CN102740171B - A kind of EPON loop detecting method and system - Google Patents
A kind of EPON loop detecting method and system Download PDFInfo
- Publication number
- CN102740171B CN102740171B CN201110087946.2A CN201110087946A CN102740171B CN 102740171 B CN102740171 B CN 102740171B CN 201110087946 A CN201110087946 A CN 201110087946A CN 102740171 B CN102740171 B CN 102740171B
- Authority
- CN
- China
- Prior art keywords
- loop
- communication message
- optical
- onu
- network
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000034 method Methods 0.000 title claims abstract description 32
- 230000003287 optical effect Effects 0.000 claims abstract description 114
- 238000004891 communication Methods 0.000 claims abstract description 88
- 239000013307 optical fiber Substances 0.000 claims abstract description 22
- 238000001514 detection method Methods 0.000 claims abstract description 10
- 238000012423 maintenance Methods 0.000 claims description 4
- 238000007726 management method Methods 0.000 description 20
- 230000005540 biological transmission Effects 0.000 description 8
- 238000010586 diagram Methods 0.000 description 8
- 238000005516 engineering process Methods 0.000 description 8
- 239000000835 fiber Substances 0.000 description 5
- 229940046166 oligodeoxynucleotide Drugs 0.000 description 4
- 230000004913 activation Effects 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 238000011144 upstream manufacturing Methods 0.000 description 3
- 238000005538 encapsulation Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/03—Arrangements for fault recovery
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/07—Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
- H04B10/075—Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
- H04B10/077—Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using a supervisory or additional signal
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04Q—SELECTING
- H04Q11/00—Selecting arrangements for multiplex systems
- H04Q11/0001—Selecting arrangements for multiplex systems using optical switching
- H04Q11/0062—Network aspects
- H04Q11/0067—Provisions for optical access or distribution networks, e.g. Gigabit Ethernet Passive Optical Network (GE-PON), ATM-based Passive Optical Network (A-PON), PON-Ring
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04Q—SELECTING
- H04Q11/00—Selecting arrangements for multiplex systems
- H04Q11/0001—Selecting arrangements for multiplex systems using optical switching
- H04Q11/0062—Network aspects
- H04Q2011/0079—Operation or maintenance aspects
- H04Q2011/0081—Fault tolerance; Redundancy; Recovery; Reconfigurability
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Signal Processing (AREA)
- Small-Scale Networks (AREA)
- Optical Communication System (AREA)
Abstract
本发明涉及一种无源光网络环路检测方法,所述无源光网络采用全保护模式,所述方法包括,第一OLT向主用ONU发送环路通信消息,主用ONU收到所述环路通信消息后,将所述环路通信消息发送给备用ONU;第二OLT收到备用ONU发送的所述环路通信消息后,将所述环路通信消息转发给所述第一OLT;第一OLT收到所述环路通信消息后,则判断所述无源光网络为环路网络。本发明还提供了一种无源光网络环路检测系统。采用本发明,通过OLT判断与ONU之间的环路通信,在主干光纤或者分支光纤断开时,通过备用OLT通知ONU进行保护倒换,缩短了ONU保护倒换的时间,使得ONU和OLT可以快速恢复通信,提高了PON系统的服务质量。
The present invention relates to a passive optical network loop detection method. The passive optical network adopts a full protection mode. The method includes: the first OLT sends a loop communication message to the active ONU, and the active ONU receives the After the loop communication message, the loop communication message is sent to the standby ONU; after the second OLT receives the loop communication message sent by the standby ONU, the loop communication message is forwarded to the first OLT; After receiving the loop communication message, the first OLT judges that the passive optical network is a loop network. The invention also provides a passive optical network loop detection system. With the present invention, the OLT judges the loop communication with the ONU, and when the main optical fiber or the branch optical fiber is disconnected, the standby OLT notifies the ONU to perform protection switching, which shortens the time for ONU protection switching and enables the ONU and the OLT to recover quickly communication, which improves the service quality of the PON system.
Description
技术领域 technical field
本发明涉及通信领域,特别涉及一种无源光网络(Passive OpticalNetwork,简称PON)环路检测方法及系统。The present invention relates to the communication field, in particular to a passive optical network (Passive Optical Network, PON for short) loop detection method and system.
背景技术 Background technique
吉比特无源光网络(GPON,Gigabit-Capable Passive Optical Network)和以太网无源光网络(EPON,Ethernet Passive Optical Network)是PON家族中两个重要的技术分支,和其它PON技术类似,GPON和EPON也是采用点到多点拓扑结构的无源光接入技术。Gigabit-Capable Passive Optical Network (GPON, Gigabit-Capable Passive Optical Network) and Ethernet Passive Optical Network (EPON, Ethernet Passive Optical Network) are two important technical branches in the PON family, similar to other PON technologies, GPON and EPON is also a passive optical access technology using a point-to-multipoint topology.
如图1所示,是PON系统的拓扑结构图,PON由局侧的光线路终端(OLT,Optical Line Terminal)、用户侧的光网络单元(ONU,OpticalNetwork Unit)以及光分配网络(ODN,Optical Distribution Network)组成,通常采用点到多点的网络结构。ODN由单模光纤、光分路器、光连接器等无源光器件组成,ODN为OLT和ONU之间的物理连接提供光传输媒质。As shown in Figure 1, it is a topological structure diagram of a PON system. PON consists of an optical line terminal (OLT, Optical Line Terminal) on the office side, an optical network unit (ONU, Optical Network Unit) Distribution Network), usually using a point-to-multipoint network structure. ODN consists of passive optical components such as single-mode fiber, optical splitter, and optical connector. ODN provides an optical transmission medium for the physical connection between OLT and ONU.
在PON系统中,下行方向(由OLT到ONU)的数据传输采用广播方式,每个ONU分别接收所有的帧,再根据ONU标识(ONU-ID)、GPON封装模式端口标识(GEM-Port ID,GPON Encapsulation Mode-Port Identity)、和分配标识(Alloc-ID,Allocation-Identity)、媒质接入控制地址(MAC ID,MediumAccess Control ID)或者逻辑链路标识(LLID,Logical Link Identity)来获取属于自己的帧。对于上行方向(从ONU到OLT)的数据传输,由于各个ONU需要共享传输媒质,因此各个ONU应该在OLT安排给自己的时隙内传输上行数据。各个ONU与OLT之间的距离不同,为防止各个ONU发送的上行数据同时到达OLT,OLT需要对处于注册激活阶段的ONU进行测距以实现上行传输同步。In the PON system, the data transmission in the downlink direction (from the OLT to the ONU) adopts the broadcast method, and each ONU receives all frames separately, and then according to the ONU identification (ONU-ID), GPON encapsulation mode port identification (GEM-Port ID, GPON Encapsulation Mode-Port Identity), and allocation identification (Alloc-ID, Allocation-Identity), medium access control address (MAC ID, Medium Access Control ID) or logical link identification (LLID, Logical Link Identity) to obtain their own frame. For data transmission in the upstream direction (from ONU to OLT), since each ONU needs to share the transmission medium, each ONU should transmit upstream data in the time slot assigned to it by the OLT. The distance between each ONU and the OLT is different. In order to prevent the uplink data sent by each ONU from reaching the OLT at the same time, the OLT needs to measure the distance of the ONUs in the registration and activation phase to achieve synchronization of uplink transmission.
在无源光网络的部署应用中,有部分用户需要较高的安全性,希望运营商能够提供一种保障机制来确保其业务通路不中断,或者次一级的要求是,能够在业务通路中断后快速恢复。这就对承载用户业务运行的无源光网络提出了保护通路和快速切换通路的要求。In the deployment and application of passive optical networks, some users need higher security. It is hoped that operators can provide a guarantee mechanism to ensure that their service channels are not interrupted, or the secondary requirement is to be able to Quick recovery afterwards. This puts forward requirements for protection paths and fast switching paths for passive optical networks carrying user services.
图2(a)是全保护方式无源光网络第一拓扑结构图,图2(b)是全保护方式无源光网络第二拓扑结构图。如图2(a)、(b)所示,OLT1、OLT2分别连接到两个1:N的ODN,每个ODN下行方向分别通过光纤连接到各ONU,每个ONU处有两个ONU,分别为主用ONU和备用ONU,OLT1通过ODN1与各主用ONU相连,OLT2通过ODN2与各备用ONU相连;OLT1和OLT2可以是两个OLT,通过网管节点连接,如图2a所示;也可以是OLT的两个PON口,如图2b所示。初始状态时,OLT1和所有主用ONU之间进行业务通信,当OLT1出现故障或者OLT1与分光器1之间的光纤中断后,OLT2和所有备用ONU之间进行业务通信;如果分光器1下的某个分支光纤中断,或者某个主用ONU出现故障,则由OLT2与中断的分支光纤或者出现故障的ONU处对应的备用ONU进行业务通信。通过上述方式实现了对PON系统中的OLT、ONU和每段光纤的全保护。在上述全保护方式中,当OLT1与分光器1之间的光纤中断后,或者,分光器1下的某个分支光纤中断,各个主用ONU检测到下行信号中断,然后进行保护倒换,将自身的上行业务倒换到备用ONU,备用ONU与OLT2之间进行业务通信,上述保护倒换过程中主用ONU检测到线路故障后进行保护倒换,该倒换过程所需时间较长,不能满足时间敏感业务中断后快速恢复的需求,现有技术没有提供OLT用于判断与ONU之间的环路是否可以通信的方法。Fig. 2(a) is a first topological structure diagram of a passive optical network in a full protection mode, and Fig. 2(b) is a second topological structure diagram of a passive optical network in a full protection mode. As shown in Figure 2(a) and (b), OLT1 and OLT2 are respectively connected to two 1:N ODNs, each ODN is connected to each ONU through optical fiber in the downlink direction, and each ONU has two ONUs, respectively The active ONU and the standby ONU, OLT1 is connected to each active ONU through ODN1, and OLT2 is connected to each standby ONU through ODN2; OLT1 and OLT2 can be two OLTs connected through a network management node, as shown in Figure 2a; it can also be The two PON ports of the OLT are shown in Figure 2b. In the initial state, OLT1 communicates with all active ONUs. When OLT1 fails or the optical fiber between OLT1 and optical splitter 1 is interrupted, OLT2 communicates with all standby ONUs. If the OLT under optical splitter 1 If a branch fiber is interrupted, or a master ONU fails, the OLT2 will communicate with the interrupted branch fiber or the backup ONU corresponding to the faulty ONU. The full protection of the OLT, ONU and each section of optical fiber in the PON system is realized through the above method. In the above-mentioned full protection mode, when the optical fiber between OLT1 and optical splitter 1 is interrupted, or a branch optical fiber under optical splitter 1 is interrupted, each active ONU detects that the downlink signal is interrupted, and then performs protection switching to switch itself The upstream service of the backup ONU is switched to the standby ONU, and the service communication is carried out between the standby ONU and OLT2. During the above protection switching process, the active ONU detects a line failure and performs protection switching. The switching process takes a long time and cannot meet the time-sensitive service interruption. Due to the need for quick recovery, the prior art does not provide a method for the OLT to determine whether the loop between the OLT and the ONU can communicate.
发明内容 Contents of the invention
本发明解决的技术问题在于提供了一种无源光网络环路检测方法,应用该方法,无源光网络在全保护模式下发生故障后OLT和ONU之间可以快速恢复通信。本发明还提供了一种无源光网络环路检测系统。The technical problem to be solved by the present invention is to provide a passive optical network loop detection method. By using the method, the communication between the OLT and the ONU can be quickly restored after the passive optical network fails in the full protection mode. The invention also provides a passive optical network loop detection system.
为解决上述问题,本发明提供了一种无源光网络环路检测方法,所述无源光网络采用全保护模式,所述方法包括,In order to solve the above problems, the present invention provides a method for detecting loops in a passive optical network, the passive optical network adopts a full protection mode, and the method includes:
第一OLT向主用ONU发送环路通信消息,主用ONU收到所述环路通信消息后,将所述环路通信消息发送给备用ONU;The first OLT sends a loop communication message to the active ONU, and after the active ONU receives the loop communication message, it sends the loop communication message to the standby ONU;
第二OLT收到备用ONU发送的所述环路通信消息后,将所述环路通信消息转发给所述第一OLT;After receiving the loop communication message sent by the standby ONU, the second OLT forwards the loop communication message to the first OLT;
第一OLT收到所述环路通信消息后,则判断所述无源光网络为环路网络。After receiving the loop communication message, the first OLT judges that the passive optical network is a loop network.
上述的方法,其中,所述第一OLT判断所述无源光网络为环路网络具体为,In the above method, wherein the first OLT determines that the passive optical network is a loop network, specifically,
第一OLT判断所述环路通信消息与其发送的环路通信消息一致,则判断所述无源网络为环路网络。The first OLT determines that the loop communication message is consistent with the loop communication message sent by it, and then determines that the passive network is a loop network.
上述的方法,其中,所述主用ONU、备用ONU、第二OLT收到所述环路通信消息后,将其身份信息添加到所述环路通信消息进行发送。The above method, wherein, after receiving the loop communication message, the active ONU, standby ONU, and second OLT add their identity information to the loop communication message and send it.
上述的方法,其中,所述第一OLT判断所述无源光网络为环路网络具体为,In the above method, wherein the first OLT determines that the passive optical network is a loop network, specifically,
第一OLT根据所述环路通信消息中环路上所有节点或者部分节点的身份信息,则判断所述无源网络为环路网络。The first OLT judges that the passive network is a loop network according to the identity information of all or some nodes on the loop in the loop communication message.
上述的方法,其中,所述第二OLT收到备用ONU发送的所述环路通信消息后,通过网管节点将所述环路通信消息转发给所述第一OLT。In the above method, after the second OLT receives the loop communication message sent by the standby ONU, it forwards the loop communication message to the first OLT through a network management node.
上述的方法,其中,所述环路通信消息为PLOAM消息;The above method, wherein, the loop communication message is a PLOAM message;
上述的方法,其中,所述环路通信消息包括,ONU的ID、消息结构类型和身份信息。The above method, wherein, the loop communication message includes ONU ID, message structure type and identity information.
上述的方法,其中,所述方法还包括,The above-mentioned method, wherein, the method also includes,
若第一OLT检测到主干光纤或者分支光纤发生故障,则向第二OLT发送指令,命令第二OLT通知全部或者部分ONU进行主备保护倒换。If the first OLT detects that the trunk optical fiber or the branch optical fiber fails, it sends an instruction to the second OLT, ordering the second OLT to notify all or part of the ONUs to perform active/standby protection switching.
上述的方法,其中,The above method, wherein,
所述主用ONU和备用ONU是位于同一ONU内部的两个逻辑ONU,或者属于同一个ONU两个PON口,所述两个逻辑ONU或者同一个ONU的两个PON口分别具有自己的光模块和媒质接入控制芯片,并通过共同的CPU管理。The main ONU and the standby ONU are two logical ONUs located inside the same ONU, or belong to two PON ports of the same ONU, and the two logical ONUs or the two PON ports of the same ONU have their own optical modules respectively and media access control chip, and managed by a common CPU.
本发明还提供了一种无源光网络环路检测系统,所述系统包括,The present invention also provides a passive optical network loop detection system, which includes:
第一OLT,用于向主用ONU发送环路通信消息,以及在收到所述环路通信消息后,判断所述无源光网络为环路网络;The first OLT is configured to send a loop communication message to the active ONU, and after receiving the loop communication message, determine that the passive optical network is a loop network;
主用ONU,用于在收到所述环路通信消息后,将所述环路通信消息发送给备用ONU;The active ONU is used to send the loop communication message to the standby ONU after receiving the loop communication message;
备用ONU,用于在收到所述环路通信消息后,将所述环路通信消息发送给第二OLT;The backup ONU is used to send the loop communication message to the second OLT after receiving the loop communication message;
第二OLT,用于收到备用ONU发送的所述环路通信消息后,将所述环路通信消息转发给所述第一OLT。The second OLT is configured to forward the loop communication message to the first OLT after receiving the loop communication message sent by the backup ONU.
上述的系统,其中,所述第一OLT用于判断所述无源光网络为环路网络具体为,In the above system, wherein the first OLT is used to determine that the passive optical network is a loop network, specifically,
所述第一OLT用于判断所述环路通信消息与其发送的环路通信消息一致,则判断所述无源网络为环路网络。The first OLT is used to determine that the loop communication message is consistent with the loop communication message sent by it, and then determine that the passive network is a loop network.
上述的系统,其中,所述主用ONU、备用ONU、第二OLT收到所述环路通信消息后,将其身份信息添加到所述环路通信消息进行发送。In the above system, after receiving the loop communication message, the active ONU, standby ONU, and second OLT add their identity information to the loop communication message and send it.
上述的系统,其中,所述第一OLT用于判断所述无源光网络为环路网络具体为,In the above system, wherein the first OLT is used to determine that the passive optical network is a loop network, specifically,
第一OLT用于根据所述环路通信消息中环路上所有节点或者部分节点的身份信息,则判断所述无源网络为环路网络。The first OLT is configured to judge that the passive network is a loop network according to the identity information of all or some nodes on the loop in the loop communication message.
上述的系统,其中,第一OLT还用于在检测主干光纤或者分支光纤发生故障时,则向第二OLT发送指令,命令第二OLT通知全部或者部分ONU进行主备保护倒换。In the above system, wherein the first OLT is further configured to send an instruction to the second OLT to instruct all or part of the ONUs to perform active-standby protection switching when detecting a failure of the main optical fiber or the branch optical fiber.
采用本发明的方法及系统,通过OLT判断与ONU之间的环路通信,在主干光纤或者分支光纤断开时,通过备用OLT通知ONU进行保护倒换,缩短了ONU保护倒换的时间,保护了PON系统中的时间敏感业务的及时发送,使得ONU和OLT可以快速恢复通信,提高了PON系统的服务质量。With the method and system of the present invention, the OLT judges the loop communication with the ONU, and when the trunk optical fiber or branch optical fiber is disconnected, the standby OLT notifies the ONU to perform protection switching, which shortens the time for ONU protection switching and protects the PON The timely transmission of time-sensitive services in the system enables the ONU and OLT to quickly resume communication and improves the service quality of the PON system.
附图说明 Description of drawings
此处所说明的附图用来提供对本发明的进一步理解,构成本发明的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:The accompanying drawings described here are used to provide a further understanding of the present invention, and constitute a part of the present invention. The schematic embodiments of the present invention and their descriptions are used to explain the present invention, and do not constitute improper limitations to the present invention. In the attached picture:
图1是PON系统的拓扑结构图;Fig. 1 is a topological structure diagram of a PON system;
图2(a)是全保护方式无源光网络第一拓扑结构图;Fig. 2 (a) is the first topological structure diagram of the passive optical network of full protection mode;
图2(b)是全保护方式无源光网络第二拓扑结构图;Fig. 2 (b) is the second topological structure diagram of the full protection mode passive optical network;
图3是本发明实施例一流程图;Fig. 3 is a flowchart of Embodiment 1 of the present invention;
图4是本发明实施例二流程图;Fig. 4 is a flow chart of Embodiment 2 of the present invention;
图5是无源光网络环路检测系统结构图。Fig. 5 is a structural diagram of a passive optical network loop detection system.
具体实施方式 Detailed ways
为了使本发明所要解决的技术问题、技术方案及有益效果更加清楚、明白,以下结合附图和实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。In order to make the technical problems, technical solutions and beneficial effects to be solved by the present invention clearer and clearer, the present invention will be further described in detail below in conjunction with the accompanying drawings and embodiments. It should be understood that the specific embodiments described here are only used to explain the present invention, not to limit the present invention.
实施例一:Embodiment one:
在图2(a)、(b)中,OLT1通过分光器1与所有主用ONU连接。OLT1和主用ONU之间基于GPON或者基于GPON技术的下一代PON进行ONU的注册激活和OLT和ONU之间的业务数据的传输。如图3所示,是本发明实施例一流程图,如图3所示,OLT1采用下述步骤判断由OLT1、主用ONU、备用ONU和OLT2组成的环路是否可以通信:In Fig. 2 (a), (b), OLT1 is connected with all active ONUs through optical splitter 1. OLT1 and the main ONU are based on GPON or the next-generation PON based on GPON technology to perform registration activation of ONU and transmission of service data between OLT and ONU. As shown in Figure 3, it is a flow chart of the embodiment of the present invention, as shown in Figure 3, OLT1 adopts the following steps to judge whether the loop formed by OLT1, active ONU, standby ONU and OLT2 can communicate:
步骤S301,OLT1向主用ONU发送环路通信Round_Trip_Correspondence消息,该消息采用PLOAM(Physical Layer Operations,Administration andMaintenance,物理层操作、管理和维护)机制,PLOAM适用于OLT和ONU之间的快速及时的管理维护信息交互和处理。所述环路通信消息的格式如表1所示:Step S301, OLT1 sends the ring communication Round_Trip_Correspondence message to the active ONU, the message adopts the PLOAM (Physical Layer Operations, Administration and Maintenance, physical layer operation, management and maintenance) mechanism, and PLOAM is suitable for fast and timely management between the OLT and the ONU Maintenance information interaction and processing. The format of the loop communication message is shown in Table 1:
表1 Round_Trip_Correspondence消息的结构Table 1 Structure of the Round_Trip_Correspondence message
如表1所示,Round_Trip_Correspondence消息的第一字节为ONU-ID的值,表示该消息是发送给ONU-ID值为ONU-ID1的ONU,或者该消息是ONU-ID值为ONU-ID1的ONU发送的;第二字节的内容表示该PLOAM消息的类型为Round_Trip_Correspondence消息的结构信息类型;第三到第十二字节的内容为保留,或者由收到该消息的节点依次填入自己的身份信息值(不覆盖其他节点填入的身份信息),或者由收到该消息的节点填入自己的身份信息值(覆盖其他节点填入的身份信息);As shown in Table 1, the first byte of the Round_Trip_Correspondence message is the value of the ONU-ID, indicating that the message is sent to an ONU whose ONU-ID value is ONU-ID1, or that the message is an ONU whose ONU-ID value is ONU-ID1 Sent by the ONU; the content of the second byte indicates that the type of the PLOAM message is the structure information type of the Round_Trip_Correspondence message; the content of the third to twelfth bytes is reserved, or the node that receives the message fills in its own The identity information value (does not cover the identity information filled in by other nodes), or the node that receives the message fills in its own identity information value (covers the identity information filled in by other nodes);
步骤S302,主用ONU收到OLT1发送的环路通信Round_Trip_Correspondence消息后,将所述Round_Trip_Correspondence消息直接转发给备用ONU;Step S302, after receiving the loop communication Round_Trip_Correspondence message sent by OLT1, the active ONU forwards the Round_Trip_Correspondence message directly to the standby ONU;
步骤S303,备用ONU收到主用ONU发送的Round_Trip_Correspondence消息后,将所述Round_Trip_Correspondence消息直接转发给OLT2;Step S303, after receiving the Round_Trip_Correspondence message sent by the active ONU, the standby ONU forwards the Round_Trip_Correspondence message directly to OLT2;
步骤S304,OLT2收到备用ONU发送的Round_Trip_Correspondence消息后,将所述Round_Trip_Correspondence消息直接转发给OLT1;Step S304, OLT2 forwards the Round_Trip_Correspondence message directly to OLT1 after receiving the Round_Trip_Correspondence message sent by the standby ONU;
步骤S305,OLT1收到OLT2发送的Round_Trip_Correspondence消息后,如果所述Round_Trip_Correspondence消息与自己发送的Round_Trip_Correspondence消息相同,则OLT1判断由OLT1、主用ONU、备用ONU和OLT2组成的环路是可以通信的。Step S305, after OLT1 receives the Round_Trip_Correspondence message sent by OLT2, if the Round_Trip_Correspondence message is the same as the Round_Trip_Correspondence message sent by itself, then OLT1 judges that the ring formed by OLT1, active ONU, standby ONU and OLT2 is communicable.
在本实施例中,OLT1判断由OLT1、主用ONU、备用ONU和OLT2组成的环路是可以通信的,在其他的实施例中OLT1可以采用相同的方法判断主用OLT、主用ONU、备用ONU、备用OLT、网管节点最后到主用OLT的环路是可以通信的,则当OLT1检测到自身与分光器1之间的光纤断开时,如果OLT1判断由OLT1、主用ONU、备用ONU、OLT2、网管节点组成的环路是不能通信的,则OLT1通过网管节点命令OLT2通知全部ONU进行保护倒换;当OLT1检测到分光器1与主用ONU之间的部分或者全部光纤断开,如果OLT1判断由OLT1、主用ONU、备用ONU、OLT2和网管节点组成的环路不能通信,则OLT1通过网管节点命令OLT2通知全部或者发生故障的分支光纤上的ONU进行保护倒换。In this embodiment, OLT1 judges that the loop formed by OLT1, active ONU, standby ONU, and OLT2 is communicable. In other embodiments, OLT1 can use the same method to determine the active OLT, active ONU, standby ONU, standby OLT, and network management node can finally communicate with the main OLT loop, then when OLT1 detects that the optical fiber between itself and optical splitter 1 is disconnected, if OLT1 judges that OLT1, main ONU, and standby ONU , OLT2, and the network management node cannot communicate, then OLT1 instructs OLT2 to notify all ONUs to perform protection switching through the network management node; OLT1 judges that the ring composed of OLT1, active ONU, standby ONU, OLT2 and network management node cannot communicate, then OLT1 instructs OLT2 through the network management node to notify all or ONUs on the branch fiber that has failed to perform protection switching.
在本实施例中,OLT1发送的Round_Trip_Correspondence消息的传递顺序为OLT1、主用ONU、备用ONU、OLT2最后到OLT1,在其他的实施例中OLT1发送的Round_Trip_Correspondence消息的传递顺序也可以为主用OLT、备用OLT、备用ONU、主用ONU最后到主用OLT;在所述环路由主用OLT、主用ONU、备用ONU、备用OLT、网管节点组成时,OLT1发送的Round_Trip_Correspondence消息的传递顺序为主用OLT、主用ONU、备用ONU、备用OLT、网管节点最后到主用OLT;OLT1发送的Round_Trip_Correspondence消息的传递顺序也可以为主用OLT、网管节点、备用OLT、备用ONU、主用ONU最后到主用OLT。In this embodiment, the delivery sequence of the Round_Trip_Correspondence message sent by OLT1 is OLT1, active ONU, backup ONU, OLT2 and finally OLT1. In other embodiments, the delivery order of the Round_Trip_Correspondence message sent by OLT1 can also be active OLT, The standby OLT, standby ONU, and active ONU finally reach the active OLT; when the ring is composed of the active OLT, the active ONU, the standby ONU, the standby OLT, and the network management node, the delivery order of the Round_Trip_Correspondence message sent by OLT1 is the active one. OLT, active ONU, standby ONU, standby OLT, network management node finally to the active OLT; the delivery order of the Round_Trip_Correspondence message sent by OLT1 can also be the active OLT, network management node, standby OLT, standby ONU, active ONU to the active Use OLT.
本实施例中所述备用ONU和主用ONU是位于同一个ONU内部的两个逻辑ONU,或者是属于同一个ONU两个PON口,所述两个逻辑ONU或者同一个ONU的两个PON口分别具有自己的光模块和媒质接入控制芯片,并通过共同的CPU管理。The standby ONU and the active ONU described in this embodiment are two logical ONUs located inside the same ONU, or two PON ports belonging to the same ONU, and the two logical ONUs or the two PON ports of the same ONU Each has its own optical module and medium access control chip, and is managed by a common CPU.
本实施例适用于GPON系统、EPON系统和基于GPON技术或者EPON技术的下一代PON系统,如XG PON系统和10G EPON系统。This embodiment is applicable to GPON systems, EPON systems, and next-generation PON systems based on GPON technology or EPON technology, such as XG PON systems and 10G EPON systems.
实施例二:Embodiment two:
在图2(a)、(b)中,OLT1通过分光器1与所有主用ONU连接。OLT1和主用ONU之间基于GPON或者基于GPON技术的下一代PON进行ONU的注册激活和OLT和ONU之间的业务数据的传输。如图4所示,OLT1采用下述步骤判断由OLT1、主用ONU、备用ONU和OLT2组成的环路是否可以通信:In Fig. 2 (a), (b), OLT1 is connected with all active ONUs through optical splitter 1. OLT1 and the main ONU are based on GPON or the next-generation PON based on GPON technology to perform registration activation of ONU and transmission of service data between OLT and ONU. As shown in Figure 4, OLT1 uses the following steps to determine whether the ring composed of OLT1, active ONU, standby ONU, and OLT2 can communicate:
步骤S401,OLT1向主用ONU发送环路通信Round_Trip_Correspondence消息,采用PLOAM机制,所述环路通信消息的格式如表1所示:Step S401, OLT1 sends a loop communication Round_Trip_Correspondence message to the active ONU, using the PLOAM mechanism, and the format of the loop communication message is as shown in Table 1:
表2 Round_Trip_Correspondence消息的结构Table 2 Structure of the Round_Trip_Correspondence message
如表2所示,Round_Trip_Correspondence消息的第一字节为ONU-ID的值,表示该表示该消息是发送给ONU-ID值为ONU-ID1的ONU,或者该消息是ONU-ID值为ONU-ID1的ONU发送的;第二字节的内容表示该PLOAM消息的类型为Round_Trip_Correspondence消息的结构信息类型;第三到第十二字节的内容为保留,或者由收到该消息的节点依次填入自己的身份信息值(不覆盖其他节点填入的身份信息),或者由收到该消息的节点填入自己的身份信息值(覆盖其他节点填入的身份信息)。As shown in Table 2, the first byte of the Round_Trip_Correspondence message is the value of the ONU-ID, indicating that the message is sent to an ONU whose ONU-ID value is ONU-ID1, or that the message is an ONU-ID value of ONU- Sent by the ONU of ID1; the content of the second byte indicates that the type of the PLOAM message is the structure information type of the Round_Trip_Correspondence message; the content of the third to twelfth bytes is reserved, or filled in by the node receiving the message Its own identity information value (does not cover the identity information filled in by other nodes), or the node that receives the message fills in its own identity information value (covers the identity information filled in by other nodes).
步骤S402,主用ONU收到OLT1发送的Round_Trip_Correspondence消息后,将其ONU-ID值(或者将自己的逻辑链路标识LLID值)写入到Round_Trip_Correspondence消息的第一个非零的Data域,然后将所述Round_Trip_Correspondence消息直接转发给备用ONU;Step S402, after the main ONU receives the Round_Trip_Correspondence message sent by OLT1, its ONU-ID value (or its own logical link identification LLID value) is written into the first non-zero Data field of the Round_Trip_Correspondence message, and then the The Round_Trip_Correspondence message is directly forwarded to the standby ONU;
步骤S403,备用ONU收到主用ONU发送的Round_Trip_Correspondence消息后,将其ONU-ID值(或者将自己的逻辑链路标识LLID值)写入到Round_Trip_Correspondence消息的第一个非零的Data域,然后将所述Round_Trip_Correspondence消息直接转发给OLT2;Step S403, after the standby ONU receives the Round_Trip_Correspondence message sent by the active ONU, write its ONU-ID value (or its own logical link identification LLID value) into the first non-zero Data field of the Round_Trip_Correspondence message, and then The Round_Trip_Correspondence message is directly forwarded to OLT2;
步骤S404,OLT2收到备用ONU发送的Round_Trip_Correspondence消息后,将自己的身份信息值(例如PON标识值)写入到Round_Trip_Correspondence消息的第一个非零的Data域,然后将所述Round_Trip_Correspondence消息直接转发给OLT1;Step S404, after OLT2 receives the Round_Trip_Correspondence message that standby ONU sends, writes own identity information value (such as PON identification value) to the first non-zero Data domain of Round_Trip_Correspondence message, then directly forwards described Round_Trip_Correspondence message to OLT1;
步骤S405,OLT1收到OLT2发送的Round_Trip_Correspondence消息后,根据所述Round_Trip_Correspondence消息中所有节点或部门节点填入的身份信息值判断由OLT1、主用ONU、备用ONU和OLT2组成的环路是可以通信的。Step S405, after OLT1 receives the Round_Trip_Correspondence message sent by OLT2, it judges that the ring composed of OLT1, active ONU, standby ONU and OLT2 is communicable according to the identity information values filled in by all nodes or department nodes in the Round_Trip_Correspondence message .
在本实施例中,采用各个节点收到上一节点发送的Round_Trip_Correspondence消息后,将自己的身份信息值写入到Round_Trip_Correspondence消息的第一个非零的Data域,然后发送给下一节点,在其他的实施例中,也可以采用各个节点收到上一节点发送的Round_Trip_Correspondence消息后,将自己的身份信息值写入到Round_Trip_Correspondence消息的Data域,即覆盖前一节点写入的身份信息值,然后发送给下一节点,则OLT1收到OLT2发送的Round_Trip_Correspondence消息后,根据所述Round_Trip_Correspondence消息中OLT2填入的身份信息值判断由OLT1、主用ONU、备用ONU和OLT2组成的环路是可以通信的。In this embodiment, after each node receives the Round_Trip_Correspondence message sent by the previous node, it writes its identity information value into the first non-zero Data field of the Round_Trip_Correspondence message, and then sends it to the next node. In the embodiment of , it is also possible to use each node to write its own identity information value into the Data field of the Round_Trip_Correspondence message after receiving the Round_Trip_Correspondence message sent by the previous node, that is, to cover the identity information value written by the previous node, and then send To the next node, after OLT1 receives the Round_Trip_Correspondence message sent by OLT2, it judges that the loop formed by OLT1, active ONU, standby ONU and OLT2 is communicable according to the identity information value filled in by OLT2 in the Round_Trip_Correspondence message.
在本实施例中,OLT1判断由OLT1、主用ONU、备用ONU和OLT2组成的环路是可以通信的,在其他的实施例中OLT1可以采用相同的方法判断主用OLT、主用ONU、备用ONU、备用OLT、网管节点最后到主用OLT的环路是可以通信的,则当OLT1检测到自身与分光器1之间的光纤断开时,如果OLT1判断由OLT1、主用ONU、备用ONU、OLT2、网管节点组成的环路不能通信,则OLT1通过网管节点命令OLT2通知全部ONU进行保护倒换;当OLT1检测到分光器1与主用ONU之间的部分或者全部光纤断开,如果OLT1判断由OLT1、主用ONU、备用ONU、OLT2和网管节点组成的环路不能通信,则OLT1通过网管节点命令OLT2通知全部或者发生故障的分支光纤上的ONU进行保护倒换。In this embodiment, OLT1 judges that the loop formed by OLT1, active ONU, standby ONU, and OLT2 is communicable. In other embodiments, OLT1 can use the same method to determine the active OLT, active ONU, standby ONU, standby OLT, and network management node can finally communicate with the main OLT loop, then when OLT1 detects that the optical fiber between itself and optical splitter 1 is disconnected, if OLT1 judges that OLT1, main ONU, and standby ONU , OLT2, and the network management node cannot communicate, then OLT1 instructs OLT2 to notify all ONUs to perform protection switching through the network management node; when OLT1 detects that some or all of the optical fibers between If the ring composed of OLT1, main ONU, standby ONU, OLT2 and network management node cannot communicate, OLT1 instructs OLT2 through the network management node to notify all or ONUs on the failed branch fiber to perform protection switching.
在本实施例中,OLT1发送的Round_Trip_Correspondence消息的传递顺序为OLT1、主用ONU、备用ONU、OLT2最后到OLT1,在其他的实施例中OLT1发送的Round_Trip_Correspondence消息的传递顺序也可以为主用OLT、备用OLT、备用ONU、主用ONU最后到主用OLT;在所述环路由主用OLT、主用ONU、备用ONU、备用OLT、网管节点组成时,OLT1发送的Round_Trip_Correspondence消息的传递顺序为主用OLT、主用ONU、备用ONU、备用OLT、网管节点最后到主用OLT;OLT1发送的Round_Trip_Correspondence消息的传递顺序也可以为主用OLT、网管节点、备用OLT、备用ONU、主用ONU最后到主用OLT。In this embodiment, the delivery sequence of the Round_Trip_Correspondence message sent by OLT1 is OLT1, active ONU, backup ONU, OLT2 and finally OLT1. In other embodiments, the delivery order of the Round_Trip_Correspondence message sent by OLT1 can also be active OLT, The standby OLT, standby ONU, and active ONU finally reach the active OLT; when the ring is composed of the active OLT, the active ONU, the standby ONU, the standby OLT, and the network management node, the delivery order of the Round_Trip_Correspondence message sent by OLT1 is the active one. OLT, active ONU, standby ONU, standby OLT, network management node finally to the active OLT; the delivery order of the Round_Trip_Correspondence message sent by OLT1 can also be the active OLT, network management node, standby OLT, standby ONU, active ONU to the active Use OLT.
本实施例中所述备用ONU和主用ONU是位于同一个ONU内部的两个逻辑ONU,或者是属于同一个ONU两个PON口,所述两个逻辑ONU或者同一个ONU的两个PON口分别具有自己的光模块和媒质接入控制芯片,并通过共同的CPU管理。The standby ONU and the active ONU described in this embodiment are two logical ONUs located inside the same ONU, or two PON ports belonging to the same ONU, and the two logical ONUs or the two PON ports of the same ONU Each has its own optical module and medium access control chip, and is managed by a common CPU.
本实施例适用于GPON系统、EPON系统和基于GPON技术或者EPON技术的下一代PON系统,如XG PON系统和10G EPON系统。This embodiment is applicable to GPON systems, EPON systems, and next-generation PON systems based on GPON technology or EPON technology, such as XG PON systems and 10G EPON systems.
实施例三Embodiment three
如图5所示,是无源光网络环路检测系统结构图,所述系统包括,As shown in Figure 5, it is a structural diagram of a passive optical network loop detection system, and the system includes,
第一OLT,用于向主用ONU发送环路通信消息,以及在收到所述环路通信消息后,判断所述无源光网络为环路网络;The first OLT is configured to send a loop communication message to the active ONU, and after receiving the loop communication message, determine that the passive optical network is a loop network;
主用ONU,用于在收到所述环路通信消息后,将所述环路通信消息发送给备用ONU;The active ONU is used to send the loop communication message to the standby ONU after receiving the loop communication message;
备用ONU,用于在收到所述环路通信消息后,将所述环路通信消息发送给第二OLT;The backup ONU is used to send the loop communication message to the second OLT after receiving the loop communication message;
第二OLT,用于收到备用ONU发送的所述环路通信消息后,将所述环路通信消息转发给所述第一OLT。The second OLT is configured to forward the loop communication message to the first OLT after receiving the loop communication message sent by the backup ONU.
所述第一OLT用于判断所述无源光网络为环路网络具体为,The first OLT is used to determine that the passive optical network is a loop network, specifically,
所述第一OLT用于判断所述环路通信消息与其发送的环路通信消息一致,则判断所述无源网络为环路网络。The first OLT is used to determine that the loop communication message is consistent with the loop communication message sent by it, and then determine that the passive network is a loop network.
所述主用ONU、备用ONU、第二OLT收到所述环路通信消息后,将其身份信息添加到所述环路通信消息进行发送。After receiving the loop communication message, the active ONU, standby ONU, and second OLT add their identity information to the loop communication message and send it.
所述第一OLT用于判断所述无源光网络为环路网络具体为,The first OLT is used to determine that the passive optical network is a loop network, specifically,
第一OLT用于根据所述环路通信消息中环路上所有节点或者部分节点的身份信息,则判断所述无源网络为环路网络。The first OLT is configured to judge that the passive network is a loop network according to the identity information of all or some nodes on the loop in the loop communication message.
所述系统中,第一OLT还用于在检测主干光纤或者分支光纤发生故障时,则向第二OLT发送指令,命令第二OLT通知全部或者部分ONU进行主备保护倒换。In the system, the first OLT is also used to send an instruction to the second OLT to instruct all or some ONUs to perform active-standby protection switching when detecting a failure of the main optical fiber or branch optical fiber.
上述说明示出并描述了本发明的优选实施例,但如前所述,应当理解本发明并非局限于本文所披露的形式,不应看作是对其他实施例的排除,而可用于各种其他组合、修改和环境,并能够在本文所述发明构想范围内,通过上述教导或相关领域的技术或知识进行改动。而本领域人员所进行的改动和变化不脱离本发明的精神和范围,则都应在本发明所附权利要求的保护范围内。The foregoing description shows and describes preferred embodiments of the present invention, but as previously stated, it should be understood that the present invention is not limited to the form disclosed herein, and should not be viewed as excluding other embodiments, but can be used in various Other combinations, modifications and circumstances, and can be modified within the scope of the inventive concept described herein, by the above teachings or by skill or knowledge in the relevant field. However, changes and changes made by those skilled in the art do not depart from the spirit and scope of the present invention, and should all be within the protection scope of the appended claims of the present invention.
Claims (12)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201110087946.2A CN102740171B (en) | 2011-04-08 | 2011-04-08 | A kind of EPON loop detecting method and system |
PCT/CN2012/072049 WO2012136089A1 (en) | 2011-04-08 | 2012-03-07 | Loop detection method and system for passive optical network |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201110087946.2A CN102740171B (en) | 2011-04-08 | 2011-04-08 | A kind of EPON loop detecting method and system |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102740171A CN102740171A (en) | 2012-10-17 |
CN102740171B true CN102740171B (en) | 2015-08-12 |
Family
ID=46968580
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201110087946.2A Expired - Fee Related CN102740171B (en) | 2011-04-08 | 2011-04-08 | A kind of EPON loop detecting method and system |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN102740171B (en) |
WO (1) | WO2012136089A1 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105591692A (en) * | 2015-11-04 | 2016-05-18 | 杭州华三通信技术有限公司 | Method and device of loop elimination in Ethernet passive optical network (EPON) |
CN106878057A (en) * | 2016-12-31 | 2017-06-20 | 广东东研网络科技股份有限公司 | Loop detection and sweep-out method in Ethernet passive optical network EPON system |
CN107979412B (en) * | 2017-12-21 | 2020-03-13 | 凌云天博光电科技股份有限公司 | Optical network unit loop detection method and device |
CN110440391B (en) * | 2019-08-07 | 2020-10-27 | 珠海格力电器股份有限公司 | Loop network protection method and air conditioning system |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1889405A (en) * | 2005-06-29 | 2007-01-03 | 华为技术有限公司 | Optical splitter and passive optical network loop system |
CN1921357A (en) * | 2006-09-21 | 2007-02-28 | 杭州华为三康技术有限公司 | Full optical fibre protecting device and method |
CN101282586A (en) * | 2008-05-15 | 2008-10-08 | 杭州华三通信技术有限公司 | Method, system and apparatus for detecting optical fiber fault in passive optical network |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101060369B (en) * | 2006-04-17 | 2010-09-08 | 华为技术有限公司 | A method and system for solving the errors under the PON PLOAM system |
WO2008057975A2 (en) * | 2006-11-02 | 2008-05-15 | Ocean Broadband Networks, Inc. | Passive optical network systems with loop detection capability and methods for the loop detection |
CN101931460B (en) * | 2009-06-22 | 2014-06-04 | 华为技术有限公司 | Link fault detection method, device and system |
CN101877612B (en) * | 2010-06-30 | 2014-12-31 | 中兴通讯股份有限公司 | System for protecting optical link of passive optical network, device thereof and method thereof |
-
2011
- 2011-04-08 CN CN201110087946.2A patent/CN102740171B/en not_active Expired - Fee Related
-
2012
- 2012-03-07 WO PCT/CN2012/072049 patent/WO2012136089A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1889405A (en) * | 2005-06-29 | 2007-01-03 | 华为技术有限公司 | Optical splitter and passive optical network loop system |
CN1921357A (en) * | 2006-09-21 | 2007-02-28 | 杭州华为三康技术有限公司 | Full optical fibre protecting device and method |
CN101282586A (en) * | 2008-05-15 | 2008-10-08 | 杭州华三通信技术有限公司 | Method, system and apparatus for detecting optical fiber fault in passive optical network |
Also Published As
Publication number | Publication date |
---|---|
WO2012136089A1 (en) | 2012-10-11 |
CN102740171A (en) | 2012-10-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8755685B2 (en) | Joint switching method for an aggregation node, aggregation node and system | |
EP2353228B1 (en) | Method and system for protection switching in ethernet passive optical networks | |
CN101854566B (en) | Passive optical network protection method and active/standby switch device and system | |
US8724453B2 (en) | Method and apparatus for implementing trunk optical fiber protection in ethernet passive optical network (EPON) | |
CN101933263B (en) | Protected passive optical communications system | |
CN102369737B (en) | Data communication method of optical network system, optical network units and system | |
US20110038629A1 (en) | Immediate protection scheme for passive optical network | |
EP2897309B1 (en) | Protection switching method, system and apparatus for passive optical network | |
EP2556680A1 (en) | Method and arrangements for protection in an optical network | |
CN102035597B (en) | Method, device and system for switching between main terminal and standby terminal of passive optical network (PON) | |
WO2011140920A1 (en) | Method, system and optical network unit for synchronizing data | |
CN102594444B (en) | A kind of method and system realizing full protection modes | |
CN103414510B (en) | A kind of EPON protection device and method | |
CN102611519A (en) | Method and device for link protection of passive optical network | |
CN102740171B (en) | A kind of EPON loop detecting method and system | |
CN102149027B (en) | Path switching method, system and downlink data transmission method | |
CN102340392A (en) | Method and system for improving reliability of service in passive optical network system | |
CN101873514B (en) | Quick switch method and system under protected mode in passive optical network and optical network unit | |
CN102487466B (en) | The method and system of the transmission data under a kind of full guard pattern in EPON | |
CN103139669A (en) | Method and system for sending data | |
JP2012222767A (en) | Communication system, master station device, and communication circuit changeover method | |
JP2014075661A (en) | Communication device, slave station device, control device, communication system, and communication control method | |
CN111356038A (en) | A method for realizing channel adaptation in a PON and related equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20150812 |