CN102735662A - High sensitivity and high selectivity fluorescence emission spectrum analysis method for zinc ions - Google Patents
High sensitivity and high selectivity fluorescence emission spectrum analysis method for zinc ions Download PDFInfo
- Publication number
- CN102735662A CN102735662A CN2012102023047A CN201210202304A CN102735662A CN 102735662 A CN102735662 A CN 102735662A CN 2012102023047 A CN2012102023047 A CN 2012102023047A CN 201210202304 A CN201210202304 A CN 201210202304A CN 102735662 A CN102735662 A CN 102735662A
- Authority
- CN
- China
- Prior art keywords
- solution
- concentration
- dmf
- fluorescence
- analysis method
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- PTFCDOFLOPIGGS-UHFFFAOYSA-N Zinc dication Chemical compound [Zn+2] PTFCDOFLOPIGGS-UHFFFAOYSA-N 0.000 title claims abstract description 24
- 238000004458 analytical method Methods 0.000 title claims description 15
- 230000035945 sensitivity Effects 0.000 title claims description 8
- 238000002189 fluorescence spectrum Methods 0.000 title description 6
- 239000011701 zinc Substances 0.000 claims abstract description 57
- 239000000523 sample Substances 0.000 claims abstract description 38
- 239000000243 solution Substances 0.000 claims abstract description 28
- 150000001875 compounds Chemical class 0.000 claims abstract description 26
- 238000000034 method Methods 0.000 claims abstract description 20
- 238000001514 detection method Methods 0.000 claims abstract description 19
- 150000007857 hydrazones Chemical class 0.000 claims abstract description 15
- -1 1-hydroxyl 2-naphthyl Chemical group 0.000 claims abstract description 10
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 claims abstract description 10
- 125000001622 2-naphthyl group Chemical group [H]C1=C([H])C([H])=C2C([H])=C(*)C([H])=C([H])C2=C1[H] 0.000 claims abstract description 8
- 239000007853 buffer solution Substances 0.000 claims abstract description 7
- 239000000203 mixture Substances 0.000 claims abstract description 7
- 238000004611 spectroscopical analysis Methods 0.000 claims abstract description 4
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 claims description 66
- 239000012086 standard solution Substances 0.000 claims description 14
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 14
- 150000002500 ions Chemical class 0.000 claims description 11
- 239000012488 sample solution Substances 0.000 claims description 11
- 238000011088 calibration curve Methods 0.000 claims description 10
- 238000002360 preparation method Methods 0.000 claims description 8
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 claims description 7
- 239000007983 Tris buffer Substances 0.000 claims description 6
- 239000003153 chemical reaction reagent Substances 0.000 claims description 6
- 230000005284 excitation Effects 0.000 claims description 6
- 239000000126 substance Substances 0.000 claims description 5
- 230000008859 change Effects 0.000 claims description 4
- 239000011259 mixed solution Substances 0.000 claims description 4
- 229910001429 cobalt ion Inorganic materials 0.000 claims description 3
- XLJKHNWPARRRJB-UHFFFAOYSA-N cobalt(2+) Chemical compound [Co+2] XLJKHNWPARRRJB-UHFFFAOYSA-N 0.000 claims description 3
- 229910052751 metal Inorganic materials 0.000 claims description 3
- 239000002184 metal Substances 0.000 claims description 3
- 229910052783 alkali metal Inorganic materials 0.000 claims description 2
- 150000001340 alkali metals Chemical class 0.000 claims description 2
- 229910052784 alkaline earth metal Inorganic materials 0.000 claims description 2
- 150000001342 alkaline earth metals Chemical class 0.000 claims description 2
- 239000012153 distilled water Substances 0.000 claims description 2
- 229910001385 heavy metal Inorganic materials 0.000 claims description 2
- 150000003840 hydrochlorides Chemical class 0.000 claims description 2
- 150000002739 metals Chemical class 0.000 claims description 2
- 150000002823 nitrates Chemical class 0.000 claims description 2
- 239000003960 organic solvent Substances 0.000 claims description 2
- 229910052761 rare earth metal Inorganic materials 0.000 claims description 2
- 150000002910 rare earth metals Chemical class 0.000 claims description 2
- 229910052723 transition metal Inorganic materials 0.000 claims description 2
- 150000003624 transition metals Chemical class 0.000 claims description 2
- 238000004993 emission spectroscopy Methods 0.000 claims 6
- 238000013213 extrapolation Methods 0.000 claims 1
- FYFFGSSZFBZTAH-UHFFFAOYSA-N methylaminomethanetriol Chemical compound CNC(O)(O)O FYFFGSSZFBZTAH-UHFFFAOYSA-N 0.000 claims 1
- 239000003795 chemical substances by application Substances 0.000 abstract 1
- 239000007850 fluorescent dye Substances 0.000 description 11
- 229910021645 metal ion Inorganic materials 0.000 description 10
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 7
- 229910052725 zinc Inorganic materials 0.000 description 7
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 4
- WHMDKBIGKVEYHS-IYEMJOQQSA-L Zinc gluconate Chemical compound [Zn+2].OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C([O-])=O.OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C([O-])=O WHMDKBIGKVEYHS-IYEMJOQQSA-L 0.000 description 4
- 238000007792 addition Methods 0.000 description 4
- 239000003814 drug Substances 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 229960000306 zinc gluconate Drugs 0.000 description 4
- 235000011478 zinc gluconate Nutrition 0.000 description 4
- 239000011670 zinc gluconate Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 239000012046 mixed solvent Substances 0.000 description 3
- 238000010791 quenching Methods 0.000 description 3
- 230000000171 quenching effect Effects 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- SMWDFEZZVXVKRB-UHFFFAOYSA-N Quinoline Chemical compound N1=CC=CC2=CC=CC=C21 SMWDFEZZVXVKRB-UHFFFAOYSA-N 0.000 description 2
- DZBUGLKDJFMEHC-UHFFFAOYSA-N acridine Chemical compound C1=CC=CC2=CC3=CC=CC=C3N=C21 DZBUGLKDJFMEHC-UHFFFAOYSA-N 0.000 description 2
- MWPLVEDNUUSJAV-UHFFFAOYSA-N anthracene Chemical compound C1=CC=CC2=CC3=CC=CC=C3C=C21 MWPLVEDNUUSJAV-UHFFFAOYSA-N 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 238000011065 in-situ storage Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- BBEAQIROQSPTKN-UHFFFAOYSA-N pyrene Chemical compound C1=CC=C2C=CC3=CC=CC4=CC=C1C2=C43 BBEAQIROQSPTKN-UHFFFAOYSA-N 0.000 description 2
- PYWVYCXTNDRMGF-UHFFFAOYSA-N rhodamine B Chemical compound [Cl-].C=12C=CC(=[N+](CC)CC)C=C2OC2=CC(N(CC)CC)=CC=C2C=1C1=CC=CC=C1C(O)=O PYWVYCXTNDRMGF-UHFFFAOYSA-N 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- GOLORTLGFDVFDW-UHFFFAOYSA-N 3-(1h-benzimidazol-2-yl)-7-(diethylamino)chromen-2-one Chemical compound C1=CC=C2NC(C3=CC4=CC=C(C=C4OC3=O)N(CC)CC)=NC2=C1 GOLORTLGFDVFDW-UHFFFAOYSA-N 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 241000150853 Sanguirana varians Species 0.000 description 1
- 239000002671 adjuvant Substances 0.000 description 1
- 150000001491 aromatic compounds Chemical class 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- 238000001479 atomic absorption spectroscopy Methods 0.000 description 1
- 238000001636 atomic emission spectroscopy Methods 0.000 description 1
- 235000013361 beverage Nutrition 0.000 description 1
- 210000001124 body fluid Anatomy 0.000 description 1
- 239000010839 body fluid Substances 0.000 description 1
- VTJUKNSKBAOEHE-UHFFFAOYSA-N calixarene Chemical compound COC(=O)COC1=C(CC=2C(=C(CC=3C(=C(C4)C=C(C=3)C(C)(C)C)OCC(=O)OC)C=C(C=2)C(C)(C)C)OCC(=O)OC)C=C(C(C)(C)C)C=C1CC1=C(OCC(=O)OC)C4=CC(C(C)(C)C)=C1 VTJUKNSKBAOEHE-UHFFFAOYSA-N 0.000 description 1
- 239000012916 chromogenic reagent Substances 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- GVEPBJHOBDJJJI-UHFFFAOYSA-N fluoranthrene Natural products C1=CC(C2=CC=CC=C22)=C3C2=CC=CC3=C1 GVEPBJHOBDJJJI-UHFFFAOYSA-N 0.000 description 1
- GNBHRKFJIUUOQI-UHFFFAOYSA-N fluorescein Chemical compound O1C(=O)C2=CC=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 GNBHRKFJIUUOQI-UHFFFAOYSA-N 0.000 description 1
- 238000012921 fluorescence analysis Methods 0.000 description 1
- 238000002795 fluorescence method Methods 0.000 description 1
- 238000002875 fluorescence polarization Methods 0.000 description 1
- 238000001506 fluorescence spectroscopy Methods 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 238000009616 inductively coupled plasma Methods 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000002372 labelling Methods 0.000 description 1
- 239000007937 lozenge Substances 0.000 description 1
- 238000004949 mass spectrometry Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000035790 physiological processes and functions Effects 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000002203 pretreatment Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 238000004445 quantitative analysis Methods 0.000 description 1
- 238000006862 quantum yield reaction Methods 0.000 description 1
- JWVCLYRUEFBMGU-UHFFFAOYSA-N quinazoline Chemical compound N1=CN=CC2=CC=CC=C21 JWVCLYRUEFBMGU-UHFFFAOYSA-N 0.000 description 1
- 238000011897 real-time detection Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 238000002798 spectrophotometry method Methods 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 239000013076 target substance Substances 0.000 description 1
- 229940124597 therapeutic agent Drugs 0.000 description 1
- 229910021655 trace metal ion Inorganic materials 0.000 description 1
- 239000011573 trace mineral Substances 0.000 description 1
- 235000013619 trace mineral Nutrition 0.000 description 1
- 229910001428 transition metal ion Inorganic materials 0.000 description 1
- 238000000870 ultraviolet spectroscopy Methods 0.000 description 1
Images
Landscapes
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
- Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
Abstract
本发明建立了以化合物二[(1-羟基2-萘基)-次甲基]腙为探针测定锌离子的荧光光谱分析法。方法中严格控制在含H2O量为10%的DMF/H2O混合液中,用Tris-HCl缓冲溶液调节pH~8,化合物二[(1-羟基,2-萘基)-次甲基]腙作为检测Zn2+的荧光显色剂,测定溶液的荧光强度以确定溶液中Zn2+的含量。设计了特定的介质条件,使化合物成为检测锌离子的荧光增强型探针,实施对不同样品中锌离子的高灵敏、高选择识别检测。The invention establishes a fluorescence spectroscopic analysis method for detecting zinc ions by using the compound bis[(1-hydroxyl 2-naphthyl)-methine]hydrazone as a probe. The method is strictly controlled in the DMF/H 2 O mixture containing 10% H 2 O, adjusted to pH~8 with Tris-HCl buffer solution, and the compound bis[(1-hydroxyl, 2-naphthyl)-methine Base] hydrazone as a fluorescent chromogenic agent for detecting Zn 2+ , and the fluorescence intensity of the solution was measured to determine the content of Zn 2+ in the solution. Specific medium conditions are designed to make the compound a fluorescence-enhanced probe for detecting zinc ions, and implement highly sensitive and selective recognition detection of zinc ions in different samples.
Description
技术领域 technical field
本发明一种锌离子的高灵敏、高选择荧光发射光谱分析法,属分析化学领域。 The invention discloses a highly sensitive and highly selective fluorescence emission spectroscopic analysis method for zinc ions, which belongs to the field of analytical chemistry.
背景技术:在分子识别领域中,具有分子器件性质的荧光探针通过与目标物质选择性键合,使结合前后的荧光增强或猝灭、荧光偏振、波长及峰形、荧光寿命等参数变化,将微观领域的作用通过光信息表现出来,从而实现在分子水平上的原位实时检测,达到对金属离子、有机分子、生物分子等的有效识别。利用探针分子与非荧光或弱荧光物质以共价或其他形式结合形成发荧光的配合物、超分子或聚集体进行测定,即所谓“荧光探针”技术。由于荧光分析的高灵敏和高选择性,实时原位检测,设备简单,并能提供丰富的光谱信息,在分析化学、生物化学、环境科学、医药学等领域中各种离子检测、蛋白质分子标记、DNA及细胞检测、免疫分析等方面发挥着重要作用。 Background technology: In the field of molecular recognition, fluorescent probes with molecular device properties selectively bond with target substances to change the parameters of fluorescence enhancement or quenching, fluorescence polarization, wavelength and peak shape, and fluorescence lifetime before and after binding. The role of the microscopic field is expressed through optical information, so as to realize in-situ real-time detection at the molecular level, and achieve effective identification of metal ions, organic molecules, biomolecules, etc. The so-called "fluorescent probe" technology is used to combine probe molecules with non-fluorescent or weakly fluorescent substances to form fluorescent complexes, supramolecules or aggregates in covalent or other forms. Due to the high sensitivity and high selectivity of fluorescence analysis, real-time in situ detection, simple equipment, and can provide rich spectral information, various ion detection and protein molecular labeling in analytical chemistry, biochemistry, environmental science, pharmaceuticals and other fields , DNA and cell detection, immune analysis and other aspects play an important role.
有机荧光探针以荧光素、罗丹明、吖啶、香豆素类为主要代表,具有荧光量子产率高,激发波长长,适用范围宽。其中,能检测Hg2+,Cu2+,Pb2+,Cr3+,Fe3+等离子的荧光增强或猝灭型罗丹明类探针已有大量报道。芳香族化合物常被用作有机荧光探针的荧光信号发生基团。以萘、蒽、芘、喹啉、菁类、吡咯甲川类等为主要代表的稠环芳烃具有强而稳定的荧光,斯托克斯位移大,在荧光探针领域,作为模型荧光团,所构建的荧光探针是一类性能优良的传感器。例如,以萘为荧光基团的杯芳烃、三角架等结构的荧光探针,表现出对Zn2+、Hg2+、Cu2+等离子的识别、喹唑啉作为Co2+离子荧光猝灭型探针的研究也有报道。 Organic fluorescent probes are mainly represented by fluorescein, rhodamine, acridine, and coumarin, which have high fluorescence quantum yield, long excitation wavelength, and wide application range. Among them, a large number of fluorescence-enhancing or quenching rhodamine probes capable of detecting Hg 2+ , Cu 2+ , Pb 2+ , Cr 3+ , and Fe 3+ ions have been reported. Aromatic compounds are often used as fluorescent signal generating groups of organic fluorescent probes. The fused-ring aromatic hydrocarbons mainly represented by naphthalene, anthracene, pyrene, quinoline, cyanines, pyrromethenes, etc. have strong and stable fluorescence and large Stokes shift. In the field of fluorescent probes, as model fluorophores, the The constructed fluorescent probe is a kind of sensor with excellent performance. For example, fluorescent probes with structures such as calixarene and tripod with naphthalene as the fluorescent group show recognition of Zn 2+ , Hg 2+ , Cu 2+ ions, and quinazoline as Co 2+ ion fluorescence quenching The study of type probes has also been reported.
锌是人体所必需的微量元素之一,广泛地分布于人体的细胞和体液中。在过渡金属离子中,其含量仅次于铁离子,与人体健康密切相关。在植物、食品医药临床等领域需要建立微量Zn2+的检测方法。 Zinc is one of the essential trace elements for the human body and is widely distributed in the cells and body fluids of the human body. Among transition metal ions, its content is second only to iron ions, and is closely related to human health. It is necessary to establish a detection method for trace Zn 2+ in the fields of plants, food, medicine and clinical.
对微量金属离子在生物体系、生理过程、环境及食品安全等领域的高灵敏、高选择性检测和识别研究具有广泛的应用领域。发现有别于传统的有机荧光染料分子,使其样品处理简单、测定方法快捷、测试成本低廉,并能同时分别检测多种金属离子、性能优越的荧光探针具有重要意义。痕量锌检测方法有原子吸收光谱法、原子发射光谱法、电感耦合等离子体、质谱法、紫外-可见分光光度法、荧光法等方法。荧光光谱法由于操作简单,不需要昂贵的仪器设备,更具有应用价值。但是由于大部分的显色剂水溶性差,需要经过萃取、分离等复杂的预处理才能用于检测,关键的问题是检测的灵敏度和选择性不能满足越来越高的需求。荧光信号在灵敏度上具有无可比拟的优越性,目前使用荧光方法检测锌离子含量的相关报道还很少,寻找新的对Zn2+有足够高的选择性和灵敏度的荧光探针极具挑战性和应用价值。本发明的发明人在研究过程中发现化合物二[(1-羟基,2-萘基)-次甲基]腙,在DMF/H2O(V/V,9/1) 的混合溶剂中,在荧光分光光度计上,以438nm为激发波长,516nm 为荧光发射波长,在有Zn2+存在时,能使探针化合物的荧光增强,在Zn2+一定浓度范围内,Zn2+浓度与荧光发射强度成正比,常见的共存金属离子不干扰测定,具有高灵敏度和高选择性,为本发明一种锌离子的高灵敏、高选择荧光发射光谱分析法奠定了基础。 It has a wide range of application fields for the highly sensitive and selective detection and identification of trace metal ions in the fields of biological systems, physiological processes, environment and food safety. It is of great significance to find fluorescent probes that are different from traditional organic fluorescent dye molecules, make sample processing simple, fast measurement method, low test cost, and can simultaneously detect multiple metal ions separately, with superior performance. Trace zinc detection methods include atomic absorption spectrometry, atomic emission spectrometry, inductively coupled plasma, mass spectrometry, ultraviolet-visible spectrophotometry, fluorescence and other methods. Fluorescence spectroscopy has more application value due to its simple operation and no need for expensive instruments and equipment. However, due to the poor water solubility of most chromogenic reagents, complex pretreatments such as extraction and separation are required before they can be used for detection. The key problem is that the sensitivity and selectivity of detection cannot meet the increasing demand. Fluorescence signal has incomparable advantages in sensitivity. At present, there are few reports on the use of fluorescence methods to detect zinc ion content. It is extremely challenging to find new fluorescent probes with sufficient selectivity and sensitivity for Zn 2+ and application value. The inventors of the present invention found that the compound bis[(1-hydroxyl, 2-naphthyl)-methine]hydrazone, in a mixed solvent of DMF/H 2 O (V/V, 9/1), On the fluorescence spectrophotometer, the excitation wavelength is 438nm, and the fluorescence emission wavelength is 516nm. When Zn 2+ exists, the fluorescence of the probe compound can be enhanced. Within a certain concentration range of Zn 2+ , the concentration of Zn 2+ and Fluorescence emission intensity is proportional, common coexisting metal ions do not interfere with the determination, and has high sensitivity and high selectivity, laying the foundation for a highly sensitive and highly selective fluorescence emission spectroscopic analysis method of zinc ions in the present invention.
发明内容:本发明的目的在于使用荧光分光光度方法,定量检测样品锌离子含量,创建一种新的对Zn2+浓度有足够高的选择性和灵敏度的荧光发射光谱定量分析方法。 Summary of the invention: The object of the present invention is to use the fluorescence spectrophotometry method to quantitatively detect the zinc ion content of the sample, and to create a new fluorescence emission spectrum quantitative analysis method with sufficient selectivity and sensitivity to the Zn 2+ concentration.
本发明一种锌离子的高灵敏、高选择荧光发射光谱分析方法,其特征是以化合物二[(1-羟基,2-萘基)-次甲基]腙为探针,采用荧光发射光谱法定量测定锌离子的浓度,化合物二[(1-羟基,2-萘基)-次甲基]腙的化学结构式为 A highly sensitive and highly selective fluorescence emission spectrum analysis method for zinc ions of the present invention is characterized in that the compound di[(1-hydroxyl, 2-naphthyl)-methine]hydrazone is used as a probe, and the fluorescence emission spectrum method is adopted Quantitatively measure the concentration of zinc ion, the chemical structural formula of compound two [(1-hydroxyl, 2-naphthyl)-methine] hydrazone is
分子式C22H16N2O2,英文名称为Bis(1-hydroxy-2-naphthyl)-methylene hydrazone。分析方法采用标准曲线法:取数个10.0ml容量瓶,每个容量瓶中依次加入浓度为0.10 mmol·L-1的探针化合物溶液1ml,Tris-HCl缓冲液1ml,pH~8。然后在各容量瓶中加入不同浓度的Zn2+标准溶液,其中一个容量瓶中加样品液,最后用DMF和H2O的混合液定容到10.0ml,摇匀,25℃恒温放置半小时,在荧光分光光度计上,以438nm为激发波长,516nm为发射波长测定荧光强度,绘出荧光强度对标准Zn2+浓度的校准曲线,根据样品溶液的荧光发射强度,利用校准曲线求得样品溶液中Zn2+的浓度,计算样品含量,标准溶液中Zn2+浓度在8.00×10-6~2.00×10-4 mol·L-1范围内,Zn2+使探针荧光强度增强呈线性关系;其它共存离子包括碱金属、碱土金属、过渡金属、重金属、稀土金属及钴离子在浓度与Zn2+浓度相同时,对锌离子检测的荧光强度的影响低于5%。DMF化学名称为N,N-二甲基甲酰胺,分子式为HCON(CH3)2,为通常的有机溶剂。DMF和H2O的混合溶液的体积比为9:1,所指的探针化合物溶液为二[(1-羟基,2-萘基)-次甲基]腙的DMF溶液;所指Tris为三羟甲基氨基甲烷。本发明同样适用于标准加入法:取6个10.0ml容量瓶,每个容量瓶中依次加入样品溶液1ml、浓度为0.10 mmol·L-1的探针化合物溶液1ml,Tris-HCl缓冲液1ml,pH~8。然后在第一个容量瓶中不加Zn2+标准溶液,其余各容量瓶中依次加入相同浓度不同体积的Zn2+标准溶液,最后用DMF和H2O的混合液定容到10.0ml,摇匀,25℃恒温放置半小时,在荧光分光光度计上,以438nm为激发波长,516nm为发射波长依次测定荧光强度,绘出荧光强度对加入Zn2+标准溶液的体积校准曲线,根据直线外推至纵坐标为零与横坐标相交处,即可求得样品溶液中Zn2+的浓度,计算样品含量。 The molecular formula is C 22 H 16 N 2 O 2 , and the English name is Bis(1-hydroxy-2-naphthyl)-methylene hydrazone. The analysis method adopts the standard curve method: take several 10.0ml volumetric flasks, and add 1ml of the probe compound solution with a concentration of 0.10 mmol·L -1 and 1ml of Tris-HCl buffer solution, pH~8, into each volumetric flask. Then add different concentrations of Zn 2+ standard solutions into each volumetric flask, add sample solution to one of the volumetric flasks, and finally use a mixture of DMF and H 2 O to make up to 10.0ml, shake well, and place at a constant temperature of 25°C for half an hour , on a fluorescence spectrophotometer, use 438nm as the excitation wavelength and 516nm as the emission wavelength to measure the fluorescence intensity, draw the calibration curve of the fluorescence intensity to the standard Zn2 + concentration, and use the calibration curve to obtain the sample solution according to the fluorescence emission intensity of the sample solution. The concentration of Zn 2+ in the solution is used to calculate the content of the sample. The concentration of Zn 2+ in the standard solution is in the range of 8.00×10 -6 ~2.00×10 -4 mol·L -1 . Zn 2+ increases the fluorescence intensity of the probe linearly relationship; other coexisting ions including alkali metals, alkaline earth metals, transition metals, heavy metals, rare earth metals, and cobalt ions have less than 5% impact on the fluorescence intensity of zinc ion detection when the concentration is the same as that of Zn 2+ . The chemical name of DMF is N,N-dimethylformamide, the molecular formula is HCON(CH 3 ) 2 , and it is a common organic solvent. The volume ratio of the mixed solution of DMF and H 2 O is 9:1, and the probe compound solution referred to is the DMF solution of two [(1-hydroxyl, 2-naphthyl)-methine] hydrazone; the referred Tris is Trishydroxymethylaminomethane. The present invention is also applicable to the standard addition method: get 6 10.0ml volumetric flasks, add 1ml of sample solution, 1ml of probe compound solution with a concentration of 0.10 mmol L -1 , 1ml of Tris-HCl buffer solution in each volumetric flask, pH~8. Then do not add Zn 2+ standard solution to the first volumetric flask, add Zn 2+ standard solution with the same concentration and different volumes in turn in the remaining volumetric flasks, and finally use the mixed solution of DMF and H 2 O to adjust the volume to 10.0ml, Shake well, and place at a constant temperature of 25°C for half an hour. On a fluorescence spectrophotometer, use 438nm as the excitation wavelength and 516nm as the emission wavelength to measure the fluorescence intensity in turn, and draw the calibration curve of the fluorescence intensity versus the volume of the Zn 2+ standard solution added. According to the straight line Extrapolating to the point where the ordinate is zero and the abscissa intersects, the concentration of Zn 2+ in the sample solution can be obtained, and the sample content can be calculated.
上述是各种试剂的配制方法是: Above-mentioned is that the preparation method of various reagents is:
(1)探针化合物溶液的配制方法:称取3.4 mg的二[(1-羟基,2-萘基)-次甲基]腙,用DMF溶解,配制成100mL溶液,浓度为0.100 mmol·L-1; (1) Preparation method of the probe compound solution: weigh 3.4 mg of bis[(1-hydroxy, 2-naphthyl)-methine]hydrazone, dissolve it in DMF, and prepare a 100 mL solution with a concentration of 0.100 mmol L -1 ;
(2)Zn2+标准溶液:称取优级纯ZnCl2 27.2 mg,用DMF溶解,并配制成100mL溶液,Zn2+ 浓度为2.00×10-3 mol·L-1;根据需要用DMF逐级稀释到适宜的浓度; (2) Zn 2+ standard solution: Weigh 27.2 mg of high-grade pure ZnCl 2 , dissolve it in DMF, and prepare a 100mL solution. The concentration of Zn 2+ is 2.00×10 -3 mol·L -1 ; Diluted to the appropriate concentration;
(3)Tris-HCl缓冲溶液配制:称取0.242 g Tris 用DMF溶解,配制成500 mL浓度为0.004 mol·L-1的溶液,移取一定体积Tris与适量的HCl相混合,调节pH值至8。 (3) Preparation of Tris-HCl buffer solution: Weigh 0.242 g Tris and dissolve it in DMF to prepare a 500 mL solution with a concentration of 0.004 mol L -1 , pipette a certain volume of Tris and mix it with an appropriate amount of HCl, and adjust the pH value to 8.
(4)其它共存离子溶液的配制:取优级纯的各种金属的硝酸盐或盐酸盐,用DMF溶解,并配制成浓度为2.00×10-3 mol·L-1的DMF溶液。 (4) Preparation of other coexisting ionic solutions: Dissolve nitrates or hydrochlorides of various metals with superior grades in DMF, and prepare a DMF solution with a concentration of 2.00×10 -3 mol·L -1 .
本发明上述分析方法当所取体积变化时,各种溶液加入量要按比例作相应的变化。 When the above-mentioned analytical method of the present invention takes volume change, various solution additions will make corresponding change in proportion.
本发明测定锌离子时,共存离子Na+,K+,Rb+,Mg2+,Ca2+,Sr2+,Ba2+,Pb2+,Bi2+,Mn2+,Ni2+,Cu2+,Cd2+,Hg2+,Al3+,Fe3+,Sc3+,Ti3+,Cr3+和Co2+,在浓度与Zn2+相当时,对Zn2+检测的荧光强度影响的相对偏差都在 5%以内。均不干扰测定。 When the present invention measures zinc ions, the coexisting ions Na + , K + , Rb + , Mg 2+ , Ca 2+ , Sr 2+ , Ba 2+ , Pb 2+ , Bi 2+ , Mn 2+ , Ni 2+ , Cu 2+ , Cd 2+ , Hg 2+ , Al 3+ , Fe 3+ , Sc 3+ , Ti 3+ , Cr 3+ and Co 2+ , when the concentration is comparable to Zn 2+ , detect Zn 2+ The relative deviations of the fluorescence intensity effects are all within 5%. Neither interfered with the measurement.
本发明方法所用的试剂为分析纯试剂,所用的水为二次蒸馏水。 The reagents used in the method of the present invention are analytically pure reagents, and the water used is twice distilled water.
本发明所用仪器是荧光分光光度计,型号为 Cary Eclipse荧光分光光度计,美国VARIAN公司生产。 Instrument used in the present invention is a fluorescence spectrophotometer, and the model is a Cary Eclipse fluorescence spectrophotometer, produced by U.S. VARIAN Company.
本发明方法具有大的Stokes位移、高的选择性、检测限极低、不需要分离、响应时间快、接近中性测试条件等优点。可以用于环境水监测(污染水)、药物分析(锌辅助治疗药剂)、食品检验(含锌饮料)等领域检测Zn2+含量。 The method of the invention has the advantages of large Stokes shift, high selectivity, extremely low detection limit, no need for separation, fast response time, close to neutral test conditions and the like. It can be used to detect Zn 2+ content in environmental water monitoring (polluted water), drug analysis (zinc adjuvant therapeutic agent), food inspection (zinc-containing beverages) and other fields.
利用化合物二[(1-羟基2-萘基)-次甲基]腙分子在良性溶剂(DMF/H2O,9/1)中呈现弱荧光,在特定的条件下能与金属锌离子形成确定配位比的配合物。本发明专利中的关键技术是控制不同的DMF/H2O混合溶剂比例和一定的pH值,才能使化合物二[(1-羟基2-萘基)-次甲基]腙成为检测Zn2+离子的荧光增强型探针。操作及控制方法简便,性能独特,是该有机分子作为荧光探针的实际应用。 The compound bis[(1-hydroxy2-naphthyl)-methine]hydrazone molecule exhibits weak fluorescence in a benign solvent (DMF/H 2 O, 9/1), and can form with metal zinc ions under certain conditions Determine the coordination ratio of the complex. The key technology in the patent of this invention is to control the ratio of different DMF/H 2 O mixed solvents and a certain pH value, so that the compound bis[(1-hydroxyl 2-naphthyl)-methine]hydrazone can be used to detect Zn 2+ Fluorescence-enhanced probes for ions. The method of operation and control is simple and the performance is unique, which is the practical application of the organic molecule as a fluorescent probe.
附图说明: Description of drawings :
图1 化合物二[(1-羟基2-萘基)-次甲基]腙(10 μM,DMF/H2O,10% H2O,Tris-HCl,pH~8)检测识别锌离子(200 μM)的荧光光谱,其它金属离子(200μM):Na+,K+,Rb+,Mg2+,Ca2+,Sr2+,Ba2+,Pb2+,Bi2+,Mn2+,Ni2+,Cu2+,Cd2+,Hg2+,Al3+,Fe3+,Sc3+,Ti3+,Cr3+ 和Co2+在误差范围内不干扰测定,从图中可知控制溶液pH在8左右,DMF/H2O混合溶剂体积比为1:9,探针化合物的荧光强度很弱,在此条件下,加入Zn2+离子,能使探针化合物溶液在516nm波长处发射的很强荧光,而其它实验金属离子包括Co2+离子均不能够使其荧光显著增强。 Figure 1 Compound bis[(1-hydroxy2-naphthyl)-methine]hydrazone (10 μM, DMF/H 2 O, 10% H 2 O, Tris-HCl, pH~8) detection and recognition of zinc ion (200 μM), other metal ions (200μM): Na + , K + , Rb + , Mg 2+ , Ca 2+ , Sr 2+ , Ba 2+ , Pb 2+ , Bi 2+ , Mn 2+ , Ni 2+ , Cu 2+ , Cd 2+ , Hg 2+ , Al 3+ , Fe 3+ , Sc 3+ , Ti 3+ , Cr 3+ and Co 2+ do not interfere with the determination within the error range, from the figure It can be seen that the pH of the solution is controlled at about 8, the volume ratio of DMF/H 2 O mixed solvent is 1:9, and the fluorescence intensity of the probe compound is very weak. Under this condition, adding Zn 2+ ions can make the probe compound solution The emission of strong fluorescence at the wavelength, while other experimental metal ions including Co 2+ ions cannot significantly enhance the fluorescence.
the
图2化合物二[(1-羟基2-萘基)-次甲基]腙为探针检测Zn2+时共存金属离子的荧光强度。白色:探针;或探针+金属离子;黑色:探针+ Zn2++金属离子。从图中可知探针化合物在pH 8的DMF/H2O(V/V,1:9)介质中,荧光发射很弱(图中左1白色条),加入其它实验共存离子后对探针荧光仍然很弱,对其强度影响不大(图中从左3至20,金属离子对应的白色条),加入Zn2+后使探针荧光显著增强(图中左2白色条),在探针和有钴离子存在的溶液中加入其它金属离子后对锌离子使探针荧光增强的影响在误差范围内(图中黑色条)。 Fig. 2 Fluorescence intensity of coexisting metal ions when the compound bis[(1-hydroxyl 2-naphthyl)-methine]hydrazone is used as a probe to detect Zn 2+ . White: probe; or probe + metal ion; black: probe + Zn 2+ + metal ion. It can be seen from the figure that the fluorescence emission of the probe compound is very weak in the medium of DMF/H 2 O (V/V, 1:9) at pH 8 (the white bar on the left in the figure). The fluorescence is still very weak and has little effect on its intensity (from 3 to 20 on the left in the figure, the white bars corresponding to metal ions). After adding Zn 2+ , the fluorescence of the probe is significantly enhanced (the 2 white bars on the left in the figure). The effects of adding other metal ions to the needle and the solution with cobalt ions on the fluorescence enhancement of the probe by zinc ions are within the error range (black bars in the figure).
图3 检测Zn2+的校准曲线。纵坐标表示荧光强度,横坐标表示加入的Zn2+标准溶液浓度。 Fig. 3 Calibration curve for detection of Zn 2+ . The ordinate represents the fluorescence intensity, and the abscissa represents the concentration of the added Zn 2+ standard solution.
图4 湖水样品中检测Zn2+的荧光光谱。按标准加入法依次在样品液中加入不同量的Zn2+标准溶液测得的光谱图。 Fig. 4 Fluorescence spectra of Zn 2+ detected in lake water samples. The spectrograms measured by adding different amounts of Zn 2+ standard solutions to the sample solution in turn according to the standard addition method.
图5 葡萄糖酸锌样品中Zn2+含量检测的荧光光谱。按校准曲线法平行测定两次样品的光谱图。 Fig. 5 Fluorescence spectra for detection of Zn 2+ content in zinc gluconate samples. The spectrograms of the two samples were measured in parallel according to the calibration curve method.
具体实施方法:Specific implementation method:
实施例1:污染湖水中Zn2+含量检测。 Example 1: Detection of Zn 2+ content in polluted lake water.
1. 湖水样品前处理:取污染湖水样品2.0 L,煮沸10分钟,冷却,静置放置12小时,过滤,检测水样pH值。浓缩为10ml ,冷却备用。 1. Pretreatment of lake water samples: Take 2.0 L of polluted lake water samples, boil them for 10 minutes, cool them down, let them stand for 12 hours, filter them, and test the pH value of the water samples. Concentrate to 10ml, cool for later use.
2. 检测:移取1mL 经处理过的湖水样品于10mL 容量瓶中,加入1 mL探针化合物(10 μM,DMF), 1 mL Tris-HCl,依次加入0、1、2 mL Zn2+(10μM),用含水10% DMF/H2O混合液定容,25℃恒温放置半小时。平行测定3次。 2. Detection: pipette 1mL of the treated lake water sample into a 10mL volumetric flask, add 1 mL of probe compound (10 μM, DMF), 1 mL of Tris-HCl, add 0, 1, 2 mL of Zn 2+ ( 10 μM), dilute to volume with aqueous 10% DMF/H 2 O mixture, and place at a constant temperature of 25°C for half an hour. Measured 3 times in parallel.
3. 测定的光谱图见附图4,按照标准加入法计算得到结果见表1。 3. The measured spectrogram is shown in Figure 4, and the results calculated according to the standard addition method are shown in Table 1.
表1 湖水样品中检测Zn2+ Table 1 Detection of Zn 2+ in lake water samples
实施例2:市售葡萄糖酸锌中锌含量测定。 Embodiment 2: Determination of zinc content in commercially available zinc gluconate.
对某品牌葡萄糖酸锌含片中锌的含量进行检测: Detect the content of zinc in a certain brand of zinc gluconate lozenges:
1、前处理:取一片葡萄糖酸锌32mg(以锌计0.32mg)研磨成粉状,溶于100mL容量瓶中。置于超声波中震荡30分钟,再静置2小时后取上层清液。 1. Pretreatment: Take a piece of zinc gluconate 32mg (0.32mg as zinc) and grind it into powder, dissolve it in a 100mL volumetric flask. Vibrate in ultrasonic for 30 minutes, then stand still for 2 hours and take the supernatant.
2、检测过程:加入1 mL 探针化合物(10μM,DMF),加入1 mL Tris-HCl(pH =8),移取上述所配样品1mL于10mL容量瓶中,用含水10% DMF/H2O混合液定容。25℃恒温放置半小时,在514nm处测定其荧光强度。平行测定2次。
2. Detection process: Add 1 mL of probe compound (10 μM, DMF), add 1 mL of Tris-HCl (pH = 8),
3、测定的光谱图见附图5,按照实验所得校准曲线计算得到如下结果,见表3。 3. See attached drawing 5 for the measured spectrogram, and calculate the following results according to the calibration curve obtained in the experiment, see Table 3.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210202304.7A CN102735662B (en) | 2012-07-19 | 2012-07-19 | High sensitivity and high selectivity fluorescence emission spectrum analysis method for zinc ions |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210202304.7A CN102735662B (en) | 2012-07-19 | 2012-07-19 | High sensitivity and high selectivity fluorescence emission spectrum analysis method for zinc ions |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102735662A true CN102735662A (en) | 2012-10-17 |
CN102735662B CN102735662B (en) | 2014-06-18 |
Family
ID=46991546
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201210202304.7A Expired - Fee Related CN102735662B (en) | 2012-07-19 | 2012-07-19 | High sensitivity and high selectivity fluorescence emission spectrum analysis method for zinc ions |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102735662B (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103822905A (en) * | 2014-01-17 | 2014-05-28 | 西北师范大学 | Application of 1-naphthyl-3, 4, 5-tri(hexadecyloxyl) benzoyl hydrazone as sensor in fluorescent identification of silver ions |
CN104122243A (en) * | 2014-08-07 | 2014-10-29 | 贵州大学 | A Fluorescence Spectroscopic Analysis Method for Detecting Trace Zn2+, F- or AcO- |
CN104122222A (en) * | 2014-08-07 | 2014-10-29 | 贵州大学 | Absorption spectrum analytical method for detecting ultraviolet ratio of micro-amount Zn<2+>or F<-> |
CN104198449A (en) * | 2014-08-08 | 2014-12-10 | 贵州大学 | Fluorescence probe method for live cell imaging |
CN105044061A (en) * | 2015-07-25 | 2015-11-11 | 渤海大学 | High-selectivity method for detecting p-phenylenediamine in aqueous solution |
CN106770124A (en) * | 2017-01-05 | 2017-05-31 | 昆明理工大学 | A kind of fluorescent optical sensor and preparation method for detecting zinc ion |
CN106883846A (en) * | 2017-04-14 | 2017-06-23 | 周口师范学院 | A kind of definitely water miscible zinc ion fluorescent, preparation method and applications |
CN112858233A (en) * | 2019-11-28 | 2021-05-28 | 天津科技大学 | Novel method for detecting zinc ions in water body |
CN113125365A (en) * | 2021-04-16 | 2021-07-16 | 中国科学院生态环境研究中心 | Device and method for quantitatively identifying nano zinc oxide and zinc ions in solution |
CN114136943A (en) * | 2021-11-30 | 2022-03-04 | 厦门大学 | A Fluorescence Analysis Method for Determination of Lithium Ions Using Hollow-shell Phthalocyanine as Molecular Probe |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10232205A (en) * | 1997-02-19 | 1998-09-02 | Shinotesuto:Kk | Method and reagent for measuring zinc ion |
CN1715919A (en) * | 2005-07-12 | 2006-01-04 | 大连理工大学 | Fluorescent boron dye fluorescent probe for detection of zinc ion in cells |
JP2009280811A (en) * | 2008-05-13 | 2009-12-03 | Korea Univ Industrial & Academic Collaboration Foundation | Two-photon dye for real-time monitoring of intracellular free zinc ion, method for preparing the same and method for real-time monitoring of intracellular free zinc ion using the same |
CN101914375A (en) * | 2010-05-25 | 2010-12-15 | 郑州大学 | A molecular fluorescent switch for detecting intracellular zinc ions and its application |
CN102229800A (en) * | 2011-04-26 | 2011-11-02 | 山东大学 | A kind of pyrazoline derivative Zn2+ fluorescent probe and its application |
-
2012
- 2012-07-19 CN CN201210202304.7A patent/CN102735662B/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10232205A (en) * | 1997-02-19 | 1998-09-02 | Shinotesuto:Kk | Method and reagent for measuring zinc ion |
CN1715919A (en) * | 2005-07-12 | 2006-01-04 | 大连理工大学 | Fluorescent boron dye fluorescent probe for detection of zinc ion in cells |
JP2009280811A (en) * | 2008-05-13 | 2009-12-03 | Korea Univ Industrial & Academic Collaboration Foundation | Two-photon dye for real-time monitoring of intracellular free zinc ion, method for preparing the same and method for real-time monitoring of intracellular free zinc ion using the same |
CN101914375A (en) * | 2010-05-25 | 2010-12-15 | 郑州大学 | A molecular fluorescent switch for detecting intracellular zinc ions and its application |
CN102229800A (en) * | 2011-04-26 | 2011-11-02 | 山东大学 | A kind of pyrazoline derivative Zn2+ fluorescent probe and its application |
Non-Patent Citations (1)
Title |
---|
CHANG-ZHENG ZHENG,ET AL.: "《Hydrothermal synthesis, structures, luminescence and magnetic propertiesof Zn(II) and Cu(II) complexes with new hydrazone ligand》", 《JOURNAL OF MOLECULAR STRUCTURE》, 29 November 2011 (2011-11-29) * |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103822905A (en) * | 2014-01-17 | 2014-05-28 | 西北师范大学 | Application of 1-naphthyl-3, 4, 5-tri(hexadecyloxyl) benzoyl hydrazone as sensor in fluorescent identification of silver ions |
CN103822905B (en) * | 2014-01-17 | 2016-04-27 | 西北师范大学 | 1-naphthalene-3,4,5-tri-(hexadecane oxygen base) benzoyl hydrazone is as the application of sensor in fluorescence identifying silver ion |
CN104122222B (en) * | 2014-08-07 | 2017-02-08 | 贵州大学 | Absorption spectrum analytical method for detecting ultraviolet ratio of micro-amount Zn<2+>or F<-> |
CN104122243A (en) * | 2014-08-07 | 2014-10-29 | 贵州大学 | A Fluorescence Spectroscopic Analysis Method for Detecting Trace Zn2+, F- or AcO- |
CN104122222A (en) * | 2014-08-07 | 2014-10-29 | 贵州大学 | Absorption spectrum analytical method for detecting ultraviolet ratio of micro-amount Zn<2+>or F<-> |
CN104122243B (en) * | 2014-08-07 | 2017-01-18 | 贵州大学 | Fluorescent spectrum analysis method for detecting trace Zn<2+> and F<-> or AcO<-> |
CN104198449A (en) * | 2014-08-08 | 2014-12-10 | 贵州大学 | Fluorescence probe method for live cell imaging |
CN104198449B (en) * | 2014-08-08 | 2016-08-17 | 贵州大学 | A kind of fluorescent probe method for living cells imaging |
CN105044061A (en) * | 2015-07-25 | 2015-11-11 | 渤海大学 | High-selectivity method for detecting p-phenylenediamine in aqueous solution |
CN106770124A (en) * | 2017-01-05 | 2017-05-31 | 昆明理工大学 | A kind of fluorescent optical sensor and preparation method for detecting zinc ion |
CN106770124B (en) * | 2017-01-05 | 2019-06-11 | 昆明理工大学 | A kind of fluorescence sensor for detecting zinc ion and preparation method |
CN106883846A (en) * | 2017-04-14 | 2017-06-23 | 周口师范学院 | A kind of definitely water miscible zinc ion fluorescent, preparation method and applications |
CN106883846B (en) * | 2017-04-14 | 2019-03-19 | 周口师范学院 | A kind of absolutely water-soluble zinc ion fluorescent, preparation method and applications |
CN112858233A (en) * | 2019-11-28 | 2021-05-28 | 天津科技大学 | Novel method for detecting zinc ions in water body |
CN113125365A (en) * | 2021-04-16 | 2021-07-16 | 中国科学院生态环境研究中心 | Device and method for quantitatively identifying nano zinc oxide and zinc ions in solution |
CN114136943A (en) * | 2021-11-30 | 2022-03-04 | 厦门大学 | A Fluorescence Analysis Method for Determination of Lithium Ions Using Hollow-shell Phthalocyanine as Molecular Probe |
CN114136943B (en) * | 2021-11-30 | 2024-01-05 | 厦门大学 | Fluorescent analysis method for measuring lithium ions by taking empty phthalocyanine as molecular probe |
Also Published As
Publication number | Publication date |
---|---|
CN102735662B (en) | 2014-06-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102735662A (en) | High sensitivity and high selectivity fluorescence emission spectrum analysis method for zinc ions | |
Zhang et al. | Diazotization-coupling reaction-based selective determination of nitrite in complex samples using shell-isolated nanoparticle-enhanced Raman spectroscopy | |
CN104819970B (en) | A kind of method that super molecular complex fluorescence probe determines carbendazim in water | |
An et al. | Ratiometric fluorescence detection of ciprofloxacin using the terbium-based coordination polymers | |
Chen et al. | A new off–on chemosensor for Al 3+ and Cu 2+ in two different systems based on a rhodamine B derivative | |
Dong et al. | A new naphthopyran-based chemodosimeter with aggregation-induced emission: Selective dual-channel detection of cyanide ion in aqueous medium and test strips | |
CN109705111B (en) | A mercury ion detection probe and its preparation method and application | |
CN102127421A (en) | Copper ion/mercury ion fluorescence molecular probe, and preparation method and application thereof | |
Srinivasan et al. | Pyrene-based prospective biomaterial: In vitro bioimaging, protein binding studies and detection of bilirubin and Fe3+ | |
Wang et al. | A highly selective and sensitive fluorescent probe for quantitative detection of Hg2+ based on aggregation-induced emission features | |
CN110672574B (en) | A ratiometric fluorescence sensor for detecting Cu2+ and its preparation method and application | |
CN106645056B (en) | A kind of detection method of barium ion in drinking water | |
Ding et al. | A rhodamine-based sensor for Hg 2+ and resultant complex as a fluorescence sensor for I− | |
CN108178766A (en) | A kind of fluorescent probe molecule of recognizable iron ion and dihydrogen phosphate ions and its preparation method and application | |
Zhao et al. | A FRET-based ratiometric fluorescent probe for Hg2+ detection in aqueous solution and bioimaging in multiple samples | |
Guo et al. | A new aggregation-induced emission-based fluorescent probe for effective detection of Hg2+ in water, tea and seafood and its cell imaging | |
Wang et al. | Fluorescent sensor based on triphenylamine for Zn2+ with high selectivity and imaging in living cells | |
CN107540681B (en) | Probe and its application used in a kind of multiple target ion detection | |
CN105548174B (en) | A kind of photoswitch type measures the detecting probe method of pH value of solution | |
CN116003421B (en) | Eight-membered cucurbituril supermolecule fluorescent complex and application thereof in detection of trinitrophenol | |
CN102516978A (en) | Molecular probe for detecting mercury ions and silver ions in water and preparation method thereof | |
Ren et al. | An OFF–ON–OFF type fluorescent probe based on a naphthalene derivative for Al3+ and F− ions and its biological application | |
CN102735663B (en) | High sensitivity and high selectivity fluorescence quenching spectrum analysis method for cobalt ions | |
CN113736091B (en) | Method and application for detecting quercetin with fluorescent micro-probe | |
Wang et al. | Naphthalimide‐based fluorescent probe for Hg2+ detection and imaging in living cells and zebrafish |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20190820 Address after: 550025 Room 205-206, City Planning Building, West Campus, Guizhou University, Huaxi District, Guiyang City, Guizhou Province Patentee after: Guizhou Chuangke Technology Incubator Co.,Ltd. Address before: 550025 Huaxi, Guiyang, Guizhou University (North) Technology Department Patentee before: Guizhou University |
|
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20191018 Address after: 530012 Jiang Ping Industrial Park, the Guangxi Zhuang Autonomous Region, Fangchenggang, Dongxing Patentee after: GUANGXI DONGXING DINGKANG PLASTIC INDUSTRY Co.,Ltd. Address before: 550025 Room 205-206, City Planning Building, West Campus, Guizhou University, Huaxi District, Guiyang City, Guizhou Province Patentee before: Guizhou Chuangke Technology Incubator Co.,Ltd. |
|
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20140618 |