CN102747058A - Method for producing alpha amylase - Google Patents
Method for producing alpha amylase Download PDFInfo
- Publication number
- CN102747058A CN102747058A CN2012102518478A CN201210251847A CN102747058A CN 102747058 A CN102747058 A CN 102747058A CN 2012102518478 A CN2012102518478 A CN 2012102518478A CN 201210251847 A CN201210251847 A CN 201210251847A CN 102747058 A CN102747058 A CN 102747058A
- Authority
- CN
- China
- Prior art keywords
- amylase
- gene expression
- amylase gene
- bases
- barley
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
本发明公开了一种生产α淀粉酶的方法。属生物技术领域。首先分别克隆大麦、地衣芽孢杆菌和曲霉的α淀粉酶基因;构建含以上三种α淀粉酶基因表达框架的毕赤酵母表达载体、酿酒酵母表达载体和枯草芽孢杆菌表达载体,并将载体分别转化相对应的宿主菌;分别筛选高表达α淀粉酶的重组子作为工程菌;发酵毕赤酵母工程菌、酿酒酵母工程菌和枯草芽孢杆菌工程菌生产重组混合α淀粉酶。与传统的由单基因编码的α淀粉酶不同,本发明生产的重组混合α淀粉酶的适合反应的温度和pH范围广,适合于多种用途;并且,含多基因表达框架的工程菌表达的α淀粉酶的产量明显高于含单基因的工程菌表达的α淀粉酶的产量,起到降低生产成本作用。The invention discloses a method for producing alpha amylase. It belongs to the field of biotechnology. Firstly clone the α-amylase genes of barley, Bacillus licheniformis and Aspergillus respectively; construct the expression vectors of Pichia pastoris, Saccharomyces cerevisiae and Bacillus subtilis containing the above three α-amylase gene expression frameworks, and transform the vectors respectively Corresponding host bacteria; Recombinants highly expressing α-amylase were selected as engineering bacteria; Pichia pastoris engineering bacteria, Saccharomyces cerevisiae engineering bacteria and Bacillus subtilis engineering bacteria were fermented to produce recombinant mixed α-amylase. Different from the traditional α-amylase encoded by a single gene, the suitable reaction temperature and pH range of the recombinant mixed α-amylase produced by the present invention are wide, and are suitable for various purposes; The yield of α-amylase is significantly higher than that of the α-amylase expressed by engineering bacteria containing a single gene, which plays a role in reducing production costs.
Description
技术领域 technical field
本发明属于生物技术领域,涉及构建微生物工程菌生产重组蛋白。具体是应用微生物工程菌生产混合α淀粉酶。The invention belongs to the field of biotechnology and relates to the construction of microbial engineering bacteria to produce recombinant proteins. Specifically, the mixed α-amylase is produced by using microbial engineering bacteria.
背景技术 Background technique
α淀粉酶(α-amylase,EC 3.2.1.1)广泛存在于生物界。α淀粉酶能够催化随机水解淀粉的α-1,4-糖苷键,产生麦芽糖、麦芽三糖和α糊精。α淀粉酶广泛应用于饴糖、啤酒、黄酒、葡萄糖、酒精、白酒、味精和医药等行业。当前市场上的α淀粉酶产品是来源于天然菌株生产的α淀粉酶。但是,由于天然的产α淀粉酶菌株的生长缓慢,营养要求较高,使酶的生产成本较高;另之,当前的α淀粉酶产品的适合反应温度范围和适合反应pH范围窄,不能满足当前市场的需求。α-amylase (α-amylase, EC 3.2.1.1) widely exists in the biological world. Alpha-amylase catalyzes the random hydrolysis of the alpha-1,4-glucosidic linkages of starch to produce maltose, maltotriose and alpha-dextrin. α-amylase is widely used in industries such as maltose, beer, rice wine, glucose, alcohol, liquor, monosodium glutamate and medicine. The alpha amylase products currently on the market are derived from alpha amylase produced by natural strains. However, due to the slow growth of natural α-amylase-producing strains and higher nutritional requirements, the production cost of the enzyme is higher; in addition, the suitable reaction temperature range and suitable reaction pH range of the current α-amylase products are narrow, which cannot meet current market needs.
由于α淀粉酶有多种来源,那么,不同来源的α淀粉酶的基因序列可不相同,不同来源的α淀粉酶的理化特性可不相同。毕赤酵母(Pichia pastoris)、酿酒酵母(Saccharomycescerevisiae)和枯草芽孢杆菌(Bacillus subtilis)都是常用于生产重组蛋白的宿主菌,但各具有特征。毕赤酵母的主要特征是分泌极少自身蛋白有利于表达产物的纯化的特点,枯草芽孢杆菌和酿酒酵母具有兼性需氧的特性,适合于固态厌氧发酵生产重组酶。Since there are multiple sources of α-amylase, the gene sequences of α-amylases from different sources may be different, and the physicochemical properties of α-amylases from different sources may be different. Pichia pastoris, Saccharomyces cerevisiae and Bacillus subtilis are commonly used host bacteria for the production of recombinant proteins, but each has its own characteristics. The main feature of Pichia pastoris is that it secretes very little self-protein, which is beneficial to the purification of expression products. Bacillus subtilis and Saccharomyces cerevisiae have facultative aerobic characteristics, and are suitable for solid-state anaerobic fermentation to produce recombinant enzymes.
发明内容 Contents of the invention
根据α淀粉酶有多种来源,不同来源的α淀粉酶的基因序列可不相同,不同来源的α淀粉酶的理化特性可不相同,如果将某些不同理化特性的α淀粉酶基因重组于同一个细胞的基因组进行表达,那么,所表达的混合α淀粉酶将具有理化特性多样性,即具有多个最适温度和最适pH。这种混合酶将比其中单种酶的使用价值高。来源于大麦(Hordeum vulgare)的α淀粉酶最适合pH 5,最适温度70℃,在pH5-6和35至73℃的温度下有>60%的酶活性;来源于地衣芽孢杆菌(Bacillus Licheniformis)的α淀粉酶最适pH 8.5,最适温度80℃,在pH5-9.5和55-90℃有>60%的酶活性;来自于曲霉(Aspergillus)的α淀粉酶最适合pH 4,最适温度是70℃,在pH 3-6和50-75℃有>60%的酶活性。由于这三种酶的功能相同,所以,这三种在毕赤酵母或酿酒酵母或枯草芽孢杆菌中表达的混合α淀粉酶适合于在酸性、中性、碱性、常温、中温和较高温度的条件下使用。即这种混合酶的用途将比其中的单独酶广。若分别用不同的菌株来表达这三种酶,其生产成本将高于用一个菌株同时生产这三种酶的混合酶。本发明构建含大麦的α淀粉酶基因表达框架、地衣芽孢杆菌的α淀粉酶基因表达框架和曲霉的α淀粉酶基因表达框架的毕赤酵母工程菌、酿酒酵母工程菌和枯草芽孢杆菌工程菌,生产重组混合大麦的α淀粉酶基因编码的α淀粉酶、地衣芽孢杆菌的α淀粉酶基因编码的α淀粉酶和曲霉的α淀粉酶基因编码的α淀粉酶。According to the fact that there are many sources of α-amylase, the gene sequence of α-amylase from different sources may be different, and the physical and chemical properties of α-amylase from different sources may be different. If some α-amylase genes with different physical and chemical properties are recombined into the same cell If the genome is expressed, the expressed mixed α-amylase will have a variety of physical and chemical properties, that is, multiple optimum temperatures and optimum pHs. This mixture of enzymes will be of higher value than any of the individual enzymes. α-amylase derived from barley (Hordeum vulgare) has an optimum pH of 5, an optimum temperature of 70°C, and >60% enzyme activity at pH 5-6 and temperature from 35 to 73°C; derived from Bacillus licheniformis ) α-amylase has an optimum pH of 8.5, an optimum temperature of 80°C, and has >60% enzyme activity at pH 5-9.5 and 55-90°C; Temperature is 70°C with >60% enzyme activity at pH 3-6 and 50-75°C. Since the functions of these three enzymes are the same, the three mixed α-amylases expressed in Pichia pastoris or Saccharomyces cerevisiae or Bacillus subtilis are suitable for use in acidic, neutral, alkaline, normal temperature, medium temperature and higher temperature. used under the conditions. That is, the use of this mixed enzyme will be wider than that of the individual enzymes. If different bacterial strains are used to express these three enzymes, the production cost will be higher than that of a mixed enzyme that produces these three enzymes at the same time with one bacterial strain. The invention constructs Pichia pastoris engineering bacteria, Saccharomyces cerevisiae engineering bacteria and Bacillus subtilis engineering bacteria containing barley α-amylase gene expression framework, Bacillus licheniformis α-amylase gene expression framework and Aspergillus α-amylase gene expression framework, Production of α-amylase encoded by the α-amylase gene of recombinant mixed barley, α-amylase encoded by the α-amylase gene of Bacillus licheniformis and α-amylase encoded by the α-amylase gene of Aspergillus.
本发明所采用的技术方案是:The technical scheme adopted in the present invention is:
1.克隆酶基因:应用分子生物学技术,分别从大麦基因组、地衣芽孢杆菌基因组和曲霉基因组中扩增α淀粉酶基因。1. Cloning enzyme gene: Apply molecular biology techniques to amplify α-amylase gene from barley genome, Bacillus licheniformis genome and Aspergillus genome respectively.
2.获得应用于表达载体构建所需的启动子,重组序列,信号肽,转录终止子和抗性基因。2. Obtain the promoter, recombinant sequence, signal peptide, transcription terminator and resistance gene required for the construction of the expression vector.
3.构建如附图1、附图2和附图3的含大麦的α淀粉酶基因表达框架、地衣芽孢杆菌的α淀粉酶基因表达框架和曲霉的α淀粉酶基因表达框架的毕赤酵母表达载体、酿酒酵母表达载体和枯草芽孢杆菌表达载体。3. Construction of the alpha amylase gene expression framework containing barley, the alpha amylase gene expression framework of Bacillus licheniformis and the Pichia expression of the alpha amylase gene expression framework of Aspergillus as accompanying drawing 1, accompanying drawing 2 and accompanying drawing 3 Vector, Saccharomyces cerevisiae expression vector and Bacillus subtilis expression vector.
4.将含大麦的α淀粉酶基因表达框架、地衣芽孢杆菌的α淀粉酶基因表达框架和曲霉的α淀粉酶基因表达框架的毕赤酵母表达载体转化毕赤酵母;将含大麦的α淀粉酶基因表达框架、地衣芽孢杆菌的α淀粉酶基因表达框架和曲霉的α淀粉酶基因表达框架的酿酒酵母表达载体转化酿酒酵母;将含大麦的α淀粉酶基因表达框架、地衣芽孢杆菌的α淀粉酶基因表达框架和曲霉的α淀粉酶基因表达框架的枯草芽孢杆菌表达载体转化枯草芽孢杆菌。[说明.表达框架:启动子-信号肽-基因-转录终止子]4. Transform the Pichia pastoris expression vector containing the α-amylase gene expression framework of barley, the α-amylase gene expression framework of Bacillus licheniformis and the α-amylase gene expression framework of Aspergillus into Pichia pastoris; Gene expression framework, α-amylase gene expression framework of Bacillus licheniformis and Saccharomyces cerevisiae expression vector of α-amylase gene expression framework of Aspergillus transform Saccharomyces cerevisiae; Bacillus subtilis was transformed with the Bacillus subtilis expression vector of the gene expression framework and the Aspergillus alpha-amylase gene expression framework. [Description. Expression frame: promoter-signal peptide-gene-transcription terminator]
5.筛选高表达大麦的α淀粉酶基因编码的α淀粉酶、地衣芽孢杆菌的α淀粉酶基因编码的α淀粉酶和曲霉的α淀粉酶基因编码的α淀粉酶的毕赤酵母重组子作为含大麦的α淀粉酶基因表达框架、地衣芽孢杆菌的α淀粉酶基因表达框架和曲霉的α淀粉酶基因表达框架的毕赤酵母工程菌;筛选高表达大麦的α淀粉酶基因编码的α淀粉酶、地衣芽孢杆菌的α淀粉酶基因编码的α淀粉酶和曲霉的α淀粉酶基因编码的α淀粉酶的酿酒酵母重组子作为含大麦的α淀粉酶基因表达框架、地衣芽孢杆菌的α淀粉酶基因表达框架和曲霉的α淀粉酶基因表达框架的酿酒酵母工程菌;筛选高表达大麦的α淀粉酶基因编码的α淀粉酶、地衣芽孢杆菌的α淀粉酶基因编码的α淀粉酶和曲霉的α淀粉酶基因编码的α淀粉酶的枯草芽孢杆菌重组子作为含大麦的α淀粉酶基因表达框架、地衣芽孢杆菌的α淀粉酶基因表达框架和曲霉的α淀粉酶基因表达框架的枯草芽孢杆菌工程菌。5. Screen the α-amylase encoded by the α-amylase gene encoded by barley, the α-amylase encoded by the α-amylase gene of Bacillus licheniformis and the Pichia recombinants of the α-amylase encoded by the α-amylase gene encoded by Aspergillus with high expression The α-amylase gene expression framework of barley, the α-amylase gene expression framework of Bacillus licheniformis and the Pichia pastoris engineering bacteria of the α-amylase gene expression framework of Aspergillus; Screen the α-amylase encoded by the α-amylase gene of high expression barley, Saccharomyces cerevisiae recombinants of α-amylase encoded by the α-amylase gene of Bacillus licheniformis and α-amylase encoded by the α-amylase gene of Aspergillus as expression frameworks for the α-amylase gene containing barley, α-amylase gene expression of Bacillus licheniformis Saccharomyces cerevisiae engineered framework and Aspergillus α-amylase gene expression framework; screening for high expression of α-amylase encoded by the α-amylase gene of barley, α-amylase encoded by the α-amylase gene of Bacillus licheniformis and α-amylase of Aspergillus The bacillus subtilis recombinant of gene-encoded α-amylase serves as a subtilis engineering bacterium containing the α-amylase gene expression framework of barley, the α-amylase gene expression framework of bacillus licheniformis and the α-amylase gene expression framework of aspergillus.
6.发酵含大麦的α淀粉酶基因表达框架、地衣芽孢杆菌的α淀粉酶基因表达框架和曲霉的α淀粉酶基因表达框架的毕赤酵母工程菌、酿酒酵母工程菌和枯草芽孢杆菌工程菌生产重组混合α淀粉酶。6. Production of Pichia pastoris, Saccharomyces cerevisiae and Bacillus subtilis engineering bacteria containing barley α-amylase gene expression framework, Bacillus licheniformis α-amylase gene expression framework and Aspergillus α-amylase gene expression framework Recombinant mixed alpha amylases.
本发明构建的含大麦的α淀粉酶基因表达框架、地衣芽孢杆菌的α淀粉酶基因表达框架和曲霉的α淀粉酶基因表达框架的毕赤酵母工程菌、酿酒酵母工程菌和枯草芽孢杆菌工程菌生产重组混合α淀粉酶的优点体现于:The Pichia pastoris engineering bacteria, Saccharomyces cerevisiae engineering bacteria and Bacillus subtilis engineering bacteria containing barley alpha amylase gene expression framework, Bacillus licheniformis alpha amylase gene expression framework and Aspergillus alpha amylase gene expression framework constructed by the present invention The advantages of producing recombinant mixed alpha amylases are reflected in:
本发明通过构建毕赤酵母工程菌、酿酒酵母工程菌和枯草芽孢杆菌工程菌,应用工程菌生产三种重组α淀粉酶的混合酶产品,一方面提供适合于在酸性、中性和碱性多种温度环境下使用的混合α淀粉酶新产品,另一方面取代发酵分别含这三种酶基因的菌株生产大麦的α淀粉酶基因编码的α淀粉酶、地衣芽孢杆菌的α淀粉酶基因编码的α淀粉酶和曲霉的α淀粉酶基因编码的α淀粉酶。即用一个发酵工序生产三种α淀粉酶取代用三个工序分别生产三种α淀粉酶。达到节省原材料、能耗和人力资源的作用。The present invention constructs Pichia pastoris engineering bacteria, Saccharomyces cerevisiae engineering bacteria and Bacillus subtilis engineering bacteria, and uses engineering bacteria to produce three kinds of recombinant α-amylase mixed enzyme products. On the one hand, it provides The mixed α-amylase new product used in different temperature environments, on the other hand, replaces the α-amylase encoded by the α-amylase gene encoded by barley and the α-amylase gene encoded by Bacillus licheniformis produced by fermenting strains containing these three enzyme genes respectively α-amylase and α-amylase encoded by the α-amylase gene of Aspergillus. That is, one fermentation process is used to produce three kinds of α-amylases instead of three processes to produce three kinds of α-amylases respectively. Achieve the effect of saving raw materials, energy consumption and human resources.
附图说明 Description of drawings
附图1.含大麦的α淀粉酶基因表达框架、地衣芽孢杆菌的α淀粉酶基因表达框架和曲霉的α淀粉酶基因表达框架的毕赤酵母表达载体。Accompanying drawing 1. Pichia pastoris expression vector containing the α-amylase gene expression framework of barley, the α-amylase gene expression framework of Bacillus licheniformis and the α-amylase gene expression framework of Aspergillus.
p.毕赤酵母的三磷酸甘油醛脱氢酶启动子;S.α因子信号肽;H-amy.大麦的α淀粉酶基因;B-amy.地衣芽孢杆菌的α淀粉酶基因;A-amy.曲霉的α淀粉酶基因;T.转录终止子;G418.G418抗性基因(应用于筛选毕赤酵母重组子);ColE1.大肠杆菌复制起点;AMP.氨苄青霉素抗性基因(应用于筛选大肠杆菌转化子);p.pastoris rDNA.毕赤酵母的rDNA序列。p. Glyceraldehyde triphosphate dehydrogenase promoter from Pichia pastoris; S. α factor signal peptide; H-amy. α-amylase gene from barley; B-amy. α-amylase gene from Bacillus licheniformis; A-amy . Aspergillus α-amylase gene; T. transcription terminator; G418.G418 resistance gene (applied to screening Pichia recombinants); ColE1. Escherichia coli replication origin; AMP. ampicillin resistance gene (applied to screening large intestine Bacillus transformant); p. pastoris rDNA. The rDNA sequence of Pichia pastoris.
附图2.含大麦的α淀粉酶基因表达框架、地衣芽孢杆菌的α淀粉酶基因表达框架和曲霉的α淀粉酶基因表达框架的酿酒酵母表达载体。Accompanying drawing 2. Saccharomyces cerevisiae expression vectors containing the α-amylase gene expression framework of barley, the α-amylase gene expression framework of Bacillus licheniformis and the α-amylase gene expression framework of Aspergillus.
p.酿酒酵母的三磷酸甘油醛脱氢酶启动子;S.α因子信号肽;H-amy.大麦的α淀粉酶基因;B-amy.地衣芽孢杆菌的α淀粉酶基因;A-amy.曲霉的α淀粉酶基因;T.转录终止子;G418.G418抗性基因(应用于筛选酿酒酵母重组子);ColE1.大肠杆菌复制起点;AMP.氨苄青霉素抗性基因(应用于筛选大肠杆菌转化子);S.cerevisiae rDNA.酿酒酵母的rDNA序列。p. Glyceraldehyde triphosphate dehydrogenase promoter from Saccharomyces cerevisiae; S. α factor signal peptide; H-amy. α-amylase gene from barley; B-amy. α-amylase gene from Bacillus licheniformis; A-amy. Aspergillus α-amylase gene; T. transcription terminator; G418.G418 resistance gene (applied to screening Saccharomyces cerevisiae recombinants); ColE1. Escherichia coli replication origin; S. cerevisiae rDNA. The rDNA sequence of Saccharomyces cerevisiae.
附图3.含大麦的α淀粉酶基因表达框架、地衣芽孢杆菌的α淀粉酶基因表达框架和曲霉的α淀粉酶基因表达框架的枯草芽孢杆菌表达载体。Accompanying drawing 3. Bacillus subtilis expression vector containing the α-amylase gene expression framework of barley, the α-amylase gene expression framework of Bacillus licheniformis and the α-amylase gene expression framework of Aspergillus.
p.巨大芽孢杆菌的三磷酸甘油醛脱氢酶启动子;S.α因子信号肽;H-amy.大麦的α淀粉酶基因;B-amy.地衣芽孢杆菌的α淀粉酶基因;A-amy.曲霉的α淀粉酶基因;T.转录终止子;G418.G418抗性基因(应用于筛选枯草芽孢杆菌重组子);ColE1.大肠杆菌复制起点;AMP.氨苄青霉素抗性基因(应用于筛选大肠杆菌转化子);B.Subtilis rDNA.枯草芽孢杆菌的rDNA序列。p. Glyceraldehyde triphosphate dehydrogenase promoter from Bacillus megaterium; S. α factor signal peptide; H-amy. α-amylase gene from barley; B-amy. α-amylase gene from Bacillus licheniformis; A-amy . Aspergillus α-amylase gene; T. transcription terminator; G418.G418 resistance gene (applied to screening Bacillus subtilis recombinants); ColE1. Escherichia coli replication origin; AMP. ampicillin resistance gene (applied to screening large intestine Bacillus transformant); B.Subtilis rDNA. The rDNA sequence of Bacillus subtilis.
具体实施方式 Detailed ways
下面用非限定性实施例对本发明作进一步说明。The present invention will be further illustrated below with non-limiting examples.
实施例1:Example 1:
1.1构建含大麦的α淀粉酶基因表达框架、地衣芽孢杆菌的α淀粉酶基因表达框架和曲霉的α淀粉酶基因表达框架的毕赤酵母表达载体1.1 Construct the Pichia pastoris expression vector containing the α-amylase gene expression framework of barley, the α-amylase gene expression framework of Bacillus licheniformis and the α-amylase gene expression framework of Aspergillus
1.1. 1构建克隆载体1.1.1 Construction of cloning vector
由专业的DNA序列合成公司合成含氨苄青霉素(AMP)基因序列,多克隆接头和大肠杆菌复制起点的两条碱基互补的双链,并且在每条DNA链序列的两端形成粘性末端。通过DNA连接酶的作用使其环化,形成DNA克隆载体。将其克隆载体命名为pPD。A professional DNA sequence synthesis company synthesizes two base complementary double strands containing ampicillin (AMP) gene sequence, polyclonal adapter and E. coli replication origin, and forms cohesive ends at both ends of each DNA strand sequence. It is circularized by the action of DNA ligase to form a DNA cloning vector. The cloning vector was named pPD.
1.1.2获取基因1.1.2 Acquiring genes
①用反转录PCR扩增大麦的α淀粉酶基因①Amplification of barley α-amylase gene by reverse transcription PCR
引物1:5’GGCGAATTCcaagtcctctttcaggggtt3′3’[说明:5’的8个碱基是酶切保护碱基(2个碱基)和酶识别位点(有下划线的6个碱基)]Primer 1: 5'GGC GAATTC caagtcctctttcaggggtt3'3'[Description: The 8 bases at 5' are enzyme-cleaved protection bases (2 bases) and enzyme recognition site (6 bases underlined)]
引物2:5’CAGCGGCCGCCTAgctccgttgtagtgttgccgcggcaccgt3’Primer 2: 5'CA GCGGCCGCGC CTA gctccgttgtagtgttgccgcggcaccgt3'
[说明:5’的10个碱基是酶切保护碱基(2个碱基)和酶识别位点(8个碱基),方框中的18个碱基是编码6个组氨酸的DNA序列。][Explanation: The 10 bases of the 5' are enzyme-cleaved protection bases (2 bases) and enzyme recognition sites (8 bases), and the 18 bases in the box are encoding 6 histidines DNA sequence. ]
应用植物RNA提取试剂盒提取大麦的总RNA,应用cDNA合成试剂盒合成其cDNA,应用引物1和引物2进行PCR扩增,获得的PCR产物经序列分析和用NCBI提供的BLAST软件分析证明是大麦的α淀粉酶基因序列。The total RNA of barley was extracted by plant RNA extraction kit, its cDNA was synthesized by cDNA synthesis kit, PCR amplification was carried out by primer 1 and primer 2, and the obtained PCR product was proved to be barley by sequence analysis and BLAST software analysis provided by NCBI. α-amylase gene sequence.
②用PCR扩增地衣芽孢杆菌(Bacillus Licheniformis)的α淀粉酶基因(包括信号肽)②Amplify the α-amylase gene (including signal peptide) of Bacillus Licheniformis by PCR
引物1:5’GGTACGTAATGAAACAACAAAAACGGCT3’Primer 1: 5'GG TACGTA ATGAAACAACAAAAACGGCT3'
[说明:引物5’端的8个碱基是酶切保护碱基(2个碱基)和DNA限制性内切酶识别位点(有下划线的6个碱基)][Explanation: The 8 bases at the 5' end of the primer are enzyme-cleaved protection bases (2 bases) and DNA restriction endonuclease recognition sites (6 bases underlined)]
引物2:Primer 2:
5’AAGCGGCCGCCTATCTTTGAACATAAATTGAAACCGACCC3’[说明:5’的10个碱基是酶切保护碱基(2个碱基)和酶识别位点(8个碱基),方框中的18个碱基是编码6个组氨酸的DNA序列。]5'AA -GCGGCCGC -CTA TCTTTGAACATAAATTGAAACCGACCC3'[Description: 10 bases of 5' are restriction enzyme protection bases (2 bases) and enzyme recognition site (8 bases), and 18 bases in the box encode 6 histidines acidic DNA sequence. ]
提取地衣芽孢杆菌的基因组DNA,以基因组DNA为模板,应用引物1和引物2进行PCR扩增,PCR产物经序列测定和用NCBI提供的BLAST软件分析证明是地衣芽孢杆菌的含信号肽的α淀粉酶基因序列。[说明:地衣芽孢杆菌基因组DNA提取方法:将地衣芽孢杆菌细胞加于9mg/ml的蜗牛酶溶液(蜗牛酶用1mol/L的山梨醇溶解)于30℃振摇30分钟,然后按照常规的细菌基因组DNA提取方法提取其基因组DNA。]Genomic DNA of Bacillus licheniformis was extracted, using the genomic DNA as a template, primer 1 and primer 2 were used for PCR amplification, and the PCR product was sequenced and analyzed by BLAST software provided by NCBI, which proved to be α-starch containing signal peptide of Bacillus licheniformis Enzyme gene sequence. [Description: Bacillus licheniformis genomic DNA extraction method: Add Bacillus licheniformis cells to 9mg/ml helicase solution (helicase is dissolved with 1mol/L sorbitol) and shake at 30°C for 30 minutes, then follow the conventional bacterial Genomic DNA extraction method extracts its genomic DNA. ]
③用反转录PCR扩增曲霉的α淀粉酶基因③ Amplification of Aspergillus α-amylase gene by reverse transcription PCR
引物1:5’gcgaattcgcaacgcctgcggactggcg3′[说明:5’的8个碱基是酶切保护碱基(2个碱基)和酶识别位点(有下划线的6个碱基)]Primer 1: 5'gc gaattc gcaacgcctgcggactggcg3'[Explanation: The 8 bases at 5' are the enzyme protection bases (2 bases) and the enzyme recognition site (6 bases underlined)]
引物2:5’aagcggccgcCTAgccgtaacagatcttgctacctgccaac3’[说明:5’端的10个碱基是酶切保护碱基(2个碱基)和DNA限制性内切酶识别位点(有下划线的8个碱基)]Primer 2: 5'aa gcggccgc CTA gccgtaacagatcttgctacctgccaac3'[Description: The 10 bases at the 5' end are enzyme-cleaved protection bases (2 bases) and DNA restriction endonuclease recognition sites (8 bases underlined)]
应用真菌RNA提取试剂盒提取曲霉的总RNA,应用cDNA合成试剂盒合成其cDNA,应用引物1和引物2进行PCR扩增,获得的PCR产物经序列分析和用NCBI提供的BLAST软件分析证明是曲霉的α淀粉酶基因序列。Use the fungal RNA extraction kit to extract the total RNA of Aspergillus, use the cDNA synthesis kit to synthesize its cDNA, and use primer 1 and primer 2 to carry out PCR amplification. The obtained PCR product is proved to be Aspergillus by sequence analysis and BLAST software analysis provided by NCBI. α-amylase gene sequence.
1.1.3分别构建含大麦的α淀粉酶基因表达框架、地衣芽孢杆菌的α淀粉酶基因表达框架和曲霉的α淀粉酶基因表达框架。1.1.3 Construct the α-amylase gene expression framework containing barley, Bacillus licheniformis α-amylase gene expression framework and Aspergillus α-amylase gene expression framework respectively.
①用PCR扩增毕赤酵母的三磷酸甘油醛脱氢酶启动子序列。①Use PCR to amplify the promoter sequence of glyceraldehyde triphosphate dehydrogenase in Pichia pastoris.
提取毕赤酵母的基因组DNA,应用以基因组DNA为模板,应用如下引物(5’CCTACGTAGGATCCTTTTTTGTAGAAATGTC3’,5’GGGCATGCTGTGTTTTGATAGTTGTTCAA 3’)进行PCR扩增,PCR产物经序列测定和用NCBI提供的BLAST软件分析证明是其三磷酸甘油醛脱氢酶基因的启动子序列[如下序列的5’端和3’端的有下划线的8个碱基是酶切保护碱基(2个碱基)和酶识别位点(6个碱基),没有下划线的是三磷酸甘油醛脱氢酶启动子序列]:The genomic DNA of Pichia pastoris was extracted, and the genomic DNA was used as a template, and the following primers (5'CCTACGTAGGATCCTTTTTTGTAGAAATGTC3', 5'GGGCATGCTGTGTTTTGATAGTTGTTCAA 3') were used for PCR amplification. The PCR product was sequenced and analyzed by BLAST software provided by NCBI. The promoter sequence of its glyceraldehyde triphosphate dehydrogenase gene [the 8 underlined bases at the 5' end and the 3' end of the following sequence are the enzyme cutting protection bases (2 bases) and the enzyme recognition site (6 bases), without underline is the glyceraldehyde triphosphate dehydrogenase promoter sequence]:
CCTACGTAGGATCCTTTTTTGTAGAAATGTCTTGGTGTCCTCGTCCAATCAGGTAGCCATCTCTGAAATATCTGGCTCCGTTGCAACTCCGAACGACCTGCTGGCAACGTAAAATTCTCCGGGGTAAAACTTAAATGTGGAGTAATGGAACCAGAAACGTCTCTTCCCTTCTCTCTCCTTCCACCGCCCGTTACCGTCCCTAGGAAATTTTACTCTGCTGAGAGCTTCTTCTACGGCCCCCTTGCAGCAATGCTCTTCCCAGCATTACGTTGCGGGTAAAACGGAGGTCGTGTACCCGACCTAGCAGCCCAGGGATGGAAAAGTCCCGGCCGTCGCTGGCAATAATAGCGGGCGGACGCATGTCATGAGATTATTGGAAACCACCAGAATCGAATATAAAAGGCGAACACCTTTCCCAATTTTGGTTTCTCCTGACCCAAAGACCTTAAATTTAATTTATTTGTCCCTATTTCAATCAATTGAACAACTATCAAAACACAGCATGCCC CCTACGTA GGATCCTTTTTTGTAGAAATGTCTTGGTGTCCTCGTCCAATCAGGTAGCCATCTCTGAAATATCTGGCTCCGTTGCAACTCCGAACGACCTGCTGGCAACGTAAAATTCTCCGGGGTAAAACTTAAATGTGGAGTAATGGAACCAGAAACGTCTCTTCCCTTCTCTCTCCTTCCACCGCCCGTTACCGTCCCTAGGAAATTTTACTCTGCTGAGAGCTTCTTCTACGGCCCCCTTGCAGCAATGCTCTTCCCAGCATTACGTTGCGGGTAAAACGGAGGTCGTGTACCCGACCTAGCAGCCCAGGGATGGAAAAGTCCCGGCCGTCGCTGGCAATAATAGCGGGCGGACGCATGTCATGAGATTATTGGAAACCACCAGAATCGAATATAAAAGGCGAACACCTTTCCCAATTTTGGTTTCTCCTGACCCAAAGACCTTAAATTTAATTTATTTGTCCCTATTTCAATCAATTGAACAACTATCAAAACACA GCATGCCC
[说明:毕赤酵母基因组DNA提取方法:将毕赤酵母细胞加于9mg/ml的蜗牛酶溶液(蜗牛酶用1mol/L的山梨醇溶解)于30℃振摇30分钟,然后按照常规的细菌基因组DNA提取方法提取其基因组DNA。][Description: Pichia pastoris genomic DNA extraction method: Add Pichia pastoris cells to 9mg/ml helicase solution (helicase is dissolved in 1mol/L sorbitol) and shake at 30°C for 30 minutes, then follow the conventional bacterial Genomic DNA extraction method extracts its genomic DNA. ]
②由专业的DNA序列合成公司合成α因子信号肽[如下序列有下划线的是酶切保护碱基(2个碱基)和DNA限制性内切酶识别位点(6个碱基),没有下划线的是α因子信号肽序列]:②Synthesize the α-factor signal peptide by a professional DNA sequence synthesis company [the following sequences are underlined are enzyme protection bases (2 bases) and DNA restriction endonuclease recognition sites (6 bases), without underlines is the alpha factor signal peptide sequence]:
CCGCATGCATGAGATTTCCTTCAATTTTTACTGCAGTTTTATTCGCAGCATCCTCCGCATTAGCTGCTCCAGTCAACACTACAACAGAAGATGAAACGGCACAAATTCCGGCTGAAGCTGTCATCGGTTACTCAGATTTAGAAGGGGATTTCGATGTTGCTGTTTTGCCATTTTCCAACAGCACAAATAACGGGTTATTGTTTATAAATACTACTATTGCCAGCATTGCTGCTAAAGAAGAAGGGGTATCTCTCGAGAAAAGAGAGGCTGAAGCTTACACTAGTCC CCGCATGC ATGAGATTTCCTTCAATTTTTACTGCAGTTTTATTCGCAGCATCCTCCGCATTAGCTGCTCCAGTCAACACTACAACAGAAGATGAAACGGCACAAATTCCGGCTGAAGCTGTCATCGGTTACTCAGATTTAGAAGGGGATTTCGATGTTGCTGTTTTGCCATTTTCCAACAGCACAAATAACGGGTTATTGTTTATAAATACTACTATTGCCAGCATTGCTGCTAAAGAAGAAGGGGTATCTCTCGAGAAAAGAGAGGCTGAAGCTTAC ACTAGTCC
③由专业的DNA序列合成公司合成转录终止子序列[如下序列有下划线的是酶切保护碱基(2个碱基)和DNA限制性内切酶识别位点(6个碱基),没有下划线的是转录终止子序列]:③The transcription terminator sequence was synthesized by a professional DNA sequence synthesis company [the following sequences are underlined are the enzyme protection bases (2 bases) and DNA restriction endonuclease recognition sites (6 bases), without underlines is the transcription terminator sequence]:
GGACTAGTCCTTAGACATGACTGTTCCTCAGTTCAAGTTGGGCACTTACGAGAAGACCGGTCTTGCTAGATTCTAATCAAGAGGATGTCAGAATGCCATTTGCCTGAGAGATGCAGGCTTCATTTTTGATACTTTTTTATTTGTAACCTATATAGTATAGGATTTTTTTTGTCATTTTGTTTCTTCTCGTACGAGCTTGCTCCTGATCAGCCTATCTCGCAGCTGATGAATATCTTGTGGTAGGGGTTTGGGAAAATCATTCGAGTTTGATGTTTTTCTTGGTATTTCCCACTCCTCTTCAGAGTACAGAAGATTAAGTGAGAAGTTCGTTTGTGCAAGCTTATCGATCC GGACTAGT CCTTAGACATGACTGTTCCTCAGTTCAAGTTGGGCACTTACGAGAAGACCGGTCTTGCTAGATTCTAATCAAGAGGATGTCAGAATGCCATTTGCCTGAGAGATGCAGGCTTCATTTTTGATACTTTTTTATTTGTAACCTATATAGTATAGGATTTTTTTTGTCATTTTGTTTCTTCTCGTACGAGCTTGCTCCTGATCAGCCTATCTCGCAGCTGATGAATATCTTGTGGTAGGGGTTTGGGAAAATCATTCGAGTTTGATGTTTTTCTTGGTATTTCCCACTCCTCTTCAGAGTACAGAAGATTAAGTGAGAAGTTCGTTTGTGCAAGCTT ATCGATCC
④:用套叠PCR法合成如下G418抗性基因序列[如下序列有下划线的是酶切保护碱基(2个碱基)和DNA限制性内切酶识别位点(6个碱基),没有下划线的是G418抗性基因序列]④: Synthesize the following G418 resistance gene sequence by nested PCR method [the underlined sequence in the following sequence is the restriction enzyme protection base (2 bases) and the DNA restriction endonuclease recognition site (6 bases), without Underlined is the G418 resistance gene sequence]
GGATCGATCCAATTCTGATTAGAAAAACTCATCGAGCATCAAATGAAACTGCAATTTATTCATATCAGGATTATCAATACCATATTTTTGAAAAAGCCGTTTCTGTAATGAAGGAGAAAACTCACCGAGGCAGTTCCATAGGATGGCAAGATCCTGGTATCGGTCTGCGATTCCGACTCGTCCAACATCAATACAACCTATTAATTTCCCCTCGTCAAAAATAAGGTTATCAAGTGAGAAATCACCATGAGTGACGACTGAATCCGGTGAGAATGGCAAAAGCTTATGCATTTCTTTCCAGACTTGTTCAACAGGCCAGCCATTACGCTCGTCATCAAAATCACTCGCATCAACCAAACCGTTATTCATTCGTGATTGCGCCTGAGCGAGACGAAATACGCGATCGCTGTTAAAAGGACAATTACAAACAGGAATCGAATGCAACCGGCGCAGGAACACTGCCAGCGCATCAACAATATTTTCACCTGAATCAGGATATTCTTCTAATACCTGGAATGCTGTTTTCCCGGGGATCGCAGTGGTGAGTAACCATGCATCATCAGGAGTACGGATAAAATGCTTGATGGTCGGAAGAGGCATAAATTCCGTCAGCCAGTTTAGTCTGACCATCTCATCTGTAACATCATTGGCAACGCTACCTTTGCCATGTTTCAGAAACAACTCTGGCGCATCGGGCTTCCCATACAATCGATAGATTGTCGCACCTGATTGCCCGACATTATCGCGAGCCCATTTATACCCATATAAATCAGCATCCATGTTGGAATTTAATCGCGGCCTCGAGCAAGACGTTTCCCGTTGAATATGGCTCATGGTACCGG GGATCGAT GGTACCGG
⑤从毕赤酵母基因组中PCR扩增rDNA序列⑤ PCR amplification of rDNA sequence from Pichia pastoris genome
PCR引物:PCR primers:
引物1:5’CCGGTACCggcttccaggacgtatcgcggatcgctgcgttcttcatc3’Primer 1: 5'CC GGTACC ggcttccaggacgtatcgcggatcgctgcgttcttcatc3'
引物2:5’CCTTCGAAagccccgtggcacacgaccaatcttcccagccgaca 3’Primer 2: 5'CC TTCGAA agccccgtggcacacgaccaatcttcccagccgaca 3'
说明:引物的5’端的8个碱基是酶切保护碱基(2个碱基)和酶识别位(有下划线的6个碱基)。Explanation: The 8 bases at the 5' end of the primer are restriction enzyme protection bases (2 bases) and enzyme recognition sites (6 bases underlined).
提取毕赤酵母基因组DNA,以基因组DNA为模板,应用引物1和引物2进行PCR扩增,获得的PCR产物经序列分析和用NCBI提供的BLAST软件分析证明是毕赤酵母基因组中的rDNA序列。Genomic DNA of Pichia pastoris was extracted, using the genomic DNA as a template, primer 1 and primer 2 were used for PCR amplification, and the obtained PCR product was proved to be the rDNA sequence in the genome of Pichia pastoris by sequence analysis and BLAST software analysis provided by NCBI.
⑥表达框架构建过程:⑥Expression framework construction process:
A.大麦的α淀粉酶基因表达框架的构建:A. Construction of the α-amylase gene expression framework of barley:
通过DNA限制性内切酶和T4DNA连接酶的作用,将毕赤酵母的三磷酸甘油醛脱氢酶启动子DNA序列重组于pPD载体的多克隆位点;将α因子信号肽DNA序列重组于pPD载体的多克隆位点,并使其位于启动子序列的下游;将反转录扩增获得的大麦的α淀粉酶基因序列重组于pPD载体的多克隆位点,并使其位于信号肽序列的下游;将转录终止子序列重组于pPD载体的多克隆位点,并使其位于基因序列下游。此含大麦的α淀粉酶基因表达框架的载体称为pPD1。Through the action of DNA restriction endonuclease and T4 DNA ligase, the DNA sequence of the glyceraldehyde triphosphate dehydrogenase promoter of Pichia pastoris was recombined into the multiple cloning site of the pPD vector; the α factor signal peptide DNA sequence was recombined into pPD The multiple cloning site of the vector, and make it located downstream of the promoter sequence; recombine the α-amylase gene sequence of barley obtained by reverse transcription amplification into the multiple cloning site of the pPD vector, and make it located at the downstream of the signal peptide sequence Downstream: recombine the transcription terminator sequence into the multiple cloning site of the pPD vector and make it downstream of the gene sequence. The vector containing the barley α-amylase gene expression framework is called pPD1.
B.地衣芽孢杆菌的α淀粉酶基因表达框架的构建:B. Construction of the α-amylase gene expression framework of Bacillus licheniformis:
通过DNA限制性内切酶和T4DNA连接酶的作用,将毕赤酵母的三磷酸甘油醛脱氢酶启动子DNA序列重组于pPD载体的多克隆位点;将PCR扩增获得的地衣芽孢杆菌的包含信号肽的α淀粉酶基因序列重组于pPD载体的多克隆位点,并使其位于启动子序列的下游;将转录终止子序列重组于pPD载体的多克隆位点,并使其位于基因序列下游。此含地衣芽孢杆菌的α淀粉酶基因表达框架的载体称为pPD2。Through the action of DNA restriction endonuclease and T4 DNA ligase, the DNA sequence of the glyceraldehyde triphosphate dehydrogenase promoter of Pichia pastoris was recombined into the multiple cloning site of the pPD vector; The α-amylase gene sequence containing the signal peptide is recombined in the multiple cloning site of the pPD vector, and it is located downstream of the promoter sequence; the transcription terminator sequence is recombined in the multiple cloning site of the pPD vector, and it is located in the gene sequence downstream. The vector containing the α-amylase gene expression framework of Bacillus licheniformis is called pPD2.
C.曲霉的α淀粉酶基因表达框架的构建:C. Construction of the α-amylase gene expression framework of Aspergillus:
通过DNA限制性内切酶和T4DNA连接酶的作用,将毕赤酵母的三磷酸甘油醛脱氢酶启动子DNA序列重组于pPD载体的多克隆位点;将α因子信号肽DNA序列重组于pPD载体的多克隆位点,并使其位于启动子序列的下游;将反转录扩增获得的曲霉的α淀粉酶基因序列重组于pPD载体的多克隆位点,并使其位于信号肽序列的下游;将转录终止子序列重组于pPD载体的多克隆位点,并使其位于基因序列下游。此含曲霉的α淀粉酶基因表达框架的载体称为pPD3Through the action of DNA restriction endonuclease and T4 DNA ligase, the DNA sequence of the glyceraldehyde triphosphate dehydrogenase promoter of Pichia pastoris was recombined into the multiple cloning site of the pPD vector; the α factor signal peptide DNA sequence was recombined into pPD The multiple cloning site of the vector, and make it located downstream of the promoter sequence; recombine the Aspergillus α-amylase gene sequence obtained by reverse transcription amplification into the multiple cloning site of the pPD vector, and make it located at the signal peptide sequence Downstream: recombine the transcription terminator sequence into the multiple cloning site of the pPD vector and make it downstream of the gene sequence. The vector containing the Aspergillus α-amylase gene expression framework is called pPD3
⑦完成毕赤酵母表达载体的构建⑦ Complete the construction of Pichia pastoris expression vector
A.将三套表达框架组装于同一个克隆载体。A. Three sets of expression frameworks were assembled in the same cloning vector.
通过DNA限制性内切酶和T4DNA连接酶的作用,分别切下pPD2和pPD3载体的表达框架,并将其切下的两个表达框架重组于pPD1的多克隆位点。此载体称为pPD123.Through the action of DNA restriction endonuclease and T4 DNA ligase, the expression frameworks of pPD2 and pPD3 vectors were excised respectively, and the two excised expression frameworks were recombined into the multiple cloning site of pPD1. This vector is called pPD123.
B.通过DNA限制性内切酶和T4DNA连接酶的作用依次将毕赤酵母的rDNA序列(DNA重组序列)和G418基因重组于pPD123载体的多克隆位点,构成含大麦的α淀粉酶基因表达框架、地衣芽孢杆菌的α淀粉酶基因表达框架和曲霉的α淀粉酶基因表达框架的毕赤酵母表达载体(附图1)。B. Through the action of DNA restriction enzyme and T4 DNA ligase, the rDNA sequence (DNA recombination sequence) and G418 gene of Pichia pastoris were recombined in the multiple cloning site of the pPD123 vector to form the gene expression of α-amylase containing barley Framework, Bacillus licheniformis α-amylase gene expression framework and Aspergillus α-amylase gene expression framework Pichia expression vector (accompanying drawing 1).
1.2构建含大麦的α淀粉酶基因表达框架、地衣芽孢杆菌的α淀粉酶基因表达框架和曲霉的α淀粉酶基因表达框架的毕赤酵母工程菌1.2 Construction of Pichia engineering bacteria containing barley α-amylase gene expression framework, Bacillus licheniformis α-amylase gene expression framework and Aspergillus α-amylase gene expression framework
用电转化方法将以上构建的毕赤酵母表达载体(见附图1)转化毕赤酵母,将经过电转化的毕赤酵母细胞涂布G418抗性平板。以重组子(在G418抗性平板上生长的克隆)基因组DNA为模板,分别用大麦的α淀粉酶基因的特异引物、地衣芽孢杆菌的α淀粉酶基因的特异引物和曲霉的α淀粉酶基因的特异引物进行PCR进行扩增,将扩增出符合目标分子量的PCR产物进行DNA序列测定而验证获得了正确的重组子。将含以上含三种α淀粉酶基因表达框架的重组子在接种于YPD[2%蛋白胨,1%yeast extract(酵母提取物),2%葡萄糖]培养基中,30℃摇床培养两天,将发酵液离心,收获上清。应用发酵液进行SDS-PAGE(十二烷基硫酸钠-聚丙烯酰胺凝胶电泳),其结果表明出现新的符合这三个基因编码的酶蛋白分子量的蛋白条带。用His6融合蛋白纯化试剂盒纯化目标蛋白,用His标签单克隆抗体对纯化的三种目标蛋白进行蛋白印迹实验,结果表明这三种目标蛋白都能与His标签单克隆抗体结合,证明大麦的α淀粉酶基因、地衣芽孢杆菌的α淀粉酶基因和曲霉的α淀粉酶基因都能在含大麦的α淀粉酶基因表达框架、地衣芽孢杆菌的α淀粉酶基因表达框架和曲霉的α淀粉酶基因表达框架的毕赤酵母工程菌中表达和分泌到胞外。筛选高表达以上所述的三种混合α淀粉酶的重组子作为含大麦的α淀粉酶基因表达框架、地衣芽孢杆菌的α淀粉酶基因表达框架和曲霉的α淀粉酶基因表达框架的毕赤酵母工程菌。The Pichia pastoris expression vector constructed above (see Figure 1) was transformed into Pichia pastoris by electroporation, and the electrotransformed Pichia pastoris cells were coated with a G418 resistance plate. Using recombinant (clones grown on G418 resistant plates) genomic DNA as a template, use specific primers for the α-amylase gene of barley, the α-amylase gene of Bacillus licheniformis and the α-amylase gene of Aspergillus Specific primers are used for PCR amplification, and the amplified PCR product conforming to the target molecular weight is subjected to DNA sequence determination to verify that the correct recombinant is obtained. The recombinants containing the above three α-amylase gene expression frameworks were inoculated in YPD [2% peptone, 1% yeast extract (yeast extract), 2% glucose] medium, and cultured on a shaker at 30°C for two days. The fermentation broth was centrifuged and the supernatant harvested. SDS-PAGE (sodium dodecyl sulfate-polyacrylamide gel electrophoresis) was carried out using the fermentation broth, and the results showed that new protein bands appeared in accordance with the molecular weights of the enzyme proteins encoded by these three genes. Purify the target protein with the His6 fusion protein purification kit, and perform Western blot experiments on the purified three target proteins with the His-tag monoclonal antibody. The results show that the three target proteins can bind to the His-tag monoclonal antibody, proving that the α The amylase gene, the α-amylase gene of B. licheniformis and the α-amylase gene of Aspergillus can all be expressed in the framework containing the α-amylase gene expression framework of barley, the α-amylase gene expression framework of Bacillus licheniformis and the α-amylase gene of Aspergillus The framework of Pichia pastoris is expressed and secreted extracellularly. Screening recombinants that highly express the three mixed α-amylases described above as Pichia pastoris containing the α-amylase gene expression framework of barley, the α-amylase gene expression framework of Bacillus licheniformis and the α-amylase gene expression framework of Aspergillus Engineering bacteria.
1.3生产重组大麦的α淀粉酶基因编码的α淀粉酶、地衣芽孢杆菌的α淀粉酶基因编码的α淀粉酶和曲霉的α淀粉酶基因编码的α淀粉酶1.3 Production of α-amylase encoded by the α-amylase gene of recombinant barley, α-amylase encoded by the α-amylase gene of Bacillus licheniformis and α-amylase encoded by the α-amylase gene of Aspergillus
将含大麦的α淀粉酶基因表达框架、地衣芽孢杆菌的α淀粉酶基因表达框架和曲霉的α淀粉酶基因表达框架的毕赤酵母工程菌、含大麦的α淀粉酶基因表达框架的毕赤酵母工程菌、含地衣芽孢杆菌的α淀粉酶基因表达框架的毕赤酵母工程菌、含曲霉的α淀粉酶基因表达框架的毕赤酵母工程菌和不含α淀粉酶基因表达框架的毕赤酵母分别接种于YPD培养基中,30℃摇床发酵两天;将天然的产α淀粉酶的地衣芽孢杆菌(应用于1.1.2所述的PCR扩增α淀粉酶基因的地衣芽孢杆菌菌株)接种于LB(1%胰蛋白胨,1%氯化钠,0.5%酵母提取物)培养基,37℃摇床发酵两天;将曲霉(应用于1.1.2所述的PCR扩增α淀粉酶基因的曲霉菌株)接种于常规的真菌培养基(土豆汁200g/L、葡萄糖20g/L),在30℃摇床发酵3天。以上所述的每个菌株的发酵都是一式三份。分别收集其发酵液上清于50℃、70℃和80℃条件分析其发酵液上清在酸性(pH4和pH5)、中性(pH7)和碱性(pH8.5)环境下的α淀粉酶活性。结果表明,将含大麦的α淀粉酶基因表达框架、地衣芽孢杆菌的α淀粉酶基因表达框架和曲霉的α淀粉酶基因表达框架的毕赤酵母工程菌的发酵液上清(每升)在以上所述的温度和pH的平均α淀粉酶活性分别是50℃和pH4(1862109单位)、50℃和pH5(2930226单位)、50℃和pH7(3289090单位)、50℃和pH8.5(1504093单位)、70℃和pH4(2418659单位)、70℃和pH5(3761490单位)、70℃和pH7(4518382单位)、70℃和pH8.5(2151179单位)、80℃和pH4(2432195单位)、80℃和pH5(4346099单位)、80℃和pH7(3266072单位)、80℃和pH8.5(2729903单位);含大麦的α淀粉酶基因表达框架的毕赤酵母工程菌的发酵液上清(每升)在大麦的α淀粉酶的最适合的温度和pH(pH5和70℃)的平均α淀粉酶活性是2275490单位;含地衣芽孢杆菌的α淀粉酶基因表达框架的毕赤酵母工程菌的发酵液上清(每升)在地衣芽孢杆菌的α淀粉酶的最适合的温度和pH(pH8.5和80℃)的平均α淀粉酶活性是1490156单位;含曲霉的α淀粉酶基因表达框架的毕赤酵母工程菌的发酵液上清(每升)在曲霉的α淀粉酶的最适合的温度和pH(70℃和pH4)的平均α淀粉酶活性是1500271单位;天然的产α淀粉酶的地衣芽孢杆菌的发酵液上清(每升)在地衣芽孢杆菌的α淀粉酶的最适合的温度和pH(pH8.5和80℃)的平均α淀粉酶活性是995486单位;曲霉的发酵液上清(每升)在曲霉的α淀粉酶的最适合的温度和pH(pH4和70℃)的平均α淀粉酶活性是1033457单位;不含α淀粉酶基因的毕赤酵母的发酵液上清(每升)在以上所述的各种温度和pH都没有测到α淀粉酶活性。以上发酵表达产物的酶活性分析的结果表明:含大麦的α淀粉酶基因表达框架、地衣芽孢杆菌的α淀粉酶基因表达框架和曲霉的α淀粉酶基因表达框架的毕赤酵母工程菌表达的α淀粉酶在酸性、中性和碱性以及不同的试验温度都具有良好的α淀粉酶活性,并且其α淀粉酶活性显著高于(P<0.01)含单种α淀粉酶基因的毕赤酵母工程菌或产α淀粉酶的天然菌株的表达产物的α淀粉酶活性。Pichia pastoris engineering bacteria containing barley α-amylase gene expression framework, Bacillus licheniformis α-amylase gene expression framework and Aspergillus α-amylase gene expression framework, Pichia pastoris containing barley α-amylase gene expression framework Engineering bacteria, Pichia engineering bacteria containing the α-amylase gene expression framework of Bacillus licheniformis, Pichia engineering bacteria containing the α-amylase gene expression framework of Aspergillus, and Pichia pastoris without the α-amylase gene expression framework respectively Inoculate in YPD medium, and ferment on a shaker at 30°C for two days; inoculate the natural α-amylase-producing Bacillus licheniformis (the Bacillus licheniformis strain applied to the PCR amplification of α-amylase gene described in 1.1.2) in LB (1% tryptone, 1% sodium chloride, 0.5% yeast extract) culture medium, 37 ℃ of shaker fermentation two days; strains) were inoculated in a conventional fungal culture medium (potato juice 200g/L, glucose 20g/L), and fermented in a shaker at 30°C for 3 days. Fermentations for each of the strains described above were performed in triplicate. Collect the supernatant of the fermentation broth at 50°C, 70°C and 80°C to analyze the α-amylase in the supernatant of the fermentation broth in acidic (pH4 and pH5), neutral (pH7) and alkaline (pH8.5) environments active. The results showed that the fermentation broth supernatant (per liter) of Pichia engineering bacteria containing the α-amylase gene expression framework of barley, the α-amylase gene expression framework of Bacillus licheniformis and the α-amylase gene expression framework of Aspergillus was above The average α-amylase activity at said temperature and pH are 50°C and pH 4 (1862109 units), 50°C and pH5 (2930226 units), 50°C and pH7 (3289090 units), 50°C and pH8.5 (1504093 units ), 70°C and pH4 (2418659 units), 70°C and pH5 (3761490 units), 70°C and pH7 (4518382 units), 70°C and pH8.5 (2151179 units), 80°C and pH4 (2432195 units), 80 ℃ and pH 5 (4346099 units), 80 ℃ and pH7 (3266072 units), 80 ℃ and pH8.5 (2729903 units); the fermentation broth supernatant of Pichia pastoris engineering bacteria containing barley α-amylase gene expression framework (per l) The average α-amylase activity at the most suitable temperature and pH (pH5 and 70°C) of barley α-amylase is 2,275,490 units; Fermentation of Pichia pastoris engineered bacteria containing the α-amylase gene expression framework of Bacillus licheniformis The average α-amylase activity of liquid supernatant (per liter) at the most suitable temperature and pH (pH8.5 and 80°C) of the α-amylase of Bacillus licheniformis is 1490156 units; The average α-amylase activity of the fermented liquid supernatant (per liter) of the α-amylase of Aspergillus at the most suitable temperature and pH (70°C and pH4) of Pichia pastoris engineering bacteria is 1,500,271 units; The average α-amylase activity of the fermentation broth supernatant (per liter) of Bacillus licheniformis at the optimum temperature and pH (pH8.5 and 80°C) of Bacillus licheniformis was 995486 units; The average α-amylase activity of clear (per liter) at the most suitable temperature and pH (pH4 and 70° C.) of the α-amylase of Aspergillus is 1,033,457 units; per liter) no alpha amylase activity was detected at the various temperatures and pHs described above. The results of enzyme activity analysis of the above fermentation expression products showed that: the α-amylase gene expression framework of barley, the α-amylase gene expression framework of Bacillus licheniformis and the α-amylase gene expression framework of Aspergillus Pichia expressed α Amylase has good α-amylase activity in acidic, neutral and alkaline and different test temperatures, and its α-amylase activity is significantly higher (P<0.01) than that of Pichia pastoris engineering containing a single α-amylase gene Alpha-amylase activity of expression products of bacteria or natural strains producing alpha-amylase.
说明:illustrate:
a.含单种α淀粉酶基因表达框架的毕赤酵母工程菌的构建的方法与含三种α淀粉酶基因表达框架的毕赤酵母工程菌的构建的方法的差别在于表达载体的构建;含单种α淀粉酶基因表达框架的毕赤酵母表达载体的构建方法与含三种α淀粉酶基因表达框架的毕赤酵母表达载体构建的方法的差别在于前者只含一种α淀粉酶基因表达框架,而后者含三种α淀粉酶基因表达框架。a. The difference between the method of constructing the Pichia engineering bacteria containing a single alpha amylase gene expression framework and the construction method of the Pichia engineering bacteria containing three alpha amylase gene expression frameworks is the construction of the expression vector; The difference between the construction method of the Pichia expression vector of a single α-amylase gene expression framework and the method of constructing the Pichia expression vector containing three α-amylase gene expression frameworks is that the former only contains one α-amylase gene expression framework , while the latter contains three α-amylase gene expression frameworks.
c.α淀粉酶活性测定方法:应用可溶淀粉平板测定方法。制备含2%可溶淀粉的琼脂平板,将牛津杯置于平板上,各取50μl不同浓度的α淀粉酶标准溶液和不同菌株的发酵液加于不同的牛津杯中,并在每个杯中加入50μl磷酸盐缓冲液。于50℃放置12小时,然后用碘-碘化钾(I2-KI)溶液染色,计算透明圈直径。对以上实验进行三个重复,结果分析取平均值。根据不同浓度的α淀粉酶标准的透明圈绘制标准曲线;根据测试样品的透明圈直径和不同浓度的α淀粉酶标准的透明圈标准曲线计算出各个测试菌株的发酵液的α淀粉酶活性。c. Determination method of α-amylase activity: use soluble starch plate assay method. Prepare an agar plate containing 2% soluble starch, place the Oxford cup on the plate, take 50 μl of α-amylase standard solution of different concentrations and the fermentation broth of different bacterial strains and add it to different Oxford cups, and in each cup Add 50 μl of phosphate buffered saline. Place at 50°C for 12 hours, then stain with iodine-potassium iodide (I 2 -KI) solution, and calculate the diameter of the transparent circle. The above experiments were repeated three times, and the results were analyzed by taking the average value. Draw a standard curve according to the transparent circle of the α-amylase standard of different concentrations; calculate the α-amylase activity of the fermentation liquid of each test strain according to the transparent circle standard curve of the transparent circle diameter of the test sample and the α-amylase standard of different concentrations.
实施例2:Example 2:
2.1构建含大麦的α淀粉酶基因表达框架、地衣芽孢杆菌的α淀粉酶基因表达框架和曲霉的α淀粉酶基因表达框架的酿酒酵母表达载体2.1 Construction of Saccharomyces cerevisiae expression vectors containing the α-amylase gene expression framework of barley, the α-amylase gene expression framework of Bacillus licheniformis and the α-amylase gene expression framework of Aspergillus
2.1.1构建克隆载体2.1.1 Construction of cloning vector
由专业的DNA序列合成公司合成含氨苄青霉素(AMP)基因序列,多克隆接头和大肠杆菌复制起点的两条碱基互补的双链,并且在每条DNA链序列的两端形成粘性末端。通过DNA连接酶的作用使其环化,形成DNA克隆载体。将其克隆载体命名为pSD。A professional DNA sequence synthesis company synthesizes two base complementary double strands containing ampicillin (AMP) gene sequence, polyclonal adapter and E. coli replication origin, and forms cohesive ends at both ends of each DNA strand sequence. It is circularized by the action of DNA ligase to form a DNA cloning vector. The cloning vector was named pSD.
2.1.2获取基因2.1.2 Acquiring genes
①用反转录PCR扩增大麦的α淀粉酶基因①Amplification of barley α-amylase gene by reverse transcription PCR
引物1:5’GGCGAATTCcaagtcctctttcaggggtt3′3’[说明:5’的8个碱基是酶切保护碱基(2个碱基)和酶识别位点(有下划线的6个碱基)]Primer 1: 5'GGC GAATTC caagtcctctttcaggggtt3'3'[Description: The 8 bases at 5' are enzyme-cleaved protection bases (2 bases) and enzyme recognition site (6 bases underlined)]
引物2:5’CAGCGGCCGCCTAgctccgttgtagtgttgccgcggcaccgt3’Primer 2: 5'CA GCGGCCGCGC CTA gctccgttgtagtgttgccgcggcaccgt3'
[说明:5’的10个碱基是酶切保护碱基(2个碱基)和酶识别位点(8个碱基),方框中的18个碱基是编码6个组氨酸的DNA序列。][Explanation: The 10 bases of the 5' are enzyme-cleaved protection bases (2 bases) and enzyme recognition sites (8 bases), and the 18 bases in the box are encoding 6 histidines DNA sequence. ]
应用植物RNA提取试剂盒提取大麦的总RNA,应用cDNA合成试剂盒合成其cDNA,应用引物1和引物2进行PCR扩增,获得的PCR产物经序列分析和用NCBI提供的BLAST软件分析证明是大麦的α淀粉酶基因序列。The total RNA of barley was extracted by plant RNA extraction kit, its cDNA was synthesized by cDNA synthesis kit, PCR amplification was carried out by primer 1 and primer 2, and the obtained PCR product was proved to be barley by sequence analysis and BLAST software analysis provided by NCBI. α-amylase gene sequence.
②用PCR扩增地衣芽孢杆菌(Bacillus Licheniformis)的α淀粉酶基因(包括信号肽)②Amplify the α-amylase gene (including signal peptide) of Bacillus Licheniformis by PCR
引物1:5’GGTACGTAATGAAACAACAAAAACGGCT3’Primer 1: 5'GG TACGTA ATGAAACAACAAAAACGGCT3'
[说明:引物5’端的8个碱基是酶切保护碱基(2个碱基)和DNA限制性内切酶识别位点(有下划线的6个碱基)][Explanation: The 8 bases at the 5' end of the primer are enzyme-cleaved protection bases (2 bases) and DNA restriction endonuclease recognition sites (6 bases underlined)]
引物2:Primer 2:
5’AAGCGGCCGCCTATCTTTGAACATAAATTGAAACCGACCC3’[说明:5’的10个碱基是酶切保护碱基(2个碱基)和酶识别位点(8个碱基),方框中的18个碱基是编码6个组氨酸的DNA序列。]5'AA -GCGGCCGC -CTA TCTTTGAACATAAATTGAAACCGACCC3'[Description: 10 bases of 5' are restriction enzyme protection bases (2 bases) and enzyme recognition site (8 bases), and 18 bases in the box encode 6 histidines acidic DNA sequence. ]
提取地衣芽孢杆菌的基因组DNA,以基因组DNA为模板,应用引物1和引物2进行PCR扩增,PCR产物经序列测定和用NCBI提供的BLAST软件分析证明是地衣芽孢杆菌的含信号肽的α淀粉酶基因序列。[说明:地衣芽孢杆菌基因组DNA提取方法:将地衣芽孢杆菌细胞加于9mg/ml的蜗牛酶溶液(蜗牛酶用1mol/L的山梨醇溶解)于30℃振摇30分钟,然后按照常规的细菌基因组DNA提取方法提取其基因组DNA。]Genomic DNA of Bacillus licheniformis was extracted, using the genomic DNA as a template, primer 1 and primer 2 were used for PCR amplification, and the PCR product was sequenced and analyzed by BLAST software provided by NCBI, which proved to be α-starch containing signal peptide of Bacillus licheniformis Enzyme gene sequence. [Description: Bacillus licheniformis genomic DNA extraction method: Add Bacillus licheniformis cells to 9mg/ml helicase solution (helicase is dissolved with 1mol/L sorbitol) and shake at 30°C for 30 minutes, then follow the conventional bacterial Genomic DNA extraction method extracts its genomic DNA. ]
③用反转录PCR扩增曲霉的α淀粉酶基因③ Amplification of Aspergillus α-amylase gene by reverse transcription PCR
引物1:5’gcgaattcgcaacgcctgcggactggcg3′[说明:5’的8个碱基是酶切保护碱基(2个碱基)和酶识别位点(有下划线的6个碱基)]Primer 1: 5'gc gaattc gcaacgcctgcggactggcg3'[Explanation: The 8 bases at 5' are the enzyme protection bases (2 bases) and the enzyme recognition site (6 bases underlined)]
引物2:5’aagcggccgcCTAgccgtaacagatcttgctacctgccaac3’[说明:5’端的10个碱基是酶切保护碱基(2个碱基)和DNA限制性内切酶识别位点(有下划线的8个碱基)]Primer 2: 5'aa gcggccgc CTA gccgtaacagatcttgctacctgccaac3'[Description: The 10 bases at the 5' end are enzyme-cleaved protection bases (2 bases) and DNA restriction endonuclease recognition sites (8 bases underlined)]
应用真菌RNA提取试剂盒提取曲霉的总RNA,应用cDNA合成试剂盒合成其cDNA,应用引物1和引物2进行PCR扩增,获得的PCR产物经序列分析和用NCBI提供的BLAST软件分析证明是曲霉的α淀粉酶基因序列。Use the fungal RNA extraction kit to extract the total RNA of Aspergillus, use the cDNA synthesis kit to synthesize its cDNA, and use primer 1 and primer 2 to carry out PCR amplification. The obtained PCR product is proved to be Aspergillus by sequence analysis and BLAST software analysis provided by NCBI. α-amylase gene sequence.
2.1.3分别构建含大麦的α淀粉酶基因表达框架、地衣芽孢杆菌的α淀粉酶基因表达框架和曲霉的α淀粉酶基因表达框架。2.1.3 Construct the α-amylase gene expression frameworks containing barley, Bacillus licheniformis α-amylase gene expression frameworks and Aspergillus α-amylase gene expression frameworks respectively.
①用PCR扩增酿酒酵母的三磷酸甘油醛脱氢酶启动子序列。①The promoter sequence of glyceraldehyde triphosphate dehydrogenase in Saccharomyces cerevisiae was amplified by PCR.
引物1:Primer 1:
5’CCTACGTATCGAGTTTATCATTATCAAT 3’5'CC TACGTA TCGAGTTTTATCATTATCAAT 3'
[说明:引物5’端的8个碱基是酶切保护碱基(2个碱基)和DNA限制性内切酶识别位点(有下划线的6个碱基)][Explanation: The 8 bases at the 5' end of the primer are enzyme-cleaved protection bases (2 bases) and DNA restriction endonuclease recognition sites (6 bases underlined)]
引物2:Primer 2:
5’GGGCATGCTCGAAACTAAGTTCTTGGTG 3’5' GG GCATGC TCGAAACTAAGTTCTTGGTG 3'
[说明:引物5’端的8个碱基是酶切保护碱基(2个碱基)和DNA限制性内切酶识别位点(有下划线的6个碱基)][Explanation: The 8 bases at the 5' end of the primer are enzyme-cleaved protection bases (2 bases) and DNA restriction endonuclease recognition sites (6 bases underlined)]
提取酿酒酵母基因组DNA,以基因组DNA为模板,应用引物1和引物2进行PCR扩增,PCR产物经序列测定和用NCBI提供的BLAST软件分析证明是其三磷酸甘油醛脱氢酶基因的启动子序列。Extract the genomic DNA of Saccharomyces cerevisiae, use the genomic DNA as a template, and use primer 1 and primer 2 to carry out PCR amplification. The PCR product is sequenced and analyzed with BLAST software provided by NCBI, and it is proved that it is the promoter of the glyceraldehyde triphosphate dehydrogenase gene sequence.
[说明:酿酒酵母基因组DNA提取方法:将酿酒酵母细胞加于9mg/ml的蜗牛酶溶液(蜗牛酶用1mol/L山梨醇溶解)于30℃振摇30分钟,然后按照常规的细菌基因组DNA提取方法提取其基因组DNA。][Description: Saccharomyces cerevisiae genomic DNA extraction method: Add Saccharomyces cerevisiae cells to 9mg/ml helicase solution (helicase is dissolved in 1mol/L sorbitol) and shake at 30°C for 30 minutes, then follow the conventional bacterial genomic DNA extraction Methods to extract its genomic DNA. ]
②由专业的DNA序列合成公司合成α因子信号肽[如下序列有下划线的是酶切保护碱基(2个碱基)和DNA限制性内切酶识别位点(6个碱基),没有下划线的是α因子信号肽序列]:②Synthesize the α-factor signal peptide by a professional DNA sequence synthesis company [the following sequences are underlined are enzyme protection bases (2 bases) and DNA restriction endonuclease recognition sites (6 bases), without underlines is the alpha factor signal peptide sequence]:
CCGCATGCATGAGATTTCCTTCAATTTTTACTGCAGTTTTATTCGCAGCATCCTCCGCATTAGCTGCTCCAGTCAACACTACAACAGAAGATGAAACGGCACAAATTCCGGCTGAAGCTGTCATCGGTTACTCAGATTTAGAAGGGGATTTCGATGTTGCTGTTTTGCCATTTTCCAACAGCACAAATAACGGGTTATTGTTTATAAATACTACTATTGCCAGCATTGCTGCTAAAGAAGAAGGGGTATCTCTCGAGAAAAGAGAGGCTGAAGCTTACACTAGTCC CCGCATGC ATGAGATTTCCTTCAATTTTTACTGCAGTTTTATTCGCAGCATCCTCCGCATTAGCTGCTCCAGTCAACACTACAACAGAAGATGAAACGGCACAAATTCCGGCTGAAGCTGTCATCGGTTACTCAGATTTAGAAGGGGATTTCGATGTTGCTGTTTTGCCATTTTCCAACAGCACAAATAACGGGTTATTGTTTATAAATACTACTATTGCCAGCATTGCTGCTAAAGAAGAAGGGGTATCTCTCGAGAAAAGAGAGGCTGAAGCTTAC ACTAGTCC
③由专业的DNA序列合成公司合成转录终止子序列[如下序列有下划线的是酶切保护碱基(2个碱基)和DNA限制性内切酶识别位点(6个碱基),没有下划线的是转录终止子序列]:③The transcription terminator sequence was synthesized by a professional DNA sequence synthesis company [the following sequences are underlined are the enzyme protection bases (2 bases) and DNA restriction endonuclease recognition sites (6 bases), without underlines is the transcription terminator sequence]:
GGACTAGTCCTTAGACATGACTGTTCCTCAGTTCAAGTTGGGCACTTACGAGAAGACCGGTCTTGCTAGATTCTAATCAAGAGGATGTCAGAATGCCATTTGCCTGAGAGATGCAGGCTTCATTTTTGATACTTTTTTATTTGTAACCTATATAGTATAGGATTTTTTTTGTCATTTTGTTTCTTCTCGTACGAGCTTGCTCCTGATCAGCCTATCTCGCAGCTGATGAATATCTTGTGGTAGGGGTTTGGGAAAATCATTCGAGTTTGATGTTTTTCTTGGTATTTCCCACTCCTCTTCAGAGTACAGAAGATTAAGTGAGAAGTTCGTTTGTGCAAGCTTATCGATCC GGACTAGT CCTTAGACATGACTGTTCCTCAGTTCAAGTTGGGCACTTACGAGAAGACCGGTCTTGCTAGATTCTAATCAAGAGGATGTCAGAATGCCATTTGCCTGAGAGATGCAGGCTTCATTTTTGATACTTTTTTATTTGTAACCTATATAGTATAGGATTTTTTTTGTCATTTTGTTTCTTCTCGTACGAGCTTGCTCCTGATCAGCCTATCTCGCAGCTGATGAATATCTTGTGGTAGGGGTTTGGGAAAATCATTCGAGTTTGATGTTTTTCTTGGTATTTCCCACTCCTCTTCAGAGTACAGAAGATTAAGTGAGAAGTTCGTTTGTGCAAGCTT ATCGATCC
④:用套叠PCR法合成如下G418抗性基因序列[如下序列有下划线的是酶切保护碱基(2个碱基)和DNA限制性内切酶识别位点(6个碱基),没有下划线的是G418抗性基因序列]④: Synthesize the following G418 resistance gene sequence by nested PCR method [the underlined sequence in the following sequence is the restriction enzyme protection base (2 bases) and the DNA restriction endonuclease recognition site (6 bases), without Underlined is the G418 resistance gene sequence]
GGATCGATCCAATTCTGATTAGAAAAACTCATCGAGCATCAAATGAAACTGCAATTTATTCATATCAGGATTATCAATACCATATTTTTGAAAAAGCCGTTTCTGTAATGAAGGAGAAAACTCACCGAGGCAGTTCCATAGGATGGCAAGATCCTGGTATCGGTCTGCGATTCCGACTCGTCCAACATCAATACAACCTATTAATTTCCCCTCGTCAAAAATAAGGTTATCAAGTGAGAAATCACCATGAGTGACGACTGAATCCGGTGAGAATGGCAAAAGCTTATGCATTTCTTTCCAGACTTGTTCAACAGGCCAGCCATTACGCTCGTCATCAAAATCACTCGCATCAACCAAACCGTTATTCATTCGTGATTGCGCCTGAGCGAGACGAAATACGCGATCGCTGTTAAAAGGACAATTACAAACAGGAATCGAATGCAACCGGCGCAGGAACACTGCCAGCGCATCAACAATATTTTCACCTGAATCAGGATATTCTTCTAATACCTGGAATGCTGTTTTCCCGGGGATCGCAGTGGTGAGTAACCATGCATCATCAGGAGTACGGATAAAATGCTTGATGGTCGGAAGAGGCATAAATTCCGTCAGCCAGTTTAGTCTGACCATCTCATCTGTAACATCATTGGCAACGCTACCTTTGCCATGTTTCAGAAACAACTCTGGCGCATCGGGCTTCCCATACAATCGATAGATTGTCGCACCTGATTGCCCGACATTATCGCGAGCCCATTTATACCCATATAAATCAGCATCCATGTTGGAATTTAATCGCGGCCTCGAGCAAGACGTTTCCCGTTGAATATGGCTCATGGTACCGG GGATCGAT GGTACCGG
⑤从酿酒酵母基因组中PCR扩增rDNA序列⑤PCR amplification of rDNA sequence from Saccharomyces cerevisiae genome
引物1:Primer 1:
5’CCGGTACCTGAACTAACACCTTTTGTGG3’5'CC GGTACC TGAACTAACACCTTTTGTGG3'
引物2:Primer 2:
5’CCTTCGAAGCTAATACATGCTTAAAATC3’5'CC TTCGAA GCTAATACATGCTTAAAATC3'
[说明:引物5’端的8个碱基是酶切保护碱基(2个碱基)和DNA限制性内切酶识别位点(有下划线的6个碱基)][Explanation: The 8 bases at the 5' end of the primer are enzyme-cleaved protection bases (2 bases) and DNA restriction endonuclease recognition sites (6 bases underlined)]
提取酿酒酵母基因组DNA,以基因组DNA为模板,应用引物1和引物2进行PCR扩增,获得的PCR产物经序列分析和用NCBI提供的BLAST软件分析证明是酿酒酵母基因组中的rDNA序列。Genomic DNA of Saccharomyces cerevisiae was extracted, using the genomic DNA as a template, primer 1 and primer 2 were used for PCR amplification, and the obtained PCR product was proved to be the rDNA sequence in the Saccharomyces cerevisiae genome by sequence analysis and BLAST software analysis provided by NCBI.
⑥表达框架构建过程:⑥Expression framework construction process:
A.含大麦的α淀粉酶基因表达框架的构建:A. Construction of barley-containing α-amylase gene expression framework:
通过DNA限制性内切酶和T4DNA连接酶的作用,将酿酒酵母的三磷酸甘油醛脱氢酶启动子DNA序列重组于pSD载体的多克隆位点;将α因子信号肽DNA序列重组于pSD载体的多克隆位点,并使其位于启动子序列的下游;将反转录扩增获得的大麦的α淀粉酶基因序列重组于pSD载体的多克隆位点,并使其位于信号肽序列的下游;将转录终止子序列重组于pSD载体的多克隆位点,并使其位于基因序列下游。此含大麦的α淀粉酶基因表达框架的载体称为pSD1。Through the action of DNA restriction endonuclease and T4 DNA ligase, recombine the DNA sequence of glyceraldehyde triphosphate dehydrogenase promoter of Saccharomyces cerevisiae into the multiple cloning site of pSD vector; recombine the α factor signal peptide DNA sequence into pSD vector The multiple cloning site of the pSD vector, and make it located downstream of the promoter sequence; recombine the barley α-amylase gene sequence obtained by reverse transcription amplification into the multiple cloning site of the pSD vector, and make it located downstream of the signal peptide sequence ; Recombine the transcription terminator sequence into the multiple cloning site of the pSD vector, and make it located downstream of the gene sequence. The vector containing the barley α-amylase gene expression framework is called pSD1.
B.含地衣芽孢杆菌的α淀粉酶基因表达框架的构建:B. Construction of α-amylase gene expression framework containing Bacillus licheniformis:
通过DNA限制性内切酶和T4DNA连接酶的作用,将酿酒酵母的三磷酸甘油醛脱氢酶启动子DNA序列重组于pSD载体的多克隆位点;将PCR扩增获得的地衣芽孢杆菌的包含信号肽的α淀粉酶基因序列重组于pSD载体的多克隆位点,并使其位于启动子序列的下游;将转录终止子序列重组于pSD载体的多克隆位点,并使其位于基因序列下游。此含地衣芽孢杆菌的α淀粉酶基因表达框架的载体称为pSD2。Through the action of DNA restriction endonuclease and T4 DNA ligase, the glyceraldehyde triphosphate dehydrogenase promoter DNA sequence of Saccharomyces cerevisiae was recombined into the multiple cloning site of pSD vector; the inclusion of Bacillus licheniformis obtained by PCR amplification The α-amylase gene sequence of the signal peptide is recombined in the multiple cloning site of the pSD vector, and it is located downstream of the promoter sequence; the transcription terminator sequence is recombined in the multiple cloning site of the pSD vector, and it is located downstream of the gene sequence . The vector containing the expression framework of the α-amylase gene of Bacillus licheniformis is called pSD2.
C.含曲霉的α淀粉酶基因表达框架的构建:C. Construction of Aspergillus-containing α-amylase gene expression framework:
通过DNA限制性内切酶和T4DNA连接酶的作用,将酿酒酵母三磷酸甘油醛脱氢酶启动子DNA序列重组于pSD载体的多克隆位点;将α因子信号肽DNA序列重组于pSD载体的多克隆位点,并使其位于启动子序列的下游;将反转录扩增获得的曲霉的α淀粉酶基因序列重组于pSD载体的多克隆位点,并使其位于信号肽序列的下游;将转录终止子序列重组于pSD载体的多克隆位点,并使其位于基因序列下游。此含曲霉的α淀粉酶基因表达框架的载体称为pSD3⑦完成酿酒酵母表达载体的构建Through the action of DNA restriction endonuclease and T4 DNA ligase, recombine the DNA sequence of the glyceraldehyde triphosphate dehydrogenase promoter of Saccharomyces cerevisiae into the multiple cloning site of the pSD vector; recombine the α factor signal peptide DNA sequence into the pSD vector Multiple cloning site, and make it be positioned at the downstream of promoter sequence; Recombine the α-amylase gene sequence of Aspergillus obtained by reverse transcription amplification into the multiple cloning site of pSD vector, and make it be positioned at the downstream of signal peptide sequence; The transcription terminator sequence was recombined into the multiple cloning site of the pSD vector and positioned downstream of the gene sequence. The vector containing the α-amylase gene expression framework of Aspergillus is called pSD3⑦Complete the construction of the expression vector of Saccharomyces cerevisiae
A.将三套表达框架组装于同一个克隆载体。A. Three sets of expression frameworks were assembled in the same cloning vector.
通过DNA限制性内切酶和T4 DNA连接酶的作用,分别切下pSD2和pSD3载体的表达框架,并将其切下的两个表达框架重组于pSD1的多克隆位点。此载体称为pSD123.Through the action of DNA restriction endonuclease and T4 DNA ligase, the expression frameworks of pSD2 and pSD3 vectors were respectively excised, and the two excised expression frameworks were recombined into the multiple cloning site of pSD1. This vector is called pSD123.
B.通过DNA限制性内切酶和T4 DNA连接酶的作用依次将酿酒酵母的rDNA序列(DNA重组序列)和G418基因重组于pSD123载体的多克隆位点,构成含大麦的α淀粉酶基因表达框架、地衣芽孢杆菌的α淀粉酶基因表达框架和曲霉的α淀粉酶基因表达框架的酿酒酵母表达载体(附图2)。B. Recombine the rDNA sequence (DNA recombination sequence) and G418 gene of Saccharomyces cerevisiae into the multiple cloning site of pSD123 vector through the action of DNA restriction endonuclease and T4 DNA ligase to form the gene expression of α-amylase containing barley Framework, the α-amylase gene expression framework of Bacillus licheniformis and the Saccharomyces cerevisiae expression vector of the α-amylase gene expression framework of Aspergillus (accompanying drawing 2).
2.2构建含大麦的α淀粉酶基因表达框架、地衣芽孢杆菌的α淀粉酶基因表达框架和曲霉的α淀粉酶基因表达框架的酿酒酵母工程菌2.2 Construction of Saccharomyces cerevisiae engineering bacteria containing barley α-amylase gene expression framework, Bacillus licheniformis α-amylase gene expression framework and Aspergillus α-amylase gene expression framework
用电转化方法将以上构建的酿酒酵母表达载体(见附图2)转化酿酒酵母,将经过电转化的酿酒酵母细胞涂布G418抗性平板。以重组子(在G418抗性平板上生长的克隆)基因组DNA为模板,分别用大麦的α淀粉酶基因的特异引物、地衣芽孢杆菌的α淀粉酶基因的特异引物和曲霉的α淀粉酶基因的特异引物进行PCR进行扩增,将扩增出符合目标分子量的PCR产物进行DNA序列测定而验证获得了正确的重组子。将含以上含三种α淀粉酶基因表达框架的重组子在接种于YPD[2%蛋白胨,1%yeast extract(酵母提取物),2%葡萄糖]培养基中,30℃摇床培养两天,将发酵液离心,收获上清。应用发酵液进行SDS-PAGE(十二烷基硫酸钠-聚丙烯酰胺凝胶电泳),其结果表明出现新的符合这三个基因编码的酶蛋白分子量的蛋白条带。用His6融合蛋白纯化试剂盒纯化目标蛋白,用Hi s标签单克隆抗体对纯化的三种目标蛋白进行蛋白印迹实验,结果表明这三种目标蛋白都能与His标签单克隆抗体结合,证明大麦的α淀粉酶基因、地衣芽孢杆菌的α淀粉酶基因和曲霉的α淀粉酶基因都能在含大麦的α淀粉酶基因表达框架、地衣芽孢杆菌的α淀粉酶基因表达框架和曲霉的α淀粉酶基因表达框架的酿酒酵母中表达和分泌到胞外。筛选高表达以上所述的三种混合α淀粉酶的重组子作为含大麦的α淀粉酶基因表达框架、地衣芽孢杆菌的α淀粉酶基因表达框架和曲霉的α淀粉酶基因表达框架的酿酒酵母工程菌。The Saccharomyces cerevisiae expression vector constructed above (see Figure 2) was transformed into Saccharomyces cerevisiae by electroporation, and the electrotransformed Saccharomyces cerevisiae cells were coated with G418 resistance plate. Using recombinant (clones grown on G418 resistant plates) genomic DNA as a template, use specific primers for the α-amylase gene of barley, the α-amylase gene of Bacillus licheniformis and the α-amylase gene of Aspergillus Specific primers are used for PCR amplification, and the amplified PCR product conforming to the target molecular weight is subjected to DNA sequence determination to verify that the correct recombinant is obtained. The recombinants containing the above three α-amylase gene expression frameworks were inoculated in YPD [2% peptone, 1% yeast extract (yeast extract), 2% glucose] medium, and cultured on a shaker at 30°C for two days. The fermentation broth was centrifuged and the supernatant harvested. SDS-PAGE (sodium dodecyl sulfate-polyacrylamide gel electrophoresis) was carried out using the fermentation broth, and the results showed that new protein bands appeared in accordance with the molecular weights of the enzyme proteins encoded by these three genes. Purify the target protein with the His6 fusion protein purification kit, and perform western blot experiments on the purified three target proteins with the His tag monoclonal antibody. The results show that the three target proteins can bind to the His tag monoclonal antibody, proving the The α-amylase gene, the α-amylase gene of Bacillus licheniformis and the α-amylase gene of Aspergillus can be expressed in the gene expression framework containing barley α-amylase, the α-amylase gene expression framework of Bacillus licheniformis and the α-amylase gene of Aspergillus Expression framework in Saccharomyces cerevisiae and secreted extracellularly. Saccharomyces cerevisiae engineering for screening high-expression recombinants of the above three mixed α-amylases as gene expression frameworks for barley α-amylases, Bacillus licheniformis α-amylases and Aspergillus α-amylases bacteria.
2.3生产重组大麦的α淀粉酶基因编码的α淀粉酶、地衣芽孢杆菌的α淀粉酶基因编码的α淀粉酶和曲霉的α淀粉酶基因编码的α淀粉酶2.3 Production of α-amylase encoded by the α-amylase gene of recombinant barley, α-amylase encoded by the α-amylase gene of Bacillus licheniformis and α-amylase encoded by the α-amylase gene of Aspergillus
将含大麦的α淀粉酶基因表达框架、地衣芽孢杆菌的α淀粉酶基因表达框架和曲霉的α淀粉酶基因表达框架的酿酒酵母工程菌、含大麦的α淀粉酶基因表达框架的酿酒酵母工程菌、含地衣芽孢杆菌的α淀粉酶基因表达框架的酿酒酵母工程菌、含曲霉的α淀粉酶基因表达框架的酿酒酵母工程菌和不含α淀粉酶基因表达框架的酿酒酵母分别接种于YPD培养基中,30℃摇床发酵两天;将天然的产α淀粉酶的地衣芽孢杆菌(应用于1.1.2所述的PCR扩增α淀粉酶基因的地衣芽孢杆菌菌株)接种于LB(1%胰蛋白胨,1%氯化钠,0.5%酵母提取物)培养基,37℃摇床发酵两天;将曲霉(应用于2.1.2所述的PCR扩增α淀粉酶基因的曲霉菌株)接种于常规的真菌培养基(土豆汁200g/L、葡萄糖20g/L),在30℃摇床发酵3天。以上所述的每个菌株的发酵都是一式三份。分别收集其发酵液上清于50℃、70℃和80℃条件分析其发酵液上清在酸性(pH4和pH5)、中性(pH7)和碱性(pH8.5)环境下的α淀粉酶活性。结果表明,将含大麦的α淀粉酶基因表达框架、地衣芽孢杆菌的α淀粉酶基因表达框架和曲霉的α淀粉酶基因表达框架的酿酒酵母工程菌的发酵液上清(每升)在以上所述的温度和pH的平均α淀粉酶活性分别是50℃和pH4(650760单位)、50℃和pH5(976407单位)、50℃和pH7(1096364单位)、50℃和pH8.5(495433单位)、70℃和pH4(806217单位)、70℃和pH5(1253830单位)、70℃和pH7(1502794单位)、70℃和pH8.5(717058单位)、80℃和pH4(810731单位)、80℃和pH5(1448699单位)、80℃和pH7(1752024单位)、80℃和pH8.5(906641单位);含大麦的α淀粉酶基因表达框架的酿酒酵母工程菌的发酵液上清(每升)在大麦的α淀粉酶的最适合的温度和pH(pH5和70℃)的平均α淀粉酶活性是758495单位;含地衣芽孢杆菌的α淀粉酶基因表达框架的酿酒酵母工程菌的发酵液上清(每升)在地衣芽孢杆菌的α淀粉酶的最适合的温度和pH(pH8.5和80℃)的平均α淀粉酶活性是495685单位±62单位;含曲霉的α淀粉酶基因表达框架的酿酒酵母工程菌的发酵液上清(每升)在曲霉的α淀粉酶的最适合的温度和pH(pH4和70℃)的平均α淀粉酶活性是499690单位;天然的产α淀粉酶的地衣芽孢杆菌的发酵液上清(每升)在地衣芽孢杆菌的α淀粉酶的最适合的温度和pH(pH8.5和80℃)的平均α淀粉酶活性是78065单位;曲霉的发酵液上清(每升)在曲霉的α淀粉酶的最适合的温度和pH(pH4和70℃)的平均α淀粉酶活性是87089单位;不含α淀粉酶基因的酿酒酵母的发酵液上清(每升)在以上所述的各种温度和pH都没有测到α淀粉酶活性。以上发酵表达产物的酶活性分析的结果表明:含大麦的α淀粉酶基因表达框架、地衣芽孢杆菌的α淀粉酶基因表达框架和曲霉的α淀粉酶基因表达框架的酿酒酵母工程菌表达产物在酸性、中性和碱性以及不同的试验温度都显示有良好的α淀粉酶活性,并且显著高于(P<0.01)含单种α淀粉酶基因的酿酒酵母工程菌或产α淀粉酶的天然菌株的表达产物的α淀粉酶活性。Saccharomyces cerevisiae engineering bacteria containing barley α-amylase gene expression framework, Bacillus licheniformis α-amylase gene expression framework and Aspergillus cerevisiae gene expression framework, Saccharomyces cerevisiae engineering bacteria containing barley α-amylase gene expression framework , Saccharomyces cerevisiae engineering bacteria containing the α-amylase gene expression framework of Bacillus licheniformis, Saccharomyces cerevisiae engineering bacteria containing the α-amylase gene expression framework of Aspergillus, and Saccharomyces cerevisiae without the α-amylase gene expression framework were inoculated in YPD medium In 30 DEG C shaker fermentation for two days; the natural α-amylase-producing Bacillus licheniformis (applied to the Bacillus licheniformis strain of the PCR amplified α-amylase gene described in 1.1.2) was inoculated in LB (1% pancreatic Peptone, 1% sodium chloride, 0.5% yeast extract) culture medium, 37 ℃ shaker fermentation for two days; Aspergillus (applied to the Aspergillus strain of PCR amplification α-amylase gene described in 2.1.2) was inoculated in routine The fungal medium (potato juice 200g/L, glucose 20g/L) was fermented in a shaker at 30°C for 3 days. Fermentations for each of the strains described above were performed in triplicate. Collect the supernatant of the fermentation broth at 50°C, 70°C and 80°C to analyze the α-amylase in the supernatant of the fermentation broth in acidic (pH4 and pH5), neutral (pH7) and alkaline (pH8.5) environments active. The result showed that the fermented liquid supernatant (per liter) of the Saccharomyces cerevisiae engineered bacteria containing the α-amylase gene expression framework of barley, the α-amylase gene expression framework of Bacillus licheniformis and the α-amylase gene expression framework of Aspergillus The average alpha amylase activity at the stated temperature and pH are 50°C and pH 4 (650760 units), 50°C and pH5 (976407 units), 50°C and pH7 (1096364 units), 50°C and pH8.5 (495433 units) , 70°C and pH4 (806217 units), 70°C and pH5 (1253830 units), 70°C and pH7 (1502794 units), 70°C and pH8.5 (717058 units), 80°C and pH4 (810731 units), 80°C and pH5 (1448699 units), 80°C and pH7 (1752024 units), 80°C and pH8.5 (906641 units); fermentation supernatant of engineered Saccharomyces cerevisiae containing barley α-amylase gene expression framework (per liter) The average α-amylase activity at the most suitable temperature and pH (pH5 and 70°C) of barley α-amylase is 758495 units; the fermentation supernatant of Saccharomyces cerevisiae engineered bacteria containing the α-amylase gene expression framework of Bacillus licheniformis (per liter) the average alpha amylase activity at the most suitable temperature and pH (pH8.5 and 80°C) of the alpha amylase of Bacillus licheniformis is 495685 units ± 62 units; The average α-amylase activity of the fermented liquid supernatant (per liter) of the α-amylase of Aspergillus at the most suitable temperature and pH (pH4 and 70°C) of Saccharomyces cerevisiae engineering bacteria is 499690 units; natural lichen producing α-amylase The average α-amylase activity of the fermentation broth supernatant (per liter) of Bacillus licheniformis at the optimum temperature and pH (pH8.5 and 80°C) of Bacillus licheniformis was 78065 units; the fermentation broth supernatant of Aspergillus (per liter) the average α-amylase activity at the most suitable temperature and pH (pH4 and 70° C.) of the α-amylase of Aspergillus is 87089 units; ) No alpha-amylase activity was detected at the various temperatures and pHs described above. The results of the enzyme activity analysis of the above fermentation expression products show that: the expression products of Saccharomyces cerevisiae engineering bacteria containing the α-amylase gene expression framework of barley, the α-amylase gene expression framework of Bacillus licheniformis and the α-amylase gene expression framework of Aspergillus in acid , neutral and alkaline, and different test temperatures all show good α-amylase activity, and it is significantly higher (P<0.01) than the Saccharomyces cerevisiae engineering bacteria containing a single α-amylase gene or the natural strain producing α-amylase α-amylase activity of the expressed product.
说明:illustrate:
a.含单种α淀粉酶基因表达框架的酿酒酵母工程菌的构建的方法与含三种α淀粉酶基因表达框架的酿酒酵母工程菌的构建的方法的差别在于表达载体的构建;含单种α淀粉酶基因表达框架的酿酒酵母表达载体的构建方法与含三种α淀粉酶基因表达框架的酿酒酵母表达载体构建的方法的差别在于前者只含一种α淀粉酶基因表达框架,而后者含三种α淀粉酶基因表达框架。a. The difference between the construction method of the Saccharomyces cerevisiae engineering bacteria containing a single α-amylase gene expression framework and the construction method of the Saccharomyces cerevisiae engineering bacteria containing three α-amylase gene expression frameworks lies in the construction of the expression vector; The difference between the construction method of the Saccharomyces cerevisiae expression vector of the α-amylase gene expression framework and the method for the construction of the Saccharomyces cerevisiae expression vector containing three α-amylase gene expression frameworks is that the former only contains a kind of α-amylase gene expression framework, while the latter contains Three α-amylase gene expression frameworks.
c.α淀粉酶活性测定方法:应用可溶淀粉平板测定方法。制备含2%可溶淀粉的琼脂平板,将牛津杯置于平板上,各取50μl不同浓度的α淀粉酶标准溶液和不同菌株的发酵液加于不同的牛津杯中,并在每个杯中加入50μl磷酸盐缓冲液。于50℃放置12小时,然后用碘-碘化钾(I2-KI)溶液染色,计算透明圈直径。对以上实验进行三个重复,结果分析取平均值。根据不同浓度的α淀粉酶标准的透明圈绘制标准曲线;根据测试样品的透明圈直径和不同浓度的α淀粉酶标准的透明圈标准曲线计算出各个测试菌株的发酵液的α淀粉酶活性。c. Determination method of α-amylase activity: use soluble starch plate assay method. Prepare an agar plate containing 2% soluble starch, place the Oxford cup on the plate, take 50 μl of α-amylase standard solution of different concentrations and the fermentation broth of different bacterial strains and add it to different Oxford cups, and in each cup Add 50 μl of phosphate buffered saline. Place at 50°C for 12 hours, then stain with iodine-potassium iodide (I 2 -KI) solution, and calculate the diameter of the transparent circle. The above experiments were repeated three times, and the results were analyzed by taking the average value. Draw a standard curve according to the transparent circle of the α-amylase standard of different concentrations; calculate the α-amylase activity of the fermentation liquid of each test strain according to the transparent circle standard curve of the transparent circle diameter of the test sample and the α-amylase standard of different concentrations.
实施例3:Example 3:
3.1构建含大麦的α淀粉酶基因表达框架、地衣芽孢杆菌的α淀粉酶基因表达框架和曲霉的α淀粉酶基因表达框架的枯草芽孢杆菌表达载体3.1 Construction of the Bacillus subtilis expression vector containing the α-amylase gene expression framework of barley, the α-amylase gene expression framework of Bacillus licheniformis and the α-amylase gene expression framework of Aspergillus
3.1.1构建克隆载体3.1.1 Construction of cloning vector
由专业的DNA序列合成公司合成含氨苄青霉素(AMP)基因序列,多克隆接头和大肠杆菌复制起点的两条碱基互补的双链,并且在每条DNA链序列的两端形成粘性末端。通过DNA连接酶的作用使其环化,形成DNA克隆载体。将其克隆载体命名为pBD。A professional DNA sequence synthesis company synthesizes two base complementary double strands containing ampicillin (AMP) gene sequence, polyclonal adapter and E. coli replication origin, and forms cohesive ends at both ends of each DNA strand sequence. It is circularized by the action of DNA ligase to form a DNA cloning vector. The cloning vector was named pBD.
3.1.2获取基因3.1.2 Acquiring genes
①用反转录PCR扩增大麦的α淀粉酶基因①Amplification of barley α-amylase gene by reverse transcription PCR
引物1:5’GGCGAATTCcaagtcctctttcaggggtt3′3’[说明:5’的8个碱基是酶切保护碱基(2个碱基)和酶识别位点(有下划线的6个碱基)]Primer 1: 5'GGC GAATTC caagtcctctttcaggggtt3'3'[Description: The 8 bases at 5' are enzyme-cleaved protection bases (2 bases) and enzyme recognition site (6 bases underlined)]
引物2:5’CAGCGGCCGCCTAgctccgttgtagtgttgccgcggcaccgt3’Primer 2: 5'CA GCGGCCGCGC CTA gctccgttgtagtgttgccgcggcaccgt3'
[说明:5’的10个碱基是酶切保护碱基(2个碱基)和酶识别位点(8个碱基),方框中的18个碱基是编码6个组氨酸的DNA序列。][Explanation: The 10 bases of the 5' are enzyme-cleaved protection bases (2 bases) and enzyme recognition sites (8 bases), and the 18 bases in the box are encoding 6 histidines DNA sequence. ]
应用植物RNA提取试剂盒提取大麦的总RNA,应用cDNA合成试剂盒合成其cDNA,应用引物1和引物2进行PCR扩增,获得的PCR产物经序列分析和用NCBI提供的BLAST软件分析证明是大麦的α淀粉酶基因序列。The total RNA of barley was extracted by plant RNA extraction kit, its cDNA was synthesized by cDNA synthesis kit, PCR amplification was carried out by primer 1 and primer 2, and the obtained PCR product was proved to be barley by sequence analysis and BLAST software analysis provided by NCBI. α-amylase gene sequence.
②用PCR扩增地衣芽孢杆菌(Bacillus Licheniformis)的α淀粉酶基因(包括信号肽)②Amplify the α-amylase gene (including signal peptide) of Bacillus Licheniformis by PCR
引物1:5’GGTACGTAATGAAACAACAAAAACGGCT3’Primer 1: 5'GG TACGTA ATGAAACAACAAAAACGGCT3'
[说明:引物5’端的8个碱基是酶切保护碱基(2个碱基)和DNA限制性内切酶识别位点(有下划线的6个碱基)][Explanation: The 8 bases at the 5' end of the primer are enzyme-cleaved protection bases (2 bases) and DNA restriction endonuclease recognition sites (6 bases underlined)]
引物2:Primer 2:
5’AAGCGGCCGCCTATCTTTGAACATAAATTGAAACCGACCC3’[说明:5’的10个碱基是酶切保护碱基(2个碱基)和酶识别位点(8个碱基),方框中的18个碱基是编码6个组氨酸的DNA序列。]5'AA -GCGGCCGC -CTA TCTTTGAACATAAATTGAAACCGACCC3'[Description: 10 bases of 5' are restriction enzyme protection bases (2 bases) and enzyme recognition site (8 bases), and 18 bases in the box encode 6 histidines acidic DNA sequence. ]
提取地衣芽孢杆菌的基因组DNA,以基因组DNA为模板,应用引物1和引物2进行PCR扩增,PCR产物经序列测定和用NCBI提供的BLAST软件分析证明是地衣芽孢杆菌的含信号肽的α淀粉酶基因序列。[说明:地衣芽孢杆菌基因组DNA提取方法:将地衣芽孢杆菌细胞加于9mg/ml的蜗牛酶溶液(蜗牛酶用1mol/L的山梨醇溶解)于30℃振摇30分钟,然后按照常规的细菌基因组DNA提取方法提取其基因组DNA。]Genomic DNA of Bacillus licheniformis was extracted, using the genomic DNA as a template, primer 1 and primer 2 were used for PCR amplification, and the PCR product was sequenced and analyzed by BLAST software provided by NCBI, which proved to be α-starch containing signal peptide of Bacillus licheniformis Enzyme gene sequence. [Description: Bacillus licheniformis genomic DNA extraction method: Add Bacillus licheniformis cells to 9mg/ml helicase solution (helicase is dissolved with 1mol/L sorbitol) and shake at 30°C for 30 minutes, then follow the conventional bacterial Genomic DNA extraction method extracts its genomic DNA. ]
③用反转录PCR扩增曲霉的α淀粉酶基因③ Amplification of Aspergillus α-amylase gene by reverse transcription PCR
引物1:5’gcgaattcgcaacgcctgcggactggcg3′[说明:5’的8个碱基是酶切保护碱基(2个碱基)和酶识别位点(有下划线的6个碱基)]Primer 1: 5'gc gaattc gcaacgcctgcggactggcg3'[Explanation: The 8 bases at 5' are the enzyme protection bases (2 bases) and the enzyme recognition site (6 bases underlined)]
引物2:5’aagcggccgcCTAgccgtaacagatcttgctacctgccaac3’[说明:5’端的10个碱基是酶切保护碱基(2个碱基)和DNA限制性内切酶识别位点(有下划线的8个碱基)]Primer 2: 5'aa gcggccgc CTA gccgtaacagatcttgctacctgccaac3'[Description: The 10 bases at the 5' end are enzyme-cleaved protection bases (2 bases) and DNA restriction endonuclease recognition sites (8 bases underlined)]
应用真菌RNA提取试剂盒提取曲霉的总RNA,应用cDNA合成试剂盒合成其cDNA,应用引物1和引物2进行PCR扩增,获得的PCR产物经序列分析和用NCBI提供的BLAST软件分析证明是曲霉的α淀粉酶基因序列。Use the fungal RNA extraction kit to extract the total RNA of Aspergillus, use the cDNA synthesis kit to synthesize its cDNA, and use primer 1 and primer 2 to carry out PCR amplification. The obtained PCR product is proved to be Aspergillus by sequence analysis and BLAST software analysis provided by NCBI. α-amylase gene sequence.
3.1.3分别构建含大麦的α淀粉酶基因表达框架、地衣芽孢杆菌的α淀粉酶基因表达框架和曲霉的α淀粉酶基因表达框架的枯草芽孢杆菌表达载体。3.1.3 Construct Bacillus subtilis expression vectors containing barley α-amylase gene expression framework, Bacillus licheniformis α-amylase gene expression framework and Aspergillus α-amylase gene expression framework respectively.
①用PCR扩增巨大芽孢杆菌(Bacillus megaterium)的三磷酸甘油醛脱氢酶启动子序列引物1:①Use PCR to amplify the glyceraldehyde triphosphate dehydrogenase promoter sequence primer 1 of Bacillus megaterium:
5’CCTACGTAGATCCATTATCGGTGAACCA 3’5'CCTACGTAGATCCATTATCGGTGAACCA 3'
引物2:Primer 2:
5’GGGCATGCGGGTATTTCCTCCTTGAATGT 3’5' GG GCATGC GGGTATTTCCTCCTTGAATGT 3'
[说明:引物5’端的8个碱基是酶切保护碱基(2个碱基)和DNA限制性内切酶识别位点(有下划线的6个碱基)][Explanation: The 8 bases at the 5' end of the primer are enzyme-cleaved protection bases (2 bases) and DNA restriction endonuclease recognition sites (6 bases underlined)]
提取巨大芽孢杆菌的基因组DNA[巨大枯草芽孢杆菌基因组DNA提取方法:将枯草芽孢杆菌细胞加于9mg/ml的蜗牛酶溶液(蜗牛酶用1mol/L的山梨醇溶解)于30℃振摇30分钟,然后按照常规的细菌基因组DNA提取方法提取其基因组DNA。],以巨大芽孢杆菌的基因组DNA为模板,应用引物1和引物2进行PCR扩增,PCR产物经序列测定和用NCBI提供的BLAST软件分析证明是巨大芽孢杆菌三磷酸甘油醛脱氢酶基因的启动子序列[如下序列有下划线的是酶切保护碱基(2个碱基)和DNA限制性内切酶识别位点(6个碱基),没有下划线的是巨大芽孢杆菌的三磷酸甘油醛脱氢酶启动子序列]:Extract the genomic DNA of Bacillus megaterium [Bacillus subtilis genomic DNA extraction method: add Bacillus subtilis cells to 9mg/ml helicase solution (helicase is dissolved with 1mol/L sorbitol) and shake at 30°C for 30 minutes , and then extract its genomic DNA according to the conventional bacterial genomic DNA extraction method. ], with the genomic DNA of Bacillus megaterium as a template, primer 1 and primer 2 were used to carry out PCR amplification, and the PCR product was sequenced and analyzed with BLAST software provided by NCBI to prove that it was the gene of Bacillus megaterium glyceraldehyde triphosphate dehydrogenase Promoter sequence [the underlined sequence is the enzyme protection base (2 bases) and the DNA restriction endonuclease recognition site (6 bases), and the ununderlined one is the glyceraldehyde triphosphate of Bacillus megaterium Dehydrogenase promoter sequence]:
CCTACGTAGATCCATTATCGGTGAACCATCTATTAAAGACATGCTTCATTTAATTAAGTCCGCTGGTATGGTTGTTCACGGAATAGGAGACGCTATGACAATGGCAGAACGCCGTAAAACACCACAAGCAGACTTAGAAAAAGTGAAAAATGGACATGCTGTAGGTGAGGCATTTGGATACTATTTTAATCATCAAGGCGAAGTTGTTCATAAAGTTAAAACAGTTGGCATACAACTCGATGATTTAAAGAACAATAAATGTGTTATTGCTGTTGCAGGAGGTTCATCAAAAGCAAAGGCAATTAAAGCGTTTATGCAACAAGCGCATGATTCGATTCTCATTACAGATGAAGGCGCCGCAAAAGAGTTAGTAAGGGATTTTAATTAATCCCTCATATAAAAAATACTTTTTACATTCAAGGAGGAAATACCCGCATGCCC CCTACGTA GATCCATTATCGGTGAACCATCTATTAAAGACATGCTTCATTTAATTAAGTCCGCTGGTATGGTTGTTCACGGAATAGGAGACGCTATGACAATGGCAGAACGCCGTAAAACACCACAAGCAGACTTAGAAAAAGTGAAAAATGGACATGCTGTAGGTGAGGCATTTGGATACTATTTTAATCATCAAGGCGAAGTTGTTCATAAAGTTAAAACAGTTGGCATACAACTCGATGATTTAAAGAACAATAAATGTGTTATTGCTGTTGCAGGAGGTTCATCAAAAGCAAAGGCAATTAAAGCGTTTATGCAACAAGCGCATGATTCGATTCTCATTACAGATGAAGGCGCCGCAAAAGAGTTAGTAAGGGATTTTAATTAATCCCTCATATAAAAAATACTTTTTACATTCAAGGAGGAAATACCC GCATGCCC
②由专业的DNA序列合成公司合成α因子信号肽[如下序列有下划线的是酶切保护碱基(2个碱基)和DNA限制性内切酶识别位点(6个碱基),没有下划线的是α因子信号肽序列]:②Synthesize the α-factor signal peptide by a professional DNA sequence synthesis company [the following sequences are underlined are enzyme protection bases (2 bases) and DNA restriction endonuclease recognition sites (6 bases), without underlines is the alpha factor signal peptide sequence]:
CCGCATGCATGAGATTTCCTTCAATTTTTACTGCAGTTTTATTCGCAGCATCCTCCGCATTAGCTGCTCCAGTCAACACTACAACAGAAGATGAAACGGCACAAATTCCGGCTGAAGCTGTCATCGGTTACTCAGATTTAGAAGGGGATTTCGATGTTGCTGTTTTGCCATTTTCCAACAGCACAAATAACGGGTTATTGTTTATAAATACTACTATTGCCAGCATTGCTGCTAAAGAAGAAGGGGTATCTCTCGAGAAAAGAGAGGCTGAAGCTTACACTAGTCC CCGCATGC ATGAGATTTCCTTCAATTTTTACTGCAGTTTTATTCGCAGCATCCTCCGCATTAGCTGCTCCAGTCAACACTACAACAGAAGATGAAACGGCACAAATTCCGGCTGAAGCTGTCATCGGTTACTCAGATTTAGAAGGGGATTTCGATGTTGCTGTTTTGCCATTTTCCAACAGCACAAATAACGGGTTATTGTTTATAAATACTACTATTGCCAGCATTGCTGCTAAAGAAGAAGGGGTATCTCTCGAGAAAAGAGAGGCTGAAGCTTAC ACTAGTCC
③由专业的DNA序列合成公司合成转录终止子序列[如下序列有下划线的是酶切保护碱基(2个碱基)和DNA限制性内切酶识别位点(6个碱基),没有下划线的是转录终止子序列]:③The transcription terminator sequence was synthesized by a professional DNA sequence synthesis company [the following sequences are underlined are the enzyme protection bases (2 bases) and DNA restriction endonuclease recognition sites (6 bases), without underlines is the transcription terminator sequence]:
GGACTAGTCCTTAGACATGACTGTTCCTCAGTTCAAGTTGGGCACTTACGAGAAGACCGGTCTTGCTAGATTCTAATCAAGAGGATGTCAGAATGCCATTTGCCTGAGAGATGCAGGCTTCATTTTTGATACTTTTTTATTTGTAACCTATATAGTATAGGATTTTTTTTGTCATTTTGTTTCTTCTCGTACGAGCTTGCTCCTGATCAGCCTATCTCGCAGCTGATGAATATCTTGTGGTAGGGGTTTGGGAAAATCATTCGAGTTTGATGTTTTTCTTGGTATTTCCCACTCCTCTTCAGAGTACAGAAGATTAAGTGAGAAGTTCGTTTGTGCAAGCTTATCGATCC GGACTAGT CCTTAGACATGACTGTTCCTCAGTTCAAGTTGGGCACTTACGAGAAGACCGGTCTTGCTAGATTCTAATCAAGAGGATGTCAGAATGCCATTTGCCTGAGAGATGCAGGCTTCATTTTTGATACTTTTTTATTTGTAACCTATATAGTATAGGATTTTTTTTGTCATTTTGTTTCTTCTCGTACGAGCTTGCTCCTGATCAGCCTATCTCGCAGCTGATGAATATCTTGTGGTAGGGGTTTGGGAAAATCATTCGAGTTTGATGTTTTTCTTGGTATTTCCCACTCCTCTTCAGAGTACAGAAGATTAAGTGAGAAGTTCGTTTGTGCAAGCTT ATCGATCC
④:用套叠PCR法合成如下G418抗性基因序列[如下序列有下划线的是酶切保护碱基(2个碱基)和DNA限制性内切酶识别位点(6个碱基),没有下划线的是G418抗性基因序列]④: Synthesize the following G418 resistance gene sequence by nested PCR method [the underlined sequence in the following sequence is the restriction enzyme protection base (2 bases) and the DNA restriction endonuclease recognition site (6 bases), without Underlined is the G418 resistance gene sequence]
GGATCGATCCAATTCTGATTAGAAAAACTCATCGAGCATCAAATGAAACTGCAATTTATTCATATCAGGATTATCAATACCATATTTTTGAAAAAGCCGTTTCTGTAATGAAGGAGAAAACTCACCGAGGCAGTTCCATAGGATGGCAAGATCCTGGTATCGGTCTGCGATTCCGACTCGTCCAACATCAATACAACCTATTAATTTCCCCTCGTCAAAAATAAGGTTATCAAGTGAGAAATCACCATGAGTGACGACTGAATCCGGTGAGAATGGCAAAAGCTTATGCATTTCTTTCCAGACTTGTTCAACAGGCCAGCCATTACGCTCGTCATCAAAATCACTCGCATCAACCAAACCGTTATTCATTCGTGATTGCGCCTGAGCGAGACGAAATACGCGATCGCTGTTAAAAGGACAATTACAAACAGGAATCGAATGCAACCGGCGCAGGAACACTGCCAGCGCATCAACAATATTTTCACCTGAATCAGGATATTCTTCTAATACCTGGAATGCTGTTTTCCCGGGGATCGCAGTGGTGAGTAACCATGCATCATCAGGAGTACGGATAAAATGCTTGATGGTCGGAAGAGGCATAAATTCCGTCAGCCAGTTTAGTCTGACCATCTCATCTGTAACATCATTGGCAACGCTACCTTTGCCATGTTTCAGAAACAACTCTGGCGCATCGGGCTTCCCATACAATCGATAGATTGTCGCACCTGATTGCCCGACATTATCGCGAGCCCATTTATACCCATATAAATCAGCATCCATGTTGGAATTTAATCGCGGCCTCGAGCAAGACGTTTCCCGTTGAATATGGCTCATGGTACCGG GGATCGAT GGTACCGG
⑤用PCR从枯草芽孢杆菌基因组中扩增rDNA序列⑤Amplification of rDNA sequence from Bacillus subtilis genome by PCR
引物1.Primer 1.
5’CCGGTACCgacgaacgctggcggcgtgc3’5'CC GGTACC gacgaacgctggcggcgtgc3'
引物2.Primer 2.
5’CCTTCGAAgcaccttccgatacggctacct3’5'CC TTCGAA gcaccttccgatacggctacct3'
[说明:引物5’端的8个碱基是酶切保护碱基(2个碱基)和DNA限制性内切酶识别位点(有下划线的6个碱基)]。[Explanation: The 8 bases at the 5' end of the primer are enzyme-cleaved protection bases (2 bases) and DNA restriction endonuclease recognition sites (6 bases underlined)].
提取枯草芽孢杆菌基因组DNA(基因组DNA提取方法同以上所述的巨大枯草芽孢杆菌的基因组DNA提取方法),以基因组DNA为模板应用引物1和引物2进行PCR扩增,获得的PCR产物经序列分析和用NCBI提供的BLAST软件分析证明是枯草芽孢杆菌基因组中的rDNA序列。Extract the Bacillus subtilis genomic DNA (the genomic DNA extraction method is the same as the above-mentioned Bacillus subtilis genomic DNA extraction method), use the genomic DNA as a template and apply primer 1 and primer 2 to carry out PCR amplification, and the PCR product obtained is analyzed by sequence And analysis with BLAST software provided by NCBI proves that it is the rDNA sequence in the Bacillus subtilis genome.
⑥表达框架构建过程:⑥Expression framework construction process:
A.含大麦的α淀粉酶基因表达框架的构建:A. Construction of barley-containing α-amylase gene expression framework:
通过DNA限制性内切酶和T4 DNA连接酶的作用,将巨大芽孢杆菌的三磷酸甘油醛脱氢酶启动子DNA序列重组于pBD载体的多克隆位点;将α因子信号肽DNA序列重组于pBD载体的多克隆位点,并使其位于启动子序列的下游;将反转录扩增获得的大麦的α淀粉酶基因序列重组于pBD载体的多克隆位点,并使其位于信号肽序列的下游;将转录终止子序列重组于pBD载体的多克隆位点,并使其位于基因序列下游。此含大麦的α淀粉酶基因表达框架的载体称为pBD1。Through the action of DNA restriction endonuclease and T4 DNA ligase, the DNA sequence of glyceraldehyde triphosphate dehydrogenase promoter of Bacillus megaterium was recombined in the multiple cloning site of pBD vector; the α factor signal peptide DNA sequence was recombined in The multiple cloning site of the pBD vector, and make it located downstream of the promoter sequence; recombine the barley α-amylase gene sequence obtained by reverse transcription amplification into the multiple cloning site of the pBD vector, and make it located at the signal peptide sequence Downstream of the gene sequence; the transcription terminator sequence was recombined into the multiple cloning site of the pBD vector and positioned downstream of the gene sequence. The vector containing the barley α-amylase gene expression framework is called pBD1.
B.含地衣芽孢杆菌的α淀粉酶基因表达框架的构建:B. Construction of α-amylase gene expression framework containing Bacillus licheniformis:
通过DNA限制性内切酶和T4 DNA连接酶的作用,将巨大芽孢杆菌的三磷酸甘油醛脱氢酶启动子DNA序列重组于pBD载体的多克隆位点;将PCR扩增获得的地衣芽孢杆菌的包含信号肽的α淀粉酶基因序列重组于pBD载体的多克隆位点,并使其位于启动子序列的下游;将转录终止子序列重组于pBD载体的多克隆位点,并使其位于基因序列下游。此含地衣芽孢杆菌的α淀粉酶基因表达框架的载体称为pBD2。Through the action of DNA restriction endonuclease and T4 DNA ligase, the DNA sequence of the glyceraldehyde triphosphate dehydrogenase promoter of Bacillus megaterium was recombined into the multiple cloning site of the pBD vector; the Bacillus licheniformis obtained by PCR amplification The α-amylase gene sequence containing the signal peptide is recombined into the multiple cloning site of the pBD vector, and it is located downstream of the promoter sequence; the transcription terminator sequence is recombined into the multiple cloning site of the pBD vector, and it is located in the gene sequence downstream. The vector containing the expression framework of the α-amylase gene of Bacillus licheniformis is called pBD2.
C.含曲霉的α淀粉酶基因表达框架的构建:C. Construction of Aspergillus-containing α-amylase gene expression framework:
通过DNA限制性内切酶和T4 DNA连接酶的作用,将巨大芽孢杆菌的三磷酸甘油醛脱氢酶启动子DNA序列重组于pBD载体的多克隆位点;将α因子信号肽DNA序列重组于pBD载体的多克隆位点,并使其位于启动子序列的下游;将反转录扩增获得的曲霉的α淀粉酶基因序列重组于pBD载体的多克隆位点,并使其位于信号肽序列的下游;将转录终止子序列重组于pBD载体的多克隆位点,并使其位于基因序列下游。此含曲霉的α淀粉酶基因表达框架的载体称为pBD3Through the action of DNA restriction endonuclease and T4 DNA ligase, the DNA sequence of glyceraldehyde triphosphate dehydrogenase promoter of Bacillus megaterium was recombined in the multiple cloning site of pBD vector; the α factor signal peptide DNA sequence was recombined in The multiple cloning site of the pBD vector, and make it located downstream of the promoter sequence; recombine the Aspergillus α-amylase gene sequence obtained by reverse transcription amplification into the multiple cloning site of the pBD vector, and make it located at the signal peptide sequence Downstream of the gene sequence; the transcription terminator sequence was recombined into the multiple cloning site of the pBD vector and positioned downstream of the gene sequence. The vector containing Aspergillus α-amylase gene expression framework is called pBD3
⑦完成枯草芽孢杆菌表达载体的构建⑦Complete the construction of Bacillus subtilis expression vector
A.将三套表达框架组装于同一个克隆载体。A. Three sets of expression frameworks were assembled in the same cloning vector.
通过DNA限制性内切酶和T4 DNA连接酶的作用,分别切下pBD2和pBD3载体的表达框架,并将其切下的两个表达框架重组于pPD1的多克隆位点。此载体称为pBD123.Through the action of DNA restriction endonuclease and T4 DNA ligase, the expression frameworks of pBD2 and pBD3 vectors were respectively excised, and the two excised expression frameworks were recombined into the multiple cloning site of pPD1. This vector is called pBD123.
B.通过DNA限制性内切酶和T4 DNA连接酶的作用依次将枯草芽孢杆菌的rDNA序列(DNA重组序列)和G418基因重组于pPD123载体的多克隆位点,构成含大麦的α淀粉酶基因表达框架、地衣芽孢杆菌的α淀粉酶基因表达框架和曲霉的α淀粉酶基因表达框架的枯草芽孢杆菌表达载体(附图3)。B. Through the action of DNA restriction endonuclease and T4 DNA ligase, the rDNA sequence (DNA recombination sequence) and G418 gene of Bacillus subtilis were recombined in the multiple cloning site of pPD123 vector to form the α-amylase gene containing barley Expression framework, α-amylase gene expression framework of Bacillus licheniformis and Bacillus subtilis expression vector of α-amylase gene expression framework of Aspergillus (accompanying drawing 3).
3.2构建含大麦的α淀粉酶基因表达框架、地衣芽孢杆菌的α淀粉酶基因表达框架和曲霉的α淀粉酶基因表达框架的枯草芽孢杆菌工程菌3.2 Construction of Bacillus subtilis engineering bacteria containing the α-amylase gene expression framework of barley, the α-amylase gene expression framework of Bacillus licheniformis and the α-amylase gene expression framework of Aspergillus
用电转化方法将以上构建的枯草芽孢杆菌表达载体(见附图3)转化枯草芽孢杆菌,将经过电转化的枯草芽孢杆菌细胞涂布G418抗性平板。以重组子(在G418抗性平板上生长的克隆)基因组DNA为模板,分别用大麦的α淀粉酶基因的特异引物、地衣芽孢杆菌的α淀粉酶基因的特异引物和曲霉的α淀粉酶基因的特异引物进行PCR进行扩增,将扩增出符合目标分子量的PCR产物进行DNA序列测定而验证获得了正确的重组子。将含以上含三种α淀粉酶基因表达框架的重组子在接种于YPD[2%蛋白胨,1%yeast extract(酵母提取物),2%葡萄糖]培养基中,30℃摇床培养两天,将发酵液离心,收获上清。应用发酵液进行SDS-PAGE(十二烷基硫酸钠-聚丙烯酰胺凝胶电泳),其结果表明出现新的符合这三个基因编码的酶蛋白分子量的蛋白条带。用Hi s6融合蛋白纯化试剂盒纯化目标蛋白,用His标签单克隆抗体对纯化的三种目标蛋白进行蛋白印迹实验,结果表明这三种目标蛋白都能与His标签单克隆抗体结合,证明大麦的α淀粉酶基因、地衣芽孢杆菌的α淀粉酶基因和曲霉的α淀粉酶基因都能在含大麦的α淀粉酶基因表达框架、地衣芽孢杆菌的α淀粉酶基因表达框架和曲霉的α淀粉酶基因表达框架的枯草芽孢杆菌工程菌中表达和分泌到胞外。筛选高表达以上所述的三种混合α淀粉酶的重组子作为含大麦的α淀粉酶基因表达框架、地衣芽孢杆菌的α淀粉酶基因表达框架和曲霉的α淀粉酶基因表达框架的枯草芽孢杆菌工程菌。The Bacillus subtilis expression vector constructed above (see Figure 3) was transformed into Bacillus subtilis by electroporation, and the electrotransformed Bacillus subtilis cells were coated with G418 resistance plates. Using recombinant (clones grown on G418 resistant plates) genomic DNA as a template, use specific primers for the α-amylase gene of barley, the α-amylase gene of Bacillus licheniformis and the α-amylase gene of Aspergillus Specific primers are used for PCR amplification, and the amplified PCR product conforming to the target molecular weight is subjected to DNA sequence determination to verify that the correct recombinant is obtained. The recombinants containing the above three α-amylase gene expression frameworks were inoculated in YPD [2% peptone, 1% yeast extract (yeast extract), 2% glucose] medium, and cultured on a shaker at 30°C for two days. The fermentation broth was centrifuged and the supernatant harvested. SDS-PAGE (sodium dodecyl sulfate-polyacrylamide gel electrophoresis) was carried out using the fermentation broth, and the results showed that new protein bands appeared in accordance with the molecular weights of the enzyme proteins encoded by these three genes. The target protein was purified with the His6 fusion protein purification kit, and the purified three target proteins were subjected to Western blot experiments with the His tag monoclonal antibody. The results showed that the three target proteins could bind to the His tag monoclonal antibody, proving that barley The α-amylase gene, the α-amylase gene of Bacillus licheniformis and the α-amylase gene of Aspergillus can be expressed in the gene expression framework containing barley α-amylase, the α-amylase gene expression framework of Bacillus licheniformis and the α-amylase gene of Aspergillus The Bacillus subtilis engineering strain expressing the framework is expressed and secreted to the extracellular space. Screening of recombinants that highly express the above-mentioned three mixed α-amylases as Bacillus subtilis containing the α-amylase gene expression framework of barley, the α-amylase gene expression framework of Bacillus licheniformis and the α-amylase gene expression framework of Aspergillus Engineering bacteria.
3.3生产重组大麦的α淀粉酶基因编码的α淀粉酶、地衣芽孢杆菌的α淀粉酶基因编码的α淀粉酶和曲霉的α淀粉酶基因编码的α淀粉酶3.3 Production of α-amylase encoded by the α-amylase gene of recombinant barley, α-amylase encoded by the α-amylase gene of Bacillus licheniformis and α-amylase encoded by the α-amylase gene of Aspergillus
分别将含大麦的α淀粉酶基因表达框架、地衣芽孢杆菌的α淀粉酶基因表达框架和曲霉的α淀粉酶基因表达框架的枯草芽孢杆菌工程菌、含大麦的α淀粉酶基因表达框架的枯草芽孢杆菌工程菌、含地衣芽孢杆菌的α淀粉酶基因表达框架的枯草芽孢杆菌工程菌、含曲霉的α淀粉酶基因表达框架的枯草芽孢杆菌工程菌、不含α淀粉酶基因的枯草芽孢杆菌和天然的产α淀粉酶的地衣芽孢杆菌(应用于1.1.2所述的PCR扩增α淀粉酶基因的地衣芽孢杆菌菌株)分别接种于LB培养基(1%胰蛋白胨,1%氯化钠,0.5%酵母提取物)中,30℃摇床发酵两天;将曲霉(应用于1.1.2所述的PCR扩增α淀粉酶基因的曲霉菌株)接种于常规的真菌培养基(土豆汁200g/L、葡萄糖20g/L),在30℃摇床发酵3天。以上所述的每个菌株的发酵都是一式三份。分别收集其发酵液上清于50℃、70℃和80℃条件分析其发酵液上清在酸性(pH4和pH5)、中性(pH7)和碱性(pH8.5)环境下的α淀粉酶活性。结果表明,将含大麦的α淀粉酶基因表达框架、地衣芽孢杆菌的α淀粉酶基因表达框架和曲霉的α淀粉酶基因表达框架的枯草芽孢杆菌工程菌的发酵液上清(每升)在以上所述的温度和pH的平均α淀粉酶活性分别是50℃和pH4(175358单位)、50℃和pH5(285105单位)、50℃和pH7(318814单位)、50℃和pH8.5(142762单位)、70℃和pH4(233669单位)、70℃和pH5(367059单位)、70℃和pH7(445030单位)、70℃和pH8.5(210096单位)、80℃和pH4(239046单位)、80℃和pH5(426087单位)、80℃和pH7(318690单位)、80℃和pH8.5(260819单位);含大麦的α淀粉酶基因表达框架的枯草芽孢杆菌工程菌的发酵液上清(每升)在大麦的α淀粉酶的最适合的温度和pH(pH5和70℃)的平均α淀粉酶活性是218095单位;含地衣芽孢杆菌的α淀粉酶基因表达框架的枯草芽孢杆菌工程菌的发酵液上清(每升)在地衣芽孢杆菌的α淀粉酶的最适合的温度和pH(pH8.5和80℃)的平均α淀粉酶活性是138990单位;含曲霉的α淀粉酶基因表达框架的枯草芽孢杆菌工程菌的发酵液上清(每升)在曲霉的α淀粉酶的最适合的温度和pH(70℃和pH4)的平均α淀粉酶活性是103027单位;天然的产α淀粉酶的地衣芽孢杆菌的发酵液上清(每升)在地衣芽孢杆菌的α淀粉酶的最适合的温度和pH(pH8.5和80℃)的平均α淀粉酶活性是82917单位;曲霉的发酵液上清(每升)在曲霉的α淀粉酶的最适合的温度和pH(pH4和70℃)的平均α淀粉酶活性是7834单位;不含α淀粉酶基因的枯草芽孢杆菌的发酵液上清(每升)在以上所述的各种温度和pH都没有测到α淀粉酶活性。以上发酵表达产物的酶活性分析的结果表明:含大麦的α淀粉酶基因表达框架、地衣芽孢杆菌的α淀粉酶基因表达框架和曲霉的α淀粉酶基因表达框架的枯草芽孢杆菌工程菌表达的α淀粉酶在酸性、中性和碱性以及不同的试验温度都具有良好的α淀粉酶活性,并且其α淀粉酶活性显著高于(P<0.01)含单种α淀粉酶基因的工程菌或产α淀粉酶的天然菌株的表达产物的α淀粉酶活性。The Bacillus subtilis engineering bacteria containing the α-amylase gene expression framework of barley, the α-amylase gene expression framework of Bacillus licheniformis and the α-amylase gene expression framework of Aspergillus, and the Bacillus subtilis containing the α-amylase gene expression framework of barley Bacillus engineering bacteria, Bacillus subtilis engineering bacteria containing the α-amylase gene expression framework of Bacillus licheniformis, Bacillus subtilis engineering bacteria containing the α-amylase gene expression framework of Aspergillus, Bacillus subtilis without the α-amylase gene and natural The Bacillus licheniformis producing α-amylase (applied to the Bacillus licheniformis strain of the PCR amplification α-amylase gene described in 1.1.2) was inoculated in LB medium (1% tryptone, 1% sodium chloride, 0.5 % yeast extract), 30 DEG C of shaker fermentation for two days; Aspergillus (applied to the Aspergillus strain of the PCR amplification α-amylase gene described in 1.1.2) was inoculated in conventional fungal culture medium (potato juice 200g/L , glucose 20g/L), and fermented in a shaker at 30°C for 3 days. Fermentations for each of the strains described above were performed in triplicate. Collect the supernatant of the fermentation broth at 50°C, 70°C and 80°C to analyze the α-amylase in the supernatant of the fermentation broth in acidic (pH4 and pH5), neutral (pH7) and alkaline (pH8.5) environments active. The result showed that the fermented liquid supernatant (per liter) of the Bacillus subtilis engineering bacteria containing the α-amylase gene expression framework of barley, the α-amylase gene expression framework of Bacillus licheniformis and the α-amylase gene expression framework of Aspergillus was above The average α-amylase activity at said temperature and pH were 50°C and pH 4 (175358 units), 50°C and pH5 (285105 units), 50°C and pH7 (318814 units), 50°C and pH8.5 (142762 units ), 70°C and pH4 (233669 units), 70°C and pH5 (367059 units), 70°C and pH7 (445030 units), 70°C and pH8.5 (210096 units), 80°C and pH4 (239046 units), 80 ℃ and pH5 (426087 units), 80 ℃ and pH7 (318690 units), 80 ℃ and pH8.5 (260819 units); the supernatant of the fermentation broth of Bacillus subtilis engineering bacteria containing the α-amylase gene expression framework of barley (per l) The average α-amylase activity at the most suitable temperature and pH (pH5 and 70°C) of barley α-amylase is 218095 units; fermentation of Bacillus subtilis engineering bacteria containing the α-amylase gene expression framework of Bacillus licheniformis The average α-amylase activity of liquid supernatant (per liter) at the most suitable temperature and pH (pH8.5 and 80°C) of α-amylase of Bacillus licheniformis is 138990 units; The most suitable temperature of the alpha amylase of aspergillus and the average alpha amylase activity of pH (70 ℃ and pH4) of the fermented liquid supernatant (per liter) of Bacillus subtilis engineered bacterium is 103027 units; The average α-amylase activity of the fermentation broth supernatant (per liter) of Bacillus licheniformis at the most suitable temperature and pH (pH8.5 and 80°C) of Bacillus licheniformis was 82917 units; Clear (per liter) the most suitable temperature of the α-amylase of Aspergillus and the average α-amylase activity of pH (pH4 and 70 ℃) is 7834 units; The fermentation broth supernatant ( per liter) no alpha amylase activity was detected at the various temperatures and pHs described above. The results of the enzyme activity analysis of the above fermentation expression products showed that: the α-amylase gene expression framework of barley, the α-amylase gene expression framework of Bacillus licheniformis and the α-amylase gene expression framework of Aspergillus subtilis engineering bacteria expressed α Amylase has good α-amylase activity in acidic, neutral and alkaline and different test temperatures, and its α-amylase activity is significantly higher (P<0.01) containing a single α-amylase gene engineering bacteria or production Alpha-amylase activity of expression products of native strains of alpha-amylase.
说明:illustrate:
a.含单种α淀粉酶基因表达框架的枯草芽孢杆菌工程菌的构建的方法与含三种α淀粉酶基因表达框架的枯草芽孢杆菌工程菌的构建的方法的差别在于表达载体的构建;含单种α淀粉酶基因表达框架的枯草芽孢杆菌表达载体的构建方法与含三种α淀粉酶基因表达框架的枯草芽孢杆菌表达载体构建的方法的差别在于前者只含一种α淀粉酶基因表达框架,而后者含三种α淀粉酶基因表达框架。a. The difference between the construction method of the Bacillus subtilis engineering bacteria containing a single α-amylase gene expression framework and the construction method of the Bacillus subtilis engineering bacteria containing three α-amylase gene expression frameworks is the construction of the expression vector; The difference between the construction method of the Bacillus subtilis expression vector of a single α-amylase gene expression framework and the method of constructing the Bacillus subtilis expression vector containing three α-amylase gene expression frameworks is that the former only contains an α-amylase gene expression framework , while the latter contains three α-amylase gene expression frameworks.
c.α淀粉酶活性测定方法:应用可溶淀粉平板测定方法。制备含2%可溶淀粉的琼脂平板,将牛津杯置于平板上,各取50μl不同浓度的α淀粉酶标准溶液和不同菌株的发酵液加于不同的牛津杯中,并在每个杯中加入50μl磷酸盐缓冲液。于50℃放置12小时,然后用碘-碘化钾(I2-KI)溶液染色,计算透明圈直径。对以上实验进行三个重复,结果分析取平均值。根据不同浓度的α淀粉酶标准的透明圈绘制标准曲线;根据测试样品的透明圈直径和不同浓度的α淀粉酶标准的透明圈标准曲线计算出各个测试菌株的发酵液的α淀粉酶活性。c. Determination method of α-amylase activity: use soluble starch plate assay method. Prepare an agar plate containing 2% soluble starch, place the Oxford cup on the plate, take 50 μl of α-amylase standard solution of different concentrations and the fermentation broth of different bacterial strains and add it to different Oxford cups, and in each cup Add 50 μl of phosphate buffered saline. Place at 50°C for 12 hours, then stain with iodine-potassium iodide (I 2 -KI) solution, and calculate the diameter of the transparent circle. The above experiments were repeated three times, and the results were analyzed by taking the average value. Draw a standard curve according to the transparent circle of the α-amylase standard of different concentrations; calculate the α-amylase activity of the fermentation liquid of each test strain according to the transparent circle standard curve of the transparent circle diameter of the test sample and the α-amylase standard of different concentrations.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2012102518478A CN102747058A (en) | 2012-07-09 | 2012-07-09 | Method for producing alpha amylase |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2012102518478A CN102747058A (en) | 2012-07-09 | 2012-07-09 | Method for producing alpha amylase |
Publications (1)
Publication Number | Publication Date |
---|---|
CN102747058A true CN102747058A (en) | 2012-10-24 |
Family
ID=47027550
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2012102518478A Pending CN102747058A (en) | 2012-07-09 | 2012-07-09 | Method for producing alpha amylase |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102747058A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110872584A (en) * | 2018-08-31 | 2020-03-10 | 海南波莲水稻基因科技有限公司 | Barley α -amylase and coding gene and application thereof |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102127529A (en) * | 2010-11-29 | 2011-07-20 | 南宁邦尔克生物技术有限责任公司 | Method for recombinant expression of beta-amylase in bacillus subtillis in integrated mode |
CN102286443A (en) * | 2011-07-16 | 2011-12-21 | 中国热带农业科学院热带生物技术研究所 | Method for producing mixture of recombinant isoamylase, alpha-amylase and glucamylase |
-
2012
- 2012-07-09 CN CN2012102518478A patent/CN102747058A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102127529A (en) * | 2010-11-29 | 2011-07-20 | 南宁邦尔克生物技术有限责任公司 | Method for recombinant expression of beta-amylase in bacillus subtillis in integrated mode |
CN102286443A (en) * | 2011-07-16 | 2011-12-21 | 中国热带农业科学院热带生物技术研究所 | Method for producing mixture of recombinant isoamylase, alpha-amylase and glucamylase |
Non-Patent Citations (1)
Title |
---|
董晨 等: "耐高温a-淀粉酶基因在枯草芽孢杆菌中的高效表达", 《应用与环境生物学报》 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110872584A (en) * | 2018-08-31 | 2020-03-10 | 海南波莲水稻基因科技有限公司 | Barley α -amylase and coding gene and application thereof |
CN110872584B (en) * | 2018-08-31 | 2021-09-21 | 海南波莲水稻基因科技有限公司 | Barley alpha-amylase and coding gene and application thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105255925B (en) | A kind of high efficiency preparation method and its genetic engineering bacterium of sucrose isomerase | |
CN108239609B (en) | Recombinant yeast and its application | |
CN103571812B (en) | Pullulanase mutant with improved secretion efficiency and heat stability and preparation method of pullulanase mutant | |
CN106755015B (en) | Novel pullulanase gene, method for obtaining high-yield strain and enzyme production process | |
CN109385413B (en) | Glucoamylase TlGA1931 and gene and application thereof | |
CN108034667B (en) | Monascus rubrum alpha-amylase gene, preparation method and application thereof | |
CN102286443A (en) | Method for producing mixture of recombinant isoamylase, alpha-amylase and glucamylase | |
CN114107146B (en) | Construction method and application of resistance-marker-free auxotroph bacillus subtilis | |
CN107574173A (en) | A kind of recombinant plasmid and its method for building High-productive Monascus Pigment Strain | |
KR101651951B1 (en) | Thermostable Saccharomycopsis fibuligera MBY1320 with amylolysis and alcohol production ability and fermented liquor therefrom | |
CN105985969B (en) | Gene engineering yeast and its preparation method and application with saccharification function | |
CN104046572B (en) | One plant of saccharomyces cerevisiae that can reduce biogenic amine in yellow rice wine and its construction method and application | |
CN102747058A (en) | Method for producing alpha amylase | |
CN110592119A (en) | A novel pullulanase derived from Paenibacillus and its gene and application | |
CN103014097B (en) | A kind of preparation method of maltotriose with starch as raw material and its special fungal α-amylase | |
CN102747063A (en) | Xylose isomerase producing method | |
CN102719420A (en) | Method for production of recombination mixing isoamylase | |
CN103205403A (en) | Method for producing ligninolytic enzymes | |
CN111334446B (en) | High-temperature-resistant saccharifying yeast strain and application thereof | |
CN115141763A (en) | Yeast engineering bacterium capable of efficiently secreting protein and construction method and application thereof | |
CN102719459B (en) | Produce the method for endoglucanase, 1,4-BETA-D-glucancellobio-hydrolase and beta-glucosidase | |
CN102827816B (en) | Alpha-amylase and application thereof | |
CN108085332B (en) | A recombinant yeast with soybean husk peroxidase displayed on the cell surface and its construction method and application | |
CN102286389B (en) | Method for brewing beer from starch directly and special yeast thereof | |
CN119875856B (en) | Aureobasidium pullulans CBH II gene knockout mutant strain, construction method and application thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
EXSB | Decision made by sipo to initiate substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20121024 |