CN102751389A - 一种高效多结太阳能电池的制备方法 - Google Patents
一种高效多结太阳能电池的制备方法 Download PDFInfo
- Publication number
- CN102751389A CN102751389A CN2012102498563A CN201210249856A CN102751389A CN 102751389 A CN102751389 A CN 102751389A CN 2012102498563 A CN2012102498563 A CN 2012102498563A CN 201210249856 A CN201210249856 A CN 201210249856A CN 102751389 A CN102751389 A CN 102751389A
- Authority
- CN
- China
- Prior art keywords
- cell
- sub
- band gap
- mocvd
- solar cell
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F10/00—Individual photovoltaic cells, e.g. solar cells
- H10F10/10—Individual photovoltaic cells, e.g. solar cells having potential barriers
- H10F10/16—Photovoltaic cells having only PN heterojunction potential barriers
- H10F10/161—Photovoltaic cells having only PN heterojunction potential barriers comprising multiple PN heterojunctions, e.g. tandem cells
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B23/00—Single-crystal growth by condensing evaporated or sublimed materials
- C30B23/02—Epitaxial-layer growth
- C30B23/025—Epitaxial-layer growth characterised by the substrate
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B23/00—Single-crystal growth by condensing evaporated or sublimed materials
- C30B23/02—Epitaxial-layer growth
- C30B23/06—Heating of the deposition chamber, the substrate or the materials to be evaporated
- C30B23/066—Heating of the material to be evaporated
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B25/00—Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
- C30B25/02—Epitaxial-layer growth
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B25/00—Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
- C30B25/02—Epitaxial-layer growth
- C30B25/18—Epitaxial-layer growth characterised by the substrate
- C30B25/186—Epitaxial-layer growth characterised by the substrate being specially pre-treated by, e.g. chemical or physical means
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/10—Inorganic compounds or compositions
- C30B29/40—AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F10/00—Individual photovoltaic cells, e.g. solar cells
- H10F10/10—Individual photovoltaic cells, e.g. solar cells having potential barriers
- H10F10/14—Photovoltaic cells having only PN homojunction potential barriers
- H10F10/142—Photovoltaic cells having only PN homojunction potential barriers comprising multiple PN homojunctions, e.g. tandem cells
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F10/00—Individual photovoltaic cells, e.g. solar cells
- H10F10/10—Individual photovoltaic cells, e.g. solar cells having potential barriers
- H10F10/14—Photovoltaic cells having only PN homojunction potential barriers
- H10F10/142—Photovoltaic cells having only PN homojunction potential barriers comprising multiple PN homojunctions, e.g. tandem cells
- H10F10/1425—Inverted metamorphic multi-junction [IMM] photovoltaic cells
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F10/00—Individual photovoltaic cells, e.g. solar cells
- H10F10/10—Individual photovoltaic cells, e.g. solar cells having potential barriers
- H10F10/16—Photovoltaic cells having only PN heterojunction potential barriers
- H10F10/163—Photovoltaic cells having only PN heterojunction potential barriers comprising only Group III-V materials, e.g. GaAs/AlGaAs or InP/GaInAs photovoltaic cells
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F71/00—Manufacture or treatment of devices covered by this subclass
- H10F71/127—The active layers comprising only Group III-V materials, e.g. GaAs or InP
- H10F71/1272—The active layers comprising only Group III-V materials, e.g. GaAs or InP comprising at least three elements, e.g. GaAlAs or InGaAsP
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F71/00—Manufacture or treatment of devices covered by this subclass
- H10F71/127—The active layers comprising only Group III-V materials, e.g. GaAs or InP
- H10F71/1272—The active layers comprising only Group III-V materials, e.g. GaAs or InP comprising at least three elements, e.g. GaAlAs or InGaAsP
- H10F71/1274—The active layers comprising only Group III-V materials, e.g. GaAs or InP comprising at least three elements, e.g. GaAlAs or InGaAsP comprising nitrides, e.g. InGaN or InGaAlN
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F71/00—Manufacture or treatment of devices covered by this subclass
- H10F71/127—The active layers comprising only Group III-V materials, e.g. GaAs or InP
- H10F71/1276—The active layers comprising only Group III-V materials, e.g. GaAs or InP comprising growth substrates not made of Group III-V materials
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F77/00—Constructional details of devices covered by this subclass
- H10F77/10—Semiconductor bodies
- H10F77/12—Active materials
- H10F77/124—Active materials comprising only Group III-V materials, e.g. GaAs
- H10F77/1248—Active materials comprising only Group III-V materials, e.g. GaAs having three or more elements, e.g. GaAlAs, InGaAs or InGaAsP
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F77/00—Constructional details of devices covered by this subclass
- H10F77/10—Semiconductor bodies
- H10F77/12—Active materials
- H10F77/124—Active materials comprising only Group III-V materials, e.g. GaAs
- H10F77/1248—Active materials comprising only Group III-V materials, e.g. GaAs having three or more elements, e.g. GaAlAs, InGaAs or InGaAsP
- H10F77/12485—Active materials comprising only Group III-V materials, e.g. GaAs having three or more elements, e.g. GaAlAs, InGaAs or InGaAsP comprising nitride compounds, e.g. InGaN
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/544—Solar cells from Group III-V materials
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Metallurgy (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Chemistry (AREA)
- Photovoltaic Devices (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Energy (AREA)
- Sustainable Development (AREA)
Abstract
本发明公布了一种高效多结太阳能电池的制备方法,其具体步骤包括:提供一Ge衬底,用于半导体外延生长;以Ge衬底为基区,在所述Ge衬底上生长发射区,构成第一子电池,其具有一第一带隙;采用MBE生长方法,在所述第一子电池上方形成第二子电池,使其具有大于第一带隙的一第二带隙,且晶格与第一子电池晶格匹配;采用MOCVD生长方法,在所述第二子电池上方形成第三子电池,使其具有大于第二带隙的第三带隙,并且与第一、二子电池晶格匹配;采用MOCVD生长方法,在所述第三子电池上方形成第四子电池,使其具有大于第三带隙的第四带隙,其晶格常数与第一、二、三子电池匹配。本发明还包括将MOCVD和MBE结合生长的其它多结(四结及其以上)太阳能电池的制备。运用此方法能够制备高质量、晶格匹配、电流匹配的高效多结太阳能电池。
Description
技术领域
本发明涉及一种高效多结太阳能电池的制备方法,属半导体材料技术领域。
背景技术
在最近几年,太阳电池作为实用的新能源,吸引了越来越多的关注。它是一种利用光生伏打效应,将太阳能转化成电能的半导体器件,这在很大程度上减少了人们生产生活对煤炭、石油及天然气的依赖,成为利用绿色能源的最有效方式之一。在所有新能源中,太阳能是最为理想的再生能源之一,充分开发利用太阳能成为世界各国政府可持续发展的能源战略决策。近些年来,作为第三代光伏发电技术的聚光多结化合物太阳电池,因其高光电转换效率而倍受关注。
目前,GaInP/GaAs/Ge三结太阳电池在聚光条件下已获得超过41.8%光电转换效率。但是由于Ge底电池过多的吸收了低能光子,因而与InGaP和GaAs中顶电池的短路电流不匹配,所以传统的GaInP/GaAs/Ge三结太阳电池结构并不是效率最优化的组合。理想状况下,如果能够寻找禁带宽度为1 eV的材料替代Ge,就能够实现三结电池电流匹配。In0.3Ga0.7As具有1eV的禁带宽度,是选择之一,但其与GaAs之间存在2.14%的晶格失配,而且倒装生长完成后,工艺过程复杂,成本相对昂贵。
发明内容
根据本发明的第一个方面,提供了一种高效多结太阳能电池的制备方法,其包括步骤:
(1)提供一Ge衬底,用于半导体外延生长;
(2)以Ge衬底为基区,在所述Ge衬底上生长发射区,构成第一子电池,其具有一第一带隙;
(3)采用MBE生长方法,在所述第一子电池上方形成第二子电池,使其具有大于第一带隙的一第二带隙,且晶格与第一子电池晶格匹配;
(4)采用MOCVD生长方法,在所述第二子电池上方形成第三子电池,使其具有大于第二带隙的第三带隙,并且与第一、二子电池晶格匹配;
(5)采用MOCVD生长方法,在所述第三子电池上方形成第四子电池,使其具有大于第三带隙的第四带隙,其晶格常数与第一、二、三子电池匹配。
根据本发明的第二个方面,一种太阳能电池外延生长系统,包括:MOCVD反应腔、MBE反应腔和预处理室,其中MOCVDE反应腔和MBE反应腔共用所述预处理室并通过一通道连接,一传送装置位于所述通道内。
本发明通过设计,将MOCVD和MBE两种晶体生长方法联合,在不同的生长室中原位生长所需的太阳能电池结构,保证了样品表面的洁净度,提高了晶体质量。
附图说明
附图用来提供对本发明的进一步理解,并且构成说明书的一部分,与本发明的实施例一起用于解释本发明,并不构成对本发明的限制。此外,附图数据是描述概要,非按比例绘制。
图1 为1eV GaInNAsSb的带隙和晶格常数关系图。
图2 为根据本发明实施的太阳能电池的外延生长设备示意图。
图3 为根据本发明实施的一种高效五结太阳能电池带隙分布图。
图4为本发明实施2的制备流程图。
图5为本根据本发明实施的第二子电池的外延生长流程图。
图6为本发明实施2的多结太阳能电池结构简图。
图7为本发明实施3的制备流程图。
图8为本发明实施3的多结太阳能电池结构简图。
图中各标号表示
100、110:第一子电池;
101、111:p型Ge衬底;
102、112:第一子电池发射区;
103、113:第一子电池窗口层;
200、210:第二子电池;
201、211:第二子电池背场层;
202、212:第二子电池基区;
203、213:第二子电池发射区;
204、214:第二子电池窗口层;
300、310:第三子电池;
301、311:第三子电池背场层;
302、312:第三子电池基区;
303、313:第三子电池发射区;
304、314:第三子电池窗口层;
400、410:第四子电池;
401、411:第四子电池背场层;
402、412:第四子电池基区;
403、413:第四子电池发射区;
404、414:第四子电池窗口层;
510:第五子电池;
511:第五子电池背场层;
512:第五子电池基区;
513:第五子电池发射区;
514:第五子电池窗口层;
611:第一、二子电池之间的隧穿结;
612:第二、三子电池之间的隧穿结;
613:第三、四子电池之间的隧穿结;
614:第四、五子电池之间的隧穿结;
700、710:盖帽层;
800:设备系统;
810:MOCVD反应腔;
820:MEB反应腔;
830:预处理室;
840:真空通道。
具体实施方式
图1 为1eV GaInNAsSb的带隙和晶格常数关系图。从图中可看出,可在传统GaInP/GaAs/Ge三结太阳电池中插入1eV的GaInNAs(Sb)子电池构成四结太阳能电池,实现电池电流匹配,且其GaInNAs(Sb)的晶格与GaAs匹配,从而提高多结太阳能电池的光电转换效率。
在目前的外延生长工艺中,高晶格质量的GaInNAs(Sb)材料需MBE方法生长获得。然而,MBE外延生长方法要求高真空、低温生长,因此很多材料源并不适合采用MBE(如硫、磷等),且其生长速度很慢。针对此问题,下面实施例提出了一种多结太阳能电池的外延生长系统,其在同一预处理室(Load-lock)中集成了MOCVD系统和MBE系统,之间通过真空通道连接,且在真空通道中配置了传送装置,用于在外延生长过程中,可将外延片在MOCVD系统和MBE系统之间传送。
下面公开的各实施例利用上述外延生长系统,制备高效的多结太阳能电池。
在一些实施例中,采用上述外延生长系统制备了四结太阳能电池,其具体步骤包括。
在p型Ge衬底上,在分子束外延(MBE)生长室中生长n型GaAs作为发射区,Ge衬底作为基区,构成第一子电池,使其具有第一带隙(0.65~0.70 eV)。
在第一子电池上方,利用MBE的方法外延生长GaInNAs(Sb)第二子电池,使其具有大于第一带隙的第二带隙(0.95 ~1.05 eV)并且与第一子电池晶格匹配。
将生长好的第一、二子电池,通过传送装置传送至金属有机化合物化学气相沉淀(MOCVD)系统的生长室,进行后续生长。
在第二子电池上方,利用MOCVD生长第三子电池,使其具有大于第二带隙的第三带隙(1. 35 ~1.45 eV)并且与第一、二子电池晶格匹配。
在所述第三子电池上方,利用MOCVD方法生长第四子电池,使其具有大于第三带隙的第四带隙1.86~1.95 eV),其晶格常数与第一、二、三子电池匹配。
在所述第四子电池上方形成高掺杂盖帽层。
在一些实施例中,采用上述外延生长系统制备了五结太阳能电池,其具体步骤包括。
在p型Ge衬底上,在分子束外延(MBE)生长室中生长n型GaAs作为发射区,Ge衬底作为基区,构成第一子电池,使其具有第一带隙(0.67~0.70 eV)。
在第一子电池上方,利用MBE的方法外延生长GaInNAs(Sb)第二子电池,使其具有大于第一带隙的第二带隙(0.95 ~1.05 eV)并且与第一子电池晶格匹配。
将生长好的第一、二子电池,通过传送装置传送至金属有机化合物化学气相沉淀(MOCVD)系统的生长室,进行后续生长。
在第二子电池上方,利用MOCVD生长第三子电池,使其具有大于第二带隙的第三带隙(1.40 ~1.42 eV)并且与第一、二子电池晶格匹配。
在所述第三子电池上方,利用MOCVD方法生长第四子电池,使其具有大于第三带隙的第四带隙(1.60~1.70 eV),其晶格常数与第一、二、三子电池匹配。
在所述第四子电池上方,利用MOCVD方法生长AlxGayIn1-x-yP第五子电池,使其具有大于第四带隙的第五带隙 (1.90~2.10 eV),其晶格常数与第一、二、三、四子电池匹配。
在所述第五子电池上方形成高掺杂盖帽层。
更具体地,在一些实施例中,GaInNAs(Sb)第二子电池可采用下面方式生长:采用MOCVD生长方法,在第一子电池上方形成背场层;采用MBE生长方法,在所述背场层形成GaInNAs(Sb)基区和发射区;采用MOCVD生长方法,在所述发射区上方形成窗口层,构成第二子电池。
对于本发明的更多细节,可参考下面实施1~实施3。
实施例1
图2公开了一种多结太阳能电池的外延生长系统800。外延生长系统800设有MOCVD系统、MBE系统和预处理室830,其中MOCVD反应腔810和MBE反应腔820共用预处理室830。真空通道840连接MOCVD反应腔810和MBE反应腔820,其真空度维持在1×10-6 Pa以下。且在真空通道中配置了传送装置,用于在外延生长过程中,可将外延片在MOCVD系统和MBE系统之间传送。
在本外延生长系统中,将MOCVD反应腔810和MBE反应腔820设置在同一预处理室中,并设置了传送装置,使得在外延生长过程中只需通过程序控制即可实现在同一预处理室进行MOCVD生长和MBE生长之间转换。一方面实现了MOCVD和MBE两种晶体生长方法联合,在不同的生长室中原位生长所需的太阳能电池结构,防止了样品表面氧化和吸附性污染,保证了样品表面的洁净度。
实施例2
图4公开了一种四结太阳能电池的制备方法的流程图。
步骤S11:提供一Ge衬底。选用p型厚度为140微米的Ge衬底101,其掺杂浓度为在2×1017cm-3 -- 5×1017cm-3。
步骤S12:以Ge衬底为基区,形成第一子电池100。在MOCVD生长室中,在上述衬底101表面外延生长n型GaAs,掺杂浓度为2×1018cm-3,厚度为100 nm,作为第一子电池发射区102,在n型GaAs层102上外延生长厚度为25 nm、掺杂浓构在1×1018cm-3 的InGaP材料层作为窗口层102,以p型Ge衬底本身作为基区,构成第一子电池。
在MOCVD生长室中,在第一子电池上方生长重掺杂的p++/n++-GaAs隧穿结601,其厚度是50 nm,掺杂浓度高达2×1019cm-3。
步骤S13:在隧穿结601上方形成GaInNAs(Sb)第二子电池200。请参看图5,其包括步骤S13a~S13e五个步骤。S13a:在MOCVD生长室内810,在隧穿结601上方生长p型InGaP作为背场层201,其厚度为50 nm,掺杂浓度在1×1018cm-3左右。S13b:将生长完成的样品通过预处理室830和真空通道840,轨道传送至MBE生长室820。S13c:在MBE生长室820内,在背场层201上方形成Ga0.92In0.08N0.02As0.97Sb0.01第二子电池,基区202厚度优选值为3000 nm,掺杂浓度为在5×1017cm-3;发射区203厚度为200 nm,掺杂浓度为在2×1018cm-3。S13d:将生长完成的样品通过预处理室830和真空通道840,轨道传送回MOCVD生长室。S13e:在MOCVD生长室内,在发射区203上面生长n型InGaP窗口层204,其厚度为25 nm,掺杂浓度在1×1018cm-3左右。
在MOCVD生长室内,在第二子电池上方生长重掺杂的p++/n++-GaAs隧穿结602,其厚度是50 nm,掺杂浓度高达2×1019cm-3。
步骤S14:采用MOCVD在第二子电池上方形成第三子电池300。在MOCVD生长室内,在隧穿结602上方生长厚度为50 nm、掺杂浓度为1~2×1018cm-3 的p+-InGaP材料层作为背场层301;在背场层301上方生长厚度为2微米、掺杂浓度为1~5×1017cm-3的n型GaAs材料层作第二子电池基区302;在基区302上生长厚度为100 nm、掺杂浓度大约2×1018cm-3的n+-Ga(In)As材料层作为发射区303;在发射区303上面生长n型InGaP窗口层304,其厚度为25 nm,掺杂浓度在1×1018cm-3左右。
在MOCVD生长室内,在第三子电池上生长重掺杂的p++/n++-InGaP隧穿结603,其厚度是50 nm,掺杂浓度高达2×1019cm-3。
步骤S15:采用MOCVD在第三子电池上方形成第四子电池400。在MOCVD生长室内,在隧穿结603上方外延生长厚度为100 nm、掺杂浓度为1~2×1018cm-3的p-AlGaInP材料层作为背场层401;在背场层401上生长厚度为1000 nm、掺杂浓度分别为5×1017cm-3的p+-GaInP材料层作为基区402;在基区402上生长生长厚度为100nm、掺杂浓度分别为2×1018cm-3的n+-GaInP材料层作为发射区403;在发射区403上面生长n型AlGaInP窗口层504,其厚度为25 nm,掺杂浓度在1×1018cm-3左右。
在MOCVD生长室内,在第四子电池的顶部生长重掺杂n++-GaAs材料层作为盖帽层700,厚度为500 nm,掺杂浓度为1×1019cm-3。
最后,在样品表面进行减反膜蒸镀,金属电极的制备等后期工艺,完成所需要的太阳能电池,其结构剖面图如图6所示。
实施例3
一种高效五结太阳能电池的制备方法,可以选择如下步骤获得:
步骤S21:提供一Ge衬底。选用p型厚度为140微米的Ge衬底111,其掺杂浓度为在2×1017cm-3 -- 5×1017cm-3。
步骤S22:以Ge衬底为基区,形成第一子电池110。在MOCVD生长室中,在上述衬底111表面外延生长掺杂浓度为2×1018cm-3、厚度为100 nm的 n型GaAs材料层作为第一子电池发射区112,在n型GaAs层112上外延生长厚度为25 nm、掺杂浓构在1×1018cm-3 的InGaP材料层作为窗口层113,以p型Ge衬底本身作为基区,构成第一子电池。
MOCVD生长室中,在第一子电池上方生长重掺杂的p++/n++-GaAs隧穿结611,其厚度是50 nm,掺杂浓度高达2×1019cm-3。
步骤S23:在隧穿结611上方形成GaInNAs(Sb)第二子电池210。在MOCVD生长室内810,在隧穿结611上方生长p型InGaP作为背场层211,其厚度为50 nm,掺杂浓度在1×1018cm-3左右。将生长完成的样品通过预处理室830和真空通道840,轨道传送至MBE生长室820。在MBE生长室820内,在背场层211上方形成Ga0.92In0.08N0.02As0.97Sb0.01第二子电池,基区212厚度优选值为3000 nm,掺杂浓度为在5×1017cm-3;发射区213厚度为200 nm,掺杂浓度为在2×1018cm-3。将生长完成的样品通过过预处理室830和真空通道840,轨道传送回MOCVD生长室。在MOCVD生长室内,在发射区213上面生长n型InGaP窗口层214,其厚度为25 nm,掺杂浓度在1×1018cm-3左右。
在MOCVD生长室内,在第二子电池上方生长重掺杂的p++/n++-GaAs隧穿结612,其厚度是50 nm,掺杂浓度高达2×1019cm-3。
步骤S24:采用MOCVD在第二子电池上方形成第三子电池310。在MOCVD生长室内,在隧穿结612上方生长厚度为50 nm、掺杂浓度为1~2×1018cm-3 的p+-InGaP材料层作为背场层311;在背场层301上方生长厚度为2微米、掺杂浓度为1~5×1017cm-3的n型Ga(In)As材料层作基区312;在基区312上生长厚度为100 nm、掺杂浓度大约2×1018cm-3的n+-Ga(In)As材料层作为发射区313;在发射区313上面生长n型InGaP窗口层314,其厚度为25 nm,掺杂浓度在1×1018cm-3左右。
在MOCVD生长室内,在第三子电池上生长重掺杂的p++/n++-InGaP隧穿结613,其厚度是50 nm,掺杂浓度高达2×1019cm-3。
步骤S25:采用MOCVD在第三子电池上方形成第四子电池400。在MOCVD生长室内,在隧穿结613上方外延生长厚度为100 nm、掺杂浓度为1~2×1018cm-3的p-AlGaInP材料层作为背场层411;在背场层411上生长厚度为1000 nm、掺杂浓度分别为5×1017cm-3的p+-AlxGa1-xAs材料层作为基区402;在基区402上生长生长厚度为100nm、掺杂浓度分别为2×1018cm-3的n+-AlxGa1-xAs材料层作为发射区413;在发射区413上面生长n型AlGaInP窗口层414,其厚度为25 nm,掺杂浓度在1×1018cm-3左右。
在MOCVD生长室内,在第四子电池和第五子电池中间生长重掺杂的p++/n++-AlGaAs隧穿结614,其厚度是50 nm,掺杂浓度高达2×1019cm-3。
步骤S26:采用MOCVD在第四子电池上方形成第五子电池500。在MOCVD生长室内,在隧穿结614上方外延生长厚度为100 nm、掺杂浓度为1~2×1018cm-3的p-AlGaAs材料层作为背场层511;在背场层511上外延生长厚度为500nm、掺杂浓度为1~5×1017cm-3的p+-AlxGayIn1-x-yP材料层作基区512;在基区512上生长厚度为50 nm、掺杂浓度大约2×1018cm-3的n+-AlxGayIn1-x-yP材料层作为发射区513;在发射区513上面生长n型AlGaAs窗口层903,其厚度为25 nm,掺杂浓度在1×1018cm-3左右。
在MOCVD生长室内,在第四子电池的顶部生长重掺杂n++-GaAs材料层作为盖帽层710,厚度为500 nm,掺杂浓度为1×1019cm-3。
最后,在样品表面进行减反膜蒸镀,金属电极的制备等后期工艺,完成所需要的太阳能电池,其结构剖面图如图7所示。
在本实施例中,形成了Ge/ GaInNAs(Sb)/InGaAs/AlGaAs/AlGaInP五结太阳能电池,其带隙分布如图3所示。对于四结太阳能电池,此五结太阳能电池细化了吸收光谱,电流匹配更容易实现,光谱吸收范围更广且效率更高。
Claims (11)
1.一种高效多结太阳能电池的制备方法,其具体步骤包括:
(1)提供一Ge衬底,用于半导体外延生长;
(2)以Ge衬底为基区,在所述Ge衬底上生长发射区,构成第一子电池,其具有一第一带隙;
(3)采用MBE生长方法,在所述第一子电池上方形成第二子电池,使其具有大于第一带隙的一第二带隙,且晶格与第一子电池晶格匹配;
(4)采用MOCVD生长方法,在所述第二子电池上方形成第三子电池,使其具有大于第二带隙的第三带隙,并且与第一、二子电池晶格匹配;
(5)采用MOCVD生长方法,在所述第三子电池上方形成第四子电池,使其具有大于第三带隙的第四带隙,其晶格常数与第一、二、三子电池匹配。
2.根据权利要求1所述的太阳能电池的制备方法,其特征在于:所述第二子电池为GaInNAs(Sb)电池。
3.根据权利要求2所述的太阳能电池的制备方法,其特征在于:所述第二子电池的制备步骤包括:
采用MOCVD生长方法,在第一子电池上方形成背场层;
采用MBE生长方法,在所述背场层形成GaInNAs(Sb)基区和发射区;
采用MOCVD生长方法,在所述发射区上方形成窗口层,构成第二子电池。
4.根据权利要求2所述的太阳能电池的制备方法,其特征在于:所述形成的太阳能电池包括四结子电池,其中第一子电池的带隙为0.65~0.70 eV,第二子电池的带隙为0.95~1.05 eV,第三子电池的带隙为1.35~1.45 eV,第四子电池的带隙为1.86~1.95 eV。
5.根据权利要求4所述的太阳能电池的制备方法,其特征在于:所述第三子电池为Ga(In)As电池,第四子电池为GaInP电池。
6.根据权利要求2所述的太阳能电池的制备方法,其还包括步骤(6):采用MOCVD生长方法,在所述第四子电池上方形成第五子电池,使其具有大于第四带隙的第五带隙,其晶格常数与第一、二、三、四子电池匹配,构成五结太阳能电池。
7.根据权利要求6所述的太阳能电池的制备方法,其特征在于:所述第一子电池的带隙为0.67~0.70 eV, 第二子电池的带隙为0.95~1.05 eV,第三子电池的带隙为1.40 ~1.42 eV,第四子电池的带隙为1.60~1.70 eV,第五子电池的带隙为1.90~2.10 eV。
8.根据权利要求7所述的太阳能电池的制备方法,其特征在于:所述第三子电池为Ga(In)As电池;所述第四子电池为AlGaAs电池;所述第五子电池为AlGaInP电池。
9.根据权利要求8所述的太阳能电池的制备方法,其特征在于:所述第五子电池的材料为四元化合物AlxGayIn1-x-yP,通过组分x,y的调节,在带隙满足的条件下,实现与其它所有子电池晶格匹。
10.一种用于前述任意一项权利要求所述制备方法的太阳能电池外延生长系统,包括:MOCVD反应腔、MBE反应腔和预处理室,其中MOCVDE反应腔和MBE反应腔共用所述预处理室并通过一通道连接,一传送装置位于所述通道内。
11.根据权利要求10所述的太阳能电池外延生长系统,其特征在于:所述通道为真空通道,其真空度维持在1×10-6 Pa以下。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2012102498563A CN102751389A (zh) | 2012-07-19 | 2012-07-19 | 一种高效多结太阳能电池的制备方法 |
PCT/CN2013/078965 WO2014012442A1 (zh) | 2012-07-19 | 2013-07-08 | 一种高效多结太阳能电池的制备方法 |
US14/541,079 US20150068581A1 (en) | 2012-07-19 | 2014-11-13 | Fabrication Method for Multi-junction Solar Cells |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2012102498563A CN102751389A (zh) | 2012-07-19 | 2012-07-19 | 一种高效多结太阳能电池的制备方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN102751389A true CN102751389A (zh) | 2012-10-24 |
Family
ID=47031416
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2012102498563A Pending CN102751389A (zh) | 2012-07-19 | 2012-07-19 | 一种高效多结太阳能电池的制备方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US20150068581A1 (zh) |
CN (1) | CN102751389A (zh) |
WO (1) | WO2014012442A1 (zh) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103151413A (zh) * | 2013-03-22 | 2013-06-12 | 中国科学院苏州纳米技术与纳米仿生研究所 | 倒装四结太阳电池及其制备方法 |
WO2014012442A1 (zh) * | 2012-07-19 | 2014-01-23 | 厦门市三安光电科技有限公司 | 一种高效多结太阳能电池的制备方法 |
CN104319304A (zh) * | 2014-11-11 | 2015-01-28 | 厦门市三安光电科技有限公司 | 多结太阳能电池及其制备方法 |
CN104659158A (zh) * | 2015-03-16 | 2015-05-27 | 天津三安光电有限公司 | 倒装多结太阳能电池及其制作方法 |
CN105405928A (zh) * | 2015-12-08 | 2016-03-16 | 中国电子科技集团公司第十八研究所 | 一种基于GaInNAs材料的四结太阳能电池的制备方法 |
CN105762208A (zh) * | 2016-02-29 | 2016-07-13 | 天津蓝天太阳科技有限公司 | 一种正向失配四结级联砷化镓太阳电池及其制备方法 |
CN105810778A (zh) * | 2016-03-30 | 2016-07-27 | 中山德华芯片技术有限公司 | MOCVD高温生长高质量GaInNAs子电池的方法 |
CN106684158A (zh) * | 2015-11-10 | 2017-05-17 | 北京卫星环境工程研究所 | 高发电效率空间太阳电池结构 |
CN113690325A (zh) * | 2021-06-30 | 2021-11-23 | 华灿光电(浙江)有限公司 | 太阳能电池及其制造方法 |
CN114108079A (zh) * | 2021-10-12 | 2022-03-01 | 材料科学姑苏实验室 | 真空互联系统及其自动传输方法 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7232499B2 (ja) * | 2018-09-03 | 2023-03-03 | 国立大学法人 筑波大学 | 半導体装置とその製造方法および光電変換装置 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6252287B1 (en) * | 1999-05-19 | 2001-06-26 | Sandia Corporation | InGaAsN/GaAs heterojunction for multi-junction solar cells |
CN1910759A (zh) * | 2004-01-20 | 2007-02-07 | 瑟雷姆技术公司 | 具有外延生长量子点材料的太阳能电池 |
CN101882644A (zh) * | 2009-05-08 | 2010-11-10 | 安科太阳能公司 | 具有ⅳ/ⅲ-ⅴ族混合合金的多结太阳能电池 |
CN102244171A (zh) * | 2011-06-20 | 2011-11-16 | 复旦大学 | 一种无荧光粉高显色性能白光led芯片 |
CN102299159A (zh) * | 2011-08-17 | 2011-12-28 | 中国科学院苏州纳米技术与纳米仿生研究所 | GaInP/GaAs/InGaAsP/InGaAs四结级联太阳电池及其制备方法 |
CN102341913A (zh) * | 2009-03-16 | 2012-02-01 | 波音公司 | 用于太阳能电池中的隧道结的高掺杂层 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5223043A (en) * | 1991-02-11 | 1993-06-29 | The United States Of America As Represented By The United States Department Of Energy | Current-matched high-efficiency, multijunction monolithic solar cells |
US20070137698A1 (en) * | 2002-02-27 | 2007-06-21 | Wanlass Mark W | Monolithic photovoltaic energy conversion device |
CN100519835C (zh) * | 2007-11-01 | 2009-07-29 | 中国科学院电工研究所 | 一种生长硅基薄膜及高效硅基薄膜太阳能电池的pecvd设备 |
US20100282305A1 (en) * | 2009-05-08 | 2010-11-11 | Emcore Solar Power, Inc. | Inverted Multijunction Solar Cells with Group IV/III-V Hybrid Alloys |
FR2947097B1 (fr) * | 2009-06-23 | 2011-11-25 | Riber Sa | Appareil de fabrication de galettes de semi-conducteur et appareil de depot par evaporation de materiaux par jet moleculaire |
FR2981195B1 (fr) * | 2011-10-11 | 2024-08-23 | Soitec Silicon On Insulator | Multi-jonctions dans un dispositif semi-conducteur forme par differentes techniques de depot |
WO2013074530A2 (en) * | 2011-11-15 | 2013-05-23 | Solar Junction Corporation | High efficiency multijunction solar cells |
CN102751389A (zh) * | 2012-07-19 | 2012-10-24 | 厦门市三安光电科技有限公司 | 一种高效多结太阳能电池的制备方法 |
-
2012
- 2012-07-19 CN CN2012102498563A patent/CN102751389A/zh active Pending
-
2013
- 2013-07-08 WO PCT/CN2013/078965 patent/WO2014012442A1/zh active Application Filing
-
2014
- 2014-11-13 US US14/541,079 patent/US20150068581A1/en not_active Abandoned
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6252287B1 (en) * | 1999-05-19 | 2001-06-26 | Sandia Corporation | InGaAsN/GaAs heterojunction for multi-junction solar cells |
CN1910759A (zh) * | 2004-01-20 | 2007-02-07 | 瑟雷姆技术公司 | 具有外延生长量子点材料的太阳能电池 |
CN102341913A (zh) * | 2009-03-16 | 2012-02-01 | 波音公司 | 用于太阳能电池中的隧道结的高掺杂层 |
CN101882644A (zh) * | 2009-05-08 | 2010-11-10 | 安科太阳能公司 | 具有ⅳ/ⅲ-ⅴ族混合合金的多结太阳能电池 |
CN102244171A (zh) * | 2011-06-20 | 2011-11-16 | 复旦大学 | 一种无荧光粉高显色性能白光led芯片 |
CN102299159A (zh) * | 2011-08-17 | 2011-12-28 | 中国科学院苏州纳米技术与纳米仿生研究所 | GaInP/GaAs/InGaAsP/InGaAs四结级联太阳电池及其制备方法 |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014012442A1 (zh) * | 2012-07-19 | 2014-01-23 | 厦门市三安光电科技有限公司 | 一种高效多结太阳能电池的制备方法 |
CN103151413B (zh) * | 2013-03-22 | 2016-01-27 | 中国科学院苏州纳米技术与纳米仿生研究所 | 倒装四结太阳电池及其制备方法 |
CN103151413A (zh) * | 2013-03-22 | 2013-06-12 | 中国科学院苏州纳米技术与纳米仿生研究所 | 倒装四结太阳电池及其制备方法 |
CN104319304B (zh) * | 2014-11-11 | 2016-08-24 | 厦门市三安光电科技有限公司 | 多结太阳能电池及其制备方法 |
CN104319304A (zh) * | 2014-11-11 | 2015-01-28 | 厦门市三安光电科技有限公司 | 多结太阳能电池及其制备方法 |
CN104659158A (zh) * | 2015-03-16 | 2015-05-27 | 天津三安光电有限公司 | 倒装多结太阳能电池及其制作方法 |
WO2016145936A1 (zh) * | 2015-03-16 | 2016-09-22 | 天津三安光电有限公司 | 倒装多结太阳能电池及其制备方法 |
CN106684158A (zh) * | 2015-11-10 | 2017-05-17 | 北京卫星环境工程研究所 | 高发电效率空间太阳电池结构 |
CN105405928A (zh) * | 2015-12-08 | 2016-03-16 | 中国电子科技集团公司第十八研究所 | 一种基于GaInNAs材料的四结太阳能电池的制备方法 |
CN105405928B (zh) * | 2015-12-08 | 2017-05-03 | 中国电子科技集团公司第十八研究所 | 一种基于GaInNAs材料的四结太阳能电池的制备方法 |
CN105762208A (zh) * | 2016-02-29 | 2016-07-13 | 天津蓝天太阳科技有限公司 | 一种正向失配四结级联砷化镓太阳电池及其制备方法 |
CN105810778A (zh) * | 2016-03-30 | 2016-07-27 | 中山德华芯片技术有限公司 | MOCVD高温生长高质量GaInNAs子电池的方法 |
CN105810778B (zh) * | 2016-03-30 | 2017-08-11 | 中山德华芯片技术有限公司 | MOCVD高温生长高质量GaInNAs子电池的方法 |
CN113690325A (zh) * | 2021-06-30 | 2021-11-23 | 华灿光电(浙江)有限公司 | 太阳能电池及其制造方法 |
CN113690325B (zh) * | 2021-06-30 | 2023-10-13 | 华灿光电(浙江)有限公司 | 太阳能电池及其制造方法 |
CN114108079A (zh) * | 2021-10-12 | 2022-03-01 | 材料科学姑苏实验室 | 真空互联系统及其自动传输方法 |
Also Published As
Publication number | Publication date |
---|---|
US20150068581A1 (en) | 2015-03-12 |
WO2014012442A1 (zh) | 2014-01-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102751389A (zh) | 一种高效多结太阳能电池的制备方法 | |
US9437769B2 (en) | Four-junction quaternary compound solar cell and method thereof | |
WO2017069970A1 (en) | High efficiency multijunction photovoltaic cells | |
US9324911B2 (en) | Methods of fabricating dilute nitride semiconductor materials for use in photoactive devices and related structures | |
CN102651417A (zh) | 三结级联太阳能电池及其制备方法 | |
CN104659158A (zh) | 倒装多结太阳能电池及其制作方法 | |
CN106299011B (zh) | 基于InP衬底的五结太阳能电池及其制备方法 | |
Long et al. | Failure analysis of thin‐film four‐junction inverted metamorphic solar cells | |
CN103219414B (zh) | GaInP/GaAs/InGaAsP/InGaAs四结级联太阳电池的制作方法 | |
CN109326674B (zh) | 含多个双异质结子电池的五结太阳能电池及其制备方法 | |
CN103077983A (zh) | 多结太阳能电池及其制备方法 | |
CN103199142B (zh) | GaInP/GaAs/InGaAs/Ge四结太阳能电池及其制备方法 | |
CN102790134A (zh) | 一种高效倒装五结太阳能电池及其制备方法 | |
CN104779313B (zh) | 四结级联的太阳能电池及其制备方法 | |
CN103346190B (zh) | Si衬底的四结级联太阳能电池及其制备方法 | |
CN103247722B (zh) | 四结级联太阳电池的制作方法 | |
CN105355668A (zh) | 一种具有非晶态缓冲层结构的In0.3Ga0.7As电池及制备方法 | |
CN105720126B (zh) | 一种倒装四结太阳能电池结构及其制备方法 | |
CN110797427B (zh) | 倒装生长的双异质结四结柔性太阳能电池及其制备方法 | |
CN102738267A (zh) | 具有超晶格结构的太阳能电池及其制备方法 | |
CN103311354B (zh) | Si衬底三结级联太阳电池及其制作方法 | |
CN103151415B (zh) | 三结太阳电池及其制备方法 | |
CN103151414B (zh) | 正装三结级联太阳电池及其制备方法 | |
CN103137766B (zh) | 三结级联太阳电池及其制备方法 | |
CN103199130B (zh) | 正装四结太阳电池及其制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C12 | Rejection of a patent application after its publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20121024 |