CN102739167B - Design method of microwave amplifier - Google Patents
Design method of microwave amplifier Download PDFInfo
- Publication number
- CN102739167B CN102739167B CN201210236066.1A CN201210236066A CN102739167B CN 102739167 B CN102739167 B CN 102739167B CN 201210236066 A CN201210236066 A CN 201210236066A CN 102739167 B CN102739167 B CN 102739167B
- Authority
- CN
- China
- Prior art keywords
- network
- input
- output
- conjugate
- transistor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Microwave Amplifiers (AREA)
- Amplifiers (AREA)
Abstract
Description
技术领域 technical field
本发明涉及电路设计技术领域,特别涉及一种微波放大器的设计方法。The invention relates to the technical field of circuit design, in particular to a design method of a microwave amplifier.
背景技术 Background technique
在近代微波系统中,放大器是最基本和广泛存在的微波功能电路之一。早期的微波放大器依赖于诸如速调管和行波管等电子管或者基于隧道二极管或者变容二极管的负阻特性的固态反射放大器。但是自从20世纪70年代以来,大多数射频和微波放大器使用的均是晶体管器件,例如Si、SiGe BJT、GaAs HBT、GaAs、InP FET和GaN HEMT等。In modern microwave systems, the amplifier is one of the most basic and widespread microwave functional circuits. Early microwave amplifiers relied on tubes such as klystrons and traveling wave tubes or solid-state reflective amplifiers based on the negative resistance properties of tunnel diodes or varactors. But since the 1970s, most RF and microwave amplifiers have used transistor devices such as Si, SiGe BJTs, GaAs HBTs, GaAs, InP FETs, and GaN HEMTs.
微波电路的根本是能量的传输或变换,其核心问题是正确处理电路的阻抗、频率和功率的关系,三者既相互独立又相互影响。因此,在射频/微波电路中,阻抗匹配网络的设计至关重要。同时,由于半导体晶体管的增益滚降特性,高频放大器在设计时则需要更加细致的考虑。The essence of microwave circuits is the transmission or transformation of energy. The core issue is to correctly deal with the relationship between the impedance, frequency and power of the circuit. The three are independent and affect each other. Therefore, in RF/microwave circuits, the design of impedance matching network is very important. At the same time, due to the gain roll-off characteristics of semiconductor transistors, the design of high-frequency amplifiers requires more careful consideration.
在传统的微波放大器设计中,普遍采用的方法是根据放大器的设计指标,利用EDA工具在中心频点出设计初始输入或输出阻抗匹配网络,然后再将匹配网络与晶体管相连并优化,这种方法通常用于单级放大器或者具有较少元件的匹配网络的放大器设计。但是,如果放大器的结构复杂,如多级级联的形式时,放大器除具有输入或输出匹配网络,还具有至少一个级间匹配网络。有时,出于宽带设计或者其他性能考虑,还需要多阶匹配网络,这时,匹配元件便迅速增多,由于晶体管随频率变化特性不同于无源元件的简单线性特性,在这种情况下,如果依然利用EDA工具对整个电路进行设计,效率很低,并且不利于直观地体现输入或输出之间的相互影响以及充分发挥晶体管的性能,导致浪费高频晶体管的宝贵增益等现象的发生。In the design of traditional microwave amplifiers, the commonly used method is to use EDA tools to design the initial input or output impedance matching network at the center frequency point according to the design indicators of the amplifier, and then connect the matching network to the transistor and optimize it. Typically used in single-stage amplifiers or amplifier designs with matching networks with fewer components. However, if the structure of the amplifier is complex, such as multi-stage cascade connection, the amplifier has at least one inter-stage matching network in addition to the input or output matching network. Sometimes, due to broadband design or other performance considerations, a multi-stage matching network is required. At this time, the number of matching components will increase rapidly. Since the characteristics of transistors changing with frequency are different from the simple linear characteristics of passive components, in this case, if Still using EDA tools to design the entire circuit, the efficiency is very low, and it is not conducive to intuitively reflect the mutual influence between the input or output and to fully utilize the performance of the transistor, resulting in the waste of the precious gain of the high-frequency transistor.
发明内容 Contents of the invention
为了解决上述问题,本发明提出了一种提高设计效率,有利于直观地体现输入或输出之间的相互影响并能够充分发挥晶体管性能的微波放大器的设计方法。In order to solve the above problems, the present invention proposes a design method of a microwave amplifier that improves design efficiency, is beneficial to intuitively reflect the mutual influence between input and output, and can fully utilize the transistor performance.
本发明提供的微波放大器的设计方法包括以下步骤:The design method of the microwave amplifier provided by the invention comprises the following steps:
拟合晶体管在目标频率范围内的输入或输出阻抗;Fitting the input or output impedance of the transistor over the frequency range of interest;
采用数值计算法获得所述输入或输出阻抗的等效网络;Obtaining the equivalent network of the input or output impedance by numerical calculation method;
构造与所述等效网络对应的“共轭”网络,并将所述“共轭”网络与所述晶体管相连;constructing a "conjugate" network corresponding to the equivalent network, and connecting the "conjugate" network to the transistor;
对所述“共轭”网络进行优化,得到最佳输入或输出“共轭”网络;Optimizing the "conjugate" network to obtain the best input or output "conjugate" network;
根据所述最佳输入或输出“共轭”网络得到最佳输入或输出等效网络;obtaining an optimal input or output equivalent network from said optimal input or output "conjugated" network;
将所述最佳输入或输出等效网络匹配到端接阻抗,获得最佳匹配网络;将所述最佳匹配网络与晶体管相连,完成放大器的设计。Matching the optimal input or output equivalent network to the termination impedance to obtain the optimal matching network; connecting the optimal matching network to a transistor to complete the design of the amplifier.
作为优选,当所述放大器为多级放大器时,还包括级间最佳匹配网络,所述级间最佳匹配网络是将后一级最佳输入匹配网络匹配到前一级的最佳输出匹配网络得到的。Preferably, when the amplifier is a multi-stage amplifier, it also includes an inter-stage optimal matching network, and the inter-stage optimal matching network is to match the best input matching network of the latter stage to the best output matching network of the previous stage. network got.
作为优选,所述拟合晶体管在目标频率范围内的输入或输出阻抗包括以下步骤:Preferably, the input or output impedance of the fitting transistor within the target frequency range includes the following steps:
利用EDA工具获得晶体管在不同频率下的输入或输出阻抗;Use EDA tools to obtain the input or output impedance of the transistor at different frequencies;
采用多参数等效网络拟合晶体管在目标频率范围内的输入或输出阻抗。A multiparameter equivalent network is used to fit the input or output impedance of a transistor over the frequency range of interest.
作为优选,所述多参数等效网络包括电阻和电抗元件。Preferably, said multi-parameter equivalent network includes resistance and reactance elements.
作为优选,所述电抗元件包括电容。Preferably, the reactance element includes a capacitor.
作为优选,所述电抗元件还包括电感。Preferably, the reactance element further includes an inductor.
作为优选,所述等效网络的“共轭”网络是在等效网络拓扑连接方式不变的情况下,将所述等效网络中的电抗元件在数值上取“负”得到的。Preferably, the "conjugate" network of the equivalent network is obtained by taking "negative" values of the reactive elements in the equivalent network under the condition that the topology connection mode of the equivalent network remains unchanged.
作为优选,所述最佳输入或输出等效网络是在等效网络拓扑连接方式不变的情况下,将所述最佳输入或输出“共轭”网络中的电抗元件在数值上取“负”得到的。Preferably, the optimal input or output equivalent network is to take the reactive element in the optimal input or output "conjugate" network as "negative" in value under the condition that the equivalent network topology connection mode remains unchanged "owned.
作为优选,所述晶体管包括裸管芯、封装后的管芯,经过预匹配的管芯,或者,源极、栅极或漏极有反馈元件的管芯。Preferably, the transistor includes a bare die, a packaged die, a pre-matched die, or a die with a feedback element at the source, gate or drain.
本发明提供的微波放大器的设计方法设计效率高,有利于直观地体现输入或输出之间的相互影响并能够充分发挥晶体管性能。The design method of the microwave amplifier provided by the invention has high design efficiency, is beneficial to intuitively reflect the mutual influence between input and output, and can fully exert the performance of the transistor.
附图说明 Description of drawings
图1为根据本发明实施例提供的微波放大器的设计方法设计的两级级联放大器的原理结构示意简图;Fig. 1 is a schematic diagram of the principle structure of a two-stage cascaded amplifier designed according to a microwave amplifier design method provided by an embodiment of the present invention;
图2为本发明实施例提供的微波放大器的设计方法中两参数输入阻抗等效网络拓扑结构示意图;FIG. 2 is a schematic diagram of a two-parameter input impedance equivalent network topology in the microwave amplifier design method provided by an embodiment of the present invention;
图3为本发明实施例提供的微波放大器的设计方法中两参数输出阻抗等效网络拓扑结构示意图;3 is a schematic diagram of a two-parameter output impedance equivalent network topology in the microwave amplifier design method provided by an embodiment of the present invention;
图4为本发明实施例提供的微波放大器的设计方法中三参数输入阻抗等效网络拓扑结构示意图;4 is a schematic diagram of a three-parameter input impedance equivalent network topology in the design method of a microwave amplifier provided by an embodiment of the present invention;
图5为本发明实施例提供的微波放大器的设计方法中三参数输出阻抗等效网络拓扑结构示意图;5 is a schematic diagram of a three-parameter output impedance equivalent network topology in the microwave amplifier design method provided by an embodiment of the present invention;
图6为本发明实施例提供的微波放大器的设计方法中“共轭”网络的构造方法示意图;Fig. 6 is a schematic diagram of a construction method of a "conjugate" network in a microwave amplifier design method provided by an embodiment of the present invention;
图7为本发明实施例提供的微波放大器的设计方法中“共轭”网络与晶体管相连后的结构示意图;FIG. 7 is a schematic structural diagram of a "conjugate" network connected to a transistor in the microwave amplifier design method provided by an embodiment of the present invention;
图8为本发明实施例提供的微波放大器的设计方法中最佳输入等效网络匹配到端接阻抗的输入匹配网络的结构示意图;FIG. 8 is a schematic structural diagram of an input matching network that matches an optimal input equivalent network to a terminating impedance in the microwave amplifier design method provided by an embodiment of the present invention;
图9为本发明实施例提供的微波放大器的设计方法中后一级晶体管最佳输入等效网络和前一级晶体管最佳输出等效网络之间的级间匹配网络的结构示意图;9 is a structural schematic diagram of an inter-stage matching network between the best input equivalent network of the latter stage transistor and the best output equivalent network of the former stage transistor in the microwave amplifier design method provided by the embodiment of the present invention;
图10为本发明实施例提供的微波放大器的设计方法中最佳输出等效网络匹配到端接阻抗的输出匹配网络的结构示意图;FIG. 10 is a schematic structural diagram of an output matching network that matches an optimal output equivalent network to a terminating impedance in the microwave amplifier design method provided by an embodiment of the present invention;
图11为根据本发明实施例提供的微波放大器的设计方法设计的两级级联放大器的原理结构示意图;FIG. 11 is a schematic structural diagram of a two-stage cascaded amplifier designed according to the microwave amplifier design method provided by an embodiment of the present invention;
图12为根据本发明实施例提供的微波放大器的设计方法设计的两级级联放大器的整体在优化前计算机仿真小信号S参数曲线,其中,实线代表dB(S(2,1)),点划线代表dB(S(1,1)),虚线代表dB(S(2,2))。Fig. 12 is an overall computer simulation small signal S parameter curve before optimization of the two-stage cascaded amplifier designed according to the microwave amplifier design method provided by the embodiment of the present invention, wherein the solid line represents dB(S(2,1)), The dotted line represents dB(S(1,1)) and the dashed line represents dB(S(2,2)).
具体实施方式 detailed description
为了深入了解本发明,下面结合附图及具体实施例对本发明进行详细说明。In order to deeply understand the present invention, the present invention will be described in detail below in conjunction with the accompanying drawings and specific embodiments.
本发明提供的微波放大器的设计方法包括以下步骤:The design method of the microwave amplifier provided by the invention comprises the following steps:
步骤1:拟合晶体管在目标频率范围内的输入或输出阻抗。Step 1: Fit the input or output impedance of the transistor over the frequency range of interest.
步骤1.1:利用EDA工具获得FET1和FET2在不同频率下的输入或输出阻抗。本实施例中,基于半导体晶体管的微波测试,在ADS中利用Smith ChartUtility或者Matching Utility得到FET1和FET2对应的输入或输出阻抗的电阻和电抗元件随频率变化曲线,通过该曲线获得FET1和FET2的目标频率范围。Step 1.1: Use EDA tools to obtain the input or output impedance of FET1 and FET2 at different frequencies. In this embodiment, based on the microwave test of semiconductor transistors, use Smith ChartUtility or Matching Utility in ADS to obtain the resistance and reactance components of the input or output impedance corresponding to FET1 and FET2 versus frequency, and obtain the target of FET1 and FET2 through this curve Frequency Range.
步骤1.2:采用多参数等效网络拟合FET1和FET2在目标频率范围内的输入或输出阻抗。Step 1.2: Fit the input or output impedance of FET1 and FET2 in the frequency range of interest using a multi-parameter equivalent network.
其中,多参数等效网络包括电阻和电抗元件。Among them, the multi-parameter equivalent network includes resistive and reactive elements.
其中,电抗元件包括电容。Wherein, the reactance element includes a capacitor.
其中,电抗元件还包括电感,以便于在晶体管负载阻抗的频率范围很宽的情况下获得的输入或输出阻抗的等效网络具有更高的吻合度。。Wherein, the reactance element also includes an inductance, so that the equivalent network of the input or output impedance obtained under the condition of a wide frequency range of the transistor load impedance has a higher matching degree. .
步骤2:采用数值计算法获得输入或输出阻抗的等效网络,参见附图2~5,其中,附图2是包括电阻和电容的两参数输入阻抗等效网络拓扑结构示意图,附图3是包括电阻和电容的两参数输出阻抗等效网络拓扑结构示意图,附图4是包括电阻、电容和电感的三参数输入阻抗等效网络拓扑结构示意图,附图5是包括电阻、电容和电感的三参数输出阻抗等效网络拓扑结构示意图。实践中,等效网络拓扑结构是根据功能需要,如虚部吸收、偏置接入、隔直、谐波抑制等选取的。Step 2: Obtain the equivalent network of input or output impedance by numerical calculation method, see attached drawings 2 to 5, wherein, attached drawing 2 is a schematic diagram of the topology structure of the equivalent network of two parameters input impedance including resistance and capacitance, and attached drawing 3 is A schematic diagram of a two-parameter output impedance equivalent network topology that includes resistors and capacitors. Accompanying drawing 4 is a schematic diagram of a three-parameter input impedance equivalent network topology that includes resistors, capacitors, and inductances. Accompanying drawing 5 is a three-parameter network topology that includes resistors, capacitors, and inductances. Schematic diagram of the parametric output impedance equivalent network topology. In practice, the equivalent network topology is selected according to functional requirements, such as imaginary part absorption, bias access, DC blocking, and harmonic suppression.
步骤3:在等效网络拓扑连接方式不变的情况下,将等效网络中的电抗元件在数值上取“负”构造与等效网络对应的“共轭”网络,参见附图6,其中,“负”电容或者“负”电感,只具有数值意义,而不代表实际电容值或者电感值,并将“共轭”网络与晶体管相连,参见附图7。Step 3: Under the condition that the topology connection mode of the equivalent network remains unchanged, take the value of the reactive element in the equivalent network as "negative" to construct a "conjugate" network corresponding to the equivalent network, see Figure 6, where , "Negative" capacitance or "negative" inductance, only has numerical significance, and does not represent the actual capacitance or inductance value, and connect the "conjugate" network to the transistor, see Figure 7.
步骤4:对“共轭”网络进行优化,即对“共轭”网络中的各参数的数值进行调整,得到最佳输入或输出“共轭”网络。Step 4: Optimizing the "conjugate" network, that is, adjusting the value of each parameter in the "conjugate" network to obtain the best input or output "conjugate" network.
步骤5:将最佳输入或输出“共轭”网络中的电抗元件取“负”得到最佳输入或输出等效网络。Step 5: "Negative" the reactance element in the optimal input or output "conjugate" network to obtain the optimal input or output equivalent network.
步骤6:将最佳输入或输出等效网络匹配到端接阻抗,本实施例中,端接阻抗为50Ω的电阻,得到最佳匹配网络,参见附图8~10,其中,图8为最佳输入等效网络匹配到端接阻抗的输入匹配网络的结构示意图;图9为后一级晶体管最佳输入等效网络和前一级晶体管最佳输出等效网络之间的级间匹配网络的结构示意图;图10为最佳输出等效网络匹配到端接阻抗的输出匹配网络的结构示意图。将最佳匹配网络与晶体管相连,完成放大器的设计,参见附图1。本实施例中,参见附图11,所示两级级联放大器的最终原理示意图中TL1~TL12为微带线,电容除C5~C8作为旁路电容外,其他电容都参与匹配。Step 6: Match the optimal input or output equivalent network to the termination impedance. In this embodiment, the termination impedance is a resistor of 50Ω to obtain the optimal matching network. The structure diagram of the input matching network matching the best input equivalent network to the termination impedance; Figure 9 is the interstage matching network between the best input equivalent network of the latter stage transistor and the best output equivalent network of the former stage transistor Schematic diagram of the structure; FIG. 10 is a schematic diagram of the structure of the output matching network for the best output equivalent network matching to the termination impedance. Connect the best matching network with the transistor to complete the design of the amplifier, see Figure 1. In this embodiment, referring to FIG. 11 , in the final schematic diagram of the two-stage cascaded amplifier, TL1-TL12 are microstrip lines, and capacitors except C5-C8 are used as bypass capacitors, and other capacitors are involved in matching.
其中,晶体管可以包括晶体管包括裸管芯、封装后的管芯,经过预匹配的管芯,或者,源极、栅极或漏极有反馈元件的管芯。Wherein, the transistor may include a bare die, a packaged die, a pre-matched die, or a die with a feedback element at the source, gate or drain.
将最后得到的两极级联放大器,不经过任何调谐优化,在ADS中直接仿真,可以得到如图12所示的小信号S参数曲线。由仿真结果图可知,采用本发明公开的方法设计的示例两级放大器几乎无需再经过繁琐的调谐优化就已经得到非常好的结果,带宽超过预期的4GHz(8~12GHz),而且增益平坦度很好其中点m10处频率为7.000GHz,dB(S(2,1))为23.041,点m15处频率为12.50GHz,dB(S(1,1))为21.224。The final two-pole cascaded amplifier is directly simulated in ADS without any tuning optimization, and the small-signal S-parameter curve shown in Figure 12 can be obtained. It can be seen from the simulation result diagram that the example two-stage amplifier designed by the method disclosed in the present invention has obtained very good results almost without cumbersome tuning and optimization, the bandwidth exceeds the expected 4GHz (8~12GHz), and the gain flatness is very good Well, the frequency at the middle point m10 is 7.000GHz, and the dB(S(2,1)) is 23.041, and the frequency at the point m15 is 12.50GHz, and the dB(S(1,1)) is 21.224.
以上所述的具体实施方式,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施方式而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The specific embodiments described above have further described the purpose, technical solutions and beneficial effects of the present invention in detail. It should be understood that the above descriptions are only specific embodiments of the present invention and are not intended to limit the present invention. Any modifications, equivalent replacements, improvements, etc. made within the spirit and principles of the present invention shall be included within the protection scope of the present invention.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210236066.1A CN102739167B (en) | 2012-07-09 | 2012-07-09 | Design method of microwave amplifier |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210236066.1A CN102739167B (en) | 2012-07-09 | 2012-07-09 | Design method of microwave amplifier |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102739167A CN102739167A (en) | 2012-10-17 |
CN102739167B true CN102739167B (en) | 2016-08-24 |
Family
ID=46994085
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201210236066.1A Expired - Fee Related CN102739167B (en) | 2012-07-09 | 2012-07-09 | Design method of microwave amplifier |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102739167B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103391051A (en) * | 2013-07-03 | 2013-11-13 | 吴江市同心电子科技有限公司 | Microstrip line matching low noise amplifier |
CN108052733A (en) * | 2017-12-11 | 2018-05-18 | 湖南时变通讯科技有限公司 | A kind of circuit design method and device |
CN110231614B (en) * | 2019-07-05 | 2024-01-26 | 电子科技大学 | Microwave ranging system based on passive frequency conversion |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1564457A (en) * | 2004-03-26 | 2005-01-12 | 清华大学 | Optimized design method of microwave amplifying circuit |
CN101567670A (en) * | 2009-05-18 | 2009-10-28 | 南京赛格微电子科技有限公司 | Method for realizing broadband multi-target low-noise amplifier |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001332935A (en) * | 2000-05-19 | 2001-11-30 | Fujitsu Ltd | Microwave amplifier |
-
2012
- 2012-07-09 CN CN201210236066.1A patent/CN102739167B/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1564457A (en) * | 2004-03-26 | 2005-01-12 | 清华大学 | Optimized design method of microwave amplifying circuit |
CN101567670A (en) * | 2009-05-18 | 2009-10-28 | 南京赛格微电子科技有限公司 | Method for realizing broadband multi-target low-noise amplifier |
Also Published As
Publication number | Publication date |
---|---|
CN102739167A (en) | 2012-10-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107332527B (en) | A broadband high-efficiency class J power amplifier implementation method based on a compact output matching network | |
CN109525207B (en) | RF Power Amplifiers for 5G Networks | |
CN106656069B (en) | Multi-frequency output matching network applied to GSM radio frequency power amplifier | |
CN105846784A (en) | Design method for GaN HEMT multistage radio frequency power amplifier and amplifier | |
Lin et al. | A 2–20-GHz 10-W high-efficiency GaN power amplifier using reactive matching technique | |
WO2009060264A1 (en) | Integrated circuit having harmonic termination circuitry | |
Momeni et al. | A high gain 107 GHz amplifier in 130 nm CMOS | |
CN112865725B (en) | An ultra-wideband, high-power, high-efficiency monolithic integrated power amplifier circuit structure | |
Salvucci et al. | A straightforward design technique for narrowband multi‐stage low‐noise amplifiers with I/O conjugate match | |
CN106533367A (en) | High-gain CMOS low-noise amplifier for TD-LTE (Time Division Long Term Evolution) | |
CN108712154A (en) | A kind of broadband F power-like amplifiers and design method | |
Jia et al. | A 32.9% PAE, 15.3 dBm, 21.6–41.6 GHz power amplifier in 65nm CMOS using coupled resonators | |
Gowrish et al. | Broad-band matching network using band-pass filter with device parasitic absorption | |
CN110222366A (en) | A kind of output impedance matching networks design method inhibiting function with higher harmonics | |
CN102739167B (en) | Design method of microwave amplifier | |
CN114094955A (en) | W-waveband high-gain low-noise amplifier circuit | |
CN112953425A (en) | Balanced type broadband high-power amplifier based on band-pass filter | |
CN108509749A (en) | A kind of dual-passband Designing power amplifier method | |
CN110048682A (en) | A kind of broadband continuous type power amplifier and design method based on multiple stage secondary harmonic controling | |
CN102340290A (en) | A Stable Network for High Frequency Power Devices | |
CN116545395B (en) | A harmonic tuning output matching network and its design method and power amplifier chip | |
Aflaki et al. | Enhanced architecture for microwave current-mode class-D amplifiers applied to the design of an S-band GaN-based power amplifier | |
CN116629182A (en) | Impedance matching network design method and impedance matching device for high-efficiency power amplifier | |
Squartecchia et al. | Optimization of InP DHBT stacked-transistors for millimeter-wave power amplifiers | |
Othman et al. | Low Noise Figure and High Gain Single Stage Cascoded LNA Amplifier With Optimized Inductive Drain Feedback for WiMAX Application |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20160824 |