及基于数据驱动的电梯故障诊断与预警方法。The invention relates to the field of elevators, in particular to a data-driven elevator fault diagnosis and early warning method.
背景技术 Background technique
由于近年来国内存在安全隐患的电梯数量迅速增长,仅通过维修人员经验或维修手册对电梯进行维护存在效率低、准确度差且往往是事后诊断等问题,不能满足电梯安全的需要。电梯需要一种智能故障诊断及预警系统保证系统安全运行。Due to the rapid increase in the number of elevators with safety hazards in China in recent years, the maintenance of elevators only through the experience of maintenance personnel or maintenance manuals has problems such as low efficiency, poor accuracy, and often after-the-fact diagnosis, which cannot meet the needs of elevator safety. The elevator needs an intelligent fault diagnosis and early warning system to ensure the safe operation of the system.
国内解决电梯安全问题主要通过两个途径:一是故障发生后的故障诊断,二是维修人员定期的维护保养。而目前广泛应用的故障诊断技术主要有专家系统、模糊推理、神经网络等。但这些技术严重依赖于专家知识,专家知识获取困难成为故障诊断实施的瓶颈。另外,大多数故障诊断方法都不能提供故障预测功能,被动型诊断无法阻止故障的发生,只能依靠于电梯定期维护保养。目的不明确的定期维修保养不仅成本高、效率低,而且依靠人工检查也很难发现电梯的安全隐患。There are two main ways to solve the elevator safety problem in China: one is fault diagnosis after the fault occurs, and the other is regular maintenance by maintenance personnel. At present, the widely used fault diagnosis techniques mainly include expert system, fuzzy reasoning, neural network and so on. However, these technologies rely heavily on expert knowledge, and the difficulty in obtaining expert knowledge has become a bottleneck in the implementation of fault diagnosis. In addition, most fault diagnosis methods cannot provide fault prediction function, and passive diagnosis cannot prevent the occurrence of faults, and can only rely on the regular maintenance of elevators. Regular maintenance with unclear purpose is not only costly and inefficient, but also it is difficult to find potential safety hazards of elevators by relying on manual inspection.
发明内容 Contents of the invention
本发明旨在克服现有技术的不足,实现电梯故障的早期发现和诊断,为达到上述目的,本发明采取的技术方案是,基于数据驱动的电梯故障诊断与预警方法,借助于远程服务中心、故障诊断与预测终端和电梯控制器实现,包括如下步骤:The purpose of the present invention is to overcome the deficiencies of the prior art and realize the early detection and diagnosis of elevator faults. The implementation of fault diagnosis and prediction terminal and elevator controller includes the following steps:
首先对实时电梯故障数据进行挖掘获得电梯故障数据流中的特征信息,并将挖掘结果保存在故障诊断与预测终端的电梯故障案例库中,作为电梯故障知识库的来源;然后利用电梯故障案例库对故障诊断与预测终端上的电梯故障知识库进行更新,通过相似度匹配计算,实现电梯故障知识库的及时更新,再针对新电梯故障问题的特征进行案例检索,采用基于案例推理的故障诊断方法对电梯系统进行故障诊断:通过检索电梯故障知识库知识或案例,获得与新电梯故障问题具有最相似特征的信息,解决诊断问题;Firstly, the real-time elevator fault data is mined to obtain the characteristic information in the elevator fault data stream, and the mining results are stored in the elevator fault case database of the fault diagnosis and prediction terminal as the source of the elevator fault knowledge base; then the elevator fault case database is used Update the elevator fault knowledge base on the fault diagnosis and prediction terminal, realize the timely update of the elevator fault knowledge base through similarity matching calculation, and then carry out case retrieval according to the characteristics of new elevator fault problems, and adopt the fault diagnosis method based on case reasoning Fault diagnosis for the elevator system: by retrieving the elevator fault knowledge base knowledge or cases, obtain the information with the most similar characteristics to the new elevator fault problem, and solve the diagnosis problem;
此外,利用远程服务中心上的电梯故障识别分类器,对获得的电梯故障数据流进行聚类分析,将相应的电梯故障数据流与电梯故障类型关联起来,并用此电梯故障数据流与相应故障类型训练分类器,再通过另一组电梯故障数据流与相应的故障类型对分类器进行检验,以验证训练后的分类器的正确性;远程服务中心不断更新分类器,并将最新的分类器下载到本地故障诊断与预测终端中,本地的故障诊断与预测终端实时采集电梯数据流并将其输入分类器,由分类器输出实时数据流与现有电梯故障数据流进行相似程度比较,相似程度越大,出现同种故障的可能性越大,依此进行电梯故障预测。In addition, using the elevator fault identification classifier on the remote service center, the obtained elevator fault data flow is clustered and analyzed, the corresponding elevator fault data flow is associated with the elevator fault type, and the elevator fault data flow is used to correlate with the corresponding fault type Train the classifier, and then test the classifier through another set of elevator fault data streams and corresponding fault types to verify the correctness of the trained classifier; the remote service center continuously updates the classifier and downloads the latest classifier In the local fault diagnosis and prediction terminal, the local fault diagnosis and prediction terminal collects the elevator data stream in real time and inputs it into the classifier, and the real-time data stream output by the classifier is compared with the existing elevator fault data stream for similarity. The larger the value, the greater the possibility of the same type of fault, so the elevator fault prediction is carried out accordingly.
采用基于案例推理的故障诊断方法对电梯系统进行故障诊断是在故障诊断与预测终端上进行,并进一步细化为如下步骤:The fault diagnosis of the elevator system using the fault diagnosis method based on case reasoning is carried out on the fault diagnosis and prediction terminal, and is further refined into the following steps:
(1)电梯故障知识库:是电梯故障诊断知识、经验的集合,主要由专家提供,包括电梯基本信息、电梯故障的分类信息以及不同种类故障需要的各种关键特征属性及其权值,并依此构建电梯故障案例库和征兆数据库;(1) Elevator fault knowledge base: It is a collection of elevator fault diagnosis knowledge and experience, mainly provided by experts, including elevator basic information, elevator fault classification information, and various key feature attributes and weights required by different types of faults, and Construct elevator fault case database and symptom database accordingly;
(2)建立电梯故障案例库:维修人员根据包括电梯故障日志和维修日志的历史数据填写关于电梯故障的各种信息,并以此为依据存储案例和产生新案例;(2) Establish an elevator failure case library: maintenance personnel fill in various information about elevator failures according to historical data including elevator failure logs and maintenance logs, and use this as a basis to store cases and generate new cases;
(3)建立征兆数据库:存储电梯发生故障时采集到的故障类型数据流信息,即故障发生时电梯运行的各个参数;(3) Establish a symptom database: store the fault type data flow information collected when the elevator breaks down, that is, the various parameters of the elevator running when the fault occurs;
(4)建立规则库:存储各种电梯故障类型之间的相互关联信息,是对故障案例库应用关联规则算法,进行数据挖掘,从众多的电梯故障案例信息中,提炼出深层次的、隐含的知识,用于电梯故障诊断,指导维修人员做出响应的维护措施;(4) Establish a rule base: store the interrelated information between various types of elevator faults, apply the association rule algorithm to the fault case base, carry out data mining, and extract deep-level, hidden information from numerous elevator fault case information. The knowledge contained in it is used for elevator fault diagnosis and guides maintenance personnel to take corresponding maintenance measures;
(5)推理系统:由案例检索、案例匹配、案例调整组成,具体为:通过对电梯故障案例库进行案例检索寻找一个或多个与当前故障最相似的案例,用到的检索算法有模板检验、归纳检索、最近邻搜索;然后根据检索到的案例生成解决方案并通过案例修正对已生成的解决方案进行调整,调整的方法有转换法、替换法、特定目标驱动法;(5) Reasoning system: composed of case retrieval, case matching, and case adjustment, specifically: search for one or more cases that are most similar to the current fault through case retrieval on the elevator fault case database, and the retrieval algorithm used includes template inspection , inductive retrieval, and nearest neighbor search; then generate solutions based on the retrieved cases and adjust the generated solutions through case correction. The adjustment methods include conversion method, replacement method, and specific goal-driven method;
(6)案例学习:根据维修人员的反馈信息,对电梯故障案例库进行案例复用,即如果该方案可以解决遇到的故障则保存电梯故障案例库中的维修建议,否则对该方案进行修改后保存到故障案例库,这样不断获取新知识和改进旧知识,形成新的维修方案,并添加到案例库中,使案例库不断得到扩充和完善。(6) Case study: According to the feedback information of the maintenance personnel, the case reuse of the elevator fault case library is carried out, that is, if the solution can solve the encountered fault, the maintenance suggestion in the elevator fault case library is saved, otherwise the program is modified Finally, it is stored in the fault case library, so that new knowledge is continuously acquired and old knowledge is improved, and a new maintenance plan is formed, which is added to the case library, so that the case library is continuously expanded and perfected.
案例检索具体实现步骤:The specific implementation steps of case retrieval:
(1)采集电梯故障数据流,提取特征信息并根据分类结构索引,初步检索出符合特征信息的案例种类。(1) Collect the elevator fault data stream, extract the characteristic information, and preliminarily retrieve the case types that meet the characteristic information according to the classification structure index.
(2)根据故障案例的种类将故障信息特征值与电梯故障知识库进行匹配。(2) According to the type of the fault case, the fault information feature value is matched with the elevator fault knowledge base.
(3)根据改进的欧式算法进行计算,计算出该目标案例与初始匹配案例集中的所有案例的匹配度,并根据匹配度的大小进行排序,输出与目标案例最匹配的前几个案例,完成案例匹配过程;最后,显示案例匹配详细信息,并为案例修正做准备。(3) Calculate according to the improved European algorithm, calculate the matching degree between the target case and all cases in the initial matching case set, sort according to the matching degree, output the first few cases that best match the target case, and complete The case matching process; finally, the case matching details are displayed and prepared for case revision.
分类器的生成过程包括数据预处理模块、特征提取模块以及分类器生成模块,其中数据预处理模块采用包括标准化、方差缩减步骤,负责剔除数据中的异常数据、冗余数据等噪声数据;特征提取模块采用主成分分析、偏最小二乘法,负责简化数据流,提高训练效率;分类器生成模块还包括神经网络、支持向量机子模块。The generation process of the classifier includes a data preprocessing module, a feature extraction module, and a classifier generation module. The data preprocessing module adopts steps including standardization and variance reduction, and is responsible for eliminating noise data such as abnormal data and redundant data in the data; feature extraction The module adopts principal component analysis and partial least square method, which is responsible for simplifying data flow and improving training efficiency; the classifier generation module also includes neural network and support vector machine sub-modules.
本发明的技术特点及效果:Technical characteristics and effects of the present invention:
数据挖掘是从数据中识别出有效的、新颖的、潜在有用的以及最终可以被理解的类型。故障诊断的关键和首要问题就是故障识别,对故障进行诊断的过程也就是故障类型获取及故障识别的过程。考虑到数据挖掘技术在知识获取方面的独特优势,在故障诊断领域引入该技术是切实可行的。可以利用历史数据挖掘出其中潜在的规律,为故障诊断提供决策依据,具有实际参考价值。Data mining is the identification of valid, novel, potentially useful, and ultimately understandable types from data. The key and primary problem of fault diagnosis is fault identification. The process of fault diagnosis is also the process of fault type acquisition and fault identification. Considering the unique advantages of data mining technology in knowledge acquisition, it is feasible to introduce this technology in the field of fault diagnosis. It can use the historical data to dig out the potential laws and provide decision-making basis for fault diagnosis, which has practical reference value.
基于数据挖掘的故障诊断及预警系统具有以下优点:The fault diagnosis and early warning system based on data mining has the following advantages:
(1)突破了电梯诊断知识获取困难、知识量少的瓶颈。能够自动地获取诊断经验而无需人工总结和输入,大大提高了诊断效率和准确性,降低了诊断成本。(1) Break through the bottleneck of difficulty in obtaining elevator diagnostic knowledge and the lack of knowledge. The diagnostic experience can be obtained automatically without manual summarization and input, which greatly improves the diagnostic efficiency and accuracy, and reduces the diagnostic cost.
(2)对于规模较大、涉及多个变量的故障,使用对单一部件的诊断方法无法解决,利用数据挖掘技术对电梯运行数据进行整体分析可以有效进行诊断。(2) For large-scale faults involving multiple variables, the diagnosis method for a single component cannot be solved, and the overall analysis of the elevator operation data by using data mining technology can be effectively diagnosed.
(3)不仅能够为维修人员找到故障原因和位置,还能够提供相应的故障解决措施。(3) It can not only find the cause and location of the fault for maintenance personnel, but also provide corresponding fault solving measures.
(4)可对电梯运行数据进行实时监测,通过分类器得到实时数据流与故障类型的相似程度,从而实现电梯故障的早期发现及预警。(4) The elevator operation data can be monitored in real time, and the similarity between the real-time data flow and the fault type can be obtained through the classifier, so as to realize early detection and early warning of elevator faults.
(5)该系统具有自学习能力,不断学习新的故障数据形成新的诊断知识,随着故障数据的不断增加,系统的故障诊断能力会不断增强。(5) The system has the ability of self-learning, and continuously learns new fault data to form new diagnostic knowledge. With the continuous increase of fault data, the fault diagnosis ability of the system will continue to increase.
(6)为预防性维修提供基础。基于故障预测的预防性维修减少了盲目性,使电梯在最佳故障维修时间的到有效维修,不仅降低了维修次数和成本,维修保养的效率也大大提高。(6) Provide the basis for preventive maintenance. The preventive maintenance based on fault prediction reduces blindness and enables the elevator to be effectively repaired at the best fault repair time, which not only reduces the number of repairs and costs, but also greatly improves the efficiency of maintenance.
附图说明 Description of drawings
图1基于数据驱动的电梯故障诊断与预警系统整体结构图。Figure 1 The overall structure of the data-driven elevator fault diagnosis and early warning system.
图2基于案例推理的电梯故障诊断框架图。Fig. 2 Framework diagram of elevator fault diagnosis based on case-based reasoning.
图3案例信息表示示意图。Figure 3 Schematic representation of case information.
图4电梯故障案例检索策略流程图。Figure 4. The flow chart of elevator failure case retrieval strategy.
图5基于分类器的电梯故障预测流程图。Figure 5 is a flow chart of classifier-based elevator fault prediction.
图6电梯远程服务中心分类器生成示意图。Fig. 6 is a schematic diagram of the classifier generation of the elevator remote service center.
图7基于BP神经网络的分类器设计示意图。Figure 7 is a schematic diagram of classifier design based on BP neural network.
具体实施方式 Detailed ways
本发明的目的在于提出一种基于数据驱动的电梯故障诊断与预警系统,实现高效的故障诊断及准确的故障预测。The purpose of the present invention is to propose a data-driven elevator fault diagnosis and early warning system to realize efficient fault diagnosis and accurate fault prediction.
现有电梯故障诊断技术存在专家知识获取困难、诊断效率低、成本高等问题,针对这些问题,本发明应用基于案例推理的故障诊断方法对电梯系统进行故障诊断,发生故障后在电梯故障案例库中检索最佳匹配案例,并按照案例信息中的故障原因、故障位置以及故障解决方法进行维护,同时故障案例库可以自动进行案例库的维护,包括增加案例,融合案例、删除冗余案例等,从而具备很强的学习能力。Existing elevator fault diagnosis technology has problems such as difficulty in obtaining expert knowledge, low diagnosis efficiency, and high cost. In view of these problems, the present invention applies the fault diagnosis method based on case reasoning to diagnose the fault of the elevator system. Retrieve the best matching case, and maintain it according to the fault cause, fault location and fault solution method in the case information. At the same time, the fault case library can automatically maintain the case library, including adding cases, merging cases, deleting redundant cases, etc., so that Have a strong learning ability.
目前大多数故障诊断系统缺乏故障预测功能,本发明借助数据挖掘技术对电梯历史数据进行分析,归纳总结出对应特定故障的数据流,综合考虑专家知识和数据流,通过将电梯运行时的数据流实时地与已知故障数据流进行对比,并对两者的相似程度进行量化计算,当相似度达到一定程度后即可对电梯系统提出故障预警,从而完成故障预测功能。该系统获取电梯运行的一般参数并自动地对运行数据进行分析,突破了专家系统获取困难的瓶颈,具有诊断效率高、成本低且能够实现故障预测功能的优点。本发明不需要加装额外传感器,可适用于各种不同品牌的电梯,拥有很好的应用前景与经济价值,该系统与方法对其他领域的故障诊断也有很高的参考价值。At present, most fault diagnosis systems lack the function of fault prediction. The present invention analyzes the historical data of elevators with the help of data mining technology, and summarizes the data flow corresponding to specific faults. Considering expert knowledge and data flow comprehensively, the data flow when the elevator is running Real-time comparison with the known fault data stream, and quantitative calculation of the similarity between the two, when the similarity reaches a certain level, a fault warning can be given to the elevator system, thereby completing the fault prediction function. The system obtains the general parameters of elevator operation and automatically analyzes the operation data, which breaks through the bottleneck of the expert system, and has the advantages of high diagnostic efficiency, low cost and the ability to realize fault prediction. The invention does not need additional sensors, is applicable to elevators of various brands, has good application prospects and economic value, and the system and method also have high reference value for fault diagnosis in other fields.
本发明利用电梯故障数据挖掘技术,设计了一种电梯故障诊断系统,该系统不断地对从电梯系统采集到数据进行分析,依靠数据挖掘技术的知识获取能力自动高效地形成电梯系统的故障诊断知识,解决了专家知识获取难的问题,克服了目前电梯故障诊断的技术瓶颈。然后在此系统架构的基础上,提出一种基于案例推理的电梯故障诊断方法,利用上述方法形成的知识进行诊断。The present invention uses the elevator fault data mining technology to design an elevator fault diagnosis system, which continuously analyzes the data collected from the elevator system, and automatically and efficiently forms the fault diagnosis knowledge of the elevator system relying on the knowledge acquisition ability of the data mining technology , solve the problem of difficulty in obtaining expert knowledge, and overcome the current technical bottleneck of elevator fault diagnosis. Then, on the basis of this system architecture, a case-based reasoning elevator fault diagnosis method is proposed, and the knowledge formed by the above method is used for diagnosis.
此外,在此系统架构的基础上加入基于分类器的故障预测功能,能够实时监测电梯数据流,并利用分类器对这些数据流加以分析并识别,计算当前数据流与故障数据流的相似度大小与趋势,进而实现电梯故障的早期发现和诊断。In addition, on the basis of this system architecture, a classifier-based fault prediction function is added, which can monitor the elevator data flow in real time, and use the classifier to analyze and identify these data flows, and calculate the similarity between the current data flow and the fault data flow And trends, and then realize the early detection and diagnosis of elevator faults.
本发明借助数据挖掘技术,设计一种基于数据驱动的电梯故障诊断与预警系统,具有增强的故障诊断及预测功能。The invention designs a data-driven elevator fault diagnosis and early warning system by means of data mining technology, which has enhanced fault diagnosis and prediction functions.
本发明首先通过数据挖掘算法对实时电梯故障数据进行挖掘获得电梯故障数据流中的特征信息,并将挖掘结果保存在电梯故障案例库中,作为电梯故障知识库的来源。然后利用电梯故障案例库对电梯故障知识库进行更新,通过相似度匹配计算,实现电梯故障知识库的及时更新。再针对新问题的特征进行案例检索,通过检索电梯故障知识库的知识或案例,获得与新电梯故障问题具有最相似特征的信息,用于解决诊断问题。The present invention first uses data mining algorithm to mine real-time elevator fault data to obtain characteristic information in the elevator fault data flow, and saves the mining result in the elevator fault case database as the source of the elevator fault knowledge base. Then use the elevator fault case database to update the elevator fault knowledge base, and realize the timely update of the elevator fault knowledge base through the similarity matching calculation. Then carry out case retrieval according to the characteristics of the new problem, and obtain the information with the most similar characteristics to the new elevator fault problem by retrieving the knowledge or cases of the elevator fault knowledge base, which is used to solve the diagnosis problem.
此外,设计用于电梯故障识别分类器,对获得的一组数据流进行聚类分析,将相应的数据流与故障类型关联起来,并用此数据流与相应故障类型训练分类器,再通过另一组数据流与相应的故障类型对分类器进行检验,以验证训练后的分类器的正确性。远程服务中心不断更新分类器,并将最新的分类器下载到本地诊断终端中,本地诊断终端实时采集电梯数据流并将数据流输入分类器,由分类器输出实时数据流与现有故障数据流的相似程度,相似度越大,出现同种故障的可能性越大,可依次进行电梯故障预测。In addition, it is designed to be used in elevator fault identification classifiers, cluster analysis is performed on a set of data streams obtained, and the corresponding data streams are associated with fault types, and the classifier is trained with this data stream and corresponding fault types, and then through another The group data flow and the corresponding fault type are tested against the classifier to verify the correctness of the trained classifier. The remote service center continuously updates the classifier and downloads the latest classifier to the local diagnostic terminal. The local diagnostic terminal collects the elevator data stream in real time and inputs the data stream into the classifier, and the classifier outputs the real-time data stream and the existing fault data stream The similarity degree, the greater the similarity, the greater the possibility of the same type of failure, and the elevator failure prediction can be performed in turn.
下面结合附图对本发明作进一步详述。The present invention will be described in further detail below in conjunction with the accompanying drawings.
本发明的核心是通过对电梯运行数据流进行分析,挖掘故障时数据流的特征信息,发现与电梯故障类型相对应的数据流,并将其转化为专家经验,存入电梯故障诊断案例库,再采用基于案例推理的故障诊断方法对电梯系统进行故障诊断。此外,设计故障数据流分类器,可实时地对电梯当前数据流进行实时分类,并通过基于距离的相似度算法计算当前数据流与电梯故障数据流相似度大小,相似度越大故障可能性越大,根据此相似度趋势或通过设置门限值的方法进行故障预测。The core of the present invention is to analyze the elevator operation data flow, dig out the characteristic information of the data flow during the fault, find the data flow corresponding to the elevator fault type, and convert it into expert experience, store it in the elevator fault diagnosis case library, Then use the case-based reasoning fault diagnosis method to diagnose the fault of the elevator system. In addition, a fault data flow classifier is designed, which can classify the current data flow of the elevator in real time, and calculate the similarity between the current data flow and the elevator fault data flow through a distance-based similarity algorithm. The greater the similarity, the greater the possibility of failure. Large, according to the trend of this similarity or by setting the threshold value method for fault prediction.
参见图1,基于数据驱动的电梯故障诊断与预警系统包括三个部分:远程服务中心、故障诊断与预测终端和电梯控制器。Referring to Figure 1, the data-driven elevator fault diagnosis and early warning system includes three parts: a remote service center, a fault diagnosis and prediction terminal, and an elevator controller.
故障发生时,电梯控制器记录系统中的故障码以及当前电梯系统中的各个参数,如:曳引机转速、轿厢加速度、变频器电压、变频器电流、平层信号、冲顶信号、撞底信号、门机信号等。并将故障码和当前参数一并传入本地诊断平台。正常运行时,只需要把当前系统参数实时发送到本地诊断终端以供故障预测。When a fault occurs, the elevator controller records the fault code in the system and various parameters in the current elevator system, such as: traction machine speed, car acceleration, inverter voltage, inverter current, leveling signal, topping signal, bottoming signal, door operator signal, etc. And pass the fault code and current parameters to the local diagnosis platform. During normal operation, it only needs to send the current system parameters to the local diagnostic terminal in real time for fault prediction.
本地诊断终端中设置电梯故障诊断与预测软件以及SQLServer2005数据库软件,当接收到电梯故障码和当前参数后将提取该故障类型的特征值,然后依此在案例库中寻找最佳匹配案例,再将此故障信息与匹配的故障原因和解决方法通过Internet或手机等移动终端传送给远端维修人员;如果在匹配最佳案例时发现当前与最佳案例的匹配度小于门限值,则将此故障认定为新故障类型,并将当前的故障信息传送到远程服务中心。另一方面,电梯故障诊断与预测软件中集成利用COM组件编程编写的分类器模块,完成电梯故障的预测功能。The elevator fault diagnosis and prediction software and SQLServer2005 database software are installed in the local diagnosis terminal. After receiving the elevator fault code and current parameters, the characteristic value of the fault type will be extracted, and then the best matching case will be found in the case library according to this. This fault information and the matching fault cause and solution are sent to the remote maintenance personnel through the Internet or mobile terminals such as mobile phones; Identify it as a new fault type, and send the current fault information to the remote service center. On the other hand, the elevator fault diagnosis and prediction software integrates the classifier module programmed by COM components to complete the elevator fault prediction function.
远程服务中心负责收集所有电梯系统故障时的数据流,并用这些故障状态下的数据流训练存储在服务中心内的分类器和案例库,不断更新分类器和案例库使故障类型识别和诊断愈加准确;远程服务中心定期的把最新的分类器和案例库下载到本地诊断终端,并对电梯故障预警信息做出响应。The remote service center is responsible for collecting the data streams of all elevator system failures, and using the data streams in these fault states to train the classifier and case library stored in the service center, and constantly updating the classifier and case library to make fault type identification and diagnosis more accurate ; The remote service center regularly downloads the latest classifier and case library to the local diagnosis terminal, and responds to the elevator failure warning information.
参见图2,基于案例推理的电梯故障诊断框架主要包括四个数据库、一个推理系统以及一个案例学习模块。各部分具体描述如下:Referring to Figure 2, the elevator fault diagnosis framework based on case reasoning mainly includes four databases, a reasoning system and a case study module. Each part is described in detail as follows:
(1)知识库:电梯故障诊断知识、经验的集合,它主要由专家提供,包括电梯基本信息、电梯故障的分类信息以及不同种类故障需要的各种关键特征属性及其权值,并依此构建电梯故障案例库和征兆数据库。(1) Knowledge base: a collection of elevator fault diagnosis knowledge and experience, which is mainly provided by experts, including basic information of elevators, classification information of elevator faults, and various key feature attributes and their weights required by different types of faults, and based on this Construct elevator fault case library and symptom database.
(2)故障案例库:维修人员根据电梯故障日志和维修日志等历史数据填写关于电梯故障的各种信息,并以此为依据存储案例和产生新案例。(2) Fault case library: Maintenance personnel fill in various information about elevator faults according to historical data such as elevator fault logs and maintenance logs, and use this as a basis to store cases and generate new cases.
(3)征兆数据库:电梯发生故障时采集到的故障类型数据流信息,即故障发生时电梯运行的各个参数。(3) Symptom database: the fault type data flow information collected when the elevator fails, that is, the various parameters of the elevator running when the fault occurs.
(4)规则库:各种电梯故障类型之间的相互关联信息。是对故障案例库应用关联规则算法,进行数据挖掘,从众多的电梯故障案例信息中,提炼出深层次的、隐含的知识,用于电梯故障诊断,指导维修人员做出响应的维护措施。(4) Rule base: Interrelated information between various types of elevator faults. It is a maintenance measure that applies association rule algorithm to the fault case database, conducts data mining, and extracts deep and implicit knowledge from numerous elevator fault case information, which is used for elevator fault diagnosis and guides maintenance personnel to respond.
(5)推理系统:诊断系统的核心,由案例检索、案例匹配、案例调整组成。通过对电梯故障案例库进行案例检索寻找一个或多个与当前故障最相似的案例,可能用到的检索算法有模板检验、归纳检索、最近邻搜索等。然后根据检索到的案例生成解决方案并通过案例修正对已生成的解决方案进行调整调整的方法可能有转换法、替换法、特定目标驱动法,大部分的案例调整都是通过人机交互方式完成的。推理系统决定了诊断效率的高低,实现从已有的案例集中找到与当前问题最为相似的案例,并提供相应的故障解决方案。(5) Reasoning system: the core of the diagnosis system, composed of case retrieval, case matching, and case adjustment. Find one or more cases that are most similar to the current fault through case retrieval on the elevator fault case database. The retrieval algorithms that may be used include template inspection, inductive retrieval, and nearest neighbor search. Then generate a solution based on the retrieved case and adjust the generated solution through case revision. There may be conversion method, replacement method, and specific goal-driven method. Most of the case adjustments are completed through human-computer interaction. of. The reasoning system determines the diagnostic efficiency, realizes finding the case most similar to the current problem from the existing case set, and provides corresponding fault solutions.
(6)案例学习:根据维修人员的反馈信息,对电梯故障案例库进行案例复用,即如果该方案可以解决遇到的故障则保存电梯故障案例库中的维修建议,否则对该方案进行修改后保存到故障案例库。这样不断获取新知识和改进旧知识,形成新的维修方案,并添加到案例库中,是案例库不断得到扩充和完善。(6) Case study: According to the feedback information of the maintenance personnel, the case reuse of the elevator fault case library is carried out, that is, if the solution can solve the encountered fault, the maintenance suggestion in the elevator fault case library is saved, otherwise the program is modified Then save it to the fault case library. In this way, new knowledge is continuously acquired and old knowledge is improved, new maintenance schemes are formed, and added to the case base, so that the case base is continuously expanded and improved.
参见图3,案例库中的每一个案例都由案例基本信息、故障原因和定位以及故障解决方法组成,诊断过程中电梯控制器提供故障数据流电梯信号等基本信息,诊断系统则根据这些信息进行分析,返回故障原因和定位以及故障解决方法等信息。See Figure 3. Each case in the case library is composed of basic case information, fault cause and location, and fault solution. During the diagnosis process, the elevator controller provides basic information such as fault data flow, elevator signal, etc., and the diagnosis system is based on these information. Analyze and return information such as fault cause, location, and fault solution.
参见图4,案例检索是整个基于案例推理的电梯故障诊断流程的关键,以下是具体实现步骤:See Figure 4. Case retrieval is the key to the entire elevator fault diagnosis process based on case reasoning. The following are the specific implementation steps:
(1)采集故障电梯的故障数据流,提取特征信息并根据分类结构索引,初步检索出符合特征信息的案例种类。(1) Collect the fault data stream of the faulty elevator, extract the characteristic information, and preliminarily retrieve the case types that meet the characteristic information according to the classification structure index.
(2)根据故障案例的种类将故障信息特征值与案例集进行匹配。(2) Match the fault information feature value with the case set according to the types of fault cases.
(3)根据改进的欧式算法进行计算,计算出该目标案例与初始匹配案例集中的所有案例的匹配度,并根据匹配度的大小进行排序,输出与目标案例最匹配的前几个案例,完成案例匹配过程。最后,显示案例匹配详细信息,并为案例修正做准备。(3) Calculate according to the improved European algorithm, calculate the matching degree between the target case and all cases in the initial matching case set, sort according to the matching degree, output the first few cases that best match the target case, and complete Case matching process. Finally, the case match details are displayed and prepared for case revision.
根据电梯故障案例库中每个案例构造属性函数矩阵如下:According to each case in the elevator fault case library, the attribute function matrix is constructed as follows:
其中Aij代表第i个案例的第j个属性。记第j个属性的的平均值为Bj,则:where A ij represents the jth attribute of the ith case. Record the average value of the jth attribute as B j , then:
记中间变量Mij Note the intermediate variable M ij
再令:Reorder:
目标案例与源案例间的改进欧氏距离为:The improved Euclidean distance between the target case and the source case is:
式中wi为专家经验给出的权重值。dti的值越大,表明目标案例与源案例之间的距离越小,相似度越高,检索过程中计算出距离最小的源案例进行诊断。In the formula, w i is the weight value given by expert experience. The larger the value of d ti is, the smaller the distance between the target case and the source case is, and the higher the similarity is, the source case with the smallest distance is calculated during the retrieval process for diagnosis.
改进的欧式算法在传统欧式算法的基础上引入中间变量Mij,即增加了一个属性值归一化的过程,能够有效防止同一案例中的某些属性数值过大,导致检索结果偏离实际的情况出现。The improved European algorithm introduces the intermediate variable M ij on the basis of the traditional European algorithm, which adds a process of attribute value normalization, which can effectively prevent the value of some attributes in the same case from being too large, causing the retrieval results to deviate from the actual situation. Appear.
参见图5,通过分类器对电梯故障数据流识别和相似度的计算,最终可得到故障相似度的发展趋势或与门限值的比较结果,为了保证是别的准确性,分类器有远程服务中心进行定期更新,最终完成电梯的故障预测功能。See Figure 5. Through the classifier’s identification of the elevator fault data flow and the calculation of the similarity, the development trend of the fault similarity or the comparison result with the threshold value can be obtained. In order to ensure the accuracy of the other, the classifier has a remote service The center performs regular updates, and finally completes the fault prediction function of the elevator.
参见图6,分类器的生成包括两个阶段(训练阶段和检验阶段)。用于分类器生成的故障数据流被分成两个部分,其中三分之二的数据用训练阶段,三分之一的数据用于检验阶段。训练阶段初步生成分类器,在检验阶段对已生成的分类器进行验证以保证其准确性。Referring to Fig. 6, the generation of the classifier includes two stages (training stage and testing stage). The fault data stream for classifier generation is split into two parts, where two-thirds of the data is used for the training phase and one-third of the data is used for the testing phase. In the training phase, a classifier is initially generated, and in the testing phase, the generated classifier is verified to ensure its accuracy.
分类器的生成过程包括数据预处理模块、特征提取模块以及分类器生成模块,其中数据预处理模块负责剔除数据中的异常数据、冗余数据等噪声数据,特征提取模块负责简化数据流,提高训练效率。分类器生成模块实质上是支持向量机、神经网络等具有非线性函数模拟功能的模块。数据预处理模块需要用到统计和数学工具包括标准化、方差缩减等,特征处理模块可能用到主成分分析、偏最小二乘等数学方法。The generation process of the classifier includes a data preprocessing module, a feature extraction module, and a classifier generation module. The data preprocessing module is responsible for removing noise data such as abnormal data and redundant data in the data, and the feature extraction module is responsible for simplifying the data flow and improving training. efficiency. The classifier generation module is essentially a module with nonlinear function simulation function such as support vector machine and neural network. The data preprocessing module needs to use statistical and mathematical tools including standardization, variance reduction, etc., and the feature processing module may use mathematical methods such as principal component analysis and partial least squares.
参见图7,在分类器生成模块中采用BP神经网络,定义输入层的节点数为2,输出层节点数为1,隐含层节点数为6,使用Logsig型传递函数,表示如下:Referring to Figure 7, the BP neural network is used in the classifier generation module, the number of nodes in the input layer is defined as 2, the number of nodes in the output layer is 1, the number of nodes in the hidden layer is 6, and the Logsig type transfer function is used, expressed as follows:
权值修改公式为:The weight modification formula is:
Wsq(t+1)=Wsq(t)+η(t)δqys+αΔWsq(t)W sq (t+1)=W sq (t)+η(t)δ q y s +αΔW sq (t)
权值其中,η为增益项,δq为误差项,ys为结点s节点的输出,α为设定的权值。Wsq(t)的为第t次迭代权值。该分类器在Visual C++环境下实现。输入样本集和对应的训练目标集直接存储在SQL数据库中,以保证数据的通用性。将分类器模块设计为COM组件,需要时对该组件进行调用。Among them, η is the gain item, δ q is the error item, y s is the output of node s, and α is the set weight. W sq (t) is the weight of the tth iteration. The classifier is implemented in Visual C++ environment. The input sample set and the corresponding training target set are directly stored in the SQL database to ensure the versatility of the data. Design the classifier module as a COM component, and call the component when needed.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210176351.9A CN102765643B (en) | 2012-05-31 | 2012-05-31 | Elevator fault diagnosis and early-warning method based on data drive |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210176351.9A CN102765643B (en) | 2012-05-31 | 2012-05-31 | Elevator fault diagnosis and early-warning method based on data drive |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102765643A CN102765643A (en) | 2012-11-07 |
CN102765643B true CN102765643B (en) | 2015-06-17 |
Family
ID=47093264
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201210176351.9A Expired - Fee Related CN102765643B (en) | 2012-05-31 | 2012-05-31 | Elevator fault diagnosis and early-warning method based on data drive |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102765643B (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3367558A1 (en) * | 2017-02-24 | 2018-08-29 | Siemens Aktiengesellschaft | Method for operating a linear motor based transport system and control unit |
US11472663B2 (en) | 2018-10-01 | 2022-10-18 | Otis Elevator Company | Automatic software upgrade assistant for remote elevator monitoring experts using machine learning |
US12049383B2 (en) | 2019-04-29 | 2024-07-30 | Otis Elevator Company | Elevator shaft distributed health level |
Families Citing this family (92)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103135014A (en) * | 2012-12-14 | 2013-06-05 | 西安电子科技大学 | Transformer fault diagnosis method based on case-based reasoning |
CN103159106A (en) * | 2013-03-27 | 2013-06-19 | 中山市卓梅尼控制技术有限公司 | Elevator maintenance system |
CN103278728B (en) * | 2013-04-27 | 2015-09-16 | 广东电网公司电力科学研究院 | Short Circuit Between Generator Rotor Windings method for diagnosing faults and system |
CN103231962A (en) * | 2013-05-15 | 2013-08-07 | 北京晶科华盛科技有限公司 | Diagnosis and early-warning system for elevator faults |
CN103359572A (en) * | 2013-05-23 | 2013-10-23 | 中国矿业大学 | Elevator fault diagnosis method and device |
CN104236933B (en) * | 2013-06-13 | 2017-12-26 | 同济大学 | A kind of potential faults method for early warning for train traction system |
WO2015001659A1 (en) * | 2013-07-05 | 2015-01-08 | 富士機械製造株式会社 | Automatic system that can estimate locations needing maintenance |
CN103523625B (en) * | 2013-07-27 | 2015-12-02 | 安徽理工大学 | Based on the coal mine shaft lining cage runaway anti-drop method of algorithm of support vector machine |
CN103466397A (en) * | 2013-09-11 | 2013-12-25 | 昆山新金福精密电子有限公司 | Method for identifying elevator group control traffic mode based on support vector machine |
CN104579737A (en) * | 2013-10-29 | 2015-04-29 | 北大方正集团有限公司 | Method and system for operating maintenance of distributed web system |
CN103592919B (en) * | 2013-11-13 | 2016-03-09 | 青岛海尔软件有限公司 | A kind of home appliance failure risk Prediction System and method |
CN103617105B (en) * | 2013-12-17 | 2016-08-17 | 中国科学院合肥物质科学研究院 | A kind of adaptive multi-layer flow model facility diagnosis method based on data-driven |
CN103646104A (en) * | 2013-12-23 | 2014-03-19 | 北京华力创通科技股份有限公司 | Hard real-time fault diagnosis method and system |
CN103744919B (en) * | 2013-12-26 | 2017-02-08 | 广州供电局有限公司 | Power grid knowledge base self learning method and system |
CN103903408B (en) * | 2014-04-04 | 2017-07-21 | 内蒙古大唐国际新能源有限公司 | Method for early warning and system are investigated in equipment fault |
CN104361500A (en) * | 2014-11-25 | 2015-02-18 | 珠海格力电器股份有限公司 | Air conditioner after-sale fault data processing method and system |
CN105712140A (en) * | 2014-12-05 | 2016-06-29 | 华夏视清数字技术(北京)有限公司 | Monitoring and early-warning device and method |
CN104599193A (en) * | 2015-01-16 | 2015-05-06 | 国家电网公司 | Rule base based single-phase ground fault positioning method of distribution network |
JP6520539B2 (en) * | 2015-08-05 | 2019-05-29 | 三菱電機ビルテクノサービス株式会社 | Search system |
CN105731209A (en) * | 2016-03-17 | 2016-07-06 | 天津大学 | Intelligent prediction, diagnosis and maintenance method for elevator faults on basis of Internet of Things |
CN105775943A (en) * | 2016-04-12 | 2016-07-20 | 广州深度数据科技有限公司 | Data driven elevator part early warning system and method |
CN105955241B (en) * | 2016-06-03 | 2018-09-14 | 北京科技大学 | A kind of quality fault localization method based on joint data-driven production process |
JP6607830B2 (en) * | 2016-07-05 | 2019-11-20 | 株式会社日立ビルシステム | Maintenance work management device and maintenance work management system |
CN106516923A (en) * | 2016-08-31 | 2017-03-22 | 江苏鸿信系统集成有限公司 | Elevator running failure prediction method based on technology of Internet of Things |
CN107991100A (en) * | 2016-10-27 | 2018-05-04 | 福建宁德核电有限公司 | A kind of diesel engine method for detecting operation state and system |
CN106526425A (en) * | 2016-11-23 | 2017-03-22 | 衢州学院 | Low-voltage diagnosis method based on real collected data of intelligent electric meter |
CN106779066A (en) * | 2016-12-02 | 2017-05-31 | 上海无线电设备研究所 | A kind of radar circuit plate method for diagnosing faults |
CN106672733A (en) * | 2016-12-02 | 2017-05-17 | 常州大学 | Elevator failure analysis and early warning system based on micro-cloud intelligent terminal and method thereof |
JP6693576B2 (en) * | 2016-12-26 | 2020-05-13 | 三菱電機株式会社 | Recovery system |
CN108466884A (en) * | 2017-02-23 | 2018-08-31 | 无锡鸿廷科技有限公司 | A kind of elevator operation action management and analysis |
CN106959662B (en) * | 2017-05-10 | 2019-03-08 | 东北大学 | A kind of identification of electric melting magnesium furnace unusual service condition and control method |
CN107194053B (en) * | 2017-05-16 | 2020-10-20 | 歌拉瑞电梯股份有限公司 | Intelligent elevator control system operation fault prediction method |
CN107153876A (en) * | 2017-05-25 | 2017-09-12 | 南通大学 | Machine vision shutter Self-tuning System intelligent control method based on Expert Rules |
CN107966942A (en) * | 2017-06-18 | 2018-04-27 | 广东金宝力化工科技装备股份有限公司 | A kind of equipment fault forecasting system in knowledge based storehouse |
CN107381269A (en) * | 2017-07-10 | 2017-11-24 | 安徽奥里奥克科技股份有限公司 | Elevator safety management system based on elevator safety information interaction screen |
CN107294788A (en) * | 2017-07-17 | 2017-10-24 | 郑州云海信息技术有限公司 | A kind of method and device of troubleshooting |
CN109388661B (en) * | 2017-08-02 | 2020-04-21 | 创新先进技术有限公司 | Model training method and device based on shared data |
CN107862324B (en) * | 2017-10-19 | 2021-11-02 | 北京化工大学 | An intelligent early warning method for CBR prediction model based on MWSPCA |
CN108100794B (en) * | 2017-12-18 | 2019-06-04 | 快创科技(大连)有限公司 | An elevator maintenance management system based on AR and intelligent push technology |
CN108304350B (en) * | 2017-12-25 | 2021-04-30 | 明阳智慧能源集团股份公司 | Fan index prediction and fault early warning method based on big data set neighbor strategy |
JP6837427B2 (en) * | 2017-12-27 | 2021-03-03 | 株式会社日立ビルシステム | Elevator failure diagnosis system |
CN108357999B (en) * | 2018-01-05 | 2019-12-31 | 揭阳市聆讯软件有限公司 | Monitoring rescue method, device, intelligent equipment and storage medium |
US10939477B2 (en) | 2018-01-29 | 2021-03-02 | Otis Elevator Company | Service tool wireless access management |
CN108416520A (en) * | 2018-03-01 | 2018-08-17 | 南京理工大学 | Elevator system level of integrity appraisal procedure based on Hopfield neural networks |
CN108584598B (en) * | 2018-03-16 | 2020-09-15 | 广州市金度信息科技有限公司 | Elevator fault automatic analysis and early warning method, storage medium and intelligent terminal |
CN108529380B (en) * | 2018-03-27 | 2021-01-19 | 深圳市永达电子信息股份有限公司 | Elevator safety prediction method and system |
US20200002125A1 (en) * | 2018-06-29 | 2020-01-02 | Otis Elevator Company | Maintenance scheduling based on remote monitoring data and service data analytics |
CN108946370B (en) * | 2018-07-24 | 2021-05-07 | 日立楼宇技术(广州)有限公司 | Elevator fault information processing method, system, equipment and readable storage medium |
CN110817628A (en) * | 2018-08-08 | 2020-02-21 | 北京感瞰科技有限公司 | Intelligent fault diagnosis method, device and system for elevator |
CN109032872B (en) * | 2018-08-13 | 2021-08-10 | 广东电网有限责任公司广州供电局 | Bayesian network-based equipment fault diagnosis method and system |
CN108750854B (en) * | 2018-08-20 | 2020-06-16 | 山东润一智能科技有限公司 | Hospital elevator safety three-dimensional monitoring cloud platform, system and method thereof, and elevator system |
US12169791B2 (en) | 2018-08-21 | 2024-12-17 | Otis Elevator Company | Model development framework for remote monitoring condition-based maintenance |
CN109240244B (en) * | 2018-10-26 | 2020-11-20 | 云达世纪(北京)科技有限公司 | Data-driven equipment running state health degree analysis method and system |
CN109436980B (en) * | 2018-11-01 | 2020-06-26 | 日立楼宇技术(广州)有限公司 | Method and system for state detection of elevator components |
CN109693983B (en) * | 2019-01-02 | 2021-09-10 | 日立楼宇技术(广州)有限公司 | Elevator fault processing method, device, server, storage medium and system |
EP3730439B1 (en) * | 2019-04-25 | 2022-11-09 | KONE Corporation | A solution for operating an elevator |
US11993480B2 (en) | 2019-04-30 | 2024-05-28 | Otis Elevator Company | Elevator shaft distributed health level with mechanic feed back condition based monitoring |
CN110436289A (en) * | 2019-05-22 | 2019-11-12 | 安徽奥里奥克科技股份有限公司 | A kind of Elevator Fault Diagnosis and early warning system based on data-driven |
CN110155840B (en) * | 2019-05-22 | 2021-05-14 | 安徽奥里奥克科技股份有限公司 | Elevator data acquisition management system |
CN110377618B (en) * | 2019-06-17 | 2024-01-05 | 平安科技(深圳)有限公司 | Method, device, computer equipment and storage medium for analyzing decision result |
CN110275481B (en) * | 2019-07-03 | 2020-10-30 | 北京北特圣迪科技发展有限公司 | Stage self-adaptive maintenance correction method and system |
CN110489475B (en) * | 2019-08-14 | 2021-01-26 | 广东电网有限责任公司 | Multi-source heterogeneous data processing method, system and related device |
US11907057B2 (en) | 2019-10-16 | 2024-02-20 | Siemens Aktiengesellschaft | Fault processing method and system |
CN110837566B (en) * | 2019-11-15 | 2022-05-13 | 北京邮电大学 | Dynamic construction method of knowledge graph for CNC (computerized numerical control) machine tool fault diagnosis |
CN111026008B (en) * | 2019-12-16 | 2021-12-24 | 上海宏力达信息技术股份有限公司 | Intelligent switch first-aid repair method and system based on ant colony algorithm |
CN111556111A (en) * | 2020-04-21 | 2020-08-18 | 天津市市政工程设计研究院 | Pipe gallery equipment fault remote diagnosis system based on Internet of things |
CN115515875A (en) * | 2020-05-04 | 2022-12-23 | 通力股份公司 | A solution for generating dynamic information content for people transportation systems |
CN111650918A (en) * | 2020-05-14 | 2020-09-11 | 中铁第四勘察设计院集团有限公司 | Vertical elevator full-life cycle operation safety monitoring system |
CN111648992B (en) * | 2020-06-02 | 2022-06-10 | 上海工业自动化仪表研究院有限公司 | Gas turbine compressor fault identification early warning method |
CN111784064A (en) * | 2020-07-09 | 2020-10-16 | 河南中电投华新电力工程有限公司 | A method and system for intelligent predictive maintenance of power plant equipment based on big data |
CN111994745A (en) * | 2020-08-31 | 2020-11-27 | 郑州大学 | An elevator equipment portrait system and method |
CN112596495B (en) * | 2020-12-07 | 2022-03-25 | 中科蓝智(武汉)科技有限公司 | Industrial equipment fault diagnosis method and system based on knowledge graph |
CN112631204A (en) * | 2020-12-14 | 2021-04-09 | 成都航天科工大数据研究院有限公司 | Health management platform, terminal, system and method for numerical control machine tool |
CN112520528B (en) * | 2020-12-23 | 2021-06-22 | 江苏梯卫士网络科技有限公司 | Automatic monitoring elevator fault detection system and detection method thereof |
CN112926632B (en) * | 2021-02-01 | 2023-04-18 | 广州赛特智能科技有限公司 | Method for detecting height difference between elevator and floor |
CN112860348A (en) * | 2021-03-10 | 2021-05-28 | 博创智能装备股份有限公司 | Intelligent diagnosis and analysis system of injection molding machine |
CN113091817A (en) * | 2021-04-06 | 2021-07-09 | 重庆大学 | Triethylene glycol dewatering device state monitoring and fault diagnosis system |
CN113204212A (en) * | 2021-04-26 | 2021-08-03 | 江苏博尚工业装备有限公司 | Numerical control machine tool fault diagnosis method based on double-expert system |
CN113296994B (en) * | 2021-05-18 | 2024-08-06 | 北京计算机技术及应用研究所 | Fault diagnosis system and method based on domestic computing platform |
CN113486150B (en) * | 2021-07-13 | 2024-02-02 | 广西民族大学 | Machine fault diagnosis method and device based on event structure model |
CN113511577A (en) * | 2021-08-09 | 2021-10-19 | 合肥市春华起重机械有限公司 | Gantry crane for rail type container |
JP7230974B1 (en) * | 2021-09-07 | 2023-03-01 | 三菱電機ビルソリューションズ株式会社 | Maintenance management system |
CN113682919B (en) * | 2021-09-22 | 2022-11-15 | 赵福杰 | Intelligent repair elevator based on Internet of things |
CN113609299B (en) * | 2021-10-11 | 2021-12-28 | 浙江浙能技术研究院有限公司 | Fault diagnosis library establishment method based on ant colony algorithm and feature recombination |
CN113809721B (en) * | 2021-11-01 | 2023-10-31 | 宁波申菱机电科技股份有限公司 | Permanent magnet door machine controller of elevator |
CN114291675B (en) * | 2021-11-18 | 2024-05-03 | 杭州电子科技大学 | Elevator fault diagnosis method based on complex network and confidence rule reasoning |
CN114611575B (en) * | 2022-01-29 | 2023-09-15 | 国网河北省电力有限公司邯郸供电分公司 | A fault case classification method and system |
CN114780732B (en) * | 2022-06-22 | 2022-09-13 | 天津市天锻压力机有限公司 | Forging hydraulic press predictive maintenance method and system based on Bayes classification model |
CN115956543A (en) * | 2022-07-15 | 2023-04-14 | 生态环境部南京环境科学研究所 | A fishing device and fishing method for wild giant salamander resource investigation |
CN115964883A (en) * | 2022-12-30 | 2023-04-14 | 中国船舶集团有限公司综合技术经济研究院 | A Condition Monitoring and Maintenance Guarantee System for Unmanned Boats |
CN116451109A (en) * | 2023-03-09 | 2023-07-18 | 西诺控股集团有限公司 | Intelligent fault diagnosis method for injection molding machine based on fault knowledge base |
CN116588776B (en) * | 2023-07-19 | 2023-11-03 | 常熟理工学院 | Elevator passenger flow prediction and optimal dispatching method and system |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1887674A (en) * | 2006-07-27 | 2007-01-03 | 隋舒杰 | Lift remote monitoring and warning system based on radio network |
CN201592932U (en) * | 2010-01-14 | 2010-09-29 | 四川润智兴科技有限公司 | Elevator safety early warning system |
CN201777739U (en) * | 2010-08-06 | 2011-03-30 | 北京诚信能环科技有限公司 | ES elevator monitoring management information system |
CN102295206A (en) * | 2010-06-22 | 2011-12-28 | 深圳市新开元信息技术发展有限公司 | Elevator safety remote real-time monitoring system based on Internet of things |
-
2012
- 2012-05-31 CN CN201210176351.9A patent/CN102765643B/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1887674A (en) * | 2006-07-27 | 2007-01-03 | 隋舒杰 | Lift remote monitoring and warning system based on radio network |
CN201592932U (en) * | 2010-01-14 | 2010-09-29 | 四川润智兴科技有限公司 | Elevator safety early warning system |
CN102295206A (en) * | 2010-06-22 | 2011-12-28 | 深圳市新开元信息技术发展有限公司 | Elevator safety remote real-time monitoring system based on Internet of things |
CN201777739U (en) * | 2010-08-06 | 2011-03-30 | 北京诚信能环科技有限公司 | ES elevator monitoring management information system |
Non-Patent Citations (1)
Title |
---|
DEDS故障诊断方法在电梯中的应用;宗群等;《天津大学学报》;20060525;第39卷(第05期);553-558 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3367558A1 (en) * | 2017-02-24 | 2018-08-29 | Siemens Aktiengesellschaft | Method for operating a linear motor based transport system and control unit |
US11472663B2 (en) | 2018-10-01 | 2022-10-18 | Otis Elevator Company | Automatic software upgrade assistant for remote elevator monitoring experts using machine learning |
US12049383B2 (en) | 2019-04-29 | 2024-07-30 | Otis Elevator Company | Elevator shaft distributed health level |
Also Published As
Publication number | Publication date |
---|---|
CN102765643A (en) | 2012-11-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102765643B (en) | Elevator fault diagnosis and early-warning method based on data drive | |
CN110262463B (en) | Rail transit platform door fault diagnosis system based on deep learning | |
CN114021932B (en) | Wind turbine generator energy efficiency evaluation and diagnosis method, system and medium | |
WO2015158198A1 (en) | Fault recognition method and system based on neural network self-learning | |
CN103699698B (en) | A kind of being based on improves Bayesian rail transit fault identification method and system | |
CN111737911B (en) | A Bearing Recession Trend Prediction Method Based on Deep Belief Network and Extreme Learning Machine | |
CN105391579B (en) | Power communication network fault positioning method based on crucial alarm collection and supervised classification | |
CN113723632A (en) | Industrial equipment fault diagnosis method based on knowledge graph | |
CN104102773B (en) | A kind of equipment fault early-warning and state monitoring method | |
CN111505424A (en) | Large experimental device power equipment fault diagnosis method based on deep convolutional neural network | |
CN101950382B (en) | Method for optimal maintenance decision-making of hydraulic equipment with risk control | |
CN102487343B (en) | Diagnosis and Prediction Method of Hidden Faults in Satellite Communication System | |
CN108584592A (en) | A kind of shock of elevator car abnormity early warning method based on time series predicting model | |
CN109977624A (en) | Photovoltaic plant soft fault monitoring method based on deep neural network | |
CN109947898B (en) | Equipment fault testing method based on intellectualization | |
CN109754110A (en) | A kind of early warning method and system of traction converter failure | |
CN110361207A (en) | A kind of intelligence train EEF bogie presence forecasting system and its method | |
CN112906764B (en) | Intelligent diagnosis method and system for communication security equipment based on improved BP neural network | |
CN113806478B (en) | A method for auxiliary decision-making of excavator fault based on graph neural network | |
CN104715342A (en) | Electrical equipment fault handling and aid decision making method based on case-based reasoning | |
CN118228086A (en) | Bridge deformation monitoring method, device and medium | |
CN117521498A (en) | Charging pile guide type fault diagnosis prediction method and system | |
CN117032165A (en) | Industrial equipment fault diagnosis method | |
CN115938124A (en) | A method, system and product for predicting the impact of urban rail transit emergencies | |
CN112699927A (en) | Pipeline fault diagnosis method and system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20150617 Termination date: 20200531 |