CN102739173B - Transconductance amplifier, resistor, inductor and filter - Google Patents
Transconductance amplifier, resistor, inductor and filter Download PDFInfo
- Publication number
- CN102739173B CN102739173B CN201210212287.5A CN201210212287A CN102739173B CN 102739173 B CN102739173 B CN 102739173B CN 201210212287 A CN201210212287 A CN 201210212287A CN 102739173 B CN102739173 B CN 102739173B
- Authority
- CN
- China
- Prior art keywords
- pmos
- trsanscondutance amplifier
- drain electrode
- grid
- pmos transistor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000010586 diagram Methods 0.000 description 15
- 238000000034 method Methods 0.000 description 11
- 238000005516 engineering process Methods 0.000 description 4
- 238000004088 simulation Methods 0.000 description 4
- 239000003990 capacitor Substances 0.000 description 3
- 238000001914 filtration Methods 0.000 description 3
- 238000006880 cross-coupling reaction Methods 0.000 description 2
- 238000007667 floating Methods 0.000 description 2
- 230000010355 oscillation Effects 0.000 description 2
- 238000004891 communication Methods 0.000 description 1
- 238000009795 derivation Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
Landscapes
- Amplifiers (AREA)
Abstract
本申请公开了一种跨导放大器、电阻、电感以及滤波器,本申请的跨导放大器采用三组源简并差分放大器构成,其中一组放大器由第七PMOS管、第八PMOS管、第五PMOS管以及第六PMOS管组成,第二组放大器由第九PMOS管、第十PMOS管、第十一PMOS管以及第十二PMOS管组成,第三组放大器由第十七PMOS管、第十八PMOS管、第十九PMOS管以及第二十PMOS管组成,三组放大器的输出端交叉连接,从而可以利用电流相减的方式消除三次项谐波,从而实现跨导放大器的低功耗高线性度。进而由所述跨导放大器模拟得到的电阻、电感、以及由所述电阻和/或电感构成的电路也可以实现低功耗高线性度。
The present application discloses a transconductance amplifier, a resistor, an inductor and a filter. The transconductance amplifier of the present application is composed of three sets of source degenerate differential amplifiers, wherein one set of amplifiers consists of the seventh PMOS transistor, the eighth PMOS transistor, the fifth PMOS tube and the sixth PMOS tube, the second group of amplifiers is composed of the ninth PMOS tube, the tenth PMOS tube, the eleventh PMOS tube and the twelfth PMOS tube, the third group of amplifiers is composed of the seventeenth PMOS tube, the tenth PMOS tube Composed of eight PMOS transistors, the nineteenth PMOS transistor and the twentieth PMOS transistor, the output terminals of the three groups of amplifiers are cross-connected, so that the third harmonic can be eliminated by current subtraction, thereby achieving low power consumption and high transconductance amplifier. linearity. Furthermore, the resistance, inductance and the circuit composed of the resistance and/or inductance simulated by the transconductance amplifier can also achieve low power consumption and high linearity.
Description
技术领域technical field
本申请涉及电路领域,尤其涉及一种跨导放大器、电阻、电感以及滤波器。The present application relates to the field of circuits, in particular to a transconductance amplifier, a resistor, an inductor and a filter.
背景技术Background technique
随着通信技术,尤其是移动通信技术和计算技术的飞速发展,作为现代接收机尤其是零中频接受机中的一个关键模块,跨导-电容(Gm-C)滤波器能在混频器之后进行信号的滤波处理,为后级的可变增益放大器提供杂散频谱较少的信号,既能有效地在可变增益放大器(VGA,VariableGainAmplifier)、模拟/数字转换器(ADC,Analog-to-DigitalConverter)之前初步处理信号,又能防止后级的可变增益放大器由于带外信号过大而饱和。With the rapid development of communication technology, especially mobile communication technology and computing technology, as a key module in modern receivers, especially zero-IF receivers, the transconductance-capacitance (Gm-C) filter can be used after the mixer Carry out signal filtering processing to provide signals with less spurious spectrum for the variable gain amplifier of the subsequent stage, which can be effectively used in variable gain amplifiers (VGA, VariableGainAmplifier), analog/digital converters (ADC, Analog-to- DigitalConverter) preliminarily processes the signal, and prevents the variable gain amplifier of the subsequent stage from being saturated due to excessive out-of-band signals.
在移动数字视频广播系统中,位于接收机中频部分的Gm-C滤波器,需要处理较大的输入信号,要求滤波器在功耗很低的情况下保证较高的线性度。In the mobile digital video broadcasting system, the Gm-C filter located in the intermediate frequency part of the receiver needs to process a large input signal, and the filter is required to ensure high linearity with low power consumption.
发明内容Contents of the invention
有鉴于此,本申请要解决的技术问题是,提供一种跨导放大器、电阻、电感以及滤波器,能够使得滤波器在功耗很低的情况下保证较高的线性度。In view of this, the technical problem to be solved in the present application is to provide a transconductance amplifier, a resistor, an inductor and a filter, which can ensure high linearity of the filter with low power consumption.
为此,本申请实施例采用如下技术方案:For this reason, the embodiment of the application adopts the following technical solutions:
一种跨导放大器,包括:A transconductance amplifier comprising:
第一NMOS管的栅极连接跨导放大器的调谐电压输入端;第一NMOS管的源极接地,漏极连接第二PMOS管的漏极;The gate of the first NMOS transistor is connected to the tuning voltage input terminal of the transconductance amplifier; the source of the first NMOS transistor is grounded, and the drain is connected to the drain of the second PMOS transistor;
第二PMOS管、第三PMOS管、第四PMOS管、第十三PMOS管、第十四PMOS管、第十五PMOS管、第十六PMOS管的栅极、源极分别对应连接;且,第二PMOS管的栅极与第二PMOS管的漏极连接;第二PMOS管的源极连接跨导放大器的电源电压输入端;The gates and sources of the second PMOS transistor, the third PMOS transistor, the fourth PMOS transistor, the thirteenth PMOS transistor, the fourteenth PMOS transistor, the fifteenth PMOS transistor, and the sixteenth PMOS transistor are connected correspondingly; and, The gate of the second PMOS transistor is connected to the drain of the second PMOS transistor; the source of the second PMOS transistor is connected to the power supply voltage input terminal of the transconductance amplifier;
第三PMOS管的漏极分别连接第五PMOS管的漏极、第六PMOS管的源极以及第七PMOS管的源极;The drain of the third PMOS transistor is respectively connected to the drain of the fifth PMOS transistor, the source of the sixth PMOS transistor and the source of the seventh PMOS transistor;
第四PMOS管的漏极分别连接第五PMOS管的源极、第六PMOS管的漏极以及第八PMOS管的源极;The drain of the fourth PMOS transistor is respectively connected to the source of the fifth PMOS transistor, the drain of the sixth PMOS transistor and the source of the eighth PMOS transistor;
第十三PMOS管的漏极分别连接第九PMOS管的源极、第十一PMOS管的源极以及第十二PMOS管的漏极;The drain of the thirteenth PMOS transistor is respectively connected to the source of the ninth PMOS transistor, the source of the eleventh PMOS transistor, and the drain of the twelfth PMOS transistor;
第十四PMOS管的漏极分别连接第十PMOS管的源极、第十一PMOS管的漏极以及第十二PMOS管的源极;The drain of the fourteenth PMOS transistor is respectively connected to the source of the tenth PMOS transistor, the drain of the eleventh PMOS transistor and the source of the twelfth PMOS transistor;
第十五PMOS管的漏极分别连接第十七PMOS管的漏极、第十八PMOS管的源极以及第十九PMOS管的源极;The drain of the fifteenth PMOS transistor is respectively connected to the drain of the seventeenth PMOS transistor, the source of the eighteenth PMOS transistor, and the source of the nineteenth PMOS transistor;
第十六PMOS管的漏极分别连接第十七PMOS管的源极、第十八PMOS管的漏极以及第二十PMOS管的源极;The drain of the sixteenth PMOS transistor is respectively connected to the source of the seventeenth PMOS transistor, the drain of the eighteenth PMOS transistor and the source of the twentieth PMOS transistor;
第六PMOS管的栅极、第八PMOS管的栅极、第九PMOS管的栅极以及第十一PMOS管的栅极均与跨导放大器的正相输入端连接;The grid of the sixth PMOS transistor, the grid of the eighth PMOS transistor, the grid of the ninth PMOS transistor and the grid of the eleventh PMOS transistor are all connected to the non-inverting input terminal of the transconductance amplifier;
第十PMOS管的栅极、第十二PMOS管的栅极、第十八PMOS管的栅极以及第十九PMOS管的栅极均与跨导放大器的负相输入端连接;The grid of the tenth PMOS transistor, the grid of the twelfth PMOS transistor, the grid of the eighteenth PMOS transistor and the grid of the nineteenth PMOS transistor are all connected to the negative phase input terminal of the transconductance amplifier;
第五PMOS管的栅极、第七PMOS管的栅极、第十七PMOS管的栅极以及第二十PMOS管的栅极均接地;The grid of the fifth PMOS transistor, the grid of the seventh PMOS transistor, the grid of the seventeenth PMOS transistor and the grid of the twentieth PMOS transistor are all grounded;
第二十一NMOS管的栅极与第二十二NMOS管的栅极连接,且连接跨导放大器的共模反馈电压端;第二十一NMOS管的源极以及第二十二NMOS管的源极接地;The gate of the twenty-first NMOS transistor is connected to the gate of the twenty-second NMOS transistor, and is connected to the common-mode feedback voltage terminal of the transconductance amplifier; the source of the twenty-first NMOS transistor and the gate of the twenty-second NMOS transistor source ground;
第七PMOS管的漏极、第九PMOS管的漏极、第十九PMOS管的漏极以及第二十一NMOS管的漏极均与跨导放大器的负相输出端连接;The drain of the seventh PMOS transistor, the drain of the ninth PMOS transistor, the drain of the nineteenth PMOS transistor and the drain of the twenty-first NMOS transistor are all connected to the negative phase output terminal of the transconductance amplifier;
第八PMOS管的漏极、第十PMOS管的漏极、第二十PMOS管的漏极以及第二十二NMOS管的漏极均与跨导放大器的正相输出端连接。The drains of the eighth PMOS transistor, the tenth PMOS transistor, the twentieth PMOS transistor and the twenty-second NMOS transistor are all connected to the non-inverting output terminal of the transconductance amplifier.
还包括:第二十三PMOS管的源极以及第二十四PMOS管的源极连接跨导放大器的电源电压输入端;第二十三PMOS管的栅极与第二十四PMOS管的栅极连接偏置电压端;It also includes: the source of the twenty-third PMOS transistor and the source of the twenty-fourth PMOS transistor are connected to the power supply voltage input end of the transconductance amplifier; the gate of the twenty-third PMOS transistor is connected to the gate of the twenty-fourth PMOS transistor The pole is connected to the bias voltage terminal;
第二十三PMOS管的漏极分别连接第二十五PMOS管的源极以及第二十六PMOS管的源极;第二十四PMOS管的漏极分别连接第二十七PMOS管的源极以及第二十八PMOS管的源极;The drain of the twenty-third PMOS transistor is respectively connected to the source of the twenty-fifth PMOS transistor and the source of the twenty-sixth PMOS transistor; the drain of the twenty-fourth PMOS transistor is respectively connected to the source of the twenty-seventh PMOS transistor pole and the source of the twenty-eighth PMOS transistor;
第二十五PMOS管的栅极连接跨导放大器的正相输出端,漏极连接第三十NMOS管的漏极以及第二十八PMOS管的漏极;The gate of the twenty-fifth PMOS transistor is connected to the non-inverting output terminal of the transconductance amplifier, and the drain is connected to the drain of the thirtieth NMOS transistor and the drain of the twenty-eighth PMOS transistor;
第二十六PMOS管的栅极与第二十七PMOS管的栅极连接参考电压端,漏极分别连接第二十七PMOS管的漏极以及第二十九NMOS管的漏极;The gate of the twenty-sixth PMOS transistor is connected to the reference voltage terminal with the gate of the twenty-seventh PMOS transistor, and the drain is respectively connected to the drain of the twenty-seventh PMOS transistor and the drain of the twenty-ninth NMOS transistor;
第二十八PMOS管的栅极连接跨导放大器的负相输出端;The gate of the twenty-eighth PMOS transistor is connected to the negative phase output terminal of the transconductance amplifier;
第二十九NMOS管的栅极与漏极连接共模反馈电压端;第二十九NMOS管的源极接地;The gate and drain of the twenty-ninth NMOS transistor are connected to the common mode feedback voltage terminal; the source of the twenty-ninth NMOS transistor is grounded;
第三十NMOS管的栅极与漏极连接,源极接地。The gate of the thirtieth NMOS transistor is connected to the drain, and the source is grounded.
一种电阻,包括权利要求1所述的跨导放大器,其中,A resistor comprising the transconductance amplifier of claim 1, wherein,
跨导放大器的负相输出端与跨导放大器的共模反馈电压端连接;The negative phase output terminal of the transconductance amplifier is connected with the common mode feedback voltage terminal of the transconductance amplifier;
跨导放大器的正相输出端与跨导放大器的负相输入端连接,该连接的连接点作为电阻的第一端;The positive phase output terminal of the transconductance amplifier is connected with the negative phase input terminal of the transconductance amplifier, and the connection point of this connection is used as the first end of the resistance;
跨导放大器的负相输入端作为电阻的第二端。The negative input terminal of the transconductance amplifier acts as the second terminal of the resistor.
一种电阻,包括权利要求2所述的跨导放大器,其中,A resistor comprising the transconductance amplifier of claim 2, wherein,
跨导放大器的正相输入端与跨导放大器的负相输出端连接,该连接的连接点作为所述电阻的第一端;The positive phase input terminal of the transconductance amplifier is connected with the negative phase output terminal of the transconductance amplifier, and the connection point of the connection is used as the first end of the resistance;
跨导放大器的负相输入端与跨导放大器的正相输出端连接,该连接的连接点作为所述电阻的第二端。The negative-phase input terminal of the transconductance amplifier is connected to the positive-phase output terminal of the transconductance amplifier, and the connection point of the connection serves as the second terminal of the resistor.
一种电感,包括两个权利要求1所述的跨导放大器,分别为第一跨导放大器和第二跨导放大器,其中,An inductance comprising two transconductance amplifiers according to claim 1, being respectively a first transconductance amplifier and a second transconductance amplifier, wherein,
第一跨导放大器的负相输出端与第一跨导放大器的共模反馈电压端连接;第二跨导放大器的负相输出端与第二跨导放大器的共模反馈电压端连接;The negative-phase output terminal of the first transconductance amplifier is connected with the common-mode feedback voltage terminal of the first transconductance amplifier; the negative-phase output terminal of the second transconductance amplifier is connected with the common-mode feedback voltage terminal of the second transconductance amplifier;
电感的第一端通过第一电容接地,且分别与第一跨导放大器的正相输出端、第二跨导放大器的正相输入端连接;电感的第二端分别与第一跨导放大器的正相输入端、第二跨导放大器的正相输出端连接;The first end of the inductance is grounded through the first capacitor, and is respectively connected with the non-inverting output end of the first transconductance amplifier and the non-inverting input end of the second transconductance amplifier; the second end of the inductance is respectively connected with the first transconductance amplifier The non-inverting input terminal and the non-inverting output terminal of the second transconductance amplifier are connected;
第一跨导放大器的负相输入端接地,第二跨导放大器的负相输入端接地。The negative phase input terminal of the first transconductance amplifier is grounded, and the negative phase input terminal of the second transconductance amplifier is grounded.
一种滤波器,包括权利要求1至2任一项所述的跨导放大器,和/或,权利要求3至4任一项所述的电阻,和/或,权利要求5所述的电感。A filter, comprising the transconductance amplifier described in any one of claims 1 to 2, and/or the resistor described in any one of claims 3 to 4, and/or the inductor described in claim 5.
还包括锁相环调谐器,其中,also includes a PLL tuner where,
压控振荡器的输出端连接鉴频鉴相器的第一输入端,鉴频鉴相器的第二输入端接收参考频率信号;鉴频鉴相器的输出端通过电荷泵连接环路滤波器的输入端,环路滤波器的输出端分别连接压控振荡器的输入端以及滤波器中的调谐电压输入端。The output of the voltage controlled oscillator is connected to the first input of the frequency and phase detector, and the second input of the frequency and phase detector receives the reference frequency signal; the output of the frequency and phase detector is connected to the loop filter through the charge pump The input terminal of the loop filter is respectively connected to the input terminal of the voltage controlled oscillator and the tuning voltage input terminal in the filter.
对于上述技术方案的技术效果分析如下:The technical effect analysis for the above-mentioned technical scheme is as follows:
本申请的跨导放大器采用三组源简并差分放大器构成,其中一组放大器由第七PMOS管、第八PMOS管、第五PMOS管以及第六PMOS管组成,第二组放大器由第九PMOS管、第十PMOS管、第十一PMOS管以及第十二PMOS管组成,第三组放大器由第十七PMOS管、第十八PMOS管、第十九PMOS管以及第二十PMOS管组成,三组放大器的输出端交叉连接,从而可以利用电流相减的方式消除三次项谐波,从而实现跨导放大器的低功耗高线性度,进而能够使得使用所述跨导放大器的滤波器在功耗很低的情况下保证较高的线性度。The transconductance amplifier of this application is composed of three sets of source degenerate differential amplifiers, one set of amplifiers consists of the seventh PMOS transistor, the eighth PMOS transistor, the fifth PMOS transistor and the sixth PMOS transistor, and the second set of amplifiers consists of the ninth PMOS transistor tube, the tenth PMOS tube, the eleventh PMOS tube, and the twelfth PMOS tube, and the third group of amplifiers consists of the seventeenth PMOS tube, the eighteenth PMOS tube, the nineteenth PMOS tube, and the twentieth PMOS tube. The output terminals of the three groups of amplifiers are cross-connected, so that the third-order harmonic can be eliminated by means of current subtraction, thereby realizing the low power consumption and high linearity of the transconductance amplifier, and then enabling the filter using the transconductance amplifier to operate High linearity is guaranteed at very low power consumption.
附图说明Description of drawings
图1为本申请跨导放大器第一实施例示意图;Fig. 1 is the schematic diagram of the first embodiment of the transconductance amplifier of the present application;
图2为本申请共模反馈电路结构示意图;Fig. 2 is a schematic structural diagram of the common mode feedback circuit of the present application;
图3为本申请电阻第一实施例示意图;Fig. 3 is the schematic diagram of the first embodiment of the resistance of the present application;
图4为本申请电感的第一实施例示意图;Fig. 4 is the schematic diagram of the first embodiment of the inductor of the present application;
图5为本申请电阻第三实施例示意图;Fig. 5 is a schematic diagram of the third embodiment of the resistor of the present application;
图6为本申请一种7阶椭圆滤波器结构示意图;Fig. 6 is a schematic structural diagram of a 7th-order elliptic filter of the present application;
图7为本申请滤波器第一实施例示意图;Fig. 7 is a schematic diagram of the first embodiment of the filter of the present application;
图8为本申请滤波器第二实施例示意图;FIG. 8 is a schematic diagram of a second embodiment of the filter of the present application;
图9为本申请所述跨导放大器的简化电路结构图。FIG. 9 is a simplified circuit structure diagram of the transconductance amplifier described in the present application.
具体实施方式detailed description
以下,结合附图详细说明本申请跨导放大器、电阻、电感以及滤波器的实现。Hereinafter, the implementation of the transconductance amplifier, resistor, inductor and filter of the present application will be described in detail with reference to the accompanying drawings.
图1是本申请跨导放大器结构示意图,如图1所述,该跨导放大器包括:Fig. 1 is a schematic diagram of the structure of the transconductance amplifier of the present application, as described in Fig. 1, the transconductance amplifier includes:
第一NMOS管M1的栅极连接跨导放大器的调谐电压输入端VTUNE;第一NMOS管M1的源极接地,漏极连接第二PMOS管M2的漏极;The gate of the first NMOS transistor M1 is connected to the tuning voltage input terminal VTUNE of the transconductance amplifier; the source of the first NMOS transistor M1 is grounded, and the drain is connected to the drain of the second PMOS transistor M2;
第二PMOS管M2、第三PMOS管M3、第四PMOS管M4、第十三PMOS管M13、第十四PMOS管M14、第十五PMOS管M15、第十六PMOS管M16的栅极、源极分别对应连接;且,第二PMOS管M2的栅极与第二PMOS管M2的漏极连接;第二PMOS管M2的源极连接跨导放大器的电源电压输入端VC;The gate and source of the second PMOS transistor M2, the third PMOS transistor M3, the fourth PMOS transistor M4, the thirteenth PMOS transistor M13, the fourteenth PMOS transistor M14, the fifteenth PMOS transistor M15, and the sixteenth PMOS transistor M16 and the gate of the second PMOS transistor M2 is connected to the drain of the second PMOS transistor M2; the source of the second PMOS transistor M2 is connected to the power supply voltage input terminal VC of the transconductance amplifier;
第三PMOS管M3的漏极分别连接第五PMOS管M5的漏极、第六PMOS管M6的源极以及第七PMOS管M7的源极;The drain of the third PMOS transistor M3 is respectively connected to the drain of the fifth PMOS transistor M5, the source of the sixth PMOS transistor M6 and the source of the seventh PMOS transistor M7;
第四PMOS管M4的漏极分别连接第五PMOS管M5的源极、第六PMOS管M6的漏极以及第八PMOS管M8的源极;The drain of the fourth PMOS transistor M4 is respectively connected to the source of the fifth PMOS transistor M5, the drain of the sixth PMOS transistor M6, and the source of the eighth PMOS transistor M8;
第十三PMOS管M13的漏极分别连接第九PMOS管M9的源极、第十一PMOS管M11的源极以及第十二PMOS管M12的漏极;The drain of the thirteenth PMOS transistor M13 is respectively connected to the source of the ninth PMOS transistor M9, the source of the eleventh PMOS transistor M11, and the drain of the twelfth PMOS transistor M12;
第十四PMOS管M14的漏极分别连接第十PMOS管M10的源极、第十一PMOS管M11的漏极以及第十二PMOS管M12的源极;The drain of the fourteenth PMOS transistor M14 is respectively connected to the source of the tenth PMOS transistor M10, the drain of the eleventh PMOS transistor M11, and the source of the twelfth PMOS transistor M12;
第十五PMOS管M15的漏极分别连接第十七PMOS管M17的漏极、第十八PMOS管M18的源极以及第十九PMOS管M19的源极;The drain of the fifteenth PMOS transistor M15 is respectively connected to the drain of the seventeenth PMOS transistor M17, the source of the eighteenth PMOS transistor M18, and the source of the nineteenth PMOS transistor M19;
第十六PMOS管M16的漏极分别连接第十七PMOS管M17的源极、第十八PMOS管M18的漏极以及第二十PMOS管M20的源极;The drain of the sixteenth PMOS transistor M16 is respectively connected to the source of the seventeenth PMOS transistor M17, the drain of the eighteenth PMOS transistor M18, and the source of the twentieth PMOS transistor M20;
第六PMOS管M6的栅极、第八PMOS管M8的栅极、第九PMOS管M9的栅极以及第十一PMOS管M11的栅极均与跨导放大器的正相输入端VINP连接;The gate of the sixth PMOS transistor M6, the gate of the eighth PMOS transistor M8, the gate of the ninth PMOS transistor M9, and the gate of the eleventh PMOS transistor M11 are all connected to the non-inverting input terminal VINP of the transconductance amplifier;
第十PMOS管M10的栅极、第十二PMOS管M12的栅极、第十八PMOS管M18的栅极以及第十九PMOS管M19的栅极均与跨导放大器的负相输入端VINN连接;The gate of the tenth PMOS transistor M10, the gate of the twelfth PMOS transistor M12, the gate of the eighteenth PMOS transistor M18, and the gate of the nineteenth PMOS transistor M19 are all connected to the negative phase input terminal VINN of the transconductance amplifier ;
第五PMOS管M5的栅极、第七PMOS管M7的栅极、第十七PMOS管M17的栅极以及第二十PMOS管M20的栅极均接地;The gate of the fifth PMOS transistor M5, the gate of the seventh PMOS transistor M7, the gate of the seventeenth PMOS transistor M17, and the gate of the twentieth PMOS transistor M20 are all grounded;
第二十一NMOS管M21的栅极与第二十二NMOS管M22的栅极连接,且连接跨导放大器的共模反馈电压端VCMFB;第二十一NMOS管M21的源极以及第二十二NMOS管M22的源极接地;The gate of the twenty-first NMOS transistor M21 is connected to the gate of the twenty-second NMOS transistor M22, and connected to the common-mode feedback voltage terminal VCMFB of the transconductance amplifier; the source of the twenty-first NMOS transistor M21 and the twenty-second The source of the NMOS transistor M22 is grounded;
第七PMOS管M7的漏极、第九PMOS管M9的漏极、第十九PMOS管M19的漏极以及第二十一NMOS管M21的漏极均与跨导放大器的负相输出端VOUTN连接;The drain of the seventh PMOS transistor M7, the drain of the ninth PMOS transistor M9, the drain of the nineteenth PMOS transistor M19, and the drain of the twenty-first NMOS transistor M21 are all connected to the negative phase output terminal VOUTN of the transconductance amplifier ;
第八PMOS管M8的漏极、第十PMOS管M10的漏极、第二十PMOS管M20的漏极以及第二十二NMOS管M22的漏极均与跨导放大器的正相输出端VOUTP连接。The drain of the eighth PMOS transistor M8, the drain of the tenth PMOS transistor M10, the drain of the twentieth PMOS transistor M20, and the drain of the twenty-second NMOS transistor M22 are all connected to the non-inverting output terminal VOUTP of the transconductance amplifier .
图1所示的跨导放大器结构采用三组源简并差分放大器构成,其中一组放大器由第七PMOS管M7、第八PMOS管M8、第五PMOS管M5以及第六PMOS管M6组成,第二组放大器由第九PMOS管M9、第十PMOS管M10、第十一PMOS管M11以及第十二PMOS管M12组成,第三组放大器由第十七PMOS管、第十八PMOS管、第十九PMOS管以及第二十PMOS管组成,三组放大器的输出端交叉连接,从而可以利用电流相减的方式消除三次项谐波,从而实现跨导放大器的低功耗高线性度。The structure of the transconductance amplifier shown in Figure 1 is composed of three sets of source degenerate differential amplifiers, one of which is composed of the seventh PMOS transistor M7, the eighth PMOS transistor M8, the fifth PMOS transistor M5 and the sixth PMOS transistor M6, and the sixth PMOS transistor M6. The second group of amplifiers consists of the ninth PMOS transistor M9, the tenth PMOS transistor M10, the eleventh PMOS transistor M11 and the twelfth PMOS transistor M12, and the third group of amplifiers consists of the seventeenth PMOS transistor, the eighteenth PMOS transistor, the tenth PMOS transistor Nine PMOS tubes and 20 PMOS tubes are composed, and the output terminals of the three sets of amplifiers are cross-connected, so that the third-order harmonics can be eliminated by current subtraction, thereby achieving low power consumption and high linearity of the transconductance amplifier.
进而,所述跨导放大器应用于滤波器,例如Gm-C滤波器中时,可以实现滤波器的低功耗高线性度。Furthermore, when the transconductance amplifier is applied to a filter, such as a Gm-C filter, low power consumption and high linearity of the filter can be achieved.
图1所示的跨导放大器在实际应用场景中,需要跨导放大器实现双端输入单端输出时,则跨导放大器的负相输出端可以与跨导放大器的共模反馈电压端VCMFB连接,实现跨导放大器的双端输入单端输出。In the actual application scenario of the transconductance amplifier shown in Figure 1, when the transconductance amplifier needs to realize double-ended input and single-ended output, the negative phase output terminal of the transconductance amplifier can be connected to the common-mode feedback voltage terminal VCMFB of the transconductance amplifier, Realize double-ended input and single-ended output of transconductance amplifier.
或者,在实际应用场景中,需要跨导放大器实现双端输入双端输出时,一般需要对图1所示的跨导放大器的共模电平进行控制,也即对跨导放大器的共模反馈电压端VCMFB的电压进行控制,此时,图1所示的跨导放大器可以进一步包括如图2所示的共模反馈电路,形成另一种跨导放大器结构,如图2所示,所述共模反馈电路包括:Or, in practical application scenarios, when a transconductance amplifier is required to achieve dual-terminal input and dual-terminal output, it is generally necessary to control the common-mode level of the transconductance amplifier shown in Figure 1, that is, the common-mode feedback of the transconductance amplifier The voltage of the voltage terminal VCMFB is controlled. At this time, the transconductance amplifier shown in FIG. 1 can further include a common-mode feedback circuit as shown in FIG. 2 to form another transconductance amplifier structure, as shown in FIG. The common-mode feedback circuit consists of:
第二十三PMOS管M23的源极以及第二十四PMOS管M24的源极连接跨导放大器的电源电压输入端VC;第二十三PMOS管M23的栅极与第二十四PMOS管M24的栅极连接跨导放大器的偏置电压端VBIAS;The source of the twenty-third PMOS transistor M23 and the source of the twenty-fourth PMOS transistor M24 are connected to the power supply voltage input terminal VC of the transconductance amplifier; the gate of the twenty-third PMOS transistor M23 is connected to the twenty-fourth PMOS transistor M24 The gate of the transconductance amplifier is connected to the bias voltage terminal VBIAS;
第二十三PMOS管M23的漏极分别连接第二十五PMOS管M25的源极以及第二十六PMOS管M26的源极;第二十四PMOS管M24的漏极分别连接第二十七PMOS管M27的源极以及第二十八PMOS管M28的源极;The drain of the twenty-third PMOS transistor M23 is respectively connected to the source of the twenty-fifth PMOS transistor M25 and the source of the twenty-sixth PMOS transistor M26; the drain of the twenty-fourth PMOS transistor M24 is connected to the twenty-seventh PMOS transistor M24 respectively. the source of the PMOS transistor M27 and the source of the twenty-eighth PMOS transistor M28;
第二十五PMOS管M25的栅极连接跨导放大器的正相输出端VOUTP,漏极连接第三十NMOS管M30的漏极以及第二十八PMOS管M28的漏极;The gate of the twenty-fifth PMOS transistor M25 is connected to the non-inverting output terminal VOUTP of the transconductance amplifier, and the drain is connected to the drain of the thirtieth NMOS transistor M30 and the drain of the twenty-eighth PMOS transistor M28;
第二十六PMOS管M26的栅极与第二十七PMOS管M27的栅极连接跨导放大器的参考电压端VREF,漏极分别连接第二十七PMOS管M27的漏极以及第二十九NMOS管M29的漏极;The gate of the twenty-sixth PMOS transistor M26 and the gate of the twenty-seventh PMOS transistor M27 are connected to the reference voltage terminal VREF of the transconductance amplifier, and the drains are connected to the drain of the twenty-seventh PMOS transistor M27 and the twenty-ninth PMOS transistor M27 respectively. The drain of the NMOS transistor M29;
第二十八PMOS管M28的栅极连接跨导放大器的负相输出端VOUTN;The gate of the twenty-eighth PMOS transistor M28 is connected to the negative phase output terminal VOUTN of the transconductance amplifier;
第二十九NMOS管M29的栅极与漏极连接跨导放大器的共模反馈电压端VCMFB;第二十九NMOS管M29的源极接地;The gate and drain of the twenty-ninth NMOS transistor M29 are connected to the common-mode feedback voltage terminal VCMFB of the transconductance amplifier; the source of the twenty-ninth NMOS transistor M29 is grounded;
第三十NMOS管M30的栅极与漏极连接,源极接地。The gate of the thirtieth NMOS transistor M30 is connected to the drain, and the source is grounded.
对于图1和图2所示的电路,跨导放大器的调谐电压输入端VTUNE输入的电压可以为某一恒定电压,或者,也可以为某一范围内的可调电压,具体的电压数值可以在实际应用中根据应用环境确定,这里不限制。For the circuits shown in Figure 1 and Figure 2, the voltage input by the tuning voltage input terminal VTUNE of the transconductance amplifier can be a certain constant voltage, or it can also be an adjustable voltage within a certain range, and the specific voltage value can be in In actual application, it is determined according to the application environment, and there is no limitation here.
一般的,所述偏置电压端VBIAS可以连接第二PMOS管M2的栅极,使得偏置电压端VBIAS的电压随调谐电压输入端VTUNE的电压数值进行变化;或者,也可以为偏置电压端VBIAS输入某一固定值的电压,具体的电压数值可以在实际应用中根据应用环境确定,这里不限制。Generally, the bias voltage terminal VBIAS can be connected to the gate of the second PMOS transistor M2, so that the voltage of the bias voltage terminal VBIAS changes with the voltage value of the tuning voltage input terminal VTUNE; or, it can also be the bias voltage terminal VBIAS inputs a voltage with a certain fixed value, and the specific voltage value can be determined according to the application environment in practical applications, and is not limited here.
一般的,可以为参考电压端VREF输入某一固定值的电压,具体的电压数值可以在实际应用中根据应用环境确定,这里不限制。Generally, a certain fixed value voltage can be input for the reference voltage terminal VREF, and the specific voltage value can be determined according to the application environment in practical applications, and is not limited here.
电源电压输入端VC一般连接跨导放大器的电源,用于为跨导放大器中的各个器件供电。The power supply voltage input terminal VC is generally connected to the power supply of the transconductance amplifier, and is used to supply power to each device in the transconductance amplifier.
其中,在实际应用中如电路例如滤波器中需要使用电阻或者电感时,可以使用上述图1所示的跨导放大器、或者图1和图2结合得到的跨导放大器进行电阻或者电感的模拟。Wherein, when a resistor or an inductor is required in a practical application such as a circuit such as a filter, the transconductance amplifier shown in FIG. 1 above, or the transconductance amplifier obtained by combining FIG. 1 and FIG. 2 can be used to simulate the resistance or inductance.
具体的,在需要使用双端输入单端输出的跨导放大器的应用场景中,可以通过图1所示的跨导放大器模拟电阻或者电感,使得电路中的电阻和电感从无源器件变为有源器件;如图4所示为图1的跨导放大器模拟得到的电阻结构示意图,如图5所示为图1的跨导放大器模拟得到的电感结构示意图;Specifically, in the application scenario where a transconductance amplifier with double-ended input and single-ended output is required, the resistance or inductance can be simulated through the transconductance amplifier shown in Figure 1, so that the resistance and inductance in the circuit change from passive components to active components. Source device; As shown in Figure 4, it is a schematic diagram of the resistance structure obtained by the simulation of the transconductance amplifier of Figure 1, and as shown in Figure 5, it is a schematic diagram of the structure of the inductor obtained by the simulation of the transconductance amplifier of Figure 1;
在需要使用双端输入双端输出的跨导放大器的应用场景中,可以通过图1和图2结合得到的跨导放大器模拟电阻或者电感;如图6所示为图1和图2结合得到的跨导放大器模拟得到的电阻结构示意图。In the application scenario where a transconductance amplifier with double-ended input and double-ended output is required, the transconductance amplifier obtained by combining Figure 1 and Figure 2 can be used to simulate resistance or inductance; Figure 6 shows the combination of Figure 1 and Figure 2 Schematic diagram of the resistor structure obtained from the simulation of the transconductance amplifier.
如图3所示,跨导放大器模拟得到的电阻结构包括:As shown in Figure 3, the resistance structure simulated by the transconductance amplifier includes:
跨导放大器gm,所述跨导放大器gm可以使用图1所示的结构实现;Transconductance amplifier gm, described transconductance amplifier gm can use the structure shown in Fig. 1 to realize;
另外,该电阻还包括:Additionally, this resistor includes:
跨导放大器gm的负相输出端与跨导放大器gm的共模反馈电压端连接(图中未示出);The negative phase output terminal of the transconductance amplifier gm is connected to the common-mode feedback voltage terminal of the transconductance amplifier gm (not shown in the figure);
跨导放大器gm的正相输出端与跨导放大器gm的负相输入端连接,该连接的连接点作为电阻的第一端;The positive phase output terminal of the transconductance amplifier gm is connected with the negative phase input terminal of the transconductance amplifier gm, and the connection point of the connection is used as the first end of the resistance;
跨导放大器gm的正相输入端作为电阻的第二端。The non-inverting input terminal of the transconductance amplifier gm acts as the second terminal of the resistor.
其中,该电阻可以作为接地电阻或者浮地电阻,当图3中所述电阻第一端和第二端中有一端接地,另一端连接其他器件时,该电阻为接地电阻;当电阻的第一端和第二端均连接其他器件时,该电阻为浮地电阻。Wherein, the resistance can be used as a grounding resistance or a floating resistance. When one of the first end and the second end of the resistance described in FIG. 3 is grounded, and the other end is connected to other devices, the resistance is a grounding resistance; When both the terminal and the second terminal are connected to other devices, the resistance is a floating resistance.
图4为图1所示的跨导放大器模拟得到的电感,如图4所示,该电感包括:Fig. 4 is the inductance simulated by the transconductance amplifier shown in Fig. 1. As shown in Fig. 4, the inductance includes:
两个图1中所示的跨导放大器,分别为第一跨导放大器gm1和第二跨导放大器gm2,其中,Two transconductance amplifiers shown in Fig. 1 are respectively the first transconductance amplifier gm1 and the second transconductance amplifier gm2, wherein,
第一跨导放大器gm1的负相输出端与第一跨导放大器gm1的共模反馈电压端连接(图中未示出);第二跨导放大器gm2的负相输出端与第二跨导放大器gm2的共模反馈电压端连接(图中未示出);The negative phase output terminal of the first transconductance amplifier gm1 is connected with the common mode feedback voltage end of the first transconductance amplifier gm1 (not shown in the figure); The negative phase output terminal of the second transconductance amplifier gm2 is connected with the second transconductance amplifier gm1 The common mode feedback voltage terminal connection of gm2 (not shown in the figure);
所述电感的第一端通过第一电容C1接地,且分别与第一跨导放大器gm1的正相输出端、第二跨导放大器gm2的正相输入端连接;电感的第二端分别与第一跨导放大器gm1的正相输入端、第二跨导放大器gm2的正相输出端连接;The first end of the inductance is grounded through the first capacitor C1, and is respectively connected to the non-inverting output end of the first transconductance amplifier gm1 and the non-inverting input end of the second transconductance amplifier gm2; the second end of the inductance is respectively connected to the first transconductance amplifier gm1 The non-inverting input end of a transconductance amplifier gm1 and the non-inverting output end of the second transconductance amplifier gm2 are connected;
第一跨导放大器gm1的负相输入端接地,第二跨导放大器gm2的负相输入端接地。The negative phase input terminal of the first transconductance amplifier gm1 is grounded, and the negative phase input terminal of the second transconductance amplifier gm2 is grounded.
图5为跨导放大器模拟得到的电阻示意图,包括:Figure 5 is a schematic diagram of the resistance obtained from the simulation of the transconductance amplifier, including:
跨导放大器gm,该跨导放大器可以通过图1和图2结合得到的跨导放大器实现;Transconductance amplifier gm, this transconductance amplifier can be realized by combining the transconductance amplifier obtained in Fig. 1 and Fig. 2;
该电阻还包括:This resistor also includes:
跨导放大器gm的正相输入端与跨导放大器gm的负相输出端连接,该连接的连接点作为所述电阻的第一端;The positive phase input terminal of the transconductance amplifier gm is connected with the negative phase output terminal of the transconductance amplifier gm, and the connection point of the connection is used as the first end of the resistance;
跨导放大器gm的负相输入端与跨导放大器gm的正相输出端连接,该连接的连接点作为所述电阻的第二端。The negative-phase input terminal of the transconductance amplifier gm is connected to the positive-phase output terminal of the transconductance amplifier gm, and the connection point of this connection serves as the second terminal of the resistor.
以上图3~图5所示的电阻和电感均为有源器件,在实际应用中可以对应替换电路中的无源电阻和无源电感,例如在图6所示的7阶椭圆滤波器结构中,即可以使用图3或图5所示的电阻实现图6中的电阻R1和R2,而不使用无源电阻,使用图4中的电感实现图6中的电感L1、L2、L3,而不使用无源电感。由于其中的跨导放大器的低功耗高线性度,因此,保证了由所述跨导放大器实现的所述电阻以及电感的低功耗和高线性度,进而相对于使用无源电阻和/或电感的电路,例如滤波器,包含所述电阻和/电感的滤波器的截止频率、线性度等特性不随温度、工艺角等因素的影响,使得滤波器功耗低且线性度高。The resistors and inductors shown in Figure 3 to Figure 5 above are all active devices, which can correspond to the passive resistors and passive inductors in the replacement circuit in practical applications, for example, in the 7th-order elliptic filter structure shown in Figure 6 , that is, the resistors R1 and R2 in Figure 6 can be realized using the resistors shown in Figure 3 or Figure 5 instead of passive resistors, and the inductors L1, L2, and L3 in Figure 6 can be realized using the inductors in Figure 4 instead Use passive inductors. Due to the low power consumption and high linearity of the transconductance amplifier therein, the low power consumption and high linearity of the resistance and inductance realized by the transconductance amplifier are guaranteed, and then compared with the use of passive resistance and/or Inductive circuits, such as filters, the cut-off frequency and linearity of the filter including the resistors and/or inductors are not affected by factors such as temperature and process angle, so that the filter has low power consumption and high linearity.
当然,图6所示的滤波器仅为举例,本申请的电阻和电感还可以应用到其他滤波器,甚至其他的包含电阻和/或电感的电路结构中,同样可以降低这些电路的功耗,提高线性度。Of course, the filter shown in FIG. 6 is only an example, and the resistors and inductors of the present application can also be applied to other filters, or even other circuit structures including resistors and/or inductors, which can also reduce the power consumption of these circuits. Improve linearity.
对于包含本申请所述电阻和/或电感的滤波器,所述滤波器可以进一步包括:锁相环调谐器,如图7所示,所述锁相环调谐器可以包括:For the filter comprising the resistance and/or inductance described in the present application, the filter may further include: a phase-locked loop tuner, as shown in FIG. 7, the phase-locked loop tuner may include:
压控振荡器810的输出端连接鉴频鉴相器820的第一输入端,鉴频鉴相器820的第二输入端接收参考频率信号;鉴频鉴相器820的输出端通过电荷泵830连接环路滤波器840的输入端,环路滤波器840的输出端分别连接压控振荡器810的输入端以及滤波器中各个跨导放大器的调谐电压输入端VTUNE。The output end of the voltage controlled oscillator 810 is connected to the first input end of the frequency and phase detector 820, and the second input end of the frequency and phase detector 820 receives the reference frequency signal; The input end of the loop filter 840 is connected, and the output end of the loop filter 840 is respectively connected with the input end of the voltage controlled oscillator 810 and the tuning voltage input end VTUNE of each transconductance amplifier in the filter.
所述压控振荡器810用于产生一个信号源。所述压控振荡器810的振荡频率随滤波器截止频率变化而变化。The VCO 810 is used to generate a signal source. The oscillation frequency of the voltage-controlled oscillator 810 varies with the cutoff frequency of the filter.
本申请实施例所述跨导放大器组成两个非阻尼积分器,连接成正反馈形式,就组成了所述压控振荡器810。它的振荡频率随着跨导放大器的各种特性,例如增益带宽积,共模抑制比等等改变,从而通过其输出电压频率跟踪并反映了跨导放大器和滤波器整体截止频率特性。The transconductance amplifier described in the embodiment of the present application forms two undamped integrators, which are connected in a positive feedback form to form the voltage-controlled oscillator 810 . Its oscillation frequency changes with various characteristics of the transconductance amplifier, such as gain-bandwidth product, common-mode rejection ratio, etc., so that its output voltage frequency tracks and reflects the overall cut-off frequency characteristics of the transconductance amplifier and filter.
鉴频鉴相器820用于将压控振荡器810输出的输出信号和参考频率信号的频率和相位在数字域进行比较,输出一连串数字高低信号,通过所述数字高低信号控制电荷泵830的充电和放电。The frequency and phase detector 820 is used to compare the frequency and phase of the output signal output by the voltage-controlled oscillator 810 and the reference frequency signal in the digital domain, output a series of digital high and low signals, and control the charging of the charge pump 830 through the digital high and low signals and discharge.
电荷泵830用于在鉴频鉴相器820的输出信号控制下进行充电和放电,具体的,是将数字信号转换为模拟信号,再将这个模拟信号通过环路滤波器840滤波后回馈给压控振荡器810,形成闭环工作。The charge pump 830 is used to charge and discharge under the control of the output signal of the frequency and phase detector 820. Specifically, the digital signal is converted into an analog signal, and then the analog signal is filtered by the loop filter 840 and fed back to the voltage regulator. controlled oscillator 810 to form a closed-loop operation.
环路滤波器840用于对电荷泵830输出的模拟信号进行平滑滤波。The loop filter 840 is used for smoothing and filtering the analog signal output by the charge pump 830 .
通过所述滤波可以减少电荷泵830输出的模拟信号的毛刺和信号抖动,从而降低相位噪声、提升整个锁相环调谐电路的精确性。The filtering can reduce the burr and signal jitter of the analog signal output by the charge pump 830, thereby reducing phase noise and improving the accuracy of the entire phase-locked loop tuning circuit.
其中,所述压控振荡器810、鉴频鉴相器820、电荷泵830以及环路滤波器840构成了锁相环调谐器,能够实现跨导放大器中调谐电压输入端VTUNE中输入电压的调谐,进而在较小的功耗条件下保证调谐精度和滤波器截止频率的精度。Wherein, the voltage-controlled oscillator 810, the frequency and phase detector 820, the charge pump 830 and the loop filter 840 constitute a phase-locked loop tuner, which can realize the tuning of the input voltage in the tuning voltage input terminal VTUNE in the transconductance amplifier , so as to ensure the tuning accuracy and the accuracy of the cutoff frequency of the filter under the condition of smaller power consumption.
例如,所述锁相环调谐器具体可以通过图8所示的结构实现,其中:For example, the phase-locked loop tuner can specifically be realized through the structure shown in FIG. 8, wherein:
压控振荡器的输出端连接乘法器的第一输入端,乘法器的第二输入端接收参考频率信号,乘法器的输出端连接低通滤波器的输入端,低通滤波器的第一输出端连接压控振荡器的输入端,低通滤波器的第二输出端连接滤波器中各个跨导放大器的调谐电压输入端。环路滤波器840通过所述低通滤波器实现,所述鉴频鉴相器820、电荷泵830通过所述乘法器实现。The output terminal of the voltage-controlled oscillator is connected to the first input terminal of the multiplier, the second input terminal of the multiplier receives the reference frequency signal, the output terminal of the multiplier is connected to the input terminal of the low-pass filter, and the first output of the low-pass filter The terminal is connected to the input terminal of the voltage-controlled oscillator, and the second output terminal of the low-pass filter is connected to the tuning voltage input terminals of each transconductance amplifier in the filter. The loop filter 840 is implemented by the low-pass filter, and the frequency and phase detector 820 and the charge pump 830 are implemented by the multiplier.
最后,对于图1中所示的跨导放大器能够消除三次项谐波的原理进行说明:Finally, the principle that the transconductance amplifier shown in Figure 1 can eliminate the third-order harmonic is explained:
为简化分析,将图1所示的跨导放大器电路简化为如图9所示的电路图结构。其中每个小模块代表跨导放大器中的一组差分放大器,其上的数值代表其跨导的相对比例大小。To simplify the analysis, the transconductance amplifier circuit shown in Figure 1 is simplified to the circuit diagram structure shown in Figure 9. Each small block represents a group of differential amplifiers in the transconductance amplifier, and the values on it represent the relative proportion of their transconductance.
由于输入信号由差模信号和共模信号分量构成,由图9可见,其中两个差分放大器的一个输入端接地,通过推导可知,由于输出的交叉耦合连接方式,整体电路仍然可以作为一个全差分电路使用。Since the input signal is composed of differential mode signal and common mode signal components, it can be seen from Figure 9 that one of the input terminals of the two differential amplifiers is grounded. It can be known by derivation that due to the cross-coupling connection mode of the output, the overall circuit can still be used as a fully differential circuit use.
假设电流大小和流向如图1所示,跨导放大器总的输出电流io为:Assuming that the magnitude and flow of the current are shown in Figure 1, the total output current i o of the transconductance amplifier is:
io=i01-i02-i03(1)i o =i 01 -i 02 -i 03 (1)
其中,io表示跨导放大器的总的输出电流,由于图1中的跨导放大器采用的是双端输入双端输出形式,输出的总电流io为三个输出支路电流之差,io1表示第七PMOS管M7和第八PMOS管M8构成的第一组放大器输出电流的一半,io2表示第九PMOS管M9和第十PMOS管M10构成的第二组放大器输出电流的一半;io3表示第十九PMOS管M9和第二十PMOS管M10构成的第二组放大器输出电流的一半;这里定义三个放大器的输出电流是为了从数学上论证高线性度的可行性。Among them, i o represents the total output current of the transconductance amplifier. Since the transconductance amplifier in Fig. 1 adopts the form of double-ended input and double-ended output, the total output current i o is the difference between the three output branch currents, i o1 represents half of the output current of the first group of amplifiers composed of the seventh PMOS transistor M7 and the eighth PMOS transistor M8, i o2 represents half of the output current of the second group of amplifiers composed of the ninth PMOS transistor M9 and the tenth PMOS transistor M10; i o3 represents half of the output current of the second group of amplifiers formed by the nineteenth PMOS transistor M9 and the twentieth PMOS transistor M10; the purpose of defining the output currents of the three amplifiers here is to demonstrate the feasibility of high linearity mathematically.
假设电路中所有的MOS管都工作于饱和区,则根据漏电流饱和区公式:Assuming that all MOS transistors in the circuit work in the saturation region, according to the leakage current saturation region formula:
id=K(vg-vs-Vth)2(2)i d =K(v g -v s -V th ) 2 (2)
其中,id表示单根MOS管的漏极输出电流;K表示MOS管在某种工艺下的电流系数,它是由工艺和MOS管的宽长比W/L决定的参数,只要工艺和宽长比确定,它就是一个定值;Vg是指MOS管的栅极电压;Vs指MOS管的源级电压;Vth指MOS管的阈值电压,它也是由工艺决定的参数;W表示MOS管的宽度,L表示MOS管的长度;μ为载流子迁移率,Cox为单位面积栅氧化区电容。Among them, id represents the drain output current of a single MOS tube; K represents the current coefficient of the MOS tube in a certain process, which is a parameter determined by the process and the width-to-length ratio W/L of the MOS tube, as long as the process and width The length ratio is determined, it is a fixed value; Vg refers to the gate voltage of the MOS tube; Vs refers to the source voltage of the MOS tube; Vth refers to the threshold voltage of the MOS tube, which is also a parameter determined by the process; Width, L represents the length of the MOS tube; μ is the carrier mobility, and C ox is the capacitance of the gate oxide region per unit area.
根据gm与直流饱和电压的关系:According to the relationship between g m and DC saturation voltage:
gm=2KVdssat(4)g m =2KV dssat (4)
其中,W表示MOS管的宽度,L表示MOS管的长度;Vdssat表示MOS管的直流饱和电压,在图1中,每一根MOS管都有它的直流饱和电压,这个直流饱和电压会影响每根MOS管的工作状态(饱和区、线性区、亚阈值区、截止区),进而影响跨导放大器的各项性能。Among them, W represents the width of the MOS tube, L represents the length of the MOS tube; V dssat represents the DC saturation voltage of the MOS tube, in Figure 1, each MOS tube has its DC saturation voltage, and this DC saturation voltage will affect The working state of each MOS tube (saturation region, linear region, sub-threshold region, cut-off region), and then affect the performance of the transconductance amplifier.
为了简化分析过程,采用泰勒级数在vin=0将vin展开可得到In order to simplify the analysis process, using Taylor series to expand v in at v in = 0 can be obtained
其中
定义源简并因子
化简可得:Simplification can be obtained:
在深亚微米工艺下,vcm远小于1,则跨导放大器的三次谐波项可近似消除,只剩下较小的五次谐波分量,总谐波失真(THD)就会大大降低。总谐波失真可以近似如下所示:In the deep submicron process, if v cm is much smaller than 1, the third harmonic term of the transconductance amplifier can be approximately eliminated, leaving only the smaller fifth harmonic component, and the total harmonic distortion (THD) will be greatly reduced. Total Harmonic Distortion can be approximated as follows:
基于以上分析可知,图1所示的跨导放大器能够近似消除三次谐波项,提高THD。进而,能够在低功耗下保证高的线性度。Based on the above analysis, it can be seen that the transconductance amplifier shown in Figure 1 can approximately eliminate the third harmonic term and improve THD. Furthermore, high linearity can be secured at low power consumption.
另外,本申请实施例的跨导放大器,由三个不同比例的源简并跨导放大器交叉耦合而成,能在深亚微米CMOS工艺条件下,以较低的功耗条件实现很高的线性度,其线性度随环境条件变化很小。In addition, the transconductance amplifier of the embodiment of the present application is formed by cross-coupling three source-degenerate transconductance amplifiers with different ratios, which can achieve high linearity with low power consumption under the condition of deep submicron CMOS technology degree, and its linearity varies little with environmental conditions.
本申请实施例的跨导放大器和/或电阻和/或电感,能够适用于各种现有的电路中,尤其是滤波器,例如Gm-C滤波器中,以满足接收机系统尤其是零中频接收机系统线性度高的要求;另外,所述跨导放大器还可以应用于移动视频信号传输和开关电容电路中,满足两者对高线性度的要求。而且,应用于Gm-C滤波器中时,能在较小的功耗条件下保证调谐精度和滤波器截止频率精度。The transconductance amplifier and/or resistance and/or inductance of the embodiment of the present application can be applied to various existing circuits, especially filters, such as Gm-C filters, to meet the requirements of receiver systems, especially zero-IF The receiver system requires high linearity; in addition, the transconductance amplifier can also be applied to mobile video signal transmission and switched capacitor circuits to meet the high linearity requirements of both. Moreover, when applied to a Gm-C filter, the tuning accuracy and filter cutoff frequency accuracy can be guaranteed under the condition of relatively small power consumption.
跨导放大器电路的元件全部采用CMOS晶体管,没有使用电阻等其他元件,从而能达到较好的片内匹配。The components of the transconductance amplifier circuit all use CMOS transistors, and no other components such as resistors are used, so that better on-chip matching can be achieved.
另外,本申请实施例的跨导放大器在深亚微米CMOS标准工艺下,能适应较低的电源电压,符合当今低压CMOS趋势,且较低的电源电压有助于提升跨导放大器线性度。In addition, the transconductance amplifier of the embodiment of the present application can adapt to a lower power supply voltage under the deep submicron CMOS standard process, which conforms to the current low-voltage CMOS trend, and the lower power supply voltage helps to improve the linearity of the transconductance amplifier.
以上所述仅是本申请的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本申请原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本申请的保护范围。The above description is only the preferred embodiment of the present application, and it should be pointed out that for those of ordinary skill in the art, some improvements and modifications can also be made without departing from the principle of the application. It should be regarded as the protection scope of this application.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210212287.5A CN102739173B (en) | 2012-06-21 | 2012-06-21 | Transconductance amplifier, resistor, inductor and filter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210212287.5A CN102739173B (en) | 2012-06-21 | 2012-06-21 | Transconductance amplifier, resistor, inductor and filter |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102739173A CN102739173A (en) | 2012-10-17 |
CN102739173B true CN102739173B (en) | 2016-04-13 |
Family
ID=46994088
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201210212287.5A Active CN102739173B (en) | 2012-06-21 | 2012-06-21 | Transconductance amplifier, resistor, inductor and filter |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102739173B (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103957004A (en) * | 2014-04-16 | 2014-07-30 | 中科芯集成电路股份有限公司 | Phase-locked loop filter circuit applied to direct transmitter |
CN104201992B (en) * | 2014-09-02 | 2017-02-15 | 南京工业职业技术学院 | Dual-loop compensation orthogonal signal source phase noise restraining circuit based on lock-in amplifier |
CN108352815B (en) * | 2015-10-29 | 2022-03-25 | 三菱电机株式会社 | Transconductance amplifier and phase shifter |
CN107395146B (en) * | 2017-07-22 | 2021-04-27 | 上海军陶科技股份有限公司 | Constant transconductance amplifier circuit |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0394702A3 (en) * | 1989-04-28 | 1991-09-04 | STMicroelectronics S.r.l. | A circuit arrangement for increasing the band-gain product of a cmos amplifier |
CN101917168A (en) * | 2010-06-30 | 2010-12-15 | 西安电子科技大学 | High Slew Rate Transconductance Amplifier Used in Active Power Factor Correctors |
-
2012
- 2012-06-21 CN CN201210212287.5A patent/CN102739173B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0394702A3 (en) * | 1989-04-28 | 1991-09-04 | STMicroelectronics S.r.l. | A circuit arrangement for increasing the band-gain product of a cmos amplifier |
CN101917168A (en) * | 2010-06-30 | 2010-12-15 | 西安电子科技大学 | High Slew Rate Transconductance Amplifier Used in Active Power Factor Correctors |
Non-Patent Citations (4)
Title |
---|
46MHz可调谐高线性八阶Gm-C带通滤波器的设计与实现;阴玥;《万方数据库》;20110328;第15-40页 * |
CMOS跨导放大器及其构成的滤波器的研究与设计;李安;《万方数据库》;20110928;第25-53页 * |
Wideband Reconfigurable CMOS Gm-C Filter For Wireless Applications;Gao Zhiqiang等;《Electronics,Circuits, and Systems,2009.ICECS 2009. 16th IEEE International Conference on》;20091230;第179-182页 * |
片上锁相环调谐的低功耗中频复数滤波器设计;贠磊等;《半导体技术》;20080903;第33卷(第9期);第821-824页 * |
Also Published As
Publication number | Publication date |
---|---|
CN102739173A (en) | 2012-10-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102790596B (en) | Automatic gain control amplifier for canceling direct current offset | |
CN101753159B (en) | RF (radio frequency) receiving front end with diversified gaining modes and capable of automatic tuning | |
CN106788434B (en) | Source follower buffer circuit | |
CN103401508B (en) | A kind of low noise amplifier and frequency mixer emerging system | |
CN103490731A (en) | Low-noise passive frequency mixer | |
Pandey et al. | MOS-C third order quadrature oscillator using OTRA | |
CN102307039A (en) | Configurable active resistance-capacitance (RC) filter device on chip | |
CN102739173B (en) | Transconductance amplifier, resistor, inductor and filter | |
CN102723918B (en) | Transconductance amplifier, resistor, inductor and filter | |
CN102723919B (en) | Transconductance amplifier, resistor, inductor and filter | |
Lewinski et al. | A high-frequency transconductor using a robust nonlinearity cancellation | |
CN101425791B (en) | A biquad unit for implementing zero-pole high-order filters | |
CN102739174B (en) | Transconductance amplifier, resistor, inductor and filter | |
CN106899272A (en) | A kind of trsanscondutance amplifier and wave filter | |
Castello et al. | A very linear BiCMOS transconductor for high-frequency filtering applications | |
CN108462479B (en) | Image suppression filter based on improved Gm-C and its construction method | |
Garradhi et al. | Low voltage low power analog circuit design OTA using signal attenuation technique in universal filter application | |
CN104635827B (en) | DC maladjustment is eliminated circuit | |
Alaybeyoğlu et al. | A new CMOS ZC-CDBA realization and its new filter application | |
US20240223140A1 (en) | Fourth-order feedforward-compensation operational amplifier and method for designing the same | |
Upathamkuekool et al. | A compensation technique for compact low-voltage low-power active-RC filters | |
KHATEB et al. | Quadrature oscillator based on novel low-voltage ultra-low-power quasi-floating-gate DVCC | |
Yodprasit et al. | A compact low-power vertical filter for very-high-frequency applications | |
Hsu et al. | 40MHz Gm-C filter with high linearity OTA for wireless applications | |
Kumngern et al. | Electronically tunable voltage-mode SIMO OTA-C universal biquad filter |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right |
Effective date of registration: 20201218 Address after: 510000 601, building a, 136 Kaiyuan Avenue, Huangpu District, Guangzhou City, Guangdong Province Patentee after: AoXin integrated circuit technology (Guangdong) Co.,Ltd. Address before: 100029 Beijing city Chaoyang District Beitucheng West Road No. 3 Patentee before: Institute of Microelectronics of the Chinese Academy of Sciences |
|
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20220506 Address after: 510000 room 710, Jianshe building, No. 348, Kaifa Avenue, Huangpu District, Guangzhou, Guangdong Patentee after: Ruili flat core Microelectronics (Guangzhou) Co.,Ltd. Address before: 510000 601, building a, 136 Kaiyuan Avenue, Huangpu District, Guangzhou City, Guangdong Province Patentee before: AoXin integrated circuit technology (Guangdong) Co.,Ltd. |
|
TR01 | Transfer of patent right |