CN102759094A - Thermal power plant smoke depth cooler heat return optimization on-line monitoring device and method - Google Patents
Thermal power plant smoke depth cooler heat return optimization on-line monitoring device and method Download PDFInfo
- Publication number
- CN102759094A CN102759094A CN2012102226766A CN201210222676A CN102759094A CN 102759094 A CN102759094 A CN 102759094A CN 2012102226766 A CN2012102226766 A CN 2012102226766A CN 201210222676 A CN201210222676 A CN 201210222676A CN 102759094 A CN102759094 A CN 102759094A
- Authority
- CN
- China
- Prior art keywords
- flue gas
- deep cooler
- gas deep
- temperature
- heat recovery
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000005457 optimization Methods 0.000 title claims abstract description 24
- 238000000034 method Methods 0.000 title claims abstract description 16
- 238000012806 monitoring device Methods 0.000 title claims abstract description 11
- 239000000779 smoke Substances 0.000 title 1
- 239000003546 flue gas Substances 0.000 claims abstract description 182
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 claims abstract description 179
- 238000011084 recovery Methods 0.000 claims abstract description 70
- 238000004364 calculation method Methods 0.000 claims abstract description 52
- 238000013433 optimization analysis Methods 0.000 claims abstract description 39
- 238000012544 monitoring process Methods 0.000 claims abstract description 33
- 239000007789 gas Substances 0.000 claims abstract description 28
- 239000003245 coal Substances 0.000 claims abstract description 14
- 238000010248 power generation Methods 0.000 claims abstract description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 64
- 238000013461 design Methods 0.000 claims description 24
- 238000012546 transfer Methods 0.000 claims description 11
- 238000004458 analytical method Methods 0.000 claims description 9
- 230000008859 change Effects 0.000 claims description 8
- 238000005260 corrosion Methods 0.000 claims description 4
- 230000007797 corrosion Effects 0.000 claims description 4
- 230000033228 biological regulation Effects 0.000 abstract description 5
- 230000007423 decrease Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 238000000605 extraction Methods 0.000 description 3
- 239000002918 waste heat Substances 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 101150106604 SIS2 gene Proteins 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000006477 desulfuration reaction Methods 0.000 description 1
- 230000023556 desulfurization Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Images
Landscapes
- Control Of Steam Boilers And Waste-Gas Boilers (AREA)
Abstract
一种火电厂烟气深度冷却器回热优化在线监测装置及方法,装置包括回热优化分析计算服务器、厂级监控信息系统SIS以及火力发电机组分散式控制系统DCS,火力发电机组分散式控制系统DCS包括烟气深度冷却器热力系统、烟气系统以及蒸汽系统;方法为:读取在线监测数据、判断排烟温度是否在安全运行范围之内、计算烟气深度冷却器设计凝结水流量、调整烟气深度冷却器凝结水流量、计算烟气深度冷却器优化凝结水流量、读取电厂蒸汽系统和凝结水系统的在线监测数据、计算烟气深度冷却器运行后标准煤节省量、确定最优化的烟气深度冷却器布置方式和运行参数、在线调整烟气深度冷却器回热系统至最优化。本发明实现了变参数回热优化系统的在线监测和调控。
An online monitoring device and method for heat recovery optimization of a flue gas deep cooler in a thermal power plant, the device includes a heat recovery optimization analysis calculation server, a plant-level monitoring information system SIS, a thermal power generation unit distributed control system DCS, and a thermal power generation unit distributed control system The DCS includes the thermal system of the flue gas deep cooler, the flue gas system, and the steam system; the methods are: read online monitoring data, judge whether the exhaust gas temperature is within the safe operating range, calculate the designed condensate flow rate of the flue gas deep cooler, and adjust Condensate flow of flue gas deep cooler, calculate optimized condensate flow of flue gas deep cooler, read online monitoring data of steam system and condensate system of power plant, calculate standard coal savings after flue gas deep cooler operation, determine optimization The layout and operating parameters of the flue gas deep cooler, and the online adjustment of the flue gas deep cooler heat recovery system are optimized. The invention realizes the on-line monitoring and regulation of the heat recovery optimization system with variable parameters.
Description
技术领域 technical field
本发明属于火电厂余热利用技术领域,具体涉及火电厂烟气深度冷却器回热优化在线监测装置及方法。The invention belongs to the technical field of waste heat utilization in thermal power plants, and in particular relates to an on-line monitoring device and method for heat recovery optimization of flue gas deep coolers in thermal power plants.
背景技术 Background technique
火电厂的排烟温度是锅炉设计的主要性能指标之一,涉及到电站锅炉的经济性和安全性。排烟温度一般在120℃~140℃左右,燃用高硫份燃料的锅炉,排烟温度在140℃~150℃左右。但是,我国许多火电厂的排烟温度实际运行值都高于设计值约20~50℃,排烟热损失大。分析表明,运行排烟温度升高10℃,锅炉效率降低约0.5%~0.7%,增加机组发电煤耗1.7~2.2g/kWh。The exhaust gas temperature of a thermal power plant is one of the main performance indicators of boiler design, which is related to the economy and safety of power plant boilers. The exhaust gas temperature is generally around 120°C to 140°C, and for boilers burning high-sulfur fuel, the exhaust gas temperature is around 140°C to 150°C. However, the actual operating value of the exhaust gas temperature of many thermal power plants in my country is about 20-50°C higher than the design value, and the heat loss of the exhaust gas is large. The analysis shows that when the operating exhaust gas temperature increases by 10°C, the boiler efficiency decreases by about 0.5% to 0.7%, and the coal consumption of the unit for power generation increases by 1.7 to 2.2g/kWh.
为了适应节能减排的需要,烟气深度冷却器开始得到广泛应用。烟气深度冷却器是位于锅炉尾部烟道的烟气余热回收利用系统,回收的烟气热量加热热力系统的凝结水。从低压加热器抽取凝结水作为烟气深度冷却器工质进行换热,吸收热量后再汇入上级低压加热器。在不影响现有热力系统的长周期安全高效运行的情况下,降低排烟温度。烟气深度冷却器运行参数的选择,主要包括进出口烟气温度、进出口凝结水温度、给水份额、引水返水回热系统地点的选择。由于烟气深度冷却器可将排烟温度降低至90℃,需要控制金属壁面温度在酸露点附近,避免烟气深度冷却器发生严重低温腐蚀,此时需要选择合适的引水点,使进口水温接近最佳值。烟气深度冷却器在热力系统中的连接方式包括与低压加热器并联和串联。串联系统会造成凝结水流的阻力增加,所需凝结水泵的压头增加,不适用于旧电厂改造。所以一般采用并联系统,不仅不必更换凝结水泵,还能实现余热梯级利用。并联系统的烟气深度冷却器系统投运时,随着给水份额的增加,排烟温度逐步降低,出口水温也逐步降低,全厂经济性的相对变化先增加后下降,当其达到最大点时,便是最佳分流量。In order to meet the needs of energy saving and emission reduction, flue gas deep coolers have been widely used. The flue gas deep cooler is a flue gas waste heat recovery and utilization system located in the tail flue of the boiler. The recovered flue gas heat heats the condensed water of the thermal system. The condensed water is extracted from the low-pressure heater as the working fluid of the flue gas deep cooler for heat exchange, and after absorbing the heat, it flows into the upper low-pressure heater. Reduce the exhaust gas temperature without affecting the long-term safe and efficient operation of the existing thermal system. The selection of the operating parameters of the flue gas deep cooler mainly includes the selection of the inlet and outlet flue gas temperature, the inlet and outlet condensate temperature, the water supply ratio, and the location of the water diversion and return water recovery system. Since the flue gas deep cooler can reduce the exhaust gas temperature to 90°C, it is necessary to control the temperature of the metal wall near the acid dew point to avoid severe low-temperature corrosion of the flue gas deep cooler. At this time, it is necessary to select a suitable water diversion point so that the inlet water temperature is close to best value. The connection mode of the flue gas deep cooler in the thermal system includes parallel connection and series connection with the low pressure heater. The series system will increase the resistance of the condensate flow and the pressure head of the condensate pump, which is not suitable for the transformation of the old power plant. Therefore, a parallel system is generally used, not only does not need to replace the condensate pump, but also realizes cascade utilization of waste heat. When the flue gas deep cooler system of the parallel system is put into operation, with the increase of the water supply ratio, the exhaust gas temperature gradually decreases, and the outlet water temperature also gradually decreases. The relative change of the economic efficiency of the whole plant increases first and then decreases. When it reaches the maximum point , is the best split flow.
我国煤种变化多样,不同季节对电力需求存在差异,排烟温度会变化。当机组变负荷运行时,汽轮机抽气参数发生变化,同时凝结水量发生变化。随着火电机组自动化发展的信息化时代的来临,电站计算机监测系统的不断完善,功能日趋强大,但现有的火电厂回热系统在线监测与故障诊断技术中,未包含改造后的烟气深度冷却器热力系统调控模块。因此,当改造后的回热系统参数发生变化时,现有技术不能实现烟气深度冷却器回热优化在线监测与调控,影响全厂经济性。There are various types of coal in my country, and there are differences in electricity demand in different seasons, and the exhaust gas temperature will change. When the unit is running with variable load, the gas extraction parameters of the steam turbine change, and the amount of condensed water changes at the same time. With the advent of the information age of thermal power unit automation development, the power station computer monitoring system has been continuously improved and its functions are becoming more and more powerful. Cooler thermal system regulation module. Therefore, when the parameters of the retrofitted heat recovery system change, the existing technology cannot realize the on-line monitoring and regulation of the heat recovery optimization of the flue gas deep cooler, which affects the economy of the whole plant.
为此,设置编写回热优化分析计算软件,运行在回热优化分析计算服务器上,应用于回热系统优化的在线监测成为亟待解决的问题。For this reason, it is an urgent problem to set up and write heat recovery optimization analysis and calculation software, run it on the heat recovery optimization analysis calculation server, and apply it to the online monitoring of heat recovery system optimization.
发明内容 Contents of the invention
为解决上述现有技术中存在的问题,本发明的目在于提供一种火电厂烟气深度冷却器回热优化在线监测装置及方法,实现变参数回热优化系统的在线监测和调控。In order to solve the above-mentioned problems in the prior art, the object of the present invention is to provide an on-line monitoring device and method for heat recovery optimization of flue gas deep coolers in thermal power plants, so as to realize online monitoring and regulation of variable parameter heat recovery optimization systems.
为达到上述目的,本发明所采用的技术方案是:In order to achieve the above object, the technical scheme adopted in the present invention is:
一种火电厂烟气深度冷却器回热优化在线监测装置,包括回热优化分析计算服务器1、厂级监控信息系统SIS 2以及火力发电机组分散式控制系统DCS 3,所述火力发电机组分散式控制系统DCS 3包括烟气深度冷却器热力系统4、烟气系统5以及蒸汽系统6。An online monitoring device for heat recovery optimization of flue gas deep coolers in thermal power plants, including a heat recovery optimization analysis calculation server 1, a plant-level monitoring information system SIS 2, and a thermal power generation unit distributed control system DCS 3, and the thermal power generation unit distributed The control system DCS 3 includes the thermal system 4 of the flue gas deep cooler, the flue gas system 5 and the steam system 6.
一种火电厂烟气深度冷却器回热优化在线监测装置的监测方法,采用C#语言编写回热优化分析计算软件,运行在回热优化分析计算服务器1上,应用于回热系统优化的在线监测,其具体步骤如下:A monitoring method for an on-line monitoring device for heat recovery optimization of flue gas deep coolers in thermal power plants. The heat recovery optimization analysis and calculation software is written in C# language and runs on the heat recovery optimization analysis calculation server 1. It is applied to the online monitoring of heat recovery system optimization. , the specific steps are as follows:
第一步:读取烟气深度冷却器热力系统4和烟气系统5中的在线监测点数据:Step 1: Read the online monitoring point data in the flue gas deep cooler thermal system 4 and flue gas system 5:
回热优化分析计算服务器1每隔1分钟至5分钟,从厂级监控信息系统SIS2读取来自火力发电机组分散式控制系统DCS 3的烟气深度冷却器热力系统4中的进口烟气温度和压力、出口烟气温度和压力、进口凝结水温度和压力、出口凝结水温度和压力、烟气深度冷却器凝结水流量以及烟气系统5的烟气质量流量数据;Heat recovery optimization analysis calculation server 1 reads the inlet flue gas temperature and Pressure, outlet flue gas temperature and pressure, inlet condensate temperature and pressure, outlet condensate temperature and pressure, flue gas deep cooler condensate flow and flue gas mass flow data of the flue gas system 5;
第二步:判断排烟温度是否在安全运行范围之内:Step 2: Determine whether the exhaust gas temperature is within the safe operating range:
回热优化分析计算服务器1根据第一步读取的烟气深度冷却器出口烟气温度数据,判断若|监测值-设计值|>10℃,则执行第三步;若|监测值-设计值|≤10℃,则跳过第三步和第四步,直接执行第五步;Heat recovery optimization analysis calculation server 1 judges based on the flue gas temperature data at the outlet of the flue gas deep cooler read in the first step if |monitoring value-design value|>10°C, then execute the third step; if |monitoring value-design value|≤10℃, skip the third and fourth steps, and directly execute the fifth step;
第三步:计算烟气深度冷却器的设计凝结水流量:Step 3: Calculate the design condensate flow rate of the flue gas deep cooler:
回热优化分析计算服务器1针对已安装的烟气深度冷却器的结构和尺寸,根据第一步读取的烟气深度冷却器热力系统4中的进口烟气温度和压力,参考设计的出口烟气温度和压力,计算烟气深度冷却器设计换热量Q,计算公式为式(1);根据第一步读取的进口凝结水温度和压力,出口凝结水温度和压力,计算烟气深度冷却器的设计凝结水流量Dd,计算公式为式(2):Heat recovery optimization analysis calculation server 1 is based on the structure and size of the installed flue gas deep cooler, according to the temperature and pressure of the inlet flue gas in the thermal system 4 of the flue gas deep cooler read in the first step, and the outlet flue gas temperature and pressure of the reference design Gas temperature and pressure, calculate the design heat transfer Q of flue gas deep cooler, the calculation formula is formula (1); according to the inlet condensate temperature and pressure read in the first step, outlet condensate temperature and pressure, calculate the flue gas depth The design condensate flow rate D d of the cooler is calculated as formula (2):
Q=q·(I′-I″)·3600,kJ/h (1)Q=q·(I′-I″)·3600, kJ/h (1)
q——烟气质量流量,kg/s;q - flue gas mass flow rate, kg/s;
I′——烟气深度冷却器进口烟气焓值,kJ/kg;I' - enthalpy value of flue gas at the inlet of flue gas deep cooler, kJ/kg;
I″—烟气深度冷却器出口烟气焓值,kJ/kg;I″—the flue gas enthalpy value at the outlet of the flue gas deep cooler, kJ/kg;
i″——烟气深度冷却器出口凝结水焓值,kJ/kg;i″——enthalpy value of condensed water at the outlet of flue gas deep cooler, kJ/kg;
i'—烟气深度冷却器进口凝结水焓值,kJ/kg;i'—Enthalpy of condensed water at the inlet of flue gas deep cooler, kJ/kg;
第四步:调整烟气深度冷却器的凝结水流量:Step 4: Adjust the condensate flow rate of the flue gas deep cooler:
通过回热优化分析计算服务器1在线调整增压泵的转速,改变凝结水流量,当监测值-设计值>10℃时,增加凝结水流量,使烟气深度冷却器换热量增加,从而达到排烟温度下降的目的;当设计值-监测值>10℃时,减少凝结水流量,使烟气深度冷却器换热量减少,从而达到排烟温度升高的目的,同时监测第一步中烟气深度冷却器热力系统4中的出口烟气温度和压力,直到监测值=设计值,执行第五步;Through heat recovery optimization analysis and calculation server 1, adjust the speed of the booster pump online and change the condensate flow rate. When the monitoring value - design value > 10°C, increase the condensate flow rate to increase the heat transfer capacity of the flue gas deep cooler, thereby achieving The purpose of decreasing the exhaust gas temperature; when the design value - monitoring value > 10°C, reduce the flow of condensed water to reduce the heat transfer of the flue gas deep cooler, so as to achieve the purpose of increasing the exhaust gas temperature, while monitoring the first step The outlet flue gas temperature and pressure in the thermal system 4 of the flue gas deep cooler, until the monitoring value = the design value, perform the fifth step;
第五步:计算烟气深度冷却器的优化凝结水流量:Step 5: Calculate the optimized condensate flow rate of the flue gas deep cooler:
回热优化分析计算服务器1针对已安装的烟气深度冷却器的结构和尺寸,根据第一步读取的进口烟气温度和压力,出口烟气温度和压力,烟气体积流量,计算烟气深度冷却器换热量Q,计算公式为式(3);根据第一步读取的进口凝结水温度和压力,出口凝结水温度和压力,计算烟气深度冷却器的优化凝结水流量Dd,计算公式为式(4);Heat recovery optimization analysis and calculation server 1 is based on the structure and size of the installed flue gas deep cooler, and calculates the flue gas according to the temperature and pressure of the inlet flue gas, the temperature and pressure of the flue gas at the outlet, and the volumetric flow rate of the flue gas read in the first step. The heat transfer Q of the deep cooler is calculated as formula (3); according to the temperature and pressure of the condensate at the inlet and the temperature and pressure of the condensate at the outlet read in the first step, the optimal condensate flow D d of the deep cooler for flue gas is calculated , the calculation formula is formula (4);
式中:In the formula:
—烟气深度冷却器旁路掉的凝结水流量的份额,%; —The proportion of condensate flow bypassed by the flue gas deep cooler, %;
——烟气深度冷却器出口水温,℃; ——water temperature at outlet of flue gas deep cooler, °C;
——第m-1号加热器出口水温,℃; ——Water temperature at the outlet of No. m-1 heater, °C;
——第m级加热器汽气效率,%; ——Steam efficiency of the m-th stage heater, %;
ηr——第r级加热器汽气效率,%;η r — steam efficiency of stage r heater, %;
τr——1kg水在加热器r中的焓升,kJ/kg;τ r ——Enthalpy rise of 1kg water in heater r, kJ/kg;
ηb——锅炉效率,%;η b —— boiler efficiency, %;
ηg——管道效率,%;η g ——Pipeline efficiency, %;
第六步:读取电厂蒸汽系统和凝结水系统的在线测点数据:Step 6: Read the online measurement point data of the steam system and condensate system of the power plant:
回热优化分析计算服务器1每隔1分钟至5分钟,从火力发电机组分散式控制系统DCS3读取来自蒸汽系统6中各个抽汽口的蒸汽压力和焓值、主蒸汽流量、新蒸汽焓值、凝结蒸汽焓值、再热蒸汽流量、凝结水系统中各个低压加热器的进口水焓值和疏水焓值、凝结水流量、机组汽耗率以及机组热耗率;Heat recovery optimization analysis and calculation server 1 reads the steam pressure and enthalpy value, the main steam flow rate and the new steam enthalpy value from each steam extraction port in the steam system 6 from the distributed control system DCS3 of the thermal power generation unit every 1 minute to 5 minutes , Condensate steam enthalpy, reheat steam flow, inlet water enthalpy and drain enthalpy of each low pressure heater in the condensate system, condensate flow, unit steam consumption rate and unit heat consumption rate;
第七步:计算烟气深度冷却器运行后标准煤节省量:Step 7: Calculate the standard coal savings after the operation of the flue gas deep cooler:
回热优化分析计算服务器1针对烟气深度冷却器与低压加热器的不同布置方式,考虑低温腐蚀问题,采用等效焓降法,在线计算新蒸汽等效焓降ΔH和标准煤节省量Δb,计算公式为式(5)和式(6):Heat recovery optimization analysis calculation server 1 considers the low-temperature corrosion problem according to the different arrangements of flue gas deep coolers and low-pressure heaters, and uses the equivalent enthalpy drop method to calculate the new steam equivalent enthalpy drop ΔH and standard coal savings Δb online. The calculation formula is formula (5) and formula (6):
式中:In the formula:
—烟气深度冷却器旁路掉的凝结水流量的份额,%; —The proportion of condensate flow bypassed by the flue gas deep cooler, %;
——烟气深度冷却器出口水温,℃; ——water temperature at outlet of flue gas deep cooler, °C;
——第m-1号加热器出口水温,℃; ——Water temperature at the outlet of No. m-1 heater, °C;
——第m级加热器汽气效率,%; ——Steam efficiency of the m-th stage heater, %;
ηr——第r级加热器汽气效率,%;η r — steam efficiency of stage r heater, %;
τr——1kg水在加热器r中的焓升,kJ/kg;τ r ——Enthalpy rise of 1kg water in heater r, kJ/kg;
ηb——锅炉效率,%;η b —— boiler efficiency, %;
ηg——管道效率,%;η g ——Pipeline efficiency, %;
第八步:确定最优化的烟气深度冷却器具体布置方式和运行参数:Step 8: Determine the specific layout and operating parameters of the optimized flue gas deep cooler:
回热优化分析计算服务器1通过经济性分析,确定装置热经济性相对提高最多,即标准煤节省量最多的布置方式,为最优化的烟气深度冷却器与低压加热器的具体布置方式,最佳的进口凝结水温度、出口凝结水温度以及凝结水流量;Heat recovery optimization analysis and calculation server 1 determines through economic analysis that the thermal economy of the device is relatively improved, that is, the arrangement with the most standard coal savings is the optimized specific arrangement of the flue gas deep cooler and low-pressure heater. Optimal inlet condensate temperature, outlet condensate temperature and condensate flow rate;
第九步:在线调整烟气深度冷却器回热系统至最优化Step 9: Online adjustment of the heat recovery system of the flue gas deep cooler to the optimum
根据第八步的分析结果,回热优化分析计算服务器1通过调整取水口和引水口,如将单取水口单引水口切换成双取水单引水,同时改变凝结水流量,使烟气深度冷却器回热系统至最优化。According to the analysis results in the eighth step, heat recovery optimization analysis calculation server 1 adjusts the water intake and water intake, such as switching single water intake and single water intake to double water intake and single water intake, and at the same time changes the flow of condensed water to make the flue gas deep cooler Regeneration system to optimum.
本发明一种火电厂烟气深度冷却器回热优化在线监测的装置及方法,提供了火电厂烟气深度冷却器回热优化在线监控装置,实现了烟气深度冷却器回热优化的在线计算和调控。具有的优点是:The invention provides a device and method for on-line monitoring of heat recovery optimization of a deep flue gas cooler in a thermal power plant, provides an online monitoring device for heat recovery optimization of a deep flue gas cooler in a thermal power plant, and realizes online calculation of heat recovery optimization of a deep flue gas cooler and regulation. The advantages are:
(1)当火电厂机组负荷骤变,使空预器后排烟温度骤升或者骤降,能及时监测,并调节循环泵的转速控制凝结水量,调控烟气深度冷却器的换热量,保证出口烟温在设计值误差范围内,保障尾部烟气处理系统除尘器和脱硫塔的安全稳定运行。(1) When the load of the thermal power plant unit changes suddenly, causing the exhaust gas temperature after the air preheater to rise or drop suddenly, it can be monitored in time, and the speed of the circulating pump can be adjusted to control the amount of condensed water, and the heat transfer capacity of the flue gas deep cooler can be adjusted. Ensure that the outlet flue gas temperature is within the error range of the design value, and ensure the safe and stable operation of the dust collector and desulfurization tower of the tail flue gas treatment system.
(2)当火电厂煤种或负荷波动,引起空气预热器后排烟温度变化,热力系统抽气参数和给水量变化时,通过经济性计算分析,改变取水引水位置、调节泵的转速来改变给水份额,达到了通过在线监控烟气深度冷却器回热优化系统来保障全厂经济性和热力系统的长周期安全高效运行的技术效果。(2) When the coal type or load fluctuations in thermal power plants cause changes in the exhaust gas temperature behind the air preheater and changes in the air extraction parameters and water supply of the thermal system, through economic calculation and analysis, change the location of water intake and adjust the speed of the pump to Changing the proportion of water supply has achieved the technical effect of ensuring the economy of the whole plant and the long-term safe and efficient operation of the thermal system through online monitoring of the heat recovery optimization system of the flue gas deep cooler.
附图说明 Description of drawings
图1是本发明火电厂烟气深度冷却器回热优化在线监测装置的方框图。Fig. 1 is a block diagram of an on-line monitoring device for heat recovery optimization of a flue gas deep cooler in a thermal power plant according to the present invention.
图2是本发明火电厂烟气深度冷却器回热优化在线监测方法的流程图。Fig. 2 is a flow chart of the on-line monitoring method for heat recovery optimization of a deep cooler of flue gas in a thermal power plant according to the present invention.
图3是本发明计算分析服务器采用的计算机软件框图。Fig. 3 is a block diagram of the computer software used by the calculation and analysis server of the present invention.
具体实施方式 Detailed ways
下面结合附图和具体实施方式对本发明作进一步详细说明。The present invention will be described in further detail below in conjunction with the accompanying drawings and specific embodiments.
如图1所示,本发明一种火电厂烟气深度冷却器回热优化在线监测装置,包括回热优化分析计算服务器1、厂级监控信息系统SIS2以及火力发电机组分散式控制系统DCS3,所述火力发电机组分散式控制系统DCS3包括烟气深度冷却器热力系统4、烟气系统5以及蒸汽系统6。As shown in Figure 1, an online monitoring device for heat recovery optimization of a thermal power plant flue gas deep cooler includes a heat recovery optimization analysis calculation server 1, a plant-level monitoring information system SIS2, and a thermal power generation unit distributed control system DCS3. The above-mentioned distributed control system DCS3 of the thermal power generating set includes the thermal system 4 of the flue gas deep cooler, the flue gas system 5 and the steam system 6 .
对于某型号300MW的电站锅炉,设计烟气深度冷却器布置方式和运行参数为:与6#低压加热器并联,引水口为7#低压加热器出口,返水口为5#低压加热器入口,出口排烟温度120℃,排烟温度安全运行范围为110℃至130℃。对回热优化在线监测和调控,采用图1所示的装置、图2所示的流程图和图3所示的计算机软件框图。For a certain type of 300MW power plant boiler, the layout and operating parameters of the designed flue gas deep cooler are as follows: parallel connection with 6# low-pressure heater, the water inlet is the outlet of the 7# low-pressure heater, and the water return port is the inlet and outlet of the 5# low-pressure heater The exhaust gas temperature is 120°C, and the safe operating range of the exhaust gas temperature is 110°C to 130°C. To optimize the on-line monitoring and control of heat recovery, the device shown in Figure 1, the flow chart shown in Figure 2 and the computer software block diagram shown in Figure 3 are used.
如图2和图3所示,本发明一种火电厂烟气深度冷却器回热优化在线监测装置的监测方法,采用C#语言编写回热优化分析计算软件,运行在回热优化分析计算服务器1上,应用于回热系统优化的在线监测,其具体步骤如下:As shown in Fig. 2 and Fig. 3, a kind of monitoring method of the heat recovery optimization online monitoring device of the flue gas deep cooler of the thermal power plant of the present invention adopts the C# language to write the heat recovery optimization analysis calculation software, and runs on the heat recovery optimization analysis calculation server 1 On-line monitoring applied to the optimization of the heat recovery system, the specific steps are as follows:
第一步:读取烟气深度冷却器热力系统4和烟气系统5中的在线监测点数据:Step 1: Read the online monitoring point data in the flue gas deep cooler thermal system 4 and flue gas system 5:
回热优化分析计算服务器每隔2分钟,从厂级监控信息系统SIS 2读取来自火力发电机组分散式控制系统DCS 3的烟气深度冷却器热力系统4中的进口烟气温度和压力、出口烟气温度和压力、进口凝结水温度和压力、出口凝结水温度和压力、烟气深度冷却器凝结水流量以及烟气系统5的烟气质量流量数据;The heat recovery optimization analysis calculation server reads the inlet flue gas temperature and pressure and outlet flue gas temperature and pressure from the thermal power system 4 of the flue gas deep cooler thermal system 4 of the distributed control system DCS 3 of the thermal power generation unit from the plant-level monitoring information system SIS 2 every 2 minutes. Flue gas temperature and pressure, inlet condensate temperature and pressure, outlet condensate temperature and pressure, flue gas deep cooler condensate flow and flue gas mass flow data of the flue gas system 5;
第二步:判断排烟温度是否在安全运行范围之内:Step 2: Determine whether the exhaust gas temperature is within the safe operating range:
回热优化分析计算服务器1根据第一步读取的烟气深度冷却器出口烟气温度数据,若监测值>130℃或<110℃,则执行第三步;若110℃≤监测值≤130℃,则跳过第三步和第四步,直接执行第五步;Heat recovery optimization analysis calculation server 1 reads the flue gas temperature data at the outlet of the flue gas deep cooler read in the first step, if the monitored value is >130°C or <110°C, then execute the third step; if 110°C≤monitored value≤130 ℃, skip the third and fourth steps, and directly execute the fifth step;
第三步:计算烟气深度冷却器的设计凝结水流量:Step 3: Calculate the design condensate flow rate of the flue gas deep cooler:
回热优化分析计算服务器1针对已安装的烟气深度冷却器的结构和尺寸,根据第一步读取的烟气深度冷却器热力系统4中的进口烟气温度和压力,参考设计的出口烟气温度和压力,计算烟气深度冷却器设计换热量Q,计算公式为式(1);根据第一步读取的进口凝结水温度和压力,出口凝结水温度和压力,计算烟气深度冷却器的设计凝结水流量Dd,计算公式为式(2):Heat recovery optimization analysis calculation server 1 is based on the structure and size of the installed flue gas deep cooler, according to the temperature and pressure of the inlet flue gas in the thermal system 4 of the flue gas deep cooler read in the first step, and the outlet flue gas temperature and pressure of the reference design Gas temperature and pressure, calculate the design heat transfer Q of flue gas deep cooler, the calculation formula is formula (1); according to the inlet condensate temperature and pressure read in the first step, outlet condensate temperature and pressure, calculate the flue gas depth The design condensate flow rate D d of the cooler is calculated as formula (2):
Q=q·(I′-I″)·3600,kJ/h (1)Q=q·(I′-I″)·3600, kJ/h (1)
q——烟气质量流量,kg/s;q - flue gas mass flow rate, kg/s;
I′——烟气深度冷却器进口烟气焓值,kJ/kg;I' - enthalpy value of flue gas at the inlet of flue gas deep cooler, kJ/kg;
I″—烟气深度冷却器出口烟气焓值,kJ/kg;I″—the flue gas enthalpy value at the outlet of the flue gas deep cooler, kJ/kg;
i″——烟气深度冷却器出口凝结水焓值,kJ/kg;i″——enthalpy value of condensed water at the outlet of flue gas deep cooler, kJ/kg;
i'—烟气深度冷却器进口凝结水焓值,kJ/kg;i'—Enthalpy of condensed water at the inlet of flue gas deep cooler, kJ/kg;
第四步:调整烟气深度冷却器的凝结水流量:Step 4: Adjust the condensate flow rate of the flue gas deep cooler:
通过回热优化分析计算服务器1在线调整增压泵的转速,改变凝结水流量,当监测值>130℃时,增加凝结水流量,使烟气深度冷却器换热量增加,从而达到排烟温度下降的目的;当监测值<110℃时,减少凝结水流量,使烟气深度冷却器换热量减少,从而达到排烟温度升高的目的。同时监测第一步中烟气深度冷却器热力系统4中的出口烟气温度和压力,直到监测值=120℃,执行第五步;Through heat recovery optimization analysis and calculation server 1, adjust the speed of the booster pump online and change the condensate flow. When the monitored value is > 130°C, increase the condensate flow to increase the heat transfer of the flue gas deep cooler to reach the exhaust gas temperature. The purpose of decreasing; when the monitored value is <110°C, reduce the flow of condensed water to reduce the heat exchange of the flue gas deep cooler, so as to achieve the purpose of increasing the exhaust gas temperature. Simultaneously monitor the outlet flue gas temperature and pressure in the thermal system 4 of the flue gas deep cooler in the first step until the monitored value = 120°C, then execute the fifth step;
第五步:计算烟气深度冷却器的优化凝结水流量:Step 5: Calculate the optimized condensate flow rate of the flue gas deep cooler:
回热优化分析计算服务器1针对已安装的烟气深度冷却器的结构和尺寸,根据第一步读取的进口烟气温度和压力,出口烟气温度和压力,烟气体积流量,计算烟气深度冷却器换热量Q,计算公式为式(3);根据第一步读取的进口凝结水温度和压力,出口凝结水温度和压力,烟气深度冷却器的优化凝结水流量Dd,计算公式为同式(4);Heat recovery optimization analysis and calculation server 1 is based on the structure and size of the installed flue gas deep cooler, and calculates the flue gas according to the temperature and pressure of the inlet flue gas, the temperature and pressure of the flue gas at the outlet, and the volumetric flow rate of the flue gas read in the first step. The heat transfer Q of the deep cooler, the calculation formula is formula (3); according to the temperature and pressure of the inlet condensate read in the first step, the temperature and pressure of the outlet condensate, the optimized condensate flow D d of the flue gas deep cooler, The calculation formula is the same as formula (4);
式中:In the formula:
—烟气深度冷却器旁路掉的凝结水流量的份额,%; —The proportion of condensate flow bypassed by the flue gas deep cooler, %;
——烟气深度冷却器出口水温,℃; ——water temperature at outlet of flue gas deep cooler, °C;
——第m-1号加热器出口水温,℃; ——Water temperature at the outlet of No. m-1 heater, °C;
——第m级加热器汽气效率,%; ——Steam efficiency of the m-th stage heater, %;
ηr——第r级加热器汽气效率,%;η r — steam efficiency of stage r heater, %;
τr——1kg水在加热器r中的焓升,kJ/kg;τ r ——Enthalpy rise of 1kg water in heater r, kJ/kg;
ηb——锅炉效率,%;η b —— boiler efficiency, %;
ηg——管道效率,%;η g ——Pipeline efficiency, %;
第六步:读取电厂蒸汽系统和凝结水系统的在线测点数据:Step 6: Read the online measurement point data of the steam system and condensate system of the power plant:
回热优化分析计算服务器1每隔2分钟,从火力发电机组分散式控制系统DCS 3读取来自蒸汽系统6中各个抽汽口的蒸汽压力和焓值、主蒸汽流量、新蒸汽焓值、凝结蒸汽焓值、再热蒸汽流量、凝结水系统中各个低压加热器的进口水焓值和疏水焓值、凝结水流量、机组汽耗率以及机组热耗率;The heat recovery optimization analysis calculation server 1 reads the steam pressure and enthalpy value, main steam flow rate, new steam enthalpy value, condensation Steam enthalpy, reheat steam flow, inlet water enthalpy and drain enthalpy of each low pressure heater in the condensate system, condensate flow, unit steam consumption rate and unit heat consumption rate;
第七步:计算烟气深度冷却器运行后标准煤节省量:Step 7: Calculate the standard coal savings after the operation of the flue gas deep cooler:
回热优化分析计算服务器1针对烟气深度冷却器与低压加热器的不同布置方式,考虑低温腐蚀问题,采用等效焓降法,在线计算新蒸汽等效焓降ΔH和标准煤节省量Δb,计算公式为式(5)和式(6):Heat recovery optimization analysis calculation server 1 considers the low-temperature corrosion problem according to the different arrangements of flue gas deep coolers and low-pressure heaters, and uses the equivalent enthalpy drop method to calculate the new steam equivalent enthalpy drop ΔH and standard coal savings Δb online. The calculation formula is formula (5) and formula (6):
式中:In the formula:
—烟气深度冷却器旁路掉的凝结水流量的份额,%; —The proportion of condensate flow bypassed by the flue gas deep cooler, %;
——烟气深度冷却器出口水温,℃; ——water temperature at outlet of flue gas deep cooler, °C;
——第m-1号加热器出口水温,℃; ——Water temperature at the outlet of No. m-1 heater, °C;
——第m级加热器汽气效率,%; ——Steam efficiency of the m-th stage heater, %;
ηr——第r级加热器汽气效率,%;η r — steam efficiency of stage r heater, %;
τr——1kg水在加热器r中的焓升,kJ/kg;τ r ——Enthalpy rise of 1kg water in heater r, kJ/kg;
ηb——锅炉效率,%;η b —— boiler efficiency, %;
ηg——管道效率,%;η g ——Pipeline efficiency, %;
第八步:确定最优化的烟气深度冷却器具体布置方式和运行参数:Step 8: Determine the specific layout and operating parameters of the optimized flue gas deep cooler:
回热优化分析计算服务器1通过经济性分析,确定装置热经济性相对提高最多,即标准煤节省量最多的布置方式为,与6#低压加热器并联,引水口为7#加热器出口,返水口为5#加热器入口,最佳的进口凝结水温度100℃,出口凝结水温度115℃,标准煤节省量2.2g;Heat recovery optimization analysis and calculation server 1 has determined through economic analysis that the thermal economy of the device has been relatively improved, that is, the arrangement with the largest saving of standard coal is parallel connection with 6# low-pressure heater, the water diversion port is the outlet of 7# heater, and the return The water outlet is the inlet of the 5# heater, the best inlet condensate temperature is 100°C, the outlet condensate temperature is 115°C, and the standard coal saving is 2.2g;
第九步:在线调整烟气深度冷却器回热系统至最优化Step 9: Online adjustment of the heat recovery system of the flue gas deep cooler to the optimum
根据第八步的分析结果,回热优化分析计算服务器1通过调整引水口为7#加热器出口,返水口为5#加热器入口,同时改变凝结水流量,使烟气深度冷却器回热系统至最优化。According to the analysis results of the eighth step, heat recovery optimization analysis and calculation server 1 adjusts the water inlet to the outlet of the 7# heater, and the water return port to the inlet of the 5# heater. to optimize.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210222676.6A CN102759094B (en) | 2012-06-29 | 2012-06-29 | Thermal power plant smoke depth cooler heat return optimization on-line monitoring device and method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210222676.6A CN102759094B (en) | 2012-06-29 | 2012-06-29 | Thermal power plant smoke depth cooler heat return optimization on-line monitoring device and method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102759094A true CN102759094A (en) | 2012-10-31 |
CN102759094B CN102759094B (en) | 2014-07-02 |
Family
ID=47053653
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201210222676.6A Expired - Fee Related CN102759094B (en) | 2012-06-29 | 2012-06-29 | Thermal power plant smoke depth cooler heat return optimization on-line monitoring device and method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102759094B (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103512768A (en) * | 2013-10-11 | 2014-01-15 | 国家电网公司 | System and method for monitoring performance of thermal power generating unit |
CN104654339A (en) * | 2015-01-28 | 2015-05-27 | 东方电气集团东方锅炉股份有限公司 | WGGH (Water Gas Gas Heater) system |
CN105527113A (en) * | 2015-12-02 | 2016-04-27 | 中广核工程有限公司 | Nuclear power station thermal energy efficiency monitoring and diagnosing system and method |
CN106227180A (en) * | 2016-10-14 | 2016-12-14 | 广东电网有限责任公司电力科学研究院 | A kind of Fossil-fired Unit Performance display packing and scattered control system |
CN111396960A (en) * | 2020-03-05 | 2020-07-10 | 华电电力科学研究院有限公司 | A system and method for preheating heating and heating network water supply with wet desulfurization net flue gas |
CN112879113A (en) * | 2021-03-22 | 2021-06-01 | 西安交通大学 | Condenser economical optimization method for thermal power plant |
CN114484408A (en) * | 2022-03-11 | 2022-05-13 | 西安西热锅炉环保工程有限公司 | Control system and method for mixed type dead steam recoverer of thermal power plant |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101561676A (en) * | 2009-04-30 | 2009-10-21 | 上海发电设备成套设计研究院 | Device for online monitoring and controlling residual service life of components of thermoelectric generator set and method |
CN101832542A (en) * | 2010-01-28 | 2010-09-15 | 上海发电设备成套设计研究院 | Device and method for on-line monitoring of transient-state low-cycle fatigue life loss of pressure-containing member outside boiler |
CN102141243A (en) * | 2011-04-29 | 2011-08-03 | 广东兆丰能源技术有限公司 | System and method for monitoring energy consumption cost of spiral feeding type small-sized steam boiler on line |
WO2012000929A2 (en) * | 2010-07-02 | 2012-01-05 | Siemens Aktiengesellschaft | Method and device for determining model parameters for controlling a steam power plant block, control unit for a steam generator and computer program product |
CN102506408A (en) * | 2011-12-13 | 2012-06-20 | 上海发电设备成套设计研究院 | Control device and method for on-line monitoring of safety risk of four pipelines outside furnace of boiler of power station |
-
2012
- 2012-06-29 CN CN201210222676.6A patent/CN102759094B/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101561676A (en) * | 2009-04-30 | 2009-10-21 | 上海发电设备成套设计研究院 | Device for online monitoring and controlling residual service life of components of thermoelectric generator set and method |
CN101832542A (en) * | 2010-01-28 | 2010-09-15 | 上海发电设备成套设计研究院 | Device and method for on-line monitoring of transient-state low-cycle fatigue life loss of pressure-containing member outside boiler |
WO2012000929A2 (en) * | 2010-07-02 | 2012-01-05 | Siemens Aktiengesellschaft | Method and device for determining model parameters for controlling a steam power plant block, control unit for a steam generator and computer program product |
CN102141243A (en) * | 2011-04-29 | 2011-08-03 | 广东兆丰能源技术有限公司 | System and method for monitoring energy consumption cost of spiral feeding type small-sized steam boiler on line |
CN102506408A (en) * | 2011-12-13 | 2012-06-20 | 上海发电设备成套设计研究院 | Control device and method for on-line monitoring of safety risk of four pipelines outside furnace of boiler of power station |
Non-Patent Citations (1)
Title |
---|
张建福 等: "烟气余热回收装置的参数优化分析", 《动力工程学报》 * |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103512768A (en) * | 2013-10-11 | 2014-01-15 | 国家电网公司 | System and method for monitoring performance of thermal power generating unit |
CN103512768B (en) * | 2013-10-11 | 2016-03-02 | 国家电网公司 | A kind of monitoring system of Fossil-fired Unit Performance and method |
CN104654339A (en) * | 2015-01-28 | 2015-05-27 | 东方电气集团东方锅炉股份有限公司 | WGGH (Water Gas Gas Heater) system |
CN105527113A (en) * | 2015-12-02 | 2016-04-27 | 中广核工程有限公司 | Nuclear power station thermal energy efficiency monitoring and diagnosing system and method |
CN105527113B (en) * | 2015-12-02 | 2019-07-23 | 中广核工程有限公司 | A kind of nuclear power station heat energy efficiency monitoring and fault diagnosis system and method |
CN106227180A (en) * | 2016-10-14 | 2016-12-14 | 广东电网有限责任公司电力科学研究院 | A kind of Fossil-fired Unit Performance display packing and scattered control system |
CN111396960A (en) * | 2020-03-05 | 2020-07-10 | 华电电力科学研究院有限公司 | A system and method for preheating heating and heating network water supply with wet desulfurization net flue gas |
CN112879113A (en) * | 2021-03-22 | 2021-06-01 | 西安交通大学 | Condenser economical optimization method for thermal power plant |
CN112879113B (en) * | 2021-03-22 | 2022-06-07 | 西安交通大学 | An economical optimization method for condensers in thermal power plants |
CN114484408A (en) * | 2022-03-11 | 2022-05-13 | 西安西热锅炉环保工程有限公司 | Control system and method for mixed type dead steam recoverer of thermal power plant |
CN114484408B (en) * | 2022-03-11 | 2024-01-19 | 西安西热锅炉环保工程有限公司 | Control system and method for mixed type exhaust steam recoverer of thermal power plant |
Also Published As
Publication number | Publication date |
---|---|
CN102759094B (en) | 2014-07-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102759094A (en) | Thermal power plant smoke depth cooler heat return optimization on-line monitoring device and method | |
CN109945223A (en) | A full working condition auxiliary denitration system and operation method | |
CN202177093U (en) | Multi-level efficient displacement type fume waste-heat utilization system | |
CN201764527U (en) | Thermal power plant boiler exhaust heat recovery and utilization system | |
CN201795471U (en) | Flue gas waste heat utilization system | |
CN105909330A (en) | Flue gas waste heat recovery and flue gas processing system based on organic Rankine cycle | |
CN101696794A (en) | Smoke waste heat recovery system of power station boiler and method thereof | |
CN104421044A (en) | Efficient Electric, Heating and Cooling Combined Power Supply System | |
CN104732451A (en) | Low-pressure economizer energy saving assessment method applied to power plant thermal system | |
Chen et al. | Thermodynamic and economic evaluation of a novel heat supply design using low-pressure feedwater in a cogeneration plant | |
CN111637440A (en) | A configuration adaptive, flexible and clean collaborative coal-fired power generation system and operation method | |
CN102966941A (en) | Waste heat recovery system with combined phase change heat exchanger and low pressure economizer | |
CN202762308U (en) | Deep energy-saving system based on flue gas desulfurization and denitrification process optimization | |
CN201836967U (en) | Cogeneration energy saving device utilizing waste heat of direct air cooling unit for heat supply | |
CN201866755U (en) | Flue gas waste heat recovery system for boiler in thermal power plant | |
CN102542109A (en) | Thermal power unit thermodynamic system optimization design method based on load characteristics | |
CN202158578U (en) | Composite water circulation heat exchanger with function of exchanging heat and heating air for three times | |
CN202692728U (en) | Waste heat utilization system of calcination furnace | |
CN205065867U (en) | Indirect air cooling unit steam turbine steam exhaust waste heat recovery is used for heat supply network circulation water heating system | |
CN204756887U (en) | High -efficient hot media water system of circulating fluidized bed boiler | |
CN203499852U (en) | Efficient Electric, Heating and Cooling Combined Power Supply System | |
CN202733874U (en) | Device utilizing waste heat of low-grade flue gas | |
CN202947122U (en) | Combined waste heat recovery system of phase change heat exchanger and low-pressure economizer | |
CN206247373U (en) | A kind of pipe heat exchanger residual neat recovering system | |
CN201819198U (en) | High and low pressure composite economizer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20140702 |
|
CF01 | Termination of patent right due to non-payment of annual fee |