CN102752588B - Video encoding and decoding method using space zoom prediction - Google Patents
Video encoding and decoding method using space zoom prediction Download PDFInfo
- Publication number
- CN102752588B CN102752588B CN201110102546.4A CN201110102546A CN102752588B CN 102752588 B CN102752588 B CN 102752588B CN 201110102546 A CN201110102546 A CN 201110102546A CN 102752588 B CN102752588 B CN 102752588B
- Authority
- CN
- China
- Prior art keywords
- zoom
- scaling
- reference frame
- macroblock
- prediction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 42
- 239000011159 matrix material Substances 0.000 claims abstract description 9
- 239000013598 vector Substances 0.000 claims description 11
- 230000006835 compression Effects 0.000 description 4
- 238000007906 compression Methods 0.000 description 4
- 230000008569 process Effects 0.000 description 2
- 230000001174 ascending effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/30—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using hierarchical techniques, e.g. scalability
- H04N19/33—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using hierarchical techniques, e.g. scalability in the spatial domain
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/60—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding
- H04N19/61—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding in combination with predictive coding
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Compression Or Coding Systems Of Tv Signals (AREA)
Abstract
本发明公开了一种使用空间缩放预测的视频编解码方法。所述编码方法包括:利用缩放信息,在原始参考帧不同缩放比的缩放参考帧上做运动估计,找到最佳匹配;利用缩放预测通过预先设定的缩放层数、最小缩放步长以及缩放预测值来估计所述缩放参考帧的缩放步长和缩放窗口;利用参考帧索引预测来预测原始参考帧和缩放参考帧的编号方式,节省编码参考帧索引所需的比特数。所述解码方法解码每个宏块时包括:先进行参考帧索引预测,并找出参考帧所在参考帧矩阵中的位置;进行缩放预测,找出参考帧缩放比;根据缩放比和MV生成预测块;最后进行运动补偿等步骤。
The invention discloses a video encoding and decoding method using spatial scaling prediction. The encoding method includes: using scaling information, performing motion estimation on scaled reference frames with different scaling ratios of the original reference frame, and finding the best match; value to estimate the zoom step size and zoom window of the zoomed reference frame; use the reference frame index prediction to predict the numbering mode of the original reference frame and the zoomed reference frame, saving the number of bits required for encoding the reference frame index. When the decoding method decodes each macroblock, it includes: firstly perform reference frame index prediction, and find out the position of the reference frame in the reference frame matrix; perform scaling prediction, find out the reference frame scaling ratio; generate prediction according to the scaling ratio and MV block; and finally perform steps such as motion compensation.
Description
技术领域technical field
本发明涉及数字视频编解码技术领域,特别是涉及到一种使用视频序列的空间缩放信息对当前帧进行预测的编码和解码方法。The invention relates to the technical field of digital video coding and decoding, in particular to a coding and decoding method for predicting a current frame by using spatial scaling information of a video sequence.
技术背景technical background
目前主流的基于块匹配混合编码框架的视频编解码标准,例如MPEG4,H.264/AVC,AVS等,在帧间预测中,从空间上主要考虑了图像块在二维平面中的运动,即横向和纵向的运动。通过基于块匹配的运动估计得到当前图像块的运动矢量,找出当前图像块在前一帧或多帧中,以及在后一帧中的对应块,用这些对应块对当前图像块进行预测,并将运动向量编入码流。此外,对运动向量同样进行了预测,即使用当前块周围一些块的运动矢量计算当前块的预测运动矢量,而仅将预测运动矢量和通过运动估计得到的实际运动矢量之差编入码流,大大节约了编码所需比特数。The current mainstream video codec standards based on block-matching hybrid coding framework, such as MPEG4, H.264/AVC, AVS, etc., in the inter-frame prediction, mainly consider the motion of the image block in the two-dimensional plane from the space, namely Horizontal and vertical movement. Obtain the motion vector of the current image block through motion estimation based on block matching, find out the corresponding blocks of the current image block in the previous frame or multiple frames, and in the next frame, and use these corresponding blocks to predict the current image block, And code the motion vector into the code stream. In addition, the motion vector is also predicted, that is, the motion vector of some blocks around the current block is used to calculate the predicted motion vector of the current block, and only the difference between the predicted motion vector and the actual motion vector obtained through motion estimation is encoded into the code stream. The number of bits required for encoding is greatly saved.
在大部分视频序列中,图像内容都不是简单的在二维平面中运动,而是存在缩放现象。场景中的物体相对于拍摄镜头的距离发生变化,会引起物体的缩放;摄像机拉伸镜头会造成整个场景的缩放。因此,如果当前块和参考帧中对应块存在缩放关系,使用现有视频编码标准中的运动估计算法则得不到最佳匹配的块。而如果能利用视频序列中的缩放关系进行辅助预测,则能很好地提升编码质量。In most video sequences, the image content does not simply move in a two-dimensional plane, but zooms. The change of the distance of the object in the scene relative to the shooting lens will cause the zooming of the object; stretching the lens of the camera will cause the zooming of the whole scene. Therefore, if there is a scaling relationship between the current block and the corresponding block in the reference frame, the best matching block cannot be obtained by using the motion estimation algorithm in the existing video coding standard. However, if the zoom relationship in the video sequence can be used for auxiliary prediction, the coding quality can be improved very well.
经过对现有文献检索和调研发现,香港城市大学的Lai-Man Po等人于2010年发表的《Subsampled Block-Matching for Zoom Motion Compensated Prediction》即提出了利用缩放信息进行视频编码的方法。该论文中提出,利用原编解码标准中分像素预测所需的插值图像,来生成某些特定缩放比的参考帧。同时,使用多帧参考的参考帧索引来表示原多帧参考的参考帧和进行缩放之后的参考帧。该方法能提升编码性能,并能较为方便地整合到现有编解码框架中。但是由于该方法只能使用特定缩放比的参考帧,而实际应用中的视频缩放比是不确定的,因此该方法不能达到较高的编码质量提升。同时,由于编码需要生成较多的参考帧,因此使用到的参考帧索引值会比较大,影响了编码性能。After searching and researching the existing literature, it was found that "Subsampled Block-Matching for Zoom Motion Compensated Prediction" published by Lai-Man Po et al. of City University of Hong Kong in 2010 proposed a video encoding method using zoom information. This paper proposes to use the interpolation image required for sub-pixel prediction in the original codec standard to generate reference frames with certain zoom ratios. At the same time, the reference frame index of the multi-frame reference is used to represent the original reference frame of the multi-frame reference and the scaled reference frame. The method can improve the encoding performance and can be easily integrated into the existing encoding and decoding framework. However, since this method can only use reference frames with a specific zoom ratio, and the video zoom ratio in practical applications is uncertain, this method cannot achieve high coding quality improvement. At the same time, since encoding needs to generate more reference frames, the reference frame index value used will be relatively large, which affects the encoding performance.
因此,本发明提出针对每一个宏块通过缩放预测,使用不同的缩放步长和缩放窗口生成不同的缩放参考帧的方法,使得对缩放的预测更加精确。同时,提出使用参考帧索引预测的方法来预测参考帧索引编号方式,减小了为表示参考帧索引需消耗的比特数。Therefore, the present invention proposes a method for generating different zooming reference frames by using different zooming steps and zooming windows through zooming prediction for each macroblock, so that the zooming prediction is more accurate. At the same time, a reference frame index prediction method is proposed to predict the reference frame index numbering method, which reduces the number of bits consumed to represent the reference frame index.
发明内容Contents of the invention
本发明的目的在于提供一种利用视频序列的空间缩放信息辅助压缩的视频编解码方法,在不大幅增加解码复杂度的情况下,提高视频压缩的质量和效率。The purpose of the present invention is to provide a video encoding and decoding method that utilizes the spatial scaling information of the video sequence to assist compression, and improves the quality and efficiency of video compression without greatly increasing the decoding complexity.
为实现上述目的,根据本发明的一方面,提供了一种视频编码方法,使运动估计在原始参考帧的不同缩放比的缩放参考帧上进行,以查找最佳匹配块。所述方法包括:在每一个图像帧中记录原始参考帧数目R、缩放层层数L和最小缩放步长S,缩放层层数及最小缩放步长可以人为设定或通过前面若干帧估计得到;所述原始参考帧即当前帧在原始视频序列中前后若干帧未经缩放的重建帧;所述图像帧中一个宏块的一个原始参考帧具有一组共L个相等缩放步长的包括所述原始参考帧在内的缩放参考帧组,所述缩放参考帧组的缩放步长以及缩放窗口通过缩放预测得到;不同宏块可以具有不同缩放步长及缩放窗口的缩放参考帧;所述宏块内的子块可以在所述原始参考帧的缩放参考帧组中进行运动估计,寻找最佳匹配块;所述宏块选择的参考帧的索引值可以采用不同的方法进行编号,编号的方法通过参考帧索引预测得出。To achieve the above object, according to one aspect of the present invention, a video coding method is provided, in which motion estimation is performed on scaled reference frames with different scaling ratios from the original reference frame to find the best matching block. The method includes: recording the number of original reference frames R, the number of scaling layers L and the minimum scaling step S in each image frame, and the number of scaling layers and the minimum scaling step can be manually set or estimated through previous frames The original reference frame is the unscaled reconstructed frame of several frames before and after the current frame in the original video sequence; an original reference frame of a macroblock in the image frame has a group of L equal scaling steps in total including all The zooming reference frame group including the original reference frame, the zooming step size and zooming window of the zooming reference frame group are obtained through zooming prediction; different macroblocks can have zooming reference frames with different zooming step sizes and zooming windows; the macro The sub-blocks in the block can perform motion estimation in the scaled reference frame group of the original reference frame to find the best matching block; the index value of the reference frame selected by the macroblock can be numbered in different ways, and the numbering method Predicted from the reference frame index.
所述缩放参考帧组是由一系列根据原始参考帧使用不同缩放比进行双线性插值缩放变换得到的缩放参考帧组成,其中包含缩放比为1的缩放参考帧,即原始参考帧。这些缩放参考帧的缩放比从小到大排列,相邻缩放比之间具有相等的缩放步长。所述缩放步长以及缩放窗口由缩放预测得到。The scaled reference frame group is composed of a series of scaled reference frames obtained by performing bilinear interpolation scaling transformation with different scaling ratios according to the original reference frame, including the scaled reference frame with a scaling ratio of 1, namely the original reference frame. The zoom ratios of these zoom reference frames are arranged from small to large, and there are equal zoom steps between adjacent zoom ratios. The scaling step and scaling window are obtained by scaling prediction.
所述缩放预测包括:将当前宏块左方、左上方、上方、右上方宏块中,可用宏块的缩放比平均值Z0作为当前宏块的缩放比预测值;所述可用宏块是指宏块存在,并且其缩放比也存在的宏块;根据Z0和1的大小关系以及所述当前帧缩放层层数L,通过表1查询缩放窗口设置。其中,当前帧缩放层层数L可表示为3n+k(n为自然数,k=1,2,3):The zoom prediction includes: using the zoom ratio average value Z 0 of the available macroblocks in the left, upper left, upper, and upper right macroblocks of the current macroblock as the zoom ratio prediction value of the current macroblock; the available macroblocks are Refers to macroblocks that exist and whose scaling ratios also exist; according to the size relationship between Z 0 and 1 and the number of scaling layers L of the current frame, query the scaling window settings in Table 1. Wherein, the current frame scaling layer number L can be expressed as 3n+k (n is a natural number, k=1, 2, 3):
表1Table 1
从表1可以查看当缩放比预测值Z0同1的差的绝对值大于最小缩放步长S的n倍时,缩放比在1和Z0之间的缩放参考帧有n+1个,其中包含1不包含Z0,将1和Z0之间的缩放比值平均分为n+1份,即求得缩放步长为当缩放比预测值Z0同1的差的绝对值小于等于最小缩放步长S的n倍时,缩放步长设为从表1中还可查询得到缩放窗口设置,即缩放比在不同范围的缩放参考帧数目。根据所述缩放窗口和缩放步长,可确定一个缩放参考帧组中每一个缩放参考帧的缩放比,并对原始参考帧进行双线性缩放操作,生成所述每一个缩放参考帧。缩放参考帧生成之后,所述宏块就可以在缩放参考帧上进行运动估计,而只需要用参考帧索引区分不同的缩放参考帧及原始参考帧。若所述宏块有多个原始参考帧,则每一个原始参考帧具有一个缩放参考帧组,所有缩放参考帧组的缩放窗口和缩放步长都相同,且都是通过以上所述缩放预测得到。It can be seen from Table 1 that when the absolute value of the difference between the predicted zoom ratio Z 0 and 1 is greater than n times the minimum zoom step size S, there are n+1 zoom reference frames with zoom ratios between 1 and Z 0 , where Including 1 and not including Z 0 , the scaling ratio between 1 and Z 0 is divided into n+1 parts on average, that is, the scaling step size is obtained as When the absolute value of the difference between the zoom ratio prediction value Z 0 and 1 is less than or equal to n times the minimum zoom step S, the zoom step is set to The setting of the zoom window can also be found from Table 1, that is, the number of zoom reference frames with zoom ratios in different ranges. According to the zoom window and the zoom step, the zoom ratio of each zoom reference frame in a zoom reference frame group can be determined, and a bilinear zoom operation is performed on the original reference frame to generate each zoom reference frame. After the scaled reference frame is generated, the macroblock can perform motion estimation on the scaled reference frame, and only need to use the reference frame index to distinguish between different scaled reference frames and original reference frames. If the macroblock has multiple original reference frames, each original reference frame has a zoomed reference frame group, and the zoom windows and zoom steps of all zoomed reference frame groups are the same, and are all obtained through the above-mentioned zoom prediction .
所述参考帧索引预测是指针对参考帧索引的编号方式进行预测。由于引入了缩放关系,因此原来以时间排布的一维的参考帧序列变为以时间和缩放关系排布的二维的参考帧矩阵。基本的编号方式可以以时间维度优先,先编号同一时刻不同缩放比的参考帧,再编号不同时刻的参考帧;也可以以缩放关系优先,先编号同一缩放比不同时刻的参考帧,再编号不同缩放比的参考帧。所述参考帧索引预测方法为:判断当前宏块左方、左上方、上方、右上方宏块中可用宏块的缩放比;若所述可用宏块的缩放比同时大于1,或者同时小于1,则以时间维度优先,先编号同一时刻不同缩放比的参考帧;反之,则先编号同一缩放比不同时刻的参考帧。The reference frame index prediction refers to predicting the numbering manner of the reference frame index. Due to the introduction of the scaling relationship, the original one-dimensional reference frame sequence arranged in time becomes a two-dimensional reference frame matrix arranged in time and scaling relationship. The basic numbering method can prioritize the time dimension, first numbering the reference frames with different zoom ratios at the same time, and then numbering the reference frames at different times; it can also give priority to the zoom relationship, first numbering the reference frames at the same zoom ratio at different times, and then numbering the reference frames at different times The frame of reference for the zoom ratio. The reference frame index prediction method is as follows: judging the scaling ratios of available macroblocks in the left, upper left, upper, and upper right macroblocks of the current macroblock; if the scaling ratios of the available macroblocks are greater than 1 at the same time, or less than 1 at the same time , the time dimension is prioritized, and the reference frames with different zoom ratios at the same moment are numbered first; otherwise, the reference frames with the same zoom ratio and different moments are numbered first.
根据本发明的另一方面,提供了一种视频解码方法,所述方法包括:解码一帧图像时,先解码出该图像的缩放层层数L和最小缩放比S;在解码每个宏块时,先进行所述的参考帧索引预测,根据所述宏块的参考帧索引计算得出所述宏块所用的参考帧在参考帧矩阵中的位置;根据周围宏块的缩放比、缩放层层数L、最小缩放比S以及表1进行缩放预测求得缩放窗口及缩放步长,进而根据所述宏块所用参考帧在参考帧矩阵中的位置计算出该参考帧的缩放比;然后解码所述宏块的各个子块,根据各个子块的运动失量以及参考帧的缩放比从原始参考帧对应位置的图像块通过双线性差值缩放操作求出所述各个子块的预测子块;最后将预测子块用于运动补偿。According to another aspect of the present invention, a video decoding method is provided. The method includes: when decoding a frame of image, first decode the number of scaling layers L and the minimum scaling ratio S of the image; , the reference frame index prediction is performed first, and the position of the reference frame used by the macroblock in the reference frame matrix is calculated according to the reference frame index of the macroblock; according to the scaling ratio and scaling layer of the surrounding macroblocks The number of layers L, the minimum scaling ratio S, and Table 1 perform scaling prediction to obtain the scaling window and scaling step size, and then calculate the scaling ratio of the reference frame according to the position of the reference frame used by the macroblock in the reference frame matrix; then decode For each sub-block of the macroblock, according to the motion loss of each sub-block and the scaling ratio of the reference frame, the predictor of each sub-block is obtained from the image block at the corresponding position of the original reference frame through a bilinear difference scaling operation block; finally the predictor sub-block is used for motion compensation.
本发明具有以下优点:能利用缩放信息提高视频编码压缩率;不同宏块根据缩放预测采用不同缩放步长以及缩放窗口,能更好的适应图像中不同区域缩放关系的差异性,提高压缩率;对参考帧索引进行预测,减少表示参考帧索引所需的比特数,提高编码效率。The present invention has the following advantages: the zoom information can be used to improve the video coding compression rate; different macroblocks adopt different zoom steps and zoom windows according to the zoom prediction, which can better adapt to the differences in the zoom relationship of different regions in the image and improve the compression rate; The reference frame index is predicted, the number of bits required to represent the reference frame index is reduced, and the coding efficiency is improved.
附图说明Description of drawings
图1是实施例中编码的流程图;Fig. 1 is the flowchart of coding in the embodiment;
图2是缩放预测和参考帧索引预测所使用的当前宏块的周围宏块示意图;Fig. 2 is a schematic diagram of the surrounding macroblocks of the current macroblock used for scaling prediction and reference frame index prediction;
图3是实施例中不同预测缩放比下的缩放窗口和缩放步长;Fig. 3 is the zoom window and the zoom step under different predicted zoom ratios in the embodiment;
图4是实施例中不同的参考帧索引编号方法。Fig. 4 shows different reference frame index numbering methods in an embodiment.
图5是实施例中解码的流程图。Fig. 5 is a flowchart of decoding in the embodiment.
具体实施方式detailed description
下面结合附图和实施例,对本发明进行详细的描述。本实施例仅为本发明的一个实施例而不是全部实施例。The present invention will be described in detail below in conjunction with the accompanying drawings and embodiments. This embodiment is only an embodiment of the present invention but not all embodiments.
该实施例的编码流程如图1所示,当编码一帧图像的时候,首先将人为设定的缩放层层数L和最小缩放步长S写入图像头中。该实施例中,将原始参考帧个数设为3,缩放层层数设为5,最小缩放步长设为0.05。针对每一个宏块使用缩放预测的运动估计。首先进行缩放预测,根据周围宏块的缩放比和所述缩放层层数5,以及最小缩放步长0.05,预测缩放窗口和缩放步长。根据缩放窗口和缩放步长通过双线性插值生成3个原始参考帧对应的3个缩放参考帧组共15个缩放参考帧。在各个缩放参考帧上进行运动估计,找到某一个缩放参考帧上该宏块各个子块的运动矢量。根据当前宏块周围的可用宏块进行参考帧索引预测,预测该宏块参考帧索引的编号方式。最后将参考帧索引和宏块各子块的残差、运动矢量等进行编码。The encoding process of this embodiment is shown in FIG. 1 . When encoding a frame of image, first write the artificially set number of scaling layers L and the minimum scaling step S into the image header. In this embodiment, the number of original reference frames is set to 3, the number of scaling layers is set to 5, and the minimum scaling step is set to 0.05. Motion estimation using scale prediction for each macroblock. First, zoom prediction is performed, and the zoom window and zoom step are predicted according to the zoom ratio of the surrounding macroblocks, the number of zoom layers is 5, and the minimum zoom step is 0.05. According to the zoom window and the zoom step, 3 zoom reference frame groups corresponding to the 3 original reference frames are generated through bilinear interpolation, and a total of 15 zoom reference frames are generated. Motion estimation is performed on each scaled reference frame, and motion vectors of each sub-block of the macroblock on a certain scaled reference frame are found. Predict the reference frame index according to the available macroblocks around the current macroblock, and predict the numbering mode of the reference frame index of the macroblock. Finally, encode the reference frame index and the residuals and motion vectors of each sub-block of the macroblock.
在对每一个宏块进行所述的缩放预测和参考帧索引预测的时候,先查看所述当前宏块左方、左上、上方以及右上的宏块状态,如图2所示。首先看这些宏块是否存在;若存在,这些宏块编码模式是否是帧间编码,是否有缩放比。若这些宏块存在且有缩放比,则是可用宏块。例如图2中当前宏块为宏块10,宏块11和宏块14不存在,宏块12和宏块13存在且具有缩放比,为可用宏块,则根据宏块12和宏块13的缩放比平均值作为宏块10的预测缩放比;并且根据宏块12和宏块13的缩放比大小来预测宏块10的参考帧索引编号方式。When performing the scaling prediction and reference frame index prediction on each macroblock, first check the states of the macroblocks on the left, upper left, upper and upper right of the current macroblock, as shown in FIG. 2 . First check whether these macroblocks exist; if so, whether the encoding mode of these macroblocks is inter-frame coding, and whether there is a scaling ratio. If these macroblocks exist and have a scaling factor, they are usable macroblocks. For example, in Fig. 2, the current macroblock is macroblock 10, macroblock 11 and macroblock 14 do not exist, macroblock 12 and macroblock 13 exist and have a scaling ratio, and are available macroblocks, then average according to the scaling ratio of macroblock 12 and macroblock 13 The value is used as the predictive scaling ratio of the macroblock 10; and the reference frame index numbering mode of the macroblock 10 is predicted according to the scaling ratios of the macroblock 12 and the macroblock 13.
该实施例中,所述缩放层层数为5,可表示为3*1+2。对每一个宏块进行所述的缩放预测的时候,利用每个宏块预测得到的缩放比以及最小缩放步长0.05,进行缩放窗口和缩放步长的预测。如图3所示,针对不同的预测缩放比可以得到不同的缩放窗口和缩放步长。对宏块100,预测缩放比为1.4。由于1.4>1+1*0.05,根据表1可以得到缩放比位于1和1.4之间有一个缩放参考帧,因此计算得到缩放步长为并进而求出预测窗口中其他缩放参考帧的缩放比。对宏块200,预测缩放比为0.8,同理通过表1可得到缩放步长为0.1。对宏块300,预测缩放比为0.95,根据表1,该宏块缩放步长为最小缩放步长0.05,且缩放比大于1和小于1的缩放参考帧各有两个。In this embodiment, the number of scaling layers is 5, which can be expressed as 3*1+2. When the scaling prediction is performed on each macroblock, the scaling ratio obtained from each macroblock prediction and the minimum scaling step size of 0.05 are used to predict the scaling window and scaling step size. As shown in FIG. 3 , different zoom windows and zoom steps can be obtained for different prediction zoom ratios. For macroblock 100, the predictive scaling ratio is 1.4. Since 1.4>1+1*0.05, according to Table 1, it can be obtained that the zoom ratio is between 1 and 1.4 and there is a zoom reference frame, so the calculated zoom step is And further, the scaling ratios of other scaling reference frames in the prediction window are calculated. For the macroblock 200, the predicted scaling ratio is 0.8, and similarly, the scaling step size can be obtained as 0.1 through Table 1. For the macroblock 300, the predictive scaling ratio is 0.95. According to Table 1, the macroblock scaling step is the minimum scaling step size of 0.05, and there are two scaling reference frames with scaling ratios greater than 1 and smaller than 1.
该实施例中原始参考帧设为3,因此对于每一个原始参考帧,都需要进行缩放操作生成另外4个缩放参考帧,共需生成12个缩放参考帧,具有较高的运算量。该实施例中,生成缩放参考帧时,跟据编码设定的最大搜索范围,仅跟据原始参考帧通过双线性插值计算出每个参考帧上搜索范围覆盖的局部画面,而不用生成完整一帧缩放参考帧。In this embodiment, the original reference frame is set to 3, so for each original reference frame, a scaling operation needs to be performed to generate another 4 scaled reference frames, and a total of 12 scaled reference frames need to be generated, which has a relatively high amount of computation. In this embodiment, when generating the scaled reference frame, according to the maximum search range set by the encoding, only the original reference frame is used to calculate the partial picture covered by the search range on each reference frame through bilinear interpolation, instead of generating a complete One frame scaling reference frame.
该实施例中,所述参考帧索引编号方式有时间优先方式,即先编号同一时间不同缩放比的参考帧,如图4(a)所示,按虚线方向由0开始从小到大顺序开始编号;有缩放优先方式,即先编号同一缩放比的参考帧,如图4(b)所示,按虚线方向由0开始从小到大顺序编号。对每一个宏块进行所述参考帧索引预测的时候,跟据图2所示的当前块周围的可用宏块的缩放比预测当前宏块的参考帧索引编号方式。若可用宏块的缩放比全大于1或全小于1,则按时间优先方式编号,反之则按缩放优先方式编号。In this embodiment, the reference frame index numbering method has a time priority method, that is, the reference frames with different scaling ratios at the same time are numbered first, as shown in Figure 4 (a), starting from 0 in the dotted line direction from small to large. ; There is a zoom priority method, that is, the reference frames with the same zoom ratio are numbered first, as shown in Figure 4(b), and numbered in ascending order from 0 in the direction of the dotted line. When performing the reference frame index prediction for each macroblock, the reference frame index numbering mode of the current macroblock is predicted according to the scaling ratio of available macroblocks around the current block as shown in FIG. 2 . If the scaling ratios of the available macroblocks are all greater than 1 or less than 1, they are numbered in a time-priority manner; otherwise, they are numbered in a scaling-priority manner.
该实施例中一个典型的解码流程如图5所示,解码一帧图像时,首先解码得到缩放层层数L和最小缩放步长S。然后对每一个宏块进行解码操作:进行参考帧索引预测,跟据如图2所示的当前宏块周围可用宏块的缩放比预测参考帧索引编号方式,若可用宏块的缩放比全大于1或全小于1,则按时间优先方式编号,反之则按缩放优先方式编号;跟据预测的参考帧索引编号方式和参考帧索引值,可以计算得到参考帧在参考帧矩阵中的位置;然后计算如图2所示的当前宏块周围可用宏块的缩放比均值,得到预测缩放比;根据预测缩放比、缩放层层数L和最小缩放步长S,在表1中查询缩放窗口设置,并计算出缩放步长;跟据缩放步长和所述参考帧在参考帧矩阵中的位置计算参考帧的缩放比;跟据参考帧缩放比和对应的原始参考帧以及宏块中子块的运动矢量计算子块的预测块;跟据预测块以及解码得到的残差进行运动补偿及其余解码步骤。A typical decoding process in this embodiment is shown in FIG. 5 . When decoding a frame of image, first decode to obtain the number of scaling layers L and the minimum scaling step S. Then each macroblock is decoded: perform reference frame index prediction, and predict the reference frame index numbering method according to the scaling ratio of available macroblocks around the current macroblock as shown in Figure 2, if the scaling ratio of available macroblocks is all greater than 1 or all less than 1, it will be numbered according to the time priority method, otherwise it will be numbered according to the zoom priority method; according to the predicted reference frame index numbering method and reference frame index value, the position of the reference frame in the reference frame matrix can be calculated; then Calculate the average value of the zoom ratio of the available macroblocks around the current macroblock as shown in Figure 2 to obtain the predicted zoom ratio; according to the predicted zoom ratio, the number of zoom layers L and the minimum zoom step S, query the zoom window settings in Table 1, and calculate the scaling step; calculate the scaling ratio of the reference frame according to the scaling step and the position of the reference frame in the reference frame matrix; follow the scaling ratio of the reference frame and the corresponding original reference frame and the sub-block in the macroblock Calculating the predicted block of the sub-block with the motion vector; performing motion compensation and other decoding steps according to the predicted block and the residual error obtained from decoding.
Claims (6)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201110102546.4A CN102752588B (en) | 2011-04-22 | 2011-04-22 | Video encoding and decoding method using space zoom prediction |
PCT/CN2012/074163 WO2012142934A1 (en) | 2011-04-22 | 2012-04-17 | Video encoding and decoding method using spatial scaling prediction |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201110102546.4A CN102752588B (en) | 2011-04-22 | 2011-04-22 | Video encoding and decoding method using space zoom prediction |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102752588A CN102752588A (en) | 2012-10-24 |
CN102752588B true CN102752588B (en) | 2017-02-15 |
Family
ID=47032466
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201110102546.4A Active CN102752588B (en) | 2011-04-22 | 2011-04-22 | Video encoding and decoding method using space zoom prediction |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN102752588B (en) |
WO (1) | WO2012142934A1 (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9800857B2 (en) * | 2013-03-08 | 2017-10-24 | Qualcomm Incorporated | Inter-view residual prediction in multi-view or 3-dimensional video coding |
CN104427337B (en) * | 2013-08-21 | 2018-03-27 | 杭州海康威视数字技术股份有限公司 | Interested area video coding method and its device based on target detection |
US10630992B2 (en) * | 2016-01-08 | 2020-04-21 | Samsung Electronics Co., Ltd. | Method, application processor, and mobile terminal for processing reference image |
CN107295340A (en) * | 2016-03-31 | 2017-10-24 | 中兴通讯股份有限公司 | A kind of method and device of remote desktop Video coding |
WO2019183906A1 (en) | 2018-03-29 | 2019-10-03 | 华为技术有限公司 | Inter-frame prediction method and device |
CN110876083B (en) * | 2018-08-29 | 2021-09-21 | 浙江大学 | Method and device for specifying reference image and method and device for processing reference image request |
CN110838151B (en) * | 2019-11-12 | 2020-07-03 | 南京甄视智能科技有限公司 | Picture compression processing method, computer system and readable storage medium |
KR20220101736A (en) * | 2019-12-11 | 2022-07-19 | 에이치에프아이 이노베이션 인크. | Video encoding or decoding methods and apparatuses with scaling rate restrictions |
CN111724304B (en) * | 2020-06-12 | 2024-04-19 | 深圳市爱协生科技股份有限公司 | Image scaling method and device, terminal equipment and storage medium |
CN114531596A (en) * | 2022-01-25 | 2022-05-24 | 京东方科技集团股份有限公司 | Image processing method and device |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1523896A (en) * | 2003-09-12 | 2004-08-25 | 浙江大学 | Method and device for predicting motion vector in video codec |
CN101127900A (en) * | 2006-08-17 | 2008-02-20 | 上海乐金广电电子有限公司 | Coding/decoding method and device for image signals at basic layer |
CN101507267A (en) * | 2005-09-07 | 2009-08-12 | 维德约股份有限公司 | System and method for scalable and low-delay videoconferencing using scalable video coding |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100783396B1 (en) * | 2001-04-19 | 2007-12-10 | 엘지전자 주식회사 | Spatio-temporal scalability method using subband segmentation of encoder |
US20090022230A1 (en) * | 2004-01-21 | 2009-01-22 | Koninklijke Philips Electronic, N.V. | Method of spatial and snr fine granular scalable video encoding and transmission |
JP5587552B2 (en) * | 2005-10-19 | 2014-09-10 | トムソン ライセンシング | Multi-view video coding using scalable video coding |
GB2447245B (en) * | 2007-03-05 | 2011-12-28 | Snell & Wilcox Ltd | Video transmission |
-
2011
- 2011-04-22 CN CN201110102546.4A patent/CN102752588B/en active Active
-
2012
- 2012-04-17 WO PCT/CN2012/074163 patent/WO2012142934A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1523896A (en) * | 2003-09-12 | 2004-08-25 | 浙江大学 | Method and device for predicting motion vector in video codec |
CN101507267A (en) * | 2005-09-07 | 2009-08-12 | 维德约股份有限公司 | System and method for scalable and low-delay videoconferencing using scalable video coding |
CN101127900A (en) * | 2006-08-17 | 2008-02-20 | 上海乐金广电电子有限公司 | Coding/decoding method and device for image signals at basic layer |
Non-Patent Citations (1)
Title |
---|
block-matching translation and zoom motion-compensated prediction;Ka-Man Wong等;《2009 IEEE International Conference on Multimedia and Expo》;20090703;33-36 * |
Also Published As
Publication number | Publication date |
---|---|
CN102752588A (en) | 2012-10-24 |
WO2012142934A1 (en) | 2012-10-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102752588B (en) | Video encoding and decoding method using space zoom prediction | |
JP6526292B2 (en) | Encoding device, decoding device, encoding method, decoding method, and program | |
US9706202B2 (en) | Image encoding apparatus, image encoding method, image decoding apparatus, and image decoding method | |
US9402087B2 (en) | Picture encoding method, picture decoding method, picture encoding apparatus, picture decoding apparatus, picture encoding program, and picture decoding program | |
TW202005383A (en) | Partial cost calculation | |
CN101610413B (en) | Video encoding/decoding method and device | |
CN101895751B (en) | Method and device for intra-frame prediction, encoding/decoding method and system based on intra-frame prediction | |
CN101610417B (en) | Image filling method, device and equipment | |
CN104244002A (en) | Method and device for obtaining motion information in video coding/decoding process | |
WO2009124511A1 (en) | Method, device and system for interframe prediction encoding and decoding | |
CN103647972A (en) | Moving picture decoding method and moving picture encoding method | |
WO2015010319A1 (en) | P frame-based multi-hypothesis motion compensation encoding method | |
CN101860748A (en) | System and method for generating side information based on distributed video coding | |
TWI722465B (en) | Boundary enhancement for sub-block | |
CN114866777A (en) | A decoding and encoding method and device thereof | |
CN108632616A (en) | A method of interframe weight estimation is done based on reference mass | |
CN103327327A (en) | Selection method of inter-frame predictive coding units for HEVC | |
CN116647694A (en) | Candidate MV list construction method and device | |
TWI850252B (en) | Partial interweaved prediction | |
WO2022194103A1 (en) | Decoding method and apparatus, encoding method and apparatus, device, and storage medium | |
CN103220532B (en) | The associated prediction coded method of three-dimensional video-frequency and system | |
CN103051896B (en) | Mode skipping-based video frequency coding method and mode skipping-based video frequency coding system | |
WO2021031225A1 (en) | Motion vector derivation method and apparatus, and electronic device | |
CN116325727A (en) | Intra-frame prediction method, encoder, decoder and storage medium | |
CN104539967B (en) | Inter-frame prediction method in hybrid video coding standard |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |