CN102762013A - Intelligent control system for greenhouse LED light source - Google Patents
Intelligent control system for greenhouse LED light source Download PDFInfo
- Publication number
- CN102762013A CN102762013A CN2012101454430A CN201210145443A CN102762013A CN 102762013 A CN102762013 A CN 102762013A CN 2012101454430 A CN2012101454430 A CN 2012101454430A CN 201210145443 A CN201210145443 A CN 201210145443A CN 102762013 A CN102762013 A CN 102762013A
- Authority
- CN
- China
- Prior art keywords
- unit
- control
- information
- module
- greenhouse
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000007613 environmental effect Effects 0.000 claims abstract description 38
- 238000004891 communication Methods 0.000 claims abstract description 31
- 238000012544 monitoring process Methods 0.000 claims abstract description 27
- 238000012545 processing Methods 0.000 claims abstract description 27
- 238000000034 method Methods 0.000 claims abstract description 26
- 230000012010 growth Effects 0.000 claims abstract description 22
- 230000008569 process Effects 0.000 claims abstract description 16
- 238000003860 storage Methods 0.000 claims abstract description 10
- 230000008636 plant growth process Effects 0.000 claims abstract description 5
- 238000003891 environmental analysis Methods 0.000 claims abstract description 3
- 238000001514 detection method Methods 0.000 claims description 43
- 230000004927 fusion Effects 0.000 claims description 33
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims description 28
- 229910002092 carbon dioxide Inorganic materials 0.000 claims description 14
- 239000001569 carbon dioxide Substances 0.000 claims description 14
- 238000011156 evaluation Methods 0.000 claims description 14
- 230000005540 biological transmission Effects 0.000 claims description 7
- 238000009472 formulation Methods 0.000 claims description 6
- 239000000203 mixture Substances 0.000 claims description 6
- 230000008635 plant growth Effects 0.000 abstract description 8
- 238000005265 energy consumption Methods 0.000 abstract description 6
- 230000001105 regulatory effect Effects 0.000 abstract description 2
- 230000001276 controlling effect Effects 0.000 abstract 1
- 238000005259 measurement Methods 0.000 description 25
- 241000196324 Embryophyta Species 0.000 description 21
- 230000006870 function Effects 0.000 description 8
- 238000004364 calculation method Methods 0.000 description 7
- 238000005516 engineering process Methods 0.000 description 7
- 230000017260 vegetative to reproductive phase transition of meristem Effects 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- 238000011161 development Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000007726 management method Methods 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000007781 pre-processing Methods 0.000 description 3
- 241000723353 Chrysanthemum Species 0.000 description 2
- 235000007516 Chrysanthemum Nutrition 0.000 description 2
- 230000003044 adaptive effect Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 210000003763 chloroplast Anatomy 0.000 description 2
- 238000011217 control strategy Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 238000005286 illumination Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000005457 optimization Methods 0.000 description 2
- 230000029553 photosynthesis Effects 0.000 description 2
- 238000010672 photosynthesis Methods 0.000 description 2
- 230000008121 plant development Effects 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 230000001131 transforming effect Effects 0.000 description 2
- 229920002472 Starch Polymers 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 239000008186 active pharmaceutical agent Substances 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 244000062766 autotrophic organism Species 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 210000004027 cell Anatomy 0.000 description 1
- 229930002875 chlorophyll Natural products 0.000 description 1
- 235000019804 chlorophyll Nutrition 0.000 description 1
- ATNHDLDRLWWWCB-AENOIHSZSA-M chlorophyll a Chemical compound C1([C@@H](C(=O)OC)C(=O)C2=C3C)=C2N2C3=CC(C(CC)=C3C)=[N+]4C3=CC3=C(C=C)C(C)=C5N3[Mg-2]42[N+]2=C1[C@@H](CCC(=O)OC\C=C(/C)CCC[C@H](C)CCC[C@H](C)CCCC(C)C)[C@H](C)C2=C5 ATNHDLDRLWWWCB-AENOIHSZSA-M 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 230000001066 destructive effect Effects 0.000 description 1
- 235000013399 edible fruits Nutrition 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 230000006855 networking Effects 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 238000007500 overflow downdraw method Methods 0.000 description 1
- 230000008447 perception Effects 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 230000037039 plant physiology Effects 0.000 description 1
- 238000004886 process control Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 230000009469 supplementation Effects 0.000 description 1
- 210000001519 tissue Anatomy 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B20/00—Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
- Y02B20/40—Control techniques providing energy savings, e.g. smart controller or presence detection
Landscapes
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
本发明涉及一种温室LED光源的智能控制系统,包括用于采集温室的环境参数的环境监测模块,用于接收用户输入的植物生长过程的控制计划信息,并采集植物的生长指标参数的作业计划处理模块,用于生成控制信息的控制中心模块,用于存储数据的存储模块,用于进行远程在线监测和控制的远程控制接口模块,用于输出环境分析信息和控制过程信息的输出模块,用于根据控制信息对LED光源进行控制的智能控制器,以及用于提供通讯环境的通讯总线。与现有技术相比,本发明能自动实现针对温室内环境参数及植物生长状况对光源进行调控的要求,使植物获得最佳的光配比,节约温室能源消耗,而且可以对控制过程进行可视化表达。
The invention relates to an intelligent control system for LED light sources in a greenhouse, including an environmental monitoring module for collecting environmental parameters of the greenhouse, for receiving control plan information of the plant growth process input by users, and for collecting operation plans for plant growth index parameters The processing module is a control center module used to generate control information, a storage module used to store data, a remote control interface module used for remote online monitoring and control, and an output module used to output environmental analysis information and control process information. An intelligent controller for controlling LED light sources according to control information, and a communication bus for providing a communication environment. Compared with the prior art, the present invention can automatically realize the requirement of regulating the light source according to the environmental parameters in the greenhouse and the growth status of the plants, so that the plants can obtain the best light ratio, save the energy consumption of the greenhouse, and can visualize the control process Express.
Description
技术领域 technical field
本发明涉及的是一种将LED光源调控技术应用到温室植物生产过程中的智能控制技术,尤其涉及一种能自动实现针对温室内环境参数及植物生长状况对光源进行调控的要求,使植物获得最佳的光配比,并且节约温室能源消耗的智能控制系统。 The present invention relates to an intelligent control technology that applies LED light source regulation technology to the production process of greenhouse plants, and in particular to an intelligent control technology that can automatically realize the regulation of the light source according to the environmental parameters in the greenhouse and the growth status of plants, so that the plants can obtain The best light ratio and intelligent control system to save greenhouse energy consumption. the
背景技术 Background technique
光照对于植物生长发育非常重要,作为一种自养生物,植物利用太阳光的能量进行光合作用,其中400~700nm波长的太阳光是植物光和活性的波长区间,也被称为光和活性光波。其中,光谱中红光和蓝光是植物叶绿素的主要反应区间,因此现在温室内的补光通常主要进行红光与蓝光的补充。Saebo等在1995年Plant Cell,Tissue and Organ Culture中指出红光在光合作用中对淀粉积累的作用。在1982年,Senger在Plant Physiology中强调蓝光对植物叶绿体的发展、叶绿体的形成和气孔的开闭有关。 Illumination is very important for the growth and development of plants. As an autotrophic organism, plants use the energy of sunlight for photosynthesis. The 400-700nm wavelength of sunlight is the wavelength range of plant light and activity, also known as light and active light waves. . Among them, red light and blue light in the spectrum are the main reaction ranges of plant chlorophyll, so now the supplementary light in the greenhouse is usually mainly supplemented by red light and blue light. Saebo et al pointed out the effect of red light on starch accumulation in photosynthesis in Plant Cell, Tissue and Organ Culture in 1995. In 1982, Senger emphasized in Plant Physiology that blue light is related to the development of plant chloroplasts, the formation of chloroplasts and the opening and closing of stomata. the
光的质量对植物生长发育非常重要的同时,光照时间对于植物生长发育也有作用。在现在的反季节培育中,白天光照时间以及夜间灯光的补充对于调节(推迟或提早)花期非常重要。例如,长日照植物的开花光照条件就是形成一个短黑夜,既可以进行遮光处理,也能在黑夜中进行短期补光,从而打破植物的黑暗“感知”,从而实现反季节开花。也就是说,现代温室光照条件可以根据植物开花的时间需求进行适当的补光及遮光。 While the quality of light is very important to plant growth and development, the duration of light also plays a role in plant growth and development. In the current off-season cultivation, daylight time and night light supplementation are very important for regulating (delaying or early) flowering. For example, the flowering light condition of long-day plants is to form a short dark night, which can be used for shading treatment or short-term supplementary light in the dark night, so as to break the plant's "perception" of darkness and achieve off-season flowering. That is to say, the lighting conditions of modern greenhouses can be properly supplemented and shaded according to the flowering time of plants. the
现代温室不仅要能根据人们对于植物生长周期以及果实成熟、观赏性植物开花时间的调控,更要能够尽量减少能源的投入,从高耗能高产出逐步转变为低耗能高产出。将光照强度与周围的温度、二氧化碳浓度、湿度等相互协调,使得整体植物的光利用率(Light use efficiency,LUE)最大化,从而减少因过量提供某一生长条件(如过多充入二氧化碳,温室温度过高)导致的能源的浪费。然而这一切的互补及互作是需要复杂的运算和精确的计算的。 综上所述,在温室植物种植中,构建一套智能的LED光源控制系统是必要的。 Modern greenhouses must not only be able to regulate the growth cycle of plants, fruit maturity, and flowering time of ornamental plants, but also be able to minimize energy input and gradually change from high energy consumption and high output to low energy consumption and high output. Coordinate the light intensity with the surrounding temperature, carbon dioxide concentration, humidity, etc., so as to maximize the light use efficiency (LUE) of the overall plant, thereby reducing the excessive supply of certain growth conditions (such as excessive carbon dioxide, Greenhouse temperature is too high) the waste of energy caused. However, the complementarity and interaction of all these require complex calculations and precise calculations. To sum up, in greenhouse planting, it is necessary to build an intelligent LED light source control system. the
发明内容 Contents of the invention
本发明的目的就是为了克服上述现有技术存在的缺陷而提供一种面向温室植物生长照明的LED光源的智能控制系统,该系统能够实现对温室环境参数、植物生长信息的实时采集及计算,生成优化的作业计划,基于信息融合技术对LED光源进行自动控制,并提供可扩展的远程控制接口进行远程管理。 The purpose of the present invention is to provide an intelligent control system for LED light sources for greenhouse plant growth lighting in order to overcome the above-mentioned defects in the prior art. The system can realize real-time collection and calculation of greenhouse environmental parameters and plant growth information, and generate Optimized operation plan, automatic control of LED light source based on information fusion technology, and provide scalable remote control interface for remote management. the
本发明的目的可以通过以下技术方案来实现: The purpose of the present invention can be achieved through the following technical solutions:
一种温室LED光源的智能控制系统,包括: An intelligent control system for greenhouse LED light sources, including:
环境监测模块,用于采集温室的环境参数; The environmental monitoring module is used to collect the environmental parameters of the greenhouse;
作业计划处理模块,用于接收用户输入的植物生长过程的控制计划信息,并采集植物的生长指标参数; The operation plan processing module is used to receive the control plan information of the plant growth process input by the user, and collect the growth index parameters of the plant;
控制中心模块,连接环境监测模块和作业计划处理模块,根据算法参数、参考表、接收自作业计划处理模块采集的生长指标参数和控制计划信息、以及接收自环境监测模块采集的环境参数,生成基于信息融合的控制信息; The control center module is connected to the environmental monitoring module and the operation plan processing module, according to the algorithm parameters, the reference table, the growth index parameters and control plan information received from the operation plan processing module, and the environmental parameters collected from the environmental monitoring module to generate Control information for information fusion;
存储模块,连接控制中心模块,用于存储生成的控制信息、系统运行过程中所需的参考表、算法参数、采集到的生长指标参数、环境参数以及输入的控制计划信息; The storage module, connected to the control center module, is used to store the generated control information, the reference tables required during the system operation, algorithm parameters, collected growth index parameters, environmental parameters and input control plan information;
远程控制接口模块,用于进行远程在线监测和控制; Remote control interface module for remote online monitoring and control;
输出模块,用于输出环境分析信息和控制过程信息; The output module is used to output environmental analysis information and control process information;
智能控制器,根据控制心中模块生成的控制信息对LED光源进行控制; The intelligent controller controls the LED light source according to the control information generated by the control module;
通讯总线,连接控制中心模块、远程控制接口模块、输出模块和智能控制器。 The communication bus connects the control center module, the remote control interface module, the output module and the intelligent controller. the
所述的环境监测模块包括供电单元以及由供电单元供电的中央控制单元、温度检测单元、湿度检测单元、二氧化碳检测单元、光照度检测单元、射频单元,所述的温度检测单元、湿度检测单元、二氧化碳检测单元、光照度检测单元、射频单元均与中央控制单元连接,温度检测单元、湿度检测单元、二氧化碳检测单元和光照度检测单元分别采集温室的温度、湿度、二氧化碳和光照度的参数,发送至中央控制单元进行处理,处理结果通过射频单元发送至控制中心模块。 The environment monitoring module includes a power supply unit and a central control unit powered by the power supply unit, a temperature detection unit, a humidity detection unit, a carbon dioxide detection unit, an illumination detection unit, and a radio frequency unit. The temperature detection unit, the humidity detection unit, the carbon dioxide The detection unit, illuminance detection unit, and radio frequency unit are all connected to the central control unit. The temperature detection unit, humidity detection unit, carbon dioxide detection unit, and illuminance detection unit respectively collect the parameters of temperature, humidity, carbon dioxide, and illuminance in the greenhouse and send them to the central control unit. Processing is performed, and the processing result is sent to the control center module through the radio frequency unit. the
所述的作业计划处理模块包括作业计划制定单元、温室区域规划单元、种植过程信息采集单元和输出单元,所述的作业计划制定单元和温室区域规划单元用于输 入用户的控制计划信息,种植过程信息采集单元用于采集植物的生长指标参数,输出单元将控制计划信息和生长指标参数发送至控制中央模块。 The operation plan processing module includes an operation plan formulation unit, a greenhouse area planning unit, a planting process information collection unit and an output unit, and the operation plan formulation unit and the greenhouse area planning unit are used to input the control plan information of the user, planting The process information collection unit is used to collect plant growth index parameters, and the output unit sends control plan information and growth index parameters to the control central module. the
所述的控制中央单元包括参数信息输入单元、一级信息融合单元、二级信息融合单元、信息融合评估单元和控制信息输出单元,所述的参数信息输入单元接收来自环境监测模块采集的环境参数以及自作业计划处理模块采集的生长指标参数和控制计划信息,依次输入至一级信息融合单元和二级信息融合单元进行处理,同时调用算法参数和参考表生成控制信息,通过控制信息输出单元进行发送。 The control central unit includes a parameter information input unit, a primary information fusion unit, a secondary information fusion unit, an information fusion evaluation unit and a control information output unit, and the parameter information input unit receives the environmental parameters collected by the environmental monitoring module And the growth index parameters and control plan information collected from the operation plan processing module are sequentially input to the first-level information fusion unit and the second-level information fusion unit for processing, and at the same time, the algorithm parameters and reference table are called to generate control information, which is carried out through the control information output unit. send. the
所述的远程控制接口模块包括远程控制客户端、无线网关单元、无线网络和身份认证单元,所述的远程控制客户端、身份认证单元与无线网关单元之间通过无线网络进行数据传输,无线网关单元对传输的数据进行路由,并连接身份认证单元,由身份认证单元对智能控制器、远程控制客户端以及环境监测模块的传感器进行身份识别。 The remote control interface module includes a remote control client, a wireless gateway unit, a wireless network and an identity authentication unit, and the remote control client, the identity authentication unit and the wireless gateway unit perform data transmission through a wireless network, and the wireless gateway The unit routes the transmitted data and connects to the identity authentication unit, which identifies the intelligent controller, the remote control client and the sensor of the environmental monitoring module. the
所述的无线网络包括GSM网络、GPRS网络或Zigbee网络。 The wireless network includes GSM network, GPRS network or Zigbee network. the
所述的通讯总线支持包括HTTP、MODBUS和Zigbee在内的通讯协议,采用的通讯方式包括RS485总线、CAN总线和Zigbee无线方式。 The communication bus supports communication protocols including HTTP, MODBUS and Zigbee, and the communication methods adopted include RS485 bus, CAN bus and Zigbee wireless mode. the
与现有技术相比,本发明具有以下优点: Compared with prior art, the present invention has the following advantages:
1)本发明可以实时采集温室的环境参数并进行数字化预处理。 1) The present invention can collect the environmental parameters of the greenhouse in real time and perform digital preprocessing. the
2)本发明可以对生长中的植物体进行实时的非破坏性检测,并反馈给光源控制系统。 2) The present invention can perform real-time non-destructive detection on growing plants and feed back to the light source control system. the
3)本发明可以根据用户需要及存储单元中预置的植物生长历史数据,对植物生长过程控制计划进行定制。 3) The present invention can customize the plant growth process control plan according to the user's needs and the plant growth history data preset in the storage unit. the
4)本发明可以将来自多个传感器及其他边界条件参考值的信息进行协调和综合处理,进行基于信息融合技术的控制策略生成及LED光源的自动调节。 4) The present invention can coordinate and comprehensively process information from multiple sensors and other boundary condition reference values, and perform control strategy generation based on information fusion technology and automatic adjustment of LED light sources. the
5)本发明可以提供基于开放网络的技术人员对LED光源的远程综合控制。 5) The present invention can provide remote comprehensive control of the LED light source by technicians based on an open network. the
6)本发明可以对温室及LED光源的完整智能控制过程进行可视化表达。 6) The present invention can visually express the complete intelligent control process of the greenhouse and the LED light source. the
附图说明 Description of drawings
图1是温室LED光源智能控制系统的内部结构图; Figure 1 is the internal structure diagram of the greenhouse LED light source intelligent control system;
图2(a)是环境监测模块的节点结构图; Figure 2(a) is a node structure diagram of the environmental monitoring module;
图2(b)是环境监测模块的控制程序流程图; Fig. 2 (b) is the flow chart of the control program of the environmental monitoring module;
图3是作业计划优化模块的内部结构图; Fig. 3 is the internal structural diagram of operation plan optimization module;
图4是控制中心模块的内部结构图; Fig. 4 is the internal structural diagram of control center module;
图5是远程控制接口模块的内部结构图; Fig. 5 is the internal structural diagram of remote control interface module;
图6是本发明实施例的温室区域划分图。 Fig. 6 is a division diagram of the greenhouse area according to the embodiment of the present invention. the
具体实施方式Detailed ways
下面结合附图和具体实施例对本发明进行详细说明。 The present invention will be described in detail below in conjunction with the accompanying drawings and specific embodiments. the
实施例 Example
如图1所示,一种温室LED光源的智能控制系统,包括环境监测模块101、作业计划处理模块102、控制中心模块104、存储模块103、远程控制接口模块106、输出模块107、根据温室大小设置的N个智能控制器以及通讯总线105。
As shown in Figure 1, an intelligent control system for greenhouse LED light sources includes an
其中,环境监测模块101用于采集温室的环境参数,例如:光照、温度、相对湿度、二氧化碳及空气,这里采集的温室环境参数都需要按照预置在存储模块103中的阈值参考表及转换运算参考表进行数字化预处理。
Among them, the
作业计划处理模块102用于接收用户输入的植物生长过程的控制计划信息,或根据预置在存储单元103中的生产安排进度计划及植物生长历史数据,对大规模连续生产提供最优的策略,并采集植物的生长指标参数。
The operation
控制中心模块104用于将来自多个传感器及其他边界条件参考值的信息进行协调和综合处理,通过将其在论域上进行变换,使其模糊化,然后在模糊集合论的基础上,基于扩张原则进行决策级信息融合,并给出最优的控制策略。
The
存储模块103连接控制中心模块104,用于存储生成的控制信息、系统运行过程中所需的参考表、算法参数、采集到的生长指标参数、环境参数以及输入的控制计划信息等。
The
远程控制接口模块106用于进行远程在线监测和控制,提供基于TCP/IP网络协议的,采用外部数据访问和控制命令的接口功能,最终实现为用户提供基于开放网络的远程综合控制。该模块作为上层应用系统的一个元素,提高系统兼容性。
The remote
输出单元107用于输出温室环境分析信息及控制过程信息,并进行可视化表示。智能控制器根据控制心中模块生成的控制信息对LED光源进行控制。
The
通讯总线105包含多个通信管理单元。每个通信管理单元包含通信端口类型(例如:RS485端口、CAN端口、ZigBee端口等)、通信端口参数、通讯模式(例如:点对点模式、一对多模式)等,通讯总线105连接控制中心模块104、远程控 制接口模块106、输出模块107和智能控制器,保证这些设备之间的信息通讯。
The
图2(a)示出了本发明环境监测模块101的节点结构,采用无线传感器网络,具体包括:中央控制单元、温度检测单元、湿度检测单元、二氧化碳检测单元、光照度检测单元、射频单元及供电单元。温度检测单元、湿度检测单元、二氧化碳检测单元和光照度检测单元分别采集温室的温度、湿度、二氧化碳和光照度的参数,发送至中央控制单元进行处理,处理结果通过射频单元发送至控制中心模块。
Fig. 2 (a) shows the node structure of the
图2(b)示出了本发明环境监测模块101的控制程序流程。如图2(b)所示,本发明中节点一开始完成硬件的初始化任务,包括设置各个参数、检测硬件是否正常工作、初始化存储器、RAM、通信速率、串口工作方式等;硬件设备初始化完成后开始对中间通信协议层进行初始化,之后定义注册端点、定义输入输出簇,然后主动扫描信道,选择适合的PAN,完成这些初始化任务后发出连接请求,等待网络协议的响应,如果此时网络协议给出连接应答信息,则完成节点的入网请求,采集节点进入任务循环。
Fig. 2(b) shows the control program flow of the
本发明在设计中充分考虑到能量消耗问题,除在硬件设计时要尽量减少能量消耗,最为主要的是在软件控制时不能让节点的各部分长时间处理工作状态,采集节点一般情况是周期性的被唤醒,唤醒后根据事件的不同类型做出不同的处理。本发明中的事件为分两种类型:控制命令和采集命令,所以接收到命令以后首先要对命令的功能代码进行判断,如果是控制命令,则执行控制任务,如果是采集命令,则启动采集传感器完成环境数据的采集,采集到的数据经处理之后,调用协议层的API完成数据的发送。命令执行完毕后,采集节点会迅速进入休眠状态以节省功耗。 The present invention fully considers the problem of energy consumption in the design. In addition to reducing energy consumption as much as possible during hardware design, the most important thing is that each part of the node cannot be allowed to process the working state for a long time during software control. The general situation of the acquisition node is periodic After being woken up, different processing will be done according to different types of events. Events in the present invention are divided into two types: control command and collection command, so after receiving the command, first judge the function code of the command, if it is a control command, then execute the control task, if it is a collection command, then start the collection The sensor completes the collection of environmental data, and after the collected data is processed, the API of the protocol layer is called to complete the data transmission. After the command is executed, the acquisition node will quickly enter the sleep state to save power consumption. the
图3示出了本发明作业计划处理模块102的内部结构,包括作业计划制定单元201、温室区域规划单元202、种植过程信息采集单元203、输出单元204,其中,作业计划制定单元201用于接收用户输入的植物种植作业计划,包括详细的LED灯光补光、生长期间的日夜温度等的生长计划,该作业计划输入后存储在存储模块103中。以上海交通大学浦江基地现代温室所种植的多头菊(共9个品种)为例,在种植初期,根据生长计划,对菊花进行夜间补光。这时,夜间的灯光将根据系统发出的指令在每天夜间9点至次日早上2点准时开启,以满足植物推迟开花以及最后的四月底开花的生产计划。
Fig. 3 shows the internal structure of the operation
温室区域规划单元202用于接收用户输入的温室区域划分数据,本实施例中,根据灯光开关的布置以及灯光种类的不同,将2300平方米的温室划分成为10个区 域,如图6所示,A1、A2、B1、B2、B3、B4分别对应不同灯光种类和光照时间。 The greenhouse area planning unit 202 is used to receive the greenhouse area division data input by the user. In this embodiment, according to the arrangement of light switches and the different types of lights, the greenhouse of 2300 square meters is divided into 10 areas, as shown in Figure 6 , A1, A2, B1, B2, B3, and B4 correspond to different lighting types and lighting time respectively. the
上述温室区域划分数据也将保存在存储模块103中,并自动生成模板,一遍用户在重复类似作业计划制定时供用户参考。
The above-mentioned greenhouse area division data will also be stored in the
种植过程信息采集单元203用于收集植物在生长过程中各项指标参数,经过结构化处理,并将上述数据输出到输出单元204中,作为控制中心模块104的一个输入源。
The planting process information collection unit 203 is used to collect various index parameters during the growth process of the plant, after structured processing, and output the above data to the output unit 204 as an input source of the
图4示出了本发明控制中心模块104的内部结构,该模块包括:参数信息输入单元301、一级信息融合单元302、二级信息融合单元303、信息融合评估单元304及控制信号输出单元305。
Fig. 4 shows the internal structure of the
其中,参数信息输入单元301用于接收从环境监测模块的传感器采集到的数据,该数据应该经过A/D转换及预处理。因为在一般情况下,多传感器往往从不同的坐标框架对环境中的同一特征进行描述,它们所表示的时间、空间和表达方式可能各不相同,必须将它们统一到一个共同的时空参考系中。数据的预处理完成了时间因素、空间因素和工作因素的全面协调管理,并对传感器进行选择,投入最合适和可靠的传感器组以适应不同的条件。其次,参数信息输入单元301还应接收从作业计划处理模块102的输出。
Wherein, the parameter
由于传感器测量的数据中总是存在噪声,所以根据检测数据得到的估计值存在着估计误差,而该估计误差也是一个随机量,因此评价一个估计算法的好坏一般都以均方误差作为评价指标。对于多传感器的检测信息,由于各个传感器的测量精度和测量环境不同,测量的准确性必然存在差异,如果对多传感器一视同仁,不加区别地将检测数据加以处理利用,必然带来检测结果的不精确导致系统处理结果的误差,有时这个误差会很大。所以需要针对各个传感器在检测系统中所处的地位和检测的准确性,有选择地对传感器的重要性加以区别。这就是自适应加权数据融合算法的依据。 Since there is always noise in the data measured by the sensor, there is an estimation error in the estimated value obtained according to the detection data, and the estimation error is also a random quantity, so the evaluation of an estimation algorithm is generally based on the mean square error. . For the detection information of multiple sensors, due to the different measurement accuracy and measurement environment of each sensor, the measurement accuracy must be different. If the multi-sensors are treated equally and the detection data are processed and utilized without distinction, it will inevitably bring about different detection results. Accuracy leads to errors in the processing results of the system, and sometimes this error can be large. Therefore, it is necessary to selectively distinguish the importance of sensors according to the position of each sensor in the detection system and the accuracy of detection. This is the basis of the adaptive weighted data fusion algorithm. the
一级信息融合单元302采用自适应加权数据融合方法主要用于监测系统底层传感器检测数据的一级融合,从而为二级融合提供更加准确的现场检测信息和系统状态信息。加权求和法的综合评价结果可表示为:
The primary
其中,i=1,2,…n,gi为单因素评价指标,hi为相应的权值。该方法中提供的评价指标的变化是线性的,在粗略评价时不失是一种简单易行的方法。其中关键是各 因素权重的确定。本发明中权重的确定可以依据以下3种方法: Among them, i=1, 2,...n, g i is a single factor evaluation index, h i is the corresponding weight. The change of the evaluation index provided in this method is linear, and it is a simple and easy method for rough evaluation. The key is to determine the weight of each factor. The determination of weight in the present invention can be based on following 3 kinds of methods:
(1)根据经验确定 (1) Determined based on experience
如果测量数据不含有任何确定权数的依据。这类不等精度测量数据就根据经验确定权数。这种确定方法需要丰富的测量经验和有关误差方面的识才能胜任。通常无经验确定权数是把权数分四等:判定为疏失误差的测数据权数为0;较不可靠的测量数据的权数为1;好的测量数据的权数为最好的测量数据的权数为3。 If the measurement data does not contain any basis for determining the weight. The weights of such unequal precision measurement data are determined based on experience. This method of determination requires extensive measurement experience and knowledge of errors to be competent. Usually, there is no experience to determine the weight by dividing the weight into four grades: the weight of the measured data judged to be negligence and error is 0; the weight of the less reliable measured data is 1; the weight of the good measured data is the best measurement The weight of the data is 3. the
(2)根据测量次数确定 (2) Determined according to the number of measurements
对于等精度测量,由于测量次数不同,而使测量结果不等精度,对于种不等精度数据的权数确定比较简单,可以直接把测量次数当作权数。测次数越大,得到的数据精度越高,权数也越大。实际上,这与权在不等精测量中所起到的作用是一致的,它具体表征着各个数据的可靠程度。 For equal-precision measurement, due to the different measurement times, the measurement results are not equal in precision. It is relatively simple to determine the weight of different precision data, and the measurement times can be directly used as the weight. The greater the number of measurements, the higher the accuracy of the obtained data and the greater the weight. In fact, this is consistent with the role played by weight in unequal precision measurement, which specifically characterizes the reliability of each data. the
(3)根据数据的精度参数确定 (3) Determined according to the precision parameters of the data
对所处理的不等精度数据,在已知各数据的精度参数时,为了确定各据应得的权数,可把这些不等精度数据看成相当于在等精度测量条件下,于测量次数不同而构成的不等精度,把各数据给出的精度参数看成相当于是测量次数不同而得出的测量结果的精度参数。 For the unequal precision data to be processed, when the precision parameters of each data are known, in order to determine the weight of each data, these unequal precision data can be regarded as equivalent to the measurement times under the same precision measurement conditions. For the unequal precision formed by different, the precision parameter given by each data is regarded as the precision parameter equivalent to the measurement result obtained by different measurement times. the
同样方法便可以得到其它环境参数的数据融合值。根据各个传感器的方差得出的各自的加权因子,测量精度较高的传感器具有较高的加权因子,而且随着次数的增加,每次测量中都根据各测量数据计算出其加权因子,其在检测数据处理中的重要程度由加权因子体现出来,这样就更能根据多传感器的优势,充分考虑环境等因素的干扰,减小偏差较大的数据对测量准确度的影响,提高测量系统的准确性。 In the same way, the data fusion values of other environmental parameters can be obtained. According to the respective weighting factors obtained from the variance of each sensor, the sensor with higher measurement accuracy has a higher weighting factor, and as the number of times increases, its weighting factor is calculated according to each measurement data in each measurement, which is in The importance of detection data processing is reflected by the weighting factor, so that based on the advantages of multi-sensors, the interference of environmental and other factors can be fully considered, the impact of large deviation data on measurement accuracy can be reduced, and the accuracy of the measurement system can be improved. sex. the
以温度传感器为例,本实施例中,在温室安装了8个温度传感器,从传感器检测到的数据以及按照基于自适应加权算法进行一级融合,计算得到的相应权值和方差如下表所示: Taking the temperature sensor as an example, in this embodiment, 8 temperature sensors are installed in the greenhouse, and the data detected from the sensors are combined with the first-level fusion based on the adaptive weighting algorithm. The corresponding weights and variances calculated are shown in the following table :
计算得到的融合值为:0.704 The calculated fusion value is: 0.704
二级信息融合单元303为决策级融合,其目的为在一级融合结果的基础上,做出系统输出决策。对于二级融合,由于输入的信息量彼此类型不同,所以不能直接 进行数据级融合,通过将其在论域上进行变换,使其模糊化。然后在模糊集合论的基础上,基于扩张原则进行决策级信息融合。
The secondary
本实施例中,设X为论域,m:σ→[0,1]是模糊测度,A∈σ,h是σ可测的,则h在A上的模糊积分定义为: In this embodiment, let X be the domain of discourse, m: σ→[0, 1] is the fuzzy measure, A∈σ, h is σ measurable, then the fuzzy integral of h on A is defined as:
其中,Hλ={x|h(x)≥λ}。上式为关于模糊测度m的Sugeno模糊积分。 Wherein, H λ ={x|h(x)≥λ}. The above formula is the Sugeno fuzzy integral with respect to the fuzzy measure m.
当论域X={x1,x2,…xn}为有限集合,且h(x1)≥h(x2)≥…≥h(xn),由公式(2)可得到h在X上的Sugeno积分定义为: When the universe of discourse X={x 1 , x 2 ,…x n } is a finite set, and h(x 1 )≥h(x 2 )≥…≥h(x n ), from the formula (2), we can get h in The Sugeno integral on X is defined as:
其中,Xi={x1,x2,…xi}。由于模糊测度m(Xi)计算的复杂性,根据构造gλ测度的办法,进一步得到Sugeno积分的计算公式为: Wherein, X i ={x 1 , x 2 , . . . x i }. Due to the complexity of the calculation of the fuzzy measure m(X i ), according to the method of constructing the g λ measure, the calculation formula of the Sugeno integral is further obtained as:
其中,H(x1)=g1,H(xi)=gi+H(xi1)+λgiH(xi1)。 Wherein, H(x 1 )=g 1 , H( xi )=g i +H(x i1 )+λg i H(x i1 ).
此外,F测度的Choquet积分: Furthermore, the Choquet integral for the F measure:
其中,Hλ={x|h(x)≥λ}。 Wherein, H λ ={x|h(x)≥λ}.
当论域X={x1,x2,…xn}为有限集合,且h(x1)≤h(x2)≤…≤h(xn),由公式(5)可得h在X上关于g的Choquet积分计算公式为: When the domain of discourse X={x 1 , x 2 ,…x n } is a finite set, and h(x 1 )≤h(x 2 )≤…≤h(x n ), from the formula (5), we can get h in The calculation formula of the Choquet integral with respect to g on X is:
其中,H(λi)={xi,xi+1,…,xn},h(x0)=0 Among them, H(λ i )={ xi ,xi +1 ,...,x n }, h(x 0 )=0
利用模糊积分进行综合评价时,模糊测度可以表征各单因素评价指标的重视程度,而模糊测度的确定是该评价方法的关键。 When fuzzy integral is used for comprehensive evaluation, fuzzy measure can represent the importance of each single factor evaluation index, and the determination of fuzzy measure is the key of this evaluation method. the
信息融合评价单元304为对经过二级融合单元303得到的决策信息进行评估和比对,本实施例中采用估计值与原始值的根均方误差RMSE作为评判度量。
The information
控制信号输出单元305根据信息融合评价单元304的输出作为控制信号的重要依据,满足系统内置的优化模型预置的信号被传输到控制信号输出单元输出并用于控制分布式的智能控制器,从而达到对LED光源进行智能调控的目的。
The control
通讯总线105主要用于保证各设备之间的通讯畅通,支持HTTP、MODBUS、 ZigBee等多种协议,通信方式可选用CAN总线、RS485总线和ZigBee无线方式。为了提高系统的抗干扰性能,在传输介质和灯具智能接收器之间采取光电隔离。
The
若所控制LED照明灯的智能接收器接口为RS485总线,则可采用RS485通信方式及相应模块。CAN总线和RS485总线的接线方式类似。CAN总线有完善的通信协议,并且速度优于RS485,且CAN节点在错误严重的情况下具有自动关闭输出功能,以使总线上其他节点的操作不受影响。 If the intelligent receiver interface of the controlled LED lighting is an RS485 bus, the RS485 communication method and corresponding modules can be used. CAN bus and RS485 bus are connected in a similar way. The CAN bus has a complete communication protocol, and the speed is better than RS485, and the CAN node has the function of automatically closing the output in case of serious errors, so that the operation of other nodes on the bus will not be affected. the
采用CAN和RS485总线通信技术进行数据传输,都需要专门投资铺设通讯线路,由于数据传输总线经常有高压脉冲侵入或者高压线的长时间接触,通信质量易受到影响。ZigBee是基于IEEE802.15.4协议的一种新兴的短距离无线通讯技术,能有效解决以上问题,非常适合在测量节点较多且分散、又不要求较高数据传输速率的控制领域应用。本发明中的LED照明控制器配备ZigBee模块,能够简单快速地进行ZigBee组网。 The use of CAN and RS485 bus communication technologies for data transmission requires special investment in the laying of communication lines. Because the data transmission bus often has high-voltage pulse intrusion or long-term contact with high-voltage lines, the communication quality is easily affected. ZigBee is an emerging short-distance wireless communication technology based on the IEEE802.15.4 protocol. It can effectively solve the above problems and is very suitable for applications in the control field where there are many and scattered measurement nodes and do not require high data transmission rates. The LED lighting controller in the present invention is equipped with a ZigBee module, and can implement ZigBee networking simply and quickly. the
图5示出了本发明远程控制接口模块106的内部结构,包括:远程控制客户端401、GSM/GPRS网络402、无线网关单元403、ZigBee无线通讯网络404及身份认证单元405,用于环境检测的传感器分布于监测区域内,将采集到的数据发送给就近的无线路由节点,路由节点根据路由算法选择最佳路由,建立相应的路由列表,其中列表中包括自身的信息和邻居网关的信息,通过网关把数据传给远程监控中心的客户端,便于用户远程监控管理,由身份认证单元405对智能控制器、远程控制客户端以及环境监测模块的传感器等设备进行身份识别。
Figure 5 shows the internal structure of the remote
远程控制接口模块具有以下功能: The remote control interface module has the following functions:
1)分组控制:可以把不同环境及作业计划要求将LED光源若干组,并对不同组采用不同的定时控制方案。 1) Group control: LED light sources can be divided into several groups according to different environments and operation plans, and different timing control schemes can be adopted for different groups. the
2)逐点控制:根据LED光源的照明效果进行灯光波段的控制,做到多台控制器精准校时逐点控制,达到了节约电能的作用。 2) Point-by-point control: According to the lighting effect of the LED light source, the lighting band is controlled, and multiple controllers are accurately timed and controlled point-by-point to achieve the effect of saving electric energy. the
3)远程PDA控制:根据临时控制需求或功能性人工巡检需求,可以通过PDA手机登陆或GSM发送短信方式对各回路或整个系统进行远程控制。 3) Remote PDA control: According to temporary control requirements or functional manual inspection requirements, each circuit or the entire system can be remotely controlled by logging in with a PDA mobile phone or sending a short message via GSM. the
4)PDA报警功能:通过系统设置可以将相关故障、预警、报警信息通过短信发送至相关责任人的手机。 4) PDA alarm function: Through the system settings, the relevant failure, early warning, and alarm information can be sent to the mobile phone of the responsible person through SMS. the
5)用电计量采集功能:可将电表采集数据远传至控制中心,以便对各供电源的用电量进行统计。 5) Electricity measurement and collection function: the data collected by the electric meter can be transmitted to the control center remotely, so as to make statistics on the electricity consumption of each power supply. the
6)冗余功能:由于本发明依赖于CDMA/GPRS无线网络和互联网,网络的稳定将对本系统远程控制稳定运行起到重要作用,为防万一,本发明具有离开网络自动运行功能,当网络出现故障时,自动切换到自动控制,系统按单体控制方式独立运行。 6) Redundant function: because the present invention relies on CDMA/GPRS wireless network and Internet, the stability of network will play an important role to the stable operation of this system remote control, just in case, the present invention has the automatic operation function of leaving network, when network When a fault occurs, it will automatically switch to automatic control, and the system will operate independently according to the single control mode. the
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。 The above is only a preferred embodiment of the present invention, it should be pointed out that, for those of ordinary skill in the art, without departing from the principle of the present invention, some improvements and modifications can also be made, and these improvements and modifications can also be made. It should be regarded as the protection scope of the present invention. the
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2012101454430A CN102762013A (en) | 2012-05-10 | 2012-05-10 | Intelligent control system for greenhouse LED light source |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2012101454430A CN102762013A (en) | 2012-05-10 | 2012-05-10 | Intelligent control system for greenhouse LED light source |
Publications (1)
Publication Number | Publication Date |
---|---|
CN102762013A true CN102762013A (en) | 2012-10-31 |
Family
ID=47056299
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2012101454430A Pending CN102762013A (en) | 2012-05-10 | 2012-05-10 | Intelligent control system for greenhouse LED light source |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102762013A (en) |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103025010A (en) * | 2012-11-30 | 2013-04-03 | 杨夏芳 | Light-emitting diode (LED) plant growth irradiation system |
CN103237380A (en) * | 2013-03-15 | 2013-08-07 | 西北农林科技大学 | Method and system of intelligent light-environment controlling based on multi-factor coupling |
CN103729810A (en) * | 2013-12-10 | 2014-04-16 | 同济大学 | Visual embedded green building evaluating and diagnosing method |
CN103869796A (en) * | 2014-03-31 | 2014-06-18 | 常熟理工学院 | Edible mushroom producing environment monitoring method and system |
CN103929856A (en) * | 2014-04-03 | 2014-07-16 | 深圳市威尔丽特科技有限公司 | An ecological lighting system |
CN104582151A (en) * | 2014-12-19 | 2015-04-29 | 苏州佳亿达电器有限公司 | Intelligent control system for LED plant growth lamp |
CN105511358A (en) * | 2016-01-06 | 2016-04-20 | 上海大学 | LED plant light supplement intelligence control system based on concentrated distributed management |
CN105766062A (en) * | 2013-09-10 | 2016-07-13 | 飞利浦灯具控股公司 | External control of lighting systems based on third-party content |
CN106332405A (en) * | 2015-07-09 | 2017-01-11 | 深圳市裕富照明有限公司 | Wireless intelligent control method and system applied to agricultural lighting |
CN106651617A (en) * | 2016-12-29 | 2017-05-10 | 深圳前海弘稼科技有限公司 | Seedling monitoring method and device based on greenhouse environment |
CN106686080A (en) * | 2016-12-29 | 2017-05-17 | 深圳前海弘稼科技有限公司 | Parameter configuration method and device based on the greenhouse environment |
CN107787074A (en) * | 2016-08-29 | 2018-03-09 | 深圳市海洋王照明工程有限公司 | A kind of nuclear power illuminates detecting and controlling system |
CN110402745A (en) * | 2019-07-31 | 2019-11-05 | 六安市兆丰商贸有限责任公司 | A kind of white peach Cultivate administration method in greenhouse |
CN111163547A (en) * | 2019-12-26 | 2020-05-15 | 陈劲松 | Intelligent stage lighting cloud terminal control system |
CN112257699A (en) * | 2020-12-23 | 2021-01-22 | 南京华格信息技术有限公司 | Bird target feature analysis and extraction method based on visible light image and SAR image |
CN112867196A (en) * | 2021-01-12 | 2021-05-28 | 广东技术师范大学 | Method and device for realizing artificial intelligence-based plant light formula light supplementing system |
CN113190064A (en) * | 2021-04-12 | 2021-07-30 | 中国农业大学 | Optimal control method for light intensity of plant factory |
CN114787850A (en) * | 2019-12-18 | 2022-07-22 | 欧姆龙株式会社 | growing environment control system |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101682953A (en) * | 2007-06-05 | 2010-03-24 | 皇家飞利浦电子股份有限公司 | A lighting system for horticultural applications |
US20100289411A1 (en) * | 2007-10-03 | 2010-11-18 | Nederlandse Organisatie Voor Toegepastnatuur- Wetenschappelijk Onderzoek Tno | Greenhouse system |
CN101990828A (en) * | 2009-08-25 | 2011-03-30 | 东莞市友美电源设备有限公司 | Method for regulating plant growth by using LED light source and LED plant lighting lamp thereof |
KR20120045721A (en) * | 2010-11-01 | 2012-05-09 | 대한민국(농촌진흥청장) | Real-time supplementary lighting control system by using a lux sensor inside a greenhouse |
-
2012
- 2012-05-10 CN CN2012101454430A patent/CN102762013A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101682953A (en) * | 2007-06-05 | 2010-03-24 | 皇家飞利浦电子股份有限公司 | A lighting system for horticultural applications |
US20100289411A1 (en) * | 2007-10-03 | 2010-11-18 | Nederlandse Organisatie Voor Toegepastnatuur- Wetenschappelijk Onderzoek Tno | Greenhouse system |
CN101990828A (en) * | 2009-08-25 | 2011-03-30 | 东莞市友美电源设备有限公司 | Method for regulating plant growth by using LED light source and LED plant lighting lamp thereof |
KR20120045721A (en) * | 2010-11-01 | 2012-05-09 | 대한민국(농촌진흥청장) | Real-time supplementary lighting control system by using a lux sensor inside a greenhouse |
Non-Patent Citations (3)
Title |
---|
张云鹤: "基于Internet温室环境远程智能控制系统研究", 《中国优秀硕士学位论文数据库信息科技辑》 * |
杨硕: "基于无线传感器网络的温室植物生长光照强度监控系统的研究", 《中国优秀硕士学位论文数据库信息科技辑》 * |
顾斌峰等: "基于数据融合的农业温室温度模糊PID控制方法的研究", 《系统仿真技术》 * |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103025010A (en) * | 2012-11-30 | 2013-04-03 | 杨夏芳 | Light-emitting diode (LED) plant growth irradiation system |
CN103237380A (en) * | 2013-03-15 | 2013-08-07 | 西北农林科技大学 | Method and system of intelligent light-environment controlling based on multi-factor coupling |
CN103237380B (en) * | 2013-03-15 | 2014-09-03 | 西北农林科技大学 | Method and system of intelligent light-environment controlling based on multi-factor coupling |
CN105766062A (en) * | 2013-09-10 | 2016-07-13 | 飞利浦灯具控股公司 | External control of lighting systems based on third-party content |
CN103729810A (en) * | 2013-12-10 | 2014-04-16 | 同济大学 | Visual embedded green building evaluating and diagnosing method |
CN103869796A (en) * | 2014-03-31 | 2014-06-18 | 常熟理工学院 | Edible mushroom producing environment monitoring method and system |
CN103929856A (en) * | 2014-04-03 | 2014-07-16 | 深圳市威尔丽特科技有限公司 | An ecological lighting system |
CN104582151A (en) * | 2014-12-19 | 2015-04-29 | 苏州佳亿达电器有限公司 | Intelligent control system for LED plant growth lamp |
CN106332405A (en) * | 2015-07-09 | 2017-01-11 | 深圳市裕富照明有限公司 | Wireless intelligent control method and system applied to agricultural lighting |
CN105511358A (en) * | 2016-01-06 | 2016-04-20 | 上海大学 | LED plant light supplement intelligence control system based on concentrated distributed management |
CN107787074A (en) * | 2016-08-29 | 2018-03-09 | 深圳市海洋王照明工程有限公司 | A kind of nuclear power illuminates detecting and controlling system |
CN107787074B (en) * | 2016-08-29 | 2021-08-13 | 深圳市海洋王照明工程有限公司 | Nuclear power illumination detection control system |
CN106651617A (en) * | 2016-12-29 | 2017-05-10 | 深圳前海弘稼科技有限公司 | Seedling monitoring method and device based on greenhouse environment |
CN106686080A (en) * | 2016-12-29 | 2017-05-17 | 深圳前海弘稼科技有限公司 | Parameter configuration method and device based on the greenhouse environment |
CN110402745A (en) * | 2019-07-31 | 2019-11-05 | 六安市兆丰商贸有限责任公司 | A kind of white peach Cultivate administration method in greenhouse |
CN114787850A (en) * | 2019-12-18 | 2022-07-22 | 欧姆龙株式会社 | growing environment control system |
CN111163547A (en) * | 2019-12-26 | 2020-05-15 | 陈劲松 | Intelligent stage lighting cloud terminal control system |
CN112257699A (en) * | 2020-12-23 | 2021-01-22 | 南京华格信息技术有限公司 | Bird target feature analysis and extraction method based on visible light image and SAR image |
CN112867196A (en) * | 2021-01-12 | 2021-05-28 | 广东技术师范大学 | Method and device for realizing artificial intelligence-based plant light formula light supplementing system |
CN113190064A (en) * | 2021-04-12 | 2021-07-30 | 中国农业大学 | Optimal control method for light intensity of plant factory |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102762013A (en) | Intelligent control system for greenhouse LED light source | |
Feng | Research on water-saving irrigation automatic control system based on internet of things | |
CN105610900B (en) | A kind of agricultural greenhouse indoor environment monitoring system based on embedded Internet of Things gateway | |
CN105830870B (en) | A kind of long distance wireless farmland monitoring system and method | |
Gao et al. | An intelligent irrigation system based on wireless sensor network and fuzzy control | |
CN102981484B (en) | Greenhouse intelligent control system based on internet of things | |
Li | Application of the internet of things technology in precision agriculture irrigation systems | |
CN102487789B (en) | Remote variable frequency irrigation monitoring system based on ZigBee and general packet radio service (GPRS) | |
Song et al. | Design of wireless sensor network-based greenhouse environment monitoring and automatic control system | |
CN100501608C (en) | Posterior control and multi-sensor fusion method and central air-conditioning energy-saving control device | |
CN102271422A (en) | A WSN-based photovoltaic greenhouse monitoring system and construction method | |
CN105005234B (en) | The remote measurement of intelligent greenhouse environment and control system based on zigbee | |
CN106096772A (en) | Energy based on intelligent power and load corporate management system and implementation method | |
CN102098805A (en) | Multi-parameter modularized distributed culture water environment wireless monitoring system and method | |
CN2879257Y (en) | Multi-glasshouse group control device based on multiple main communication mechanisms | |
CN101968649A (en) | Network type control system for live pig culturing environment and intelligent environment factor control method | |
CN101957602A (en) | Method and system thereof for monitoring and controlling environments of public place based on Zigbee | |
CN102172195A (en) | Precision drip irrigation measuring and controlling system based on wireless sensor network | |
Xing et al. | Development of intelligent information monitoring system in greenhouse based on wireless sensor network | |
Wang | Greenhouse data acquisition system based on ZigBee wireless sensor network to promote the development of agricultural economy | |
CN106161646A (en) | A kind of intelligent agricultural system based on Internet of Things | |
CN115104515A (en) | Irrigation decision cloud computing method based on rainfall utilization maximization, cloud computing platform and irrigation terminal | |
CN106444576B (en) | A park energy saving control system | |
CN201464865U (en) | Public place environmental monitoring control system based on Zigbee | |
CN202041835U (en) | A photovoltaic greenhouse monitoring system based on WSN |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C12 | Rejection of a patent application after its publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20121031 |