CN102759355B - Positioning estimation method and positioning system - Google Patents
Positioning estimation method and positioning system Download PDFInfo
- Publication number
- CN102759355B CN102759355B CN201110126292.XA CN201110126292A CN102759355B CN 102759355 B CN102759355 B CN 102759355B CN 201110126292 A CN201110126292 A CN 201110126292A CN 102759355 B CN102759355 B CN 102759355B
- Authority
- CN
- China
- Prior art keywords
- sensing signal
- signal
- sensing
- inertial sensor
- candidate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 41
- 230000002159 abnormal effect Effects 0.000 claims description 16
- 238000012545 processing Methods 0.000 claims description 12
- 230000001133 acceleration Effects 0.000 claims description 3
- 230000005484 gravity Effects 0.000 claims description 3
- 238000012935 Averaging Methods 0.000 claims 2
- 238000001514 detection method Methods 0.000 description 20
- 238000010586 diagram Methods 0.000 description 8
- 230000035945 sensitivity Effects 0.000 description 5
- 238000009434 installation Methods 0.000 description 3
- 230000007774 longterm Effects 0.000 description 3
- 238000013461 design Methods 0.000 description 2
- 230000001186 cumulative effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
Landscapes
- Navigation (AREA)
- User Interface Of Digital Computer (AREA)
Abstract
Description
技术领域 technical field
本发明涉及一种定位估计方法及相关定位系统,尤其涉及一种可提升可靠度的定位估计方法及相关定位系统。The invention relates to a positioning estimation method and a related positioning system, in particular to a positioning estimation method and a related positioning system capable of improving reliability.
背景技术 Background technique
三维空间(ThreeDimension,3D)定位技术已被广泛使用在各种电子产品的应用中,已知的定位方式通常会使用两种以上不同的惯性传感器互相搭配来达到物体定位的效果。然而,由于不同种类的惯性传感器会有不同的反应速度,反应时间当然随之不同,如此一来,各惯性传感器的信号输出时间将不易达到一致。举例来说,如果陀螺仪的检测时间为每度1/720秒,而重力传感器为每度1/1600秒,在此情况下,将造成物体在某一位置的定位信息由不同时间的感测信号所估算出来的而产生错误的定位结果。Three-dimensional space (Three Dimension, 3D) positioning technology has been widely used in the application of various electronic products. Known positioning methods usually use two or more different inertial sensors to cooperate with each other to achieve the effect of object positioning. However, since different types of inertial sensors have different response speeds, the response time is of course different. As a result, the signal output time of each inertial sensor will not be consistent. For example, if the detection time of the gyroscope is 1/720 second per degree, and the gravity sensor is 1/1600 second per degree, in this case, the positioning information of the object at a certain position will be sensed at different times Signals are estimated to produce erroneous positioning results.
另一方面,由于惯性传感器通常系在运动状态(时间连续)下进行感测,也就是说,感测信号通过对时间积分运算所推算出的信号值。再者,通常惯性传感器本身会存在有些许的感测误差,在此情况下,随着时间的增长,感测误差也随者时间不断的累积,因此,时间越久则所造成的误差通过积分运算所得到的数值也更加庞大,如此一来,如果将惯性传感器使用在长时间的感测运用中,将会产生不准确的感测结果。On the other hand, since the inertial sensor usually senses in a motion state (time-continuous), that is, the sensed signal is a signal value calculated by integrating time. Furthermore, usually the inertial sensor itself will have some sensing errors. In this case, as time goes on, the sensing errors will also accumulate over time. Therefore, the longer the time, the error caused by the integral operation The obtained values are also larger, so if the inertial sensor is used in a long-term sensing operation, inaccurate sensing results will be produced.
发明内容 Contents of the invention
因此,本发明的主要目的即在于提供一种定位估计方法及相关定位系统。Therefore, the main purpose of the present invention is to provide a positioning estimation method and a related positioning system.
本发明公开一种定位估计方法,用于具有多个惯性传感器的一定位系统,其中该多个惯性传感器设置于一物体上,该定位估计方法包含有利用该多个惯性传感器感测该物体的运动状态,以产生多个感测信号;根据一容错临限值,自该多个感测信号中选取出合于误差范围内的多个候选感测信号;以及根据该多个候选感测信号,计算出该物体的一估计位置。The invention discloses a positioning estimation method for a positioning system with multiple inertial sensors, wherein the multiple inertial sensors are arranged on an object, and the positioning estimation method includes using the multiple inertial sensors to sense the object a motion state to generate a plurality of sensing signals; according to an error-tolerant threshold, selecting a plurality of candidate sensing signals within an error range from the plurality of sensing signals; and according to the plurality of candidate sensing signals, An estimated position of the object is calculated.
本发明还公开一种定位系统,用来估计出一物体的位置,其包含有多个惯性传感器、一信号处理单元及一位置运算单元。该多个惯性传感器,设置于该物体上,用来感测该物体的运动状态,以产生多个感测信号。该信号处理单元包含有一信号接收单元及一容错检测单元。该信号接收单元,耦接于该多个惯性传感器,用来接收该多个感测信号。该容错检测单元,耦接于该信号接收单元,用来根据一容错临限值,自该多个感测信号中选取出合于误差范围内的多个候选感测信号。该位置运算单元,耦接于该容错检测单元,用来根据该多个候选感测信号,计算出该物体的一估计位置。The invention also discloses a positioning system for estimating the position of an object, which includes a plurality of inertial sensors, a signal processing unit and a position calculation unit. The multiple inertial sensors are arranged on the object to sense the motion state of the object to generate multiple sensing signals. The signal processing unit includes a signal receiving unit and an error-tolerant detection unit. The signal receiving unit is coupled to the plurality of inertial sensors for receiving the plurality of sensing signals. The error-tolerant detection unit is coupled to the signal receiving unit, and is used for selecting a plurality of candidate sensing signals within an error range from the plurality of sensing signals according to an error-tolerant threshold. The position calculation unit is coupled to the fault-tolerant detection unit, and is used for calculating an estimated position of the object according to the plurality of candidate sensing signals.
附图说明 Description of drawings
图1为本发明实施例的一定位系统的示意图。FIG. 1 is a schematic diagram of a positioning system according to an embodiment of the present invention.
图2为本发明实施例的一流程的示意图。FIG. 2 is a schematic diagram of a process of an embodiment of the present invention.
图3为图1中的感测信号的信号波形图。FIG. 3 is a signal waveform diagram of the sensing signal in FIG. 1 .
图4为图1中的定位系统应用于电子笔时的示意图。FIG. 4 is a schematic diagram when the positioning system in FIG. 1 is applied to an electronic pen.
【主要元件符号说明】[Description of main component symbols]
10定位系统10 positioning system
102信号处理单元102 signal processing unit
104位置运算单元104 position operation unit
106信号接收单元106 signal receiving unit
108容错检测单元108 fault-tolerant detection units
110归零重置单元110 zero reset unit
20流程20 process
200、202、204、206、200, 202, 204, 206,
208步骤208 steps
IS1~IS3惯性传感器IS1~IS3 inertial sensors
OB物体OB object
S1~S3感测信号S1~S3 sensing signal
SAB1异常感测信号SAB1 abnormal sensing signal
SC1~SC2候选感测信号SC1~SC2 Candidate Sensing Signals
具体实施方式 detailed description
请参考图1,图1为本发明实施例的一定位系统10的示意图。定位系统10用来估计出一物体OB的位置。定位系统10包含有惯性传感器IS1~IS3、一信号处理单元102、一位置运算单元104。惯性传感器IS1~IS3分别被设置于物体OB上,用来感测物体OB的运动状态,以产生感测信号S1~S3。信号处理单元102包含有一信号接收单元106、一容错检测单元108及一归零重置单元110。信号接收单元耦接于惯性传感器IS1~IS3,用来接收感测信号S1~S3。容错检测单元108耦接于信号接收单元106,用来根据一容错临限值,自感测信号感测信号S1~S3中选取出合于误差范围内的多个候选感测信号。归零重置单元110耦接于惯性传感器IS1~IS3与容错检测单元108,用来控制惯性传感器IS1~IS3,以执行一归零重置处理程序。位置运算单元104耦接于容错检测单元108,用来根据所选择出的候选感测信号,计算出物体OB的估计位置。换句话说,定位系统10可估计出物体OB于三维空间中的相对应位置,如此一来,如果通过定位系统10估计出物体OB于不同时间的位置后,即可决定出物体OB的运动轨迹。Please refer to FIG. 1 , which is a schematic diagram of a positioning system 10 according to an embodiment of the present invention. The positioning system 10 is used to estimate the position of an object OB. The positioning system 10 includes inertial sensors IS1 - IS3 , a signal processing unit 102 , and a position calculation unit 104 . The inertial sensors IS1-IS3 are respectively disposed on the object OB for sensing the motion state of the object OB to generate sensing signals S1-S3. The signal processing unit 102 includes a signal receiving unit 106 , an error detection unit 108 and a reset unit 110 . The signal receiving unit is coupled to the inertial sensors IS1-IS3 for receiving the sensing signals S1-S3. The error tolerance detection unit 108 is coupled to the signal receiving unit 106 and is used for selecting a plurality of candidate sensing signals within the error range from the sensing signals S1 - S3 according to an error tolerance threshold. The zero reset unit 110 is coupled to the inertial sensors IS1-IS3 and the fault-tolerant detection unit 108, and is used to control the inertial sensors IS1-IS3 to execute a zero-reset process. The position calculation unit 104 is coupled to the fault-tolerant detection unit 108 and used for calculating the estimated position of the object OB according to the selected candidate sensing signals. In other words, the positioning system 10 can estimate the corresponding position of the object OB in the three-dimensional space. In this way, if the positioning system 10 estimates the position of the object OB at different times, the trajectory of the object OB can be determined. .
关于定位系统10的详细操作方式,请继续参考以下说明。请参考图2,图2为本发明实施例的一流程20的示意图。流程20包含有下列步骤:For the detailed operation of the positioning system 10 , please continue to refer to the following description. Please refer to FIG. 2 , which is a schematic diagram of a process 20 according to an embodiment of the present invention. Process 20 includes the following steps:
步骤200:开始。Step 200: start.
步骤202:利用惯性传感器IS1~IS3感测物体OB的运动状态,以产生感测信号S1~S3。Step 202: Use the inertial sensors IS1-IS3 to sense the motion state of the object OB to generate sensing signals S1-S3.
步骤204:根据容错临限值,自感测信号S1~S3中选取出合于误差范围内的多个候选感测信号。Step 204: Select a plurality of candidate sensing signals within the error range from the sensing signals S1-S3 according to the error tolerance threshold.
步骤206:根据所选取出候选感测信号,计算出物体OB的估计位置。Step 206: Calculate the estimated position of the object OB according to the selected candidate sensing signals.
步骤208:结束。Step 208: end.
根据流程20,首先,分别利用惯性传感器IS1~IS3来感测物体OB的运动状态,并据以产生感测信号S1~S3(步骤202)。由于惯性传感器可能会因长时间所累计的感测误差或设置位置的影响,甚至可能是发生故障的关系,而导致产生不正确的感测信号。在此情况下,容错检测单元108可对信号接收单元106所接收到的感测信号S1~S3进行分析筛选,以根据一容错临限值,自感测信号S1~S3中选取出合于误差范围内的候选感测信号(步骤204),接着,位置运算单元104再根据所选择出的候选感测信号,来计算出物体OB的估计位置(步骤206)。换句话说,本发明运用容错设计的方式来排除不当(超出容许误差范围)的感测信号,以提升位置估计的可靠度,进而能获得更准确的物体定位信息。According to the process 20, firstly, the motion state of the object OB is sensed by using the inertial sensors IS1-IS3 respectively, and the sensing signals S1-S3 are generated accordingly (step 202). Incorrect sensing signals may be generated by the inertial sensor due to long-term accumulated sensing errors or the influence of the installation position, or even failure. In this case, the fault-tolerant detection unit 108 can analyze and filter the sensing signals S1-S3 received by the signal receiving unit 106, so as to select a suitable error range from the sensing signals S1-S3 according to a fault-tolerant threshold value. The candidate sensing signals in the object OB (step 204), and then, the position calculation unit 104 calculates the estimated position of the object OB according to the selected candidate sensing signals (step 206). In other words, the present invention uses a fault-tolerant design method to exclude improper (beyond the allowable error range) sensing signals, so as to improve the reliability of position estimation, and obtain more accurate object positioning information.
进一步说明,在步骤204中,容错检测单元108可将全部的感测信号区分为候选感测信号或异常感测信号。也就是说,容错检测单元108可根据容错临限值,将感测信号S1~S3中合于误差范围内的感测信号选择作为候选感测信号,以提供后续物体位置估计运算。同时,将超出误差范围的感测信号选择作为异常感测信号,而不再作为后续物体位置估计运算的数据。举例来说,请参考图3,图3为图1中的感测信号S1~S3的信号波形图。假设容错临限值为TH,且在时间点T时,惯性传感器IS3因为感测异常而产生超出误差范围许多的感测信号S3时,如图3所示,在时间点T时,惯性传感器IS3所感测出的感测信号S3的信号值与相邻的惯性传感器IS2所感测出的感测信号S2的信号值之间存有很大的差异。因此,在步骤204中,容错检测单元108可比较每一感测信号与其相邻惯性传感器所对应的感测信号,以计算出相对应的信号差异值,当所计算出的信号差异值小于容错临限值TH(亦即合于误差范围内)时,容错检测单元108将此感测信号选为候选感测信号。同理,当所计算出的信号差异值不小于容错临限值TH(亦即超过误差范围)时,将此感测信号选为异常感测信号。换句话说,容错检测单元108可选择感测信号S1与S2作为候选感测信号SC1与SC2,并将感测信号S3设定为异常感测信号SAB1。接着,在步骤206中,位置运算单元104便仅根据候选感测信号SC1与SC2,来计算物体OB的估计位置而能避免不当的数据来影响物体OB的位置估计。To further illustrate, in step 204 , the fault-tolerant detection unit 108 can distinguish all sensing signals as candidate sensing signals or abnormal sensing signals. That is to say, the fault-tolerant detection unit 108 can select the sensing signals within the error range from the sensing signals S1-S3 as candidate sensing signals according to the fault-tolerant threshold value, so as to provide subsequent object position estimation operations. At the same time, the sensing signals beyond the error range are selected as abnormal sensing signals, instead of being used as data for subsequent object position estimation calculations. For example, please refer to FIG. 3 , which is a signal waveform diagram of the sensing signals S1 - S3 in FIG. 1 . Assuming that the error tolerance threshold value is TH, and at the time point T, when the inertial sensor IS3 generates a sensing signal S3 that exceeds the error range due to abnormal sensing, as shown in Figure 3, at the time point T, the inertial sensor IS3 There is a large difference between the sensed signal value of the sensing signal S3 and the signal value of the sensing signal S2 sensed by the adjacent inertial sensor IS2. Therefore, in step 204, the fault-tolerant detection unit 108 can compare each sensing signal with the corresponding sensing signals of adjacent inertial sensors to calculate the corresponding signal difference value, and when the calculated signal difference value is less than the fault-tolerant threshold When the limit value TH is within the error range, the fault-tolerant detection unit 108 selects the sensing signal as a candidate sensing signal. Similarly, when the calculated signal difference value is not less than the error tolerance threshold TH (that is, exceeds the error range), the sensing signal is selected as an abnormal sensing signal. In other words, the fault tolerance detection unit 108 may select the sensing signals S1 and S2 as the candidate sensing signals SC1 and SC2 , and set the sensing signal S3 as the abnormal sensing signal SAB1 . Next, in step 206 , the position calculation unit 104 calculates the estimated position of the object OB only according to the candidate sensing signals SC1 and SC2 so as to avoid improper data from affecting the position estimation of the object OB.
此外,由于各惯性传感器设置于同一物体上,且正常的传感器在同一时间点所感测到的感测信号值通常不会差异太大。因此,容错检测单元108也可通过比较每一感测信号与其他感测信号的信号平均值,来计算出相对应的信号差异值。当所计算出的信号差异值小于容错临限值时,容错检测单元108可将相对应的感测信号选为候选感测信号。同理,当所计算出的信号差异值不小于容错临限值时,则将相对应的感测信号选为异常感测信号。In addition, since the inertial sensors are disposed on the same object, the sensing signal values sensed by normal sensors at the same time point usually do not have much difference. Therefore, the error-tolerant detection unit 108 can also calculate the corresponding signal difference value by comparing each sensing signal with the signal average value of other sensing signals. When the calculated signal difference value is smaller than the error tolerance threshold, the error tolerance detection unit 108 may select the corresponding sensing signal as a candidate sensing signal. Similarly, when the calculated signal difference value is not less than the error tolerance threshold, the corresponding sensing signal is selected as an abnormal sensing signal.
另一方面,在步骤204中,当容错检测单元108选择出异常感测信号后,归零重置单元110可控制对惯性传感器IS1~IS3,执行一归零重置处理程序。举例来说,通过归零重置单元110的控制,惯性传感器IS1~IS3会于一归零重置处理周期内暂时停止感测程序,如此一来,针对感测出异常感测信号的惯性传感器来说,将可改善感测异常的情况,在后续的感测过程中,经过归零重置处理的惯性传感器将可再度正确地感测物体的运动状态。此外,为了消除惯性传感器因长时间所累计的感测误差而导致产生不正确的感测信号,即使定位系统10中的惯性传感器没有产生超出误差范围的感测信号,归零重置单元110每隔一特定周期,依序对惯性传感器IS1~IS3执行归零重置处理程序,如此一来,相当于将时间重新计算,在短时间内对物体位置估计做一次重置运算,而可消除因时间所带来的感测误差,以预防不正确感测信号的发生。On the other hand, in step 204 , when the fault-tolerant detection unit 108 selects the abnormal sensing signal, the zero-resetting unit 110 can control the inertial sensors IS1 - IS3 to execute a zero-resetting process. For example, through the control of the zero-reset unit 110, the inertial sensors IS1-IS3 will temporarily stop the sensing process within a zero-reset processing period, so that the inertial sensors that sense abnormal sensing signals In other words, the situation of abnormal sensing can be improved. In the subsequent sensing process, the inertial sensor that has been reset to zero will be able to correctly sense the motion state of the object again. In addition, in order to eliminate the incorrect sensing signal generated by the inertial sensor due to the long-term accumulated sensing error, even if the inertial sensor in the positioning system 10 does not generate a sensing signal beyond the error range, the zero reset unit 110 At intervals of a specific cycle, the zeroing and reset processing procedure is executed sequentially for the inertial sensors IS1~IS3. In this way, it is equivalent to recalculating the time, and performing a reset operation on the estimated position of the object in a short period of time, which can eliminate the Sensing error caused by time to prevent the occurrence of incorrect sensing signals.
此外,在步骤206中,位置运算单元104根据所选择出的候选感测信号,来计算出物体OB的估计位置。例如,位置运算单元104可计算所选择出的候选感测信号的平均值,以决定出物体OB的估计位置。由于惯性传感器IS1~IS3设置于物体OB上的不同位置,相对地,感测灵敏度也会有所不同。因此,位置运算单元104可根据一权重分配比例,对所选择出的候选感测信号进行加权运算,并据以决定出物体OB的估计位置。较佳地,前述权重分配比例系相对应于各相对应惯性传感器的设置位置,例如敏感度越小的位置给予较小的权重,反之亦然,如此一来,针对各惯性传感器的设置位置不同而给予不同的权重的方式,将可消除敏感度不均的影响,进而增加三维空间位置估计的可靠性。In addition, in step 206 , the position calculation unit 104 calculates the estimated position of the object OB according to the selected candidate sensing signals. For example, the position calculation unit 104 can calculate the average value of the selected candidate sensing signals to determine the estimated position of the object OB. Since the inertial sensors IS1 - IS3 are disposed at different positions on the object OB, correspondingly, the sensing sensitivities are also different. Therefore, the position calculation unit 104 can perform weight calculation on the selected candidate sensing signals according to a weight distribution ratio, and determine the estimated position of the object OB accordingly. Preferably, the above-mentioned weight distribution ratio is corresponding to the installation position of each corresponding inertial sensor, for example, a position with a lower sensitivity is given a smaller weight, and vice versa. In this way, the installation positions of each inertial sensor are different Giving different weights can eliminate the influence of uneven sensitivity, thereby increasing the reliability of the three-dimensional space position estimation.
值得注意的是,上述的例子仅为用来说明本发明的应用,并非本发明的限制条件,本领域技术人员应可了解,在不违背本发明的精神下,图2的流程中的步骤可再增加其他的中间步骤、可将数个步骤合并成单一步骤或是可省略部分步骤,以做适当的变化。当然,假若可得到大致相同的结果,则图2中的流程20并非限定要依据图2中所示的顺序来执行。此外,定位系统10为本发明的一实施例,本领域技术人员当可据以做不同的变化。举例来说,信号接收单元106可通过无线或有线方式来连结至惯性传感器IS1~IS3以取得相对应的感测信号。同理,归零重置单元110也可通过无线或有线方式来与惯性传感器IS1~IS3进行联系,以控制相对应的惯性传感器进行归零重置处理。此外,本发明所述的惯性传感器不拘于任何种类及数量,凡是能提供物体运动的相关物理量信息的装置皆适用。举例来说,无论是三轴加速传感器、重力传感器、陀螺仪或电子罗盘......等皆属本发明可应用的范围,但不以此为限。It is worth noting that the above examples are only used to illustrate the application of the present invention, and are not limitations of the present invention. Those skilled in the art should understand that without departing from the spirit of the present invention, the steps in the flow chart in Figure 2 can be Additional intermediate steps can be added, several steps can be combined into a single step, or some steps can be omitted to make appropriate changes. Of course, if substantially the same result can be obtained, the process 20 in FIG. 2 is not limited to be executed according to the sequence shown in FIG. 2 . In addition, the positioning system 10 is an embodiment of the present invention, and those skilled in the art may make various changes accordingly. For example, the signal receiving unit 106 can be connected to the inertial sensors IS1 - IS3 in a wireless or wired manner to obtain corresponding sensing signals. Similarly, the zero reset unit 110 can also communicate with the inertial sensors IS1 - IS3 in a wireless or wired manner, so as to control the corresponding inertial sensors to perform zero reset processing. In addition, the inertial sensors described in the present invention are not limited to any type and quantity, and any device that can provide relevant physical quantity information of object motion is applicable. For example, whether it is a three-axis acceleration sensor, a gravity sensor, a gyroscope or an electronic compass, etc., all belong to the applicable scope of the present invention, but not limited thereto.
以下进一步以应用于一电子笔为例来说明,请参考图4,图4为图1的定位系统10应用于一电子笔时的一示意图。假设物体OB为一电子笔,惯性传感器IS1~IS3分别为一三轴加速传感器,容错临限值为TH。当使用者欲通过操作物体OB来进行立体绘图时,通过定位系统10的运作将可估计出物体OB于不同时间的位置,如此一来,即可决定出物体OB的运动轨迹,而能实现绘图的目的。详细来说,首先,可利用惯性传感器IS1~IS3来感测物体OB的运动状态,并据以产生感测信号S1~S3。例如,在时间T时,感测信号S1的信号值为(X1,Y1,Z1),感测信号S2的信号值为(X2,Y2,Z2),感测信号S3的信号值为(X3,Y3,Z3)。接着,利用容错检测单元108将各感测信号与其相邻惯性传感器所对应的感测信号进行比较。如果感测信号S1与S2间的信号差异值小于容错临限值TH且感测信号S3与S2间的信号差异值大于容错临限值TH,容错检测单元108可选择感测信号S1与S2作为候选感测信号SC1与SC2,并将感测信号S3设定为异常感测信号SAB1。接着,位置运算单元104便可依据候选感测信号SC1与SC2,来计算物体OB的估计位置。当然,由于感测信号S3的数据已超出容许误差范围,因此,将会被排除而不作为位置计算的基础。此外,由于惯性传感器IS1较靠近笔尖处,感测敏感度可能较大,因此给予较大的权重比例。举例来说,候选感测信号SC1与SC2所对应的权重比例分别为W1与W2,其中W1大于W2,如果物体OB在时间T时的估计位置为座标值(X,Y,Z),则X=(W1*X1)+(W2*X2),Y=(W1*Y1)+(W2*Y2),Z=(W1*Z1)+(W2*Z2)。此外,由于存在了异常感测信号SAB1,归零重置单元110将会根据异常感测信号SAB1,来控制对惯性传感器IS1~IS3执行归零重置处理程序,重新进行时间积分运算,如此一来,感测出异常感测信号SAB1的惯性传感器IS3将可据以消除原先运作时所累计的感测误差。换句话说,定位系统10除了能摒除不正确的感测信号,避免影响正确位置的估计之外,更能对存有累计误差的惯性传感器进行归零重置处理程序,使其在后续的感测过程中,可再度正确的感测物体的运动状态。The following further uses an electronic pen as an example for illustration. Please refer to FIG. 4 , which is a schematic diagram of the positioning system 10 of FIG. 1 applied to an electronic pen. Assume that the object OB is an electronic pen, the inertial sensors IS1 - IS3 are respectively a three-axis acceleration sensor, and the error tolerance threshold is TH. When the user intends to perform three-dimensional drawing by operating the object OB, the position of the object OB at different times can be estimated through the operation of the positioning system 10. In this way, the trajectory of the object OB can be determined and the drawing can be realized. the goal of. In detail, firstly, the inertial sensors IS1-IS3 can be used to sense the motion state of the object OB, and the sensing signals S1-S3 can be generated accordingly. For example, at time T, the signal value of the sensing signal S1 is (X1, Y1, Z1), the signal value of the sensing signal S2 is (X2, Y2, Z2), and the signal value of the sensing signal S3 is (X3, Y3, Z3). Next, the error-tolerant detection unit 108 is used to compare each sensing signal with the corresponding sensing signal of its adjacent inertial sensor. If the signal difference between the sensing signals S1 and S2 is smaller than the error tolerance threshold TH and the signal difference between the sensing signals S3 and S2 is larger than the error tolerance threshold TH, the error detection unit 108 may select the sensing signals S1 and S2 as The candidate sensing signals SC1 and SC2 are selected, and the sensing signal S3 is set as the abnormal sensing signal SAB1. Then, the position computing unit 104 can calculate the estimated position of the object OB according to the candidate sensing signals SC1 and SC2 . Of course, since the data of the sensing signal S3 has exceeded the allowable error range, it will be excluded and not used as a basis for position calculation. In addition, since the inertial sensor IS1 is closer to the tip of the pen, the sensing sensitivity may be greater, so a greater weight ratio is given. For example, the weight ratios corresponding to the candidate sensing signals SC1 and SC2 are respectively W1 and W2, wherein W1 is greater than W2, if the estimated position of the object OB at time T is the coordinate value (X, Y, Z), then X=(W1*X1)+(W2*X2), Y=(W1*Y1)+(W2*Y2), Z=(W1*Z1)+(W2*Z2). In addition, due to the existence of the abnormal sensing signal SAB1, the zero reset unit 110 will control the inertial sensors IS1-IS3 to perform the zero reset processing procedure according to the abnormal sensing signal SAB1, and re-perform the time integration operation. Therefore, the inertial sensor IS3 that senses the abnormal sensing signal SAB1 can eliminate the accumulated sensing error during the original operation. In other words, the positioning system 10 can not only eliminate incorrect sensing signals and avoid affecting the estimation of the correct position, but also perform a zero reset process on the inertial sensors with accumulated errors, so that they can be used in subsequent sensing. During the measurement process, the motion state of the object can be correctly sensed again.
综上所述,本发明运用容错设计的方式来排除不正确的感测信号,而能有效地提升位置估计的可靠度。另一方面,本发明更结合归零重置处理来消除惯性传感器的累计误差,并且针对各惯性传感器的设置位置不同而给予不同的权重的方式,以消除敏感度不均的影响,进而获得更准确的物体定位信息。To sum up, the present invention uses a fault-tolerant design method to eliminate incorrect sensing signals, thereby effectively improving the reliability of position estimation. On the other hand, the present invention combines zero reset processing to eliminate the cumulative error of the inertial sensor, and gives different weights to each inertial sensor according to the different setting positions, so as to eliminate the influence of uneven sensitivity, and then obtain more Accurate object positioning information.
以上所述仅为本发明的优选实施例,凡依本发明权利要求书所做的均等变化与修饰,皆应属本发明的涵盖范围。The above descriptions are only preferred embodiments of the present invention, and all equivalent changes and modifications made according to the claims of the present invention shall fall within the scope of the present invention.
Claims (21)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW100114400 | 2011-04-26 | ||
TW100114400A TWI454701B (en) | 2011-04-26 | 2011-04-26 | Position estimating method and positioning system using the same |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102759355A CN102759355A (en) | 2012-10-31 |
CN102759355B true CN102759355B (en) | 2016-08-03 |
Family
ID=47053897
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201110126292.XA Active CN102759355B (en) | 2011-04-26 | 2011-05-17 | Positioning estimation method and positioning system |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN102759355B (en) |
TW (1) | TWI454701B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111429649A (en) * | 2020-03-09 | 2020-07-17 | 北京爱笔科技有限公司 | Goods identification method, device and system |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101046385A (en) * | 2007-04-20 | 2007-10-03 | 北京航空航天大学 | Method of realizing combined navigation system structure for aviation |
CN101858748A (en) * | 2010-05-28 | 2010-10-13 | 南京航空航天大学 | Multi-sensor fault-tolerant autonomous navigation method for high-altitude and long-haul UAV |
CN101930052A (en) * | 2010-07-21 | 2010-12-29 | 电子科技大学 | SRAM type FPGA digital sequential circuit online detection fault-tolerant system and method |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102004027292A1 (en) * | 2004-06-04 | 2005-12-29 | Siemens Ag | Procedures for determining position data |
SG170748A1 (en) * | 2006-03-21 | 2011-05-30 | Skymeter Corp | Private, auditable vehicle positioning system and on-board unit for same |
CN100419380C (en) * | 2007-01-05 | 2008-09-17 | 北京航空航天大学 | A highly integrated MIMU/GPS/micromagnetic compass/barometric altimeter integrated navigation system |
TW201022700A (en) * | 2008-12-15 | 2010-06-16 | Ind Tech Res Inst | Localization and detecting system applying sensors, and method thereof |
JP2010203959A (en) * | 2009-03-04 | 2010-09-16 | Seiko Epson Corp | Initial position determining method, and method and device for position calculation |
US8665156B2 (en) * | 2009-09-08 | 2014-03-04 | Qualcomm Incorporated | Position estimation assistance information for mobile station |
-
2011
- 2011-04-26 TW TW100114400A patent/TWI454701B/en active
- 2011-05-17 CN CN201110126292.XA patent/CN102759355B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101046385A (en) * | 2007-04-20 | 2007-10-03 | 北京航空航天大学 | Method of realizing combined navigation system structure for aviation |
CN101858748A (en) * | 2010-05-28 | 2010-10-13 | 南京航空航天大学 | Multi-sensor fault-tolerant autonomous navigation method for high-altitude and long-haul UAV |
CN101930052A (en) * | 2010-07-21 | 2010-12-29 | 电子科技大学 | SRAM type FPGA digital sequential circuit online detection fault-tolerant system and method |
Also Published As
Publication number | Publication date |
---|---|
CN102759355A (en) | 2012-10-31 |
TWI454701B (en) | 2014-10-01 |
TW201243334A (en) | 2012-11-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102331873B (en) | Touch point tracking, positioning and correcting method and system | |
JP2009505062A5 (en) | ||
WO2013112230A1 (en) | In-use automatic calibration methodology for sensors in mobile devices | |
TW201140392A (en) | Method for determining touch points on touch panel and system thereof | |
CN102288788A (en) | Method for calibrating an acceleration sensor and electronic device | |
EP2128744A2 (en) | Pointing device and method for determining rotational angle of pointing device | |
WO2012169051A1 (en) | Drop determining apparatus and drop determining method | |
KR20150084639A (en) | Method and apparatus for improving edge coordinate accuracy of projected capacitive touch panel | |
KR20110085495A (en) | Automatic calibration method during operation of sensor error and inertial navigation system using it | |
US7805277B2 (en) | Step number measuring apparatus | |
US8682607B2 (en) | Motion state detection method and motion state detector | |
CN106291530B (en) | A kind of probabilistic data association optimization method based on nearest neighbor method | |
US8543852B2 (en) | Method and system for determining an idle state | |
CN102759355B (en) | Positioning estimation method and positioning system | |
CN109099827B (en) | Method for detecting posture of pen body through capacitance and electromagnetic positioning double sensors | |
CN105157691A (en) | Determination method and device for azimuth of compass | |
CN111879334B (en) | Step counting method, step counting device and computer readable storage medium | |
CN101470130A (en) | Method of detecting free fall and apparatus to detect free fall using the method | |
CN114624792A (en) | Rainfall signal acquisition method and device, computer equipment and storage medium | |
US9746961B2 (en) | Background signal processing system and background signal processing method | |
TWI484142B (en) | A multi-sensing element correction system, a correction method and a recording medium | |
CN102331874B (en) | Touch point tracking, positioning and correcting method and system | |
TWI488127B (en) | Method and device for detection of touch points in touch panel | |
JP4750640B2 (en) | State change detection device and state change detection program | |
JP5815866B2 (en) | Method for evaluating output signal of yaw rate sensor unit and yaw rate sensor unit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |